JP2017186783A - Construction method of continuous underground wall - Google Patents

Construction method of continuous underground wall Download PDF

Info

Publication number
JP2017186783A
JP2017186783A JP2016075865A JP2016075865A JP2017186783A JP 2017186783 A JP2017186783 A JP 2017186783A JP 2016075865 A JP2016075865 A JP 2016075865A JP 2016075865 A JP2016075865 A JP 2016075865A JP 2017186783 A JP2017186783 A JP 2017186783A
Authority
JP
Japan
Prior art keywords
continuous wall
excavation
ground
obstacle
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016075865A
Other languages
Japanese (ja)
Other versions
JP6661448B2 (en
Inventor
近藤 達也
Tatsuya Kondo
達也 近藤
光則 西青木
Mitsunori Nishiaoki
光則 西青木
雄一 平川
Yuichi Hirakawa
雄一 平川
和樹 大宮
Kazuki Omiya
和樹 大宮
慧人 堀口
Keito Horiguchi
慧人 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2016075865A priority Critical patent/JP6661448B2/en
Publication of JP2017186783A publication Critical patent/JP2017186783A/en
Application granted granted Critical
Publication of JP6661448B2 publication Critical patent/JP6661448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a construction method of a continuous underground wall that enhances efficiency of processes from removal of an obstacle to construction of the continuous underground wall, while suppressing to the utmost an impact on a ground surface and an existing underground structure.SOLUTION: A construction method is for a continuous underground wall 2 in a ground where a removable obstacle has been buried. The construction method includes: a first excavation step for removing the obstacle using a large-diameter excavator; a second excavation step for excavating in a groove form with the large-diameter excavator to a depth deeper than the first excavation step, for forming a reinforcement region 3; a back-filling step for forming the reinforcement region by filling fluidized soil in the groove part excavated in the first excavation step and the second excavation step, the fluidized soil having strength higher than a surrounding ground; and a continuous wall construction step for constructing the continuous underground wall through the reinforcement region.SELECTED DRAWING: Figure 1

Description

本発明は、撤去可能な障害物が埋設されている地盤における地中連続壁の構築方法に関するものである。   The present invention relates to a method for constructing an underground continuous wall in the ground where a removable obstacle is buried.

特許文献1には、既設地下トンネルの拡幅施工法が開示されている。地下トンネルの一般部は、シールド工法によって円筒形に掘削されることが多いが、分岐合流部や駅部においては、一般部より大断面の地下構造物が構築されることになる。   Patent Document 1 discloses a method for widening an existing underground tunnel. The general part of an underground tunnel is often excavated into a cylindrical shape by a shield method, but an underground structure having a larger cross section than the general part is constructed at a branching junction or station part.

特許文献1では、既設地下構造物を拡幅するに際して、既設地下構造物及び拡幅部を含む施工予定箇所の側方に、土留め壁として使用するために鉄筋コンクリート製の地中連続壁を設ける。   In Patent Document 1, when widening an existing underground structure, a reinforced concrete underground continuous wall is provided on the side of the planned construction site including the existing underground structure and the widened portion so as to be used as a retaining wall.

ところで地盤には、特許文献2に開示されている汚染土壌や瓦礫のように、地中連続壁の施工に対して障害となる障害物が埋設されていることがあり、地中連続壁の構築に先立って撤去しなければならない場合がある。   By the way, in the ground, there are cases where obstacles that obstruct the construction of the underground continuous wall, such as contaminated soil and debris disclosed in Patent Document 2, are buried, May need to be removed prior to.

一方、特許文献3には、土砂揚泥装置によって掘削溝内の礫や玉石などの障害物を掘削前に除去することで、効率的に掘削が行えるうえに、地中連続壁の芯材を確実に挿入できるようにした地下連続壁工法が開示されている。   On the other hand, in Patent Document 3, by removing obstacles such as gravel and cobblestone in the excavation groove before excavation by the earth and sand mud device, excavation can be performed efficiently, and the core material of the underground continuous wall is used. An underground continuous wall construction method that can be surely inserted is disclosed.

特開2006−348472号公報JP 2006-348472 A 特開2014−74309号公報JP 2014-74309 A 特開2007−120075号公報JP 2007-120075 A

しかしながら地中連続壁の構築に際しては、障害物の撤去から地中連続壁の構築に至るまで、可能な限り効率的に実施できるうえに、既設の地下構造物などが隣接している場合は、それらへの影響が極力、抑えられる施工方法が望まれる。   However, in the construction of the underground continuous wall, it can be carried out as efficiently as possible from the removal of obstacles to the construction of the underground continuous wall, and when existing underground structures are adjacent, A construction method that can suppress the influence on them as much as possible is desired.

そこで、本発明は、障害物の撤去から地中連続壁の構築までが効率的に実施できるうえに、地表面や既設地下構造物等への影響を極力、抑えることが可能な地中連続壁の構築方法を提供することを目的としている。   Therefore, the present invention can efficiently carry out from the removal of obstacles to the construction of underground underground walls, and can also suppress the influence on the ground surface and existing underground structures as much as possible. It aims to provide a construction method.

前記目的を達成するために、本発明の地中連続壁の構築方法は、撤去可能な障害物が埋設されている地盤における地中連続壁の構築方法であって、大口径掘削機によって前記障害物を撤去する第1掘削工程と、補強領域部を形成するために前記第1掘削工程よりも深部まで、前記大口径掘削機によって溝状に掘削する第2掘削工程と、前記第1掘削工程及び第2掘削工程によって掘削された溝部に周辺地盤より強度の高い流動化処理土を充填して前記補強領域部を構築する埋戻し工程と、前記補強領域部を貫通させて地中連続壁を構築する連壁構築工程とを備えたことを特徴とする。   In order to achieve the above object, the underground continuous wall construction method of the present invention is a method for constructing an underground continuous wall in the ground where a removable obstacle is buried, and the obstacle is obtained by a large-diameter excavator. A first excavation step of removing an object, a second excavation step of excavating in a groove shape by the large-diameter excavator to a deeper depth than the first excavation step in order to form a reinforcing region portion, and the first excavation step And a backfilling step of constructing the reinforcing region portion by filling the groove excavated by the second excavating step with fluidized soil having a strength higher than that of the surrounding ground, and passing the reinforcing region portion through the underground continuous wall. And a continuous wall construction process for construction.

ここで、前記連壁構築工程では、水平多軸掘削機により前記補強領域部に溝状の掘削を行い、掘削された溝に場所打ち鉄筋コンクリートにより地中連続壁を構築することができる。   Here, in the continuous wall construction step, a groove-like excavation is performed in the reinforcing region portion by a horizontal multi-axis excavator, and an underground continuous wall can be constructed by cast-in-place reinforced concrete in the excavated groove.

また、前記地中連続壁が構築される地盤には、前記補強領域部に隣接して既設地下構造物が設けられていてもよい。   Moreover, the existing underground structure may be provided adjacent to the said reinforcement area | region part in the ground in which the said underground continuous wall is constructed | assembled.

このように構成された本発明の地中連続壁の構築方法は、障害物を撤去するための第1掘削工程に使用した大口径掘削機によって、補強領域部を形成するための第2掘削工程を引き続き行う。   The construction method of the underground continuous wall of the present invention configured as described above is the second excavation step for forming the reinforced region portion by the large-diameter excavator used in the first excavation step for removing the obstacle. Continue to do.

そして、第1掘削工程及び第2掘削工程によって掘削された溝部に、周辺地盤より強度の高い流動化処理土を充填して補強領域部を構築した後に、地中連続壁を構築する。   Then, after filling the fluidized soil having higher strength than the surrounding ground into the grooves excavated by the first excavation step and the second excavation step, the reinforced region portion is constructed, and then the underground continuous wall is constructed.

このため、障害物の撤去から地中連続壁の構築までが効率的に実施できるうえに、補強領域部を構築することによって地表面や既設地下構造物等への影響を極力、抑えることができる。   For this reason, it is possible to efficiently carry out from the removal of obstacles to the construction of underground underground walls, and the influence on the ground surface and existing underground structures can be suppressed as much as possible by constructing the reinforced area part. .

また、水平多軸掘削機であれば、周辺地盤よりも強度の高い補強領域部を効率的に切削することができる。さらに、水平多軸掘削機は掘削の鉛直精度が高いため、正確な位置に地中連続壁を構築することができる。   Moreover, if it is a horizontal multi-axis excavator, the reinforcement area | region part whose intensity | strength is higher than a surrounding ground can be cut efficiently. Furthermore, since a horizontal multi-axis excavator has high vertical accuracy of excavation, it is possible to construct an underground continuous wall at an accurate position.

また、既設地下構造物が存在する地盤においても、隣接して補強領域部を設けておくことで、補強領域部によって保護された状態となって、既設地下構造物への影響を最小限に抑えることができる。   In addition, even in the ground where existing underground structures exist, by providing a reinforcement area part adjacent to it, it becomes a state protected by the reinforcement area part, and the influence on the existing underground structure is minimized. be able to.

本実施の形態の地中連続壁の構築方法を説明するための断面図である。It is sectional drawing for demonstrating the construction method of the underground continuous wall of this Embodiment. 第1掘削工程及び第2掘削工程を説明するための断面図である。It is sectional drawing for demonstrating a 1st excavation process and a 2nd excavation process. 埋戻し工程を説明するための断面図である。It is sectional drawing for demonstrating a backfilling process. 連壁用溝部を掘削する工程を説明するための断面図である。It is sectional drawing for demonstrating the process of excavating the groove part for continuous walls. 地中連続壁の構築方法を説明するための平面図である。It is a top view for demonstrating the construction method of an underground continuous wall.

以下、本発明の実施の形態について図面を参照して説明する。図1は、本実施の形態の地中連続壁2の構築方法を説明するための図であり、図5は、地中連続壁2の構築方法が実施される現場の一部を示した平面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining a construction method of the underground continuous wall 2 according to the present embodiment, and FIG. 5 is a plan view showing a part of a site where the construction method of the underground continuous wall 2 is implemented. FIG.

本実施の形態では、図1に示すように、地盤Gに設けられた既設地下構造物である既設トンネル1の駅部を拡幅する場合を例に説明する。この例では、ボックスカルバート状の既設トンネル1を、1.5倍程度の幅を有する拡幅部11に広げる場合を示している。   In the present embodiment, as shown in FIG. 1, an example will be described in which the station portion of an existing tunnel 1 that is an existing underground structure provided on the ground G is widened. In this example, the box culvert-shaped existing tunnel 1 is expanded to the widened portion 11 having a width of about 1.5 times.

この地盤Gには、地中に既設トンネル1が設けられるとともに、下水管や上水管などの配管や、電線などが収容された共同溝などの埋設物12が埋設されている。   In the ground G, an existing tunnel 1 is provided in the ground, and buried objects 12 such as pipes such as a sewer pipe and a water pipe, and a common groove in which electric wires are accommodated are buried.

この埋設物12は、工事の支障になる箇所では、必要に応じて迂回させるなどして対応することができる。一方、瓦礫、玉石、汚染土壌、未使用既存構造物など、地盤Gには撤去可能な障害物が埋設されていることがある。このような障害物は、地中連続壁2の構築に支障となるため撤去される。   This buried object 12 can be dealt with, for example, by detouring if necessary at a place where the construction is hindered. On the other hand, there are cases where obstacles that can be removed are buried in the ground G, such as rubble, cobblestone, contaminated soil, and unused existing structures. Such obstacles are removed because they obstruct the construction of the underground continuous wall 2.

図2に示すように、地盤Gの地表面から一定の深さに至るまで、撤去可能な障害物が埋設された障害物埋設部13が存在しているとする。この障害物埋設部13の障害物は、地盤Gとともに掘削されて排出される。   As shown in FIG. 2, it is assumed that there is an obstacle burying portion 13 in which an obstacle that can be removed is buried from the ground surface of the ground G to a certain depth. The obstacle in the obstacle burying portion 13 is excavated together with the ground G and discharged.

障害物埋設部13を掘削する第1掘削工程は、大口径掘削機4によって行われる。大口径掘削機4は、油圧駆動式のベースマシン41に対して、オーガドリル、回転バケット、ケーシングチューブ、ハンマビット、ローラビット、コアチューブなどの様々なアタッチメントツールが交換可能に装着される万能大口径削孔機である。   The first excavation process for excavating the obstacle burying portion 13 is performed by the large-diameter excavator 4. The large-diameter excavator 4 is universally mounted with various attachment tools such as an auger drill, a rotating bucket, a casing tube, a hammer bit, a roller bit, and a core tube in a replaceable manner with respect to a hydraulically driven base machine 41. It is a caliber drilling machine.

アタッチメントツールは、撤去対象となる障害物や地盤の硬さ、状態などに応じて選択される。例えば、玉石や瓦礫などの強度の高い(硬い)障害物の撤去や、汚染土壌のようにそのままの状態で取り除きたい障害物には、ケーシングチューブ42が使用される。   The attachment tool is selected according to the obstacle to be removed, the hardness of the ground, the state, and the like. For example, the casing tube 42 is used for removing obstacles with high strength (hard) such as cobblestone and rubble, or for obstacles that are to be removed as they are, such as contaminated soil.

一方、障害物埋設部13より下方の地盤Gは、障害物が埋設されていない追加掘削部14となる。図2では、第1掘削工程で掘削される第1掘削範囲S1の下方に、障害物が埋設されていない第2掘削範囲S2が存在している。   On the other hand, the ground G below the obstacle burying portion 13 becomes an additional excavation portion 14 in which no obstacle is buried. In FIG. 2, a second excavation range S <b> 2 in which no obstacle is embedded exists below the first excavation range S <b> 1 excavated in the first excavation process.

この第1掘削範囲S1と第2掘削範囲S2の判定のために、ボーリング孔15の位置で事前に土質調査が行われている。第1掘削範囲S1は、既設トンネル1に隣接して地中連続壁2を構築するために、障害物を撤去しなければならない掘削範囲である。   In order to determine the first excavation range S1 and the second excavation range S2, a soil survey is performed in advance at the position of the borehole 15. The first excavation range S1 is an excavation range in which an obstacle must be removed in order to construct the underground continuous wall 2 adjacent to the existing tunnel 1.

これに対して第2掘削範囲S2は、障害物を撤去する必要はないが、既設トンネル1に隣接して地中連続壁2を構築するために、掘削しなければならない掘削範囲である。   On the other hand, the second excavation range S2 is an excavation range in which it is not necessary to remove the obstacle, but in order to construct the underground continuous wall 2 adjacent to the existing tunnel 1, the second excavation range S2.

第1掘削範囲S1及び第2掘削範囲S2は、円筒形のケーシングチューブ42の押し込みと引き抜き、及び横移動を繰り返すことによって、大口径掘削機4による円筒形状の掘削孔が重なり合った溝部3aに形成される。   The first excavation range S1 and the second excavation range S2 are formed in the groove portion 3a in which cylindrical excavation holes by the large-diameter excavator 4 are overlapped by repeatedly pushing and pulling the cylindrical casing tube 42 and moving laterally. Is done.

このようにして地盤Gに掘削された溝部3aには、図3に示すように、流動化処理土が充填されて補強領域部3が形成される。補強領域部3は、図5の平面図に示すように、既設トンネル1に沿って延伸される。   In this way, the groove 3a excavated in the ground G is filled with fluidized soil as shown in FIG. The reinforcing region 3 is extended along the existing tunnel 1 as shown in the plan view of FIG.

流動化処理土は、土砂と水分と固化材とを混合することによって製造される埋戻し材料である。土砂には、砂礫質土などが使用され、固化材にはセメントやセメント系固化材が使用される。   The fluidized soil is a backfill material manufactured by mixing earth and sand, moisture, and a solidifying material. Gravel soil or the like is used for the earth and sand, and cement or cement-based solidifying material is used for the solidifying material.

補強領域部3に充填される流動化処理土の強度は、周辺地盤の強度より高くなるように設定される。補強領域部3の強度が高ければ、地中連続壁2を構築するために大型重機を近付けたとしても、地表面の沈下や既設トンネル1への影響などを抑えることができる。   The strength of the fluidized soil filled in the reinforcement region 3 is set to be higher than the strength of the surrounding ground. If the strength of the reinforced region portion 3 is high, even if a large heavy machine is brought closer to construct the underground continuous wall 2, the subsidence of the ground surface or the influence on the existing tunnel 1 can be suppressed.

地中連続壁2を構築するための連壁用溝部21の掘削には、図4に示すように、水平多軸掘削機5が使用される。水平多軸掘削機5は、ベースマシン51と、回転カッタ部52とによって主に構成される。   As shown in FIG. 4, a horizontal multi-axis excavator 5 is used for excavating the continuous wall groove 21 for constructing the underground continuous wall 2. The horizontal multi-axis excavator 5 is mainly configured by a base machine 51 and a rotary cutter unit 52.

回転カッタ部52には、回転軸を水平方向に向けた複数のドラムカッタが並んで配置されている。ドラムカッタを回転駆動させることによって、補強領域部3を切削して溝状に掘削させることができる。   In the rotary cutter unit 52, a plurality of drum cutters whose rotation axes are oriented in the horizontal direction are arranged side by side. By rotating the drum cutter, the reinforcing region 3 can be cut and excavated into a groove shape.

回転カッタ部52は、補強領域部3の地表に設けられたガイドウォール部23から挿入される。回転カッタ部52によって掘削された連壁用溝部21には、安定液211が注入される。   The rotating cutter part 52 is inserted from the guide wall part 23 provided on the ground surface of the reinforcing region part 3. Stabilizing liquid 211 is poured into the continuous wall groove 21 excavated by the rotary cutter unit 52.

安定液211は、掘削された掘削面(孔壁)の崩壊を液圧やマッドケーキなどによって防ぐために注入される。例えば、ベントナイトと水とを混合させた泥水などが、安定液211として使用される。   The stabilizing liquid 211 is injected to prevent the excavated excavation surface (hole wall) from collapsing with hydraulic pressure, mud cake, or the like. For example, muddy water in which bentonite and water are mixed is used as the stabilizing liquid 211.

連壁用溝部21が掘削されて応力が開放されると、連壁用溝部21に向けてすべりが発生して地表面の沈下が生じるおそれがある。特に、重量の大きな水平多軸掘削機5が上載荷重として加わると、すべり崩壊が起きやすい状況になる。   When the continuous wall groove 21 is excavated and the stress is released, a slip may occur toward the continuous wall groove 21 and the ground surface may sink. In particular, when a heavy horizontal multi-axis excavator 5 is applied as an overload, slip collapse is likely to occur.

ところが本実施の形態では、連壁用溝部21の両側が補強領域部3となって補強されているので、補強された部分が抵抗となってすべりが発生しにくい状態にできる。   However, in the present embodiment, since both sides of the continuous wall groove portion 21 are reinforced as the reinforcing region portion 3, the reinforced portion becomes a resistance and can be prevented from slipping.

この補強領域部3は、地表付近や既設トンネル1に隣接する範囲に少なくとも設けられる。既設トンネル1に隣接する範囲に補強領域部3が設けられていれば、連壁用溝部21周辺の自立性が高められるため、既設トンネル1に作用する側方圧が増加するなどという影響を極力、抑えることができる。   The reinforcing region 3 is provided at least in the vicinity of the ground surface or in a range adjacent to the existing tunnel 1. If the reinforcing region 3 is provided in a range adjacent to the existing tunnel 1, the self-supporting property around the groove portion 21 for the continuous wall is enhanced, so that the effect of increasing the side pressure acting on the existing tunnel 1 is minimized. Can be suppressed.

連壁用溝部21は、補強領域部3の下端部31を通過して、図1に示すように、より深部まで掘削される。地盤Gの深部での掘削は、地表面に影響を与えることが少ないうえに、既設トンネル1も離れたところでの掘削から受ける影響が少ないため、補強領域部3を地中連続壁2の構築範囲の全域にわたって設ける必要はない。   The continuous wall groove portion 21 passes through the lower end portion 31 of the reinforcing region portion 3 and is excavated to a deeper portion as shown in FIG. Excavation in the deep part of the ground G has little influence on the ground surface, and the existing tunnel 1 is less affected by excavation at a distance, so the reinforced region part 3 is constructed in the construction range of the underground continuous wall 2 It is not necessary to provide the entire area.

連壁用溝部21の下部には、モルタルだけで形成された、又はベントナイト液を固化させた遮水部22が設けられる。遮水部22の上方には、鉄筋籠とコンクリートとによって主に構成される場所打ち鉄筋コンクリート製の地中連続壁2が形成される。   A water-impervious portion 22 made of only mortar or solidified bentonite liquid is provided below the continuous wall groove portion 21. An underground continuous wall 2 made of cast-in-place reinforced concrete is mainly formed above the water-impervious portion 22 and is mainly composed of reinforcing rods and concrete.

次に、本実施の形態の地中連続壁2の構築方法、及びその作用について説明する。   Next, the construction method of the underground continuous wall 2 of this Embodiment and its effect | action are demonstrated.

まず図2に示すように、既設トンネル1に隣接した位置にボーリング孔15を削孔して、採取された土砂などから地盤Gの状況を判定する。本実施の形態では、通常の土質調査に加えて、第1掘削範囲S1の設定と第2掘削範囲S2の設定が行われる。   First, as shown in FIG. 2, a borehole 15 is drilled at a position adjacent to the existing tunnel 1, and the state of the ground G is determined from the collected earth and sand. In the present embodiment, in addition to the normal soil survey, the first excavation range S1 and the second excavation range S2 are set.

続いて大口径掘削機4を据え付けて、ケーシングチューブ42によって障害物埋設部13の掘削を行う。障害物埋設部13の掘削は、第1掘削範囲S1までであるが、その下方の第2掘削範囲S2の掘削も連続して行うことができる。   Subsequently, the large-diameter excavator 4 is installed, and the obstacle burying portion 13 is excavated by the casing tube 42. The excavation of the obstacle burying portion 13 is up to the first excavation range S1, but excavation of the second excavation range S2 below the excavation range S1 can also be continuously performed.

これに対して、障害物埋設部13を先に溝状に掘削した後に、掘削された溝を利用してそれよりも深部の追加掘削部14の掘削を行うこともできる。例えば、障害物埋設部13の排土と追加掘削部14の排土とを混合させたくない場合は、別々に掘削を行う。   On the other hand, after excavating the obstacle embedding portion 13 into a groove shape, the additional excavation portion 14 deeper than that can be excavated using the excavated groove. For example, when it is not desired to mix the soil discharged from the obstacle burying unit 13 and the soil discharged from the additional excavating unit 14, excavation is performed separately.

第1掘削範囲S1及び第2掘削範囲S2の掘削によって形成された連続した円筒形状の溝部3aには、図3に示すように、流動化処理土を充填した補強領域部3を構築する。   In the continuous cylindrical groove 3a formed by excavation in the first excavation range S1 and the second excavation range S2, as shown in FIG. 3, a reinforced region portion 3 filled with fluidized soil is constructed.

流動化処理土に使用する土砂の一部には、追加掘削部14の排土を利用することができる。また、障害物埋設部13の排土も、再利用可能な状態であれば使用することができる。   The soil discharged from the additional excavation unit 14 can be used as part of the soil used for the fluidized soil. Moreover, the earth removal of the obstacle burying part 13 can also be used if it can be reused.

そして、補強領域部3が所定の強度に達した後に、図4に示すように、補強領域部3に隣接した位置に、水平多軸掘削機5を据え付ける。また、補強領域部3の幅方向の略中央の地中連続壁2の上端となる位置には、ガイドウォール部23が設けられる。   And after the reinforcement area | region part 3 reaches | attains predetermined intensity | strength, the horizontal multi-axis excavator 5 is installed in the position adjacent to the reinforcement area | region part 3, as shown in FIG. In addition, a guide wall portion 23 is provided at a position that is the upper end of the underground continuous wall 2 in the approximate center in the width direction of the reinforcing region portion 3.

続いてガイドウォール部23に水平多軸掘削機5の回転カッタ部52を挿入し、補強領域部3を溝状に掘削する。水平多軸掘削機5による掘削は、安定液211を注入して孔壁を安定させながら行われる。   Subsequently, the rotating cutter part 52 of the horizontal multi-axis excavator 5 is inserted into the guide wall part 23 to excavate the reinforcing region part 3 into a groove shape. Excavation by the horizontal multi-axis excavator 5 is performed while injecting the stabilizing liquid 211 to stabilize the hole wall.

水平多軸掘削機5による掘削は、回転カッタ部52を引き上げたり降ろしたりを繰り返さなくてもよいため、安定液211の水位が一定に保たれ、孔壁の崩壊が起き難い掘削方法と言える。   The excavation by the horizontal multi-axis excavator 5 does not have to repeat the lifting and lowering of the rotary cutter unit 52. Therefore, it can be said that the level of the stabilizing liquid 211 is kept constant and the hole wall is not easily collapsed.

連壁用溝部21の掘削は、図1に示すように、補強領域部3を貫通して遮水部22の底部となる溝底212まで行われる。水平多軸掘削機5による掘削後は、回転カッタ部52が連壁用溝部21から引き上げられ、底浚いが行われる。   As shown in FIG. 1, the continuous wall groove portion 21 is excavated to the groove bottom 212 that penetrates the reinforcing region portion 3 and serves as the bottom portion of the water shielding portion 22. After excavation by the horizontal multi-axis excavator 5, the rotary cutter unit 52 is pulled up from the continuous wall groove 21 and bottoming is performed.

そして、連壁用溝部21の下部に水中モルタルが充填されて遮水部22が構築される。続いてガイドウォール部23から鉄筋籠が挿入され、トレミー管を使って下方からコンクリートが打ち上げられる。   And the underwater mortar is filled in the lower part of the groove part 21 for continuous walls, and the water-impervious part 22 is constructed | assembled. Subsequently, a reinforcing bar is inserted from the guide wall 23, and concrete is launched from below using a tremy tube.

こうして場所打ち鉄筋コンクリート製の地中連続壁2を構築した後に、ガイドウォール部23の開口を蓋部231で塞ぎ、地表から地中連続壁2,2間の開削を行う。   After constructing the underground continuous wall 2 made of cast-in-place reinforced concrete in this way, the opening of the guide wall portion 23 is closed with the lid portion 231 and excavation between the underground continuous walls 2 and 2 is performed from the ground surface.

開削によって露出した既設トンネル1に対して、拡幅部11を設けて双方を連通させることで、一体の駅部等にする。拡幅部11の構築後は、地中連続壁2,2間を埋め戻す。   The widened portion 11 is provided for the existing tunnel 1 exposed by the excavation and the both are communicated to form an integrated station portion or the like. After construction of the widened portion 11, the space between the underground continuous walls 2 and 2 is backfilled.

このように構成された本実施の形態の地中連続壁2の構築方法は、障害物を撤去するための第1掘削工程に使用した大口径掘削機4によって、補強領域部3を形成するための第2掘削工程を引き続き行う。   In the construction method of the underground continuous wall 2 of the present embodiment configured as described above, the reinforcing region portion 3 is formed by the large-diameter excavator 4 used in the first excavation process for removing the obstacle. The second excavation process is continued.

そして、第1掘削工程及び第2掘削工程によって掘削された溝部3aに、周辺地盤より強度の高い流動化処理土を充填して補強領域部3を構築した後に、地中連続壁2を構築する。   Then, after filling the fluidized soil having higher strength than the surrounding ground into the groove 3a excavated by the first excavation process and the second excavation process, and constructing the reinforcing region part 3, the underground continuous wall 2 is constructed. .

このため、障害物埋設部13の掘削及び排土から地中連続壁2の構築までが効率的に実施できるうえに、補強領域部3を構築することによって地表面や既設トンネル1への掘削による影響を極力、抑えることができる。   For this reason, it is possible to efficiently carry out from the excavation and soil removal of the obstacle burying portion 13 to the construction of the underground continuous wall 2, and also by excavating the ground surface and the existing tunnel 1 by constructing the reinforcing region portion 3. The influence can be suppressed as much as possible.

また、水平多軸掘削機5であれば、周辺地盤よりも強度の高い補強領域部3を効率的に切削することができる。すなわち水平多軸掘削機5の回転カッタ部52は、切削能力が高いので、流動化処理土が硬くなりすぎてしまった場合でも、連壁用溝部21を掘削することができる。   Moreover, if it is the horizontal multi-axis excavator 5, the reinforcement area | region part 3 whose intensity | strength is higher than a surrounding ground can be cut efficiently. That is, since the rotary cutter unit 52 of the horizontal multi-axis excavator 5 has a high cutting ability, the continuous wall groove 21 can be excavated even when the fluidized soil is too hard.

さらに、水平多軸掘削機5は掘削の鉛直精度が高いため、正確な位置に地中連続壁2を構築することができる。また、鉛直精度の低い掘削機を使用する場合は、補強領域部の幅を広げて傾きに対応させなければならないが、水平多軸掘削機5を使用することによって補強領域部3の範囲を低減してコスト及び工期を削減することができる。   Furthermore, since the horizontal multi-axis excavator 5 has high excavation vertical accuracy, the underground continuous wall 2 can be constructed at an accurate position. In addition, when using an excavator with low vertical accuracy, the width of the reinforcing region portion must be widened to cope with the inclination, but the range of the reinforcing region portion 3 is reduced by using the horizontal multi-axis excavator 5. Thus, the cost and the construction period can be reduced.

さらに、既設トンネル1が存在する地盤Gにおいても、隣接して補強領域部3を設けておくことで、補強領域部3によって既設トンネル1の側方が保護された状態となって、作用土圧の増加などの影響を最小限に抑えることができる。   Furthermore, even in the ground G where the existing tunnel 1 exists, the side of the existing tunnel 1 is protected by the reinforcement region portion 3 by providing the reinforcement region portion 3 adjacent to the ground region G. The effect of the increase in the amount can be minimized.

以上、図面を参照して、本発明の実施の形態を詳述してきたが、具体的な構成は、この実施の形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。   The embodiment of the present invention has been described in detail above with reference to the drawings. However, the specific configuration is not limited to this embodiment, and design changes that do not depart from the gist of the present invention are not limited to this embodiment. Included in the invention.

例えば、前記実施の形態では、既設トンネル1を拡幅する場合に、既設トンネル1に隣接して地中連続壁2を構築する例について説明したが、これに限定されるものではなく、障害物の撤去と地中連続壁の構築が必要な場合であれば本発明を適用することができる。   For example, in the above-described embodiment, when the existing tunnel 1 is widened, the example in which the underground continuous wall 2 is constructed adjacent to the existing tunnel 1 has been described. The present invention can be applied if removal and construction of underground continuous walls are necessary.

また、前記実施の形態では、水平多軸掘削機5を使用して連壁用溝部21を掘削する場合について説明したが、これに限定されるものではなく、補強領域部の強度によってはバケットによっても溝状の掘削を行うことができる。   Moreover, although the said embodiment demonstrated the case where the horizontal multi-axis excavator 5 was used to excavate the groove part 21 for continuous walls, it is not limited to this, depending on the intensity | strength of a reinforcement area | region part by a bucket. Can also perform trench-shaped excavation.

さらに、前記実施の形態では、補強領域部3に場所打ち鉄筋コンクリート製の地中連続壁2を構築する場合について説明したが、これに限定されるものではなく、多軸オーガによって構築されるソイルミキシングウォールを地中連続壁とすることもできる。   Further, in the above-described embodiment, the case where the underground continuous wall 2 made of cast-in-place reinforced concrete is constructed in the reinforcing region portion 3 has been described. However, the present invention is not limited to this, and the soil mixing constructed by the multiaxial auger The wall can also be a continuous underground wall.

1 既設トンネル(既設地下構造物)
13 障害物埋設部(撤去可能な障害物)
2 地中連続壁
21 連壁用溝部
3 補強領域部
3a 溝部
4 大口径掘削機
5 水平多軸掘削機
G 地盤
S1 第1掘削範囲
S2 第2掘削範囲
1 Existing tunnel (existing underground structure)
13 Obstacle burying part (obstacle that can be removed)
2 underground continuous wall 21 continuous wall groove 3 reinforced area 3a groove 4 large-diameter excavator 5 horizontal multi-axis excavator G ground S1 first excavation range S2 second excavation range

Claims (3)

撤去可能な障害物が埋設されている地盤における地中連続壁の構築方法であって、
大口径掘削機によって前記障害物を撤去する第1掘削工程と、
補強領域部を形成するために前記第1掘削工程よりも深部まで、前記大口径掘削機によって溝状に掘削する第2掘削工程と、
前記第1掘削工程及び第2掘削工程によって掘削された溝部に周辺地盤より強度の高い流動化処理土を充填して前記補強領域部を構築する埋戻し工程と、
前記補強領域部を貫通させて地中連続壁を構築する連壁構築工程とを備えたことを特徴とする地中連続壁の構築方法。
A method for constructing a continuous wall in the ground where a removable obstacle is buried,
A first excavation step of removing the obstacle by a large-diameter excavator;
A second excavation step of excavating in a groove shape by the large-diameter excavator to a deeper portion than the first excavation step to form a reinforced region portion;
A backfilling step of filling the fluidized soil having a strength higher than that of the surrounding ground into the groove excavated by the first excavation step and the second excavation step to construct the reinforcing region portion;
An underground continuous wall construction method comprising: a continuous wall construction step of constructing an underground continuous wall through the reinforcing region portion.
前記連壁構築工程では、水平多軸掘削機により前記補強領域部に溝状の掘削を行い、掘削された溝に場所打ち鉄筋コンクリートにより地中連続壁を構築することを特徴とする請求項1に記載の地中連続壁の構築方法。   In the said continuous wall construction process, a groove-shaped excavation is performed in the said reinforced area | region part with a horizontal multi-axis excavator, and an underground continuous wall is constructed with cast-in-place reinforced concrete in the excavated groove. The construction method of the underground continuous wall of description. 前記地中連続壁が構築される地盤には、前記補強領域部に隣接して既設地下構造物が設けられていることを特徴とする請求項1又は2に記載の地中連続壁の構築方法。   3. The underground continuous wall construction method according to claim 1, wherein an existing underground structure is provided adjacent to the reinforcing region portion on the ground on which the underground continuous wall is constructed. .
JP2016075865A 2016-04-05 2016-04-05 Construction method of underground diaphragm wall Active JP6661448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016075865A JP6661448B2 (en) 2016-04-05 2016-04-05 Construction method of underground diaphragm wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016075865A JP6661448B2 (en) 2016-04-05 2016-04-05 Construction method of underground diaphragm wall

Publications (2)

Publication Number Publication Date
JP2017186783A true JP2017186783A (en) 2017-10-12
JP6661448B2 JP6661448B2 (en) 2020-03-11

Family

ID=60045468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016075865A Active JP6661448B2 (en) 2016-04-05 2016-04-05 Construction method of underground diaphragm wall

Country Status (1)

Country Link
JP (1) JP6661448B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108425682A (en) * 2018-03-13 2018-08-21 中铁建大桥工程局集团第二工程有限公司 A kind of shield tool changing ground-connecting-wall ruggedized construction and reinforced construction method
CN109610439A (en) * 2018-12-24 2019-04-12 北京城建北方集团有限公司 The construction method of underground obstacle ultra-deep underground continuous wall grooving
CN111042104A (en) * 2019-12-30 2020-04-21 中国建筑第八工程局有限公司 Method for constructing diaphragm wall at existing underground structure
CN113322965A (en) * 2021-06-11 2021-08-31 中国建筑第八工程局有限公司 Deep foundation clearing construction method for near-subway deep foundation pit
CN114016495A (en) * 2021-11-15 2022-02-08 中国建筑第四工程局有限公司 Construction method for underground continuous wall system under weak geological conditions in sea reclamation area
CN114875889A (en) * 2022-05-23 2022-08-09 中铁二十局集团第一工程有限公司 Staggered cross grooving method suitable for double-row narrow-distance ground wall construction
CN116104155A (en) * 2023-04-12 2023-05-12 广东水电二局股份有限公司 Quick grooving method for ultra-deep underground diaphragm wall of soft soil stratum

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094360A (en) * 1995-06-20 1997-01-07 Taisei Corp Large-diameter excavator
JP2001303553A (en) * 2000-04-24 2001-10-31 Shimizu Corp Underground continuous wall and its construction method
JP2004036142A (en) * 2002-07-01 2004-02-05 Kajima Corp Foundation construction method
US20120000148A1 (en) * 2010-05-25 2012-01-05 Soletanche Freyssinet Wall formed in soil, the wall including a hollow prefabricated element, and a method of making such a wall
JP2013019250A (en) * 2011-07-14 2013-01-31 Sanwa Kiko Kk Method of removing underground obstacle
JP2015094098A (en) * 2013-11-11 2015-05-18 藤井 俊彦 Construction method of ground improvement wall

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094360A (en) * 1995-06-20 1997-01-07 Taisei Corp Large-diameter excavator
JP2001303553A (en) * 2000-04-24 2001-10-31 Shimizu Corp Underground continuous wall and its construction method
JP2004036142A (en) * 2002-07-01 2004-02-05 Kajima Corp Foundation construction method
US20120000148A1 (en) * 2010-05-25 2012-01-05 Soletanche Freyssinet Wall formed in soil, the wall including a hollow prefabricated element, and a method of making such a wall
JP2013019250A (en) * 2011-07-14 2013-01-31 Sanwa Kiko Kk Method of removing underground obstacle
JP2015094098A (en) * 2013-11-11 2015-05-18 藤井 俊彦 Construction method of ground improvement wall

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108425682A (en) * 2018-03-13 2018-08-21 中铁建大桥工程局集团第二工程有限公司 A kind of shield tool changing ground-connecting-wall ruggedized construction and reinforced construction method
CN109610439A (en) * 2018-12-24 2019-04-12 北京城建北方集团有限公司 The construction method of underground obstacle ultra-deep underground continuous wall grooving
CN111042104A (en) * 2019-12-30 2020-04-21 中国建筑第八工程局有限公司 Method for constructing diaphragm wall at existing underground structure
CN113322965A (en) * 2021-06-11 2021-08-31 中国建筑第八工程局有限公司 Deep foundation clearing construction method for near-subway deep foundation pit
CN114016495A (en) * 2021-11-15 2022-02-08 中国建筑第四工程局有限公司 Construction method for underground continuous wall system under weak geological conditions in sea reclamation area
CN114875889A (en) * 2022-05-23 2022-08-09 中铁二十局集团第一工程有限公司 Staggered cross grooving method suitable for double-row narrow-distance ground wall construction
CN114875889B (en) * 2022-05-23 2023-09-12 中铁二十局集团第一工程有限公司 Staggered crossing grooving method suitable for double-row narrow-distance ground wall construction
CN116104155A (en) * 2023-04-12 2023-05-12 广东水电二局股份有限公司 Quick grooving method for ultra-deep underground diaphragm wall of soft soil stratum
CN116104155B (en) * 2023-04-12 2023-09-26 广东水电二局股份有限公司 Quick grooving method for ultra-deep underground diaphragm wall of soft soil stratum

Also Published As

Publication number Publication date
JP6661448B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
JP6661448B2 (en) Construction method of underground diaphragm wall
KR20100115019A (en) Panel joint for construction for underground diaphragm well and underground diaphragm well constructing method using the same
CN104963346A (en) Support construction method for deep foundation pit in complex geological condition
CN107653878A (en) Cast-in-situ bored pile is reusable to be longitudinally separated formula steel pile casting construction
US3839871A (en) Earthen dam repair
CN109208594B (en) Treatment method for steel casing sinking meeting boulder, steel casing structure and drilled pile
KR20000006650A (en) a pole for mud wall and constrution method of fence for mud
JP6034121B2 (en) Construction method of underground structure
JP5204063B2 (en) Box foundation construction method in open shield method
KR100628511B1 (en) External reinforcement reverse circulation drill method
JP6518035B2 (en) Casting aids for steel pipe sheet piles and steel pipe sheet piles
JP4485674B2 (en) Method for constructing continuous underground wall, method for lowering groundwater level, and method for restoring groundwater level
JP2019124019A (en) Invert construction method to existing tunnel
KR20110070188A (en) Construction method for underground watertight wall
CN105155421B (en) Complete embedding circular construction method in a kind of single pile Single column pier river course shallow water
JP4485006B2 (en) Construction method for underground structures
KR101702180B1 (en) A Displacement Bored Pile Method with Impermeable and Detachable Casing Shoe
JP2017197910A (en) Construction method of earth retaining wall structure, and earth retaining wall structure
JP2005146756A (en) Earth retaining impervious wall construction method and earth retaining impervious wall formed by it
KR102625776B1 (en) Construction method of CIP retaining wall with improved water protection and ground subsidence prevention function
CN107630465A (en) Assembled circle underground space structure and its construction method
JP2008184889A (en) Caisson construction method combined with guide hole method for constructing underground structure
KR20170061093A (en) Method for excavating vertical shaft
JP5639213B2 (en) Open shield method
CN107059839A (en) A kind of construction method of armored concrete waveform sheet pile underground structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200212

R150 Certificate of patent or registration of utility model

Ref document number: 6661448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150