JP4074313B2 - Structure of steel sheet pile for water flow and water retaining wall, and its construction method. - Google Patents

Structure of steel sheet pile for water flow and water retaining wall, and its construction method. Download PDF

Info

Publication number
JP4074313B2
JP4074313B2 JP2005292701A JP2005292701A JP4074313B2 JP 4074313 B2 JP4074313 B2 JP 4074313B2 JP 2005292701 A JP2005292701 A JP 2005292701A JP 2005292701 A JP2005292701 A JP 2005292701A JP 4074313 B2 JP4074313 B2 JP 4074313B2
Authority
JP
Japan
Prior art keywords
water
sheet pile
steel sheet
flow
water flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005292701A
Other languages
Japanese (ja)
Other versions
JP2007100416A (en
Inventor
田中卓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Construction Co Ltd
Original Assignee
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Construction Co Ltd filed Critical Tokyu Construction Co Ltd
Priority to JP2005292701A priority Critical patent/JP4074313B2/en
Publication of JP2007100416A publication Critical patent/JP2007100416A/en
Application granted granted Critical
Publication of JP4074313B2 publication Critical patent/JP4074313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

本発明は、通水用鋼矢板、および通水土留壁の構造、およびその施工方法に関するものである。   The present invention relates to a water-permeable steel sheet pile, a structure of a water-permeable retaining wall, and a construction method thereof.

従来より、SMW壁等の遮水性土留壁に通水機能を付加する方法においては、以下の方法等が挙げられる。
<1>未固化のソイルセメントに注水チューブを挿入し、同チューブを拡張し、ソイルセメントを押し出すことで通水空間を確保する方法。
<2>未固化のソイルセメントにフィルター材を装着した2つ割構造のスクリーンを挿入し、拡張ジャッキでスクリーンを地山に押し付け通水空間を確保する方法。
<3>ソイルセメント壁硬化後、ソイルセメントを削孔し、通水空間を確保する方法。
<4>未固化のソイルセメントにピストン(円管の先に鋼製のカバーを取り付けた部材)を配置した通水装置付特殊芯材を建て込み、ソイルセメント硬化後にピストンを背面地山に挿入しピストン先端の鋼製カバーを電食にて溶解し通水機能を発揮する方法。
Conventionally, methods for adding a water flow function to a water-impervious earth retaining wall such as an SMW wall include the following methods.
<1> A method of securing a water flow space by inserting a water injection tube into unsolidified soil cement, expanding the tube, and extruding the soil cement.
<2> A method of inserting a split screen with filter material into unsolidified soil cement and pressing the screen against a natural ground with an expansion jack to secure a water passage space.
<3> A method of drilling the soil cement to secure a water passage space after the soil cement wall is hardened.
<4> A special core material with a water flow device with a piston (a member with a steel cover attached to the end of a circular pipe) is built in unsolidified soil cement, and the piston is inserted into the back ground after hardening the soil cement The steel cover at the tip of the piston is melted by electrolytic corrosion to achieve the water flow function.

しかし、前記した従来の通水機能の付加方法にあっては、以下のような問題点がある。
<1>通水部のソイルセメントを完全に除去することは困難であり、またソイルセメントの押し出し状況によっては十分なフィルター材の投入空間を確保できないこともあることから、通水機能の低下が問題となるおそれがある。さらに、土留壁構築に長時間を要する大規模開削工事では、土留壁構築時の地下水流動保全を目的に別途対策を講じる必要がある。
<2>通水部のソイルセメントを完全に除去することは困難であり、通水機能の低下が問題となる恐れがある。また芯材は特殊な形状であることから、ソイルセメントの造成深度および造成状況によっては芯材が建て込み困難となる恐れがある。
<3>ソイルセメントはSMW壁の背面地山に入り込んでいる場合が多く、削孔でこれを全部取り除くことは困難であるため、SMW壁背面の用地部分の掘削が必要となる。また、ソイルセメントの削孔に当たっては全周回転開削機等の建設重機が別途必要となり、工期及び工費の面で負担が大きくなる。更に、土留壁構築に長期間を要する大規模開削工事では、土留壁構築時の地下水流動保全を目的に別途対策を講じる必要がある。
<4>通水能力は、ピストンの挿入状況に依存するため信頼性が低い。また、ピストンの背面地山の間にある硬化したソイルセメントは除去できないため、通水機能の低下が問題となる恐れがある。さらに、土留壁構築に長期間を要する大規模開削工事では、土留壁の構築時の地下水流動保全を目的に別途対策を講じる必要がある。
However, the conventional method for adding a water flow function has the following problems.
<1> It is difficult to completely remove the soil cement in the water flow section, and depending on the extrusion condition of the soil cement, it may not be possible to secure a sufficient input space for the filter material. May be a problem. Furthermore, in large-scale excavation work that requires a long time to construct the retaining wall, it is necessary to take separate measures for the purpose of maintaining the groundwater flow when constructing the retaining wall.
<2> It is difficult to completely remove the soil cement in the water passage portion, and there is a possibility that the deterioration of the water passage function becomes a problem. In addition, since the core material has a special shape, it may be difficult to install the core material depending on the depth and condition of the soil cement.
<3> Soil cement often enters the back ground of the SMW wall, and it is difficult to remove all of this with a drilling hole, so excavation of the site portion on the back of the SMW wall is required. In addition, a heavy construction machine such as an all-round rotary excavator is required for drilling the soil cement, which increases the burden in terms of construction period and construction cost. Furthermore, in large-scale excavation work that requires a long period of time for the construction of the retaining wall, it is necessary to take separate measures for the purpose of maintaining the groundwater flow during the construction of the retaining wall.
<4> The water flow capacity is low in reliability because it depends on the piston insertion situation. Moreover, since the hardened soil cement between the back ground of a piston cannot be removed, there exists a possibility that the fall of a water flow function may become a problem. Furthermore, in large-scale excavation work that requires a long period of time to construct the retaining wall, it is necessary to take separate measures for the purpose of groundwater flow conservation when constructing the retaining wall.

上記のような課題を解決するために請求項1記載の発明は、鋼矢板と、その長手方向に沿って配置した内側通水筒とによって構成し、内側通水筒は底部を閉塞した筒体であって、その上部には内筒開口部を開口し、その下部には、通水用鋼矢板を貫通した矢板開口部を開口し、内筒開口部と矢板開口部との間には弁を配置する弁座を設けてなる通水用鋼矢板の構造を特徴とするものである。   In order to solve the above-mentioned problems, the invention according to claim 1 is constituted by a steel sheet pile and an inner water pipe arranged along the longitudinal direction, and the inner water pipe is a cylindrical body whose bottom is closed. The upper part is opened with an inner cylinder opening, the lower part is opened with a sheet pile opening that penetrates the steel sheet pile for water flow, and a valve is arranged between the inner cylinder opening and the sheet pile opening. It features a structure of a steel sheet pile for water passage provided with a valve seat.

また、請求項2記載の発明は、鋼矢板と、その長手方向に沿って配置した内側通水筒と、外側通水筒とによって構成し、内側通水筒は底部を閉塞した筒体であって、その上部には内筒開口部を開口し、その下部には、通水用鋼矢板を貫通した矢板開口部を開口し、内筒開口部と矢板開口部との間には弁を配置する弁座を設け、外側通水筒は底部を通水用鋼矢板に向けて開口した筒体であって、その上部には外筒開口部を開口してなる、通水用鋼矢板の構造を特徴とするものである。   The invention according to claim 2 is constituted by a steel sheet pile, an inner water pipe arranged along the longitudinal direction, and an outer water pipe, and the inner water pipe is a cylinder whose bottom is closed, A valve seat that opens an inner cylinder opening at the upper part, opens a sheet pile opening that penetrates the water-permeable steel sheet pile at the lower part, and arranges a valve between the inner cylinder opening part and the sheet pile opening part The outer water pipe is a cylinder body that is open toward the steel sheet pile for water flow through the bottom, and is characterized by the structure of a steel sheet pile for water flow that is formed with an outer cylinder opening at the top. Is.

また、請求項3記載の発明は、止水性の土留壁の一部に掘削した通水縦孔と、その通水縦孔の内部に挿入した請求項1、または2に記載した通水用鋼矢板とにより構成した、通水土留壁の構造を特徴とするものである。   Further, the invention described in claim 3 is a water passage vertical hole excavated in a part of the water retaining wall, and the water passage steel described in claim 1 or 2 inserted in the water passage vertical hole. It is characterized by the structure of a water retaining wall made up of sheet piles.

また、請求項4記載の発明は、開削予定の範囲の両側に土留壁を構築し、土留壁の一部には、通水縦孔を削孔し、この通水縦孔の内部には請求項1記載の通水用鋼矢板を設置し、
開削前には、上流側の地下水を、上流側の通水用鋼矢板の内側通水筒に開口した内筒開口部から導入して、矢板開口部を通過させて開削予定部地中に流出させ、その地下水を、下流側の通水用鋼矢板の矢板開口部から導入して、内筒開口部を通過させて下流側へ流出させ、
開削中には、上流側、下流側の通水用鋼矢板において、内側通水筒内の弁座に栓を設置して閉塞し、上流側の地下水を、上流側の通水用鋼矢板において、内側通水筒の内部に配置したポンプによって吸引し、ポンプによって吸引した地下水を、下流側の通水用鋼矢板において、内側通水筒の内部へ流入させ、内側通水筒の内筒開口部を通過させて下流側へ流出させ、
開削完了後には、掘削底、あるいは開削部に設ける地下構築物の一部に埋設水路を設置し、この埋設水路と、両側の通水用鋼矢板の矢板開口部の間、あるいは通水用鋼矢板に新たに開口した矢板開口部の間を連結し、上流側、下流側の通水用鋼矢板の内側通水筒内の弁座の栓を除去して開放し、上流側の地下水を、上流側の通水用鋼矢板の矢板開口部、あるいは新たに開口した矢板開口部から埋設水路へ導入し、その地下水を、下流側の通水用鋼矢板の矢板開口部から内側通水筒の内部に流入させ、内筒開口部を通過させて下流側へ流出させて行う、
通水土留壁の施工方法を特徴とするものである。
In the invention according to claim 4, a retaining wall is constructed on both sides of the range to be excavated, a water passage vertical hole is drilled in a part of the retaining wall, and the inside of the water passage vertical hole is charged. The steel sheet pile for passing water according to Item 1 is installed,
Before excavation, the upstream groundwater is introduced from the inner cylinder opening that opens into the inner water pipe of the upstream steel sheet pile, and passes through the sheet pile opening to drain into the planned cutting area. , The groundwater is introduced from the sheet pile opening of the downstream steel sheet pile for water flow, and is allowed to flow through the inner cylinder opening to the downstream side,
During excavation, in the upstream and downstream water-flowing steel sheet pile, a plug is installed on the valve seat in the inner water-flowing cylinder to close it, and the upstream groundwater is in the upstream water-flowing steel sheet pile, The groundwater sucked by the pump arranged inside the inner water pipe is made to flow into the inside of the inner water pipe in the downstream water sheet pile, and passed through the inner cylinder opening of the inner water pipe. To the downstream side,
After the excavation is completed, a buried water channel is installed in the excavation bottom or part of the underground structure provided in the excavation part, and between this buried water channel and the sheet pile opening of the water sheet piles on both sides, or the steel sheet piles for water flow Connecting the newly opened sheet pile openings, removing the valve seat plugs in the inner water pipe of the upstream and downstream water sheet piles, and opening the upstream ground water Introduced into the buried channel from the sheet pile opening of the water-flowing steel sheet pile or newly opened sheet pile, and the groundwater flows into the inside water pipe from the sheet-pile opening of the downstream water-flowing steel sheet pile And let it flow through the inner cylinder opening and let it flow downstream.
It features the construction method of the water retaining wall.

また、請求項記載の発明は、開削予定の範囲の両側に土留壁を構築し、土留壁の一部には、通水縦孔を削孔し、この通水縦孔の内部には請求項2記載の通水用鋼矢板を設置し、通水用鋼矢板の周囲には通水材を充填し、
開削前には、上流側の地下水を、上流側の通水用鋼矢板において、内側通水筒に開口した内筒開口部から導入して、矢板開口部を通過させて開削部地中に流出させ、開削部地中に流出させた地下水を、下流側の通水用鋼矢板において、矢板開口部から導入して、内筒開口部を通過させて下流側へ流出させ、
開削中には、上流側、下流側の通水用鋼矢板において、内側通水筒内の弁座に栓を設置して閉塞し、上流側の地下水を、上流側の通水用鋼矢板において、外側通水筒の内部に配置したポンプによって吸引し、その地下水を、下流側の通水用鋼矢板の外側通水筒の内部へ流入させ、外筒開口部を通過させて下流側へ流出させ、
開削完了後には、上流側、下流側の通水用鋼矢板において、内側通水筒内の弁座に栓を設置したままで閉塞し、掘削底、あるいは開削部に設ける地下構築物の一部に埋設水路を設置し、この埋設水路と、両側の外側通水筒の底部とを連結し、上流側の地下水を、上流側の通水用鋼矢板の外側通水筒の外筒開口部を通して埋設水路へ導入し、その地下水を、下流側の通水用鋼矢板の外側通水筒内部へ流入させ、外筒開口部を通過させて下流側へ流出させて行う、ものである。
Further, in the invention described in claim 5 , a retaining wall is constructed on both sides of the range to be excavated, a water passage vertical hole is drilled in a part of the retaining wall, and the inside of the water passage vertical hole is charged. The steel sheet pile for water flow according to Item 2 is installed, and the water sheet material is filled around the water sheet pile for water flow,
Before excavation, the upstream groundwater is introduced from the inner cylinder opening that opens to the inner water pipe in the upstream steel sheet pile, and then passes through the sheet pile opening and flows out into the cut area. In the downstream steel sheet pile for water flow, the groundwater that has flowed into the excavated area is introduced from the sheet pile opening, and is allowed to flow downstream through the inner cylinder opening.
During excavation, in the upstream and downstream water-flowing steel sheet pile, a plug is installed on the valve seat in the inner water-flowing cylinder to close it, and the upstream groundwater is in the upstream water-flowing steel sheet pile, Suctioned by a pump disposed inside the outer water pipe, the groundwater flows into the outer water pipe of the downstream water sheet pile, passes through the outer cylinder opening, and flows downstream.
After excavation is complete, the upstream and downstream water-flowing steel sheet piles are closed with the plugs installed in the valve seats in the inner water-flow pipes, and buried in the excavation bottom or part of the underground structure provided at the excavation part. A water channel is installed, this buried water channel is connected to the bottom of the outer water pipe on both sides, and the upstream groundwater is introduced into the buried water channel through the outer tube opening of the outer water pipe of the upstream steel sheet pile. Then, the groundwater is caused to flow into the outer water pipe of the downstream water-flowing steel sheet pile, to pass through the outer cylinder opening and to flow out to the downstream side .

上記した各請求項記載の通水用鋼矢板、および通水土留壁の構造、およびその施工方法は、次のような効果を得ることができる。
<1>土留壁を構築しても、その構築によって地下水の流れを遮断することがなく、かつ高い通水能力を確保することができる。
<2>止水栓による止水は、確実かつ簡便に通水機能を停止することができる。
<3>土留壁構築過程でソイルセメント等の固化材を井戸周辺に注入しないため目詰まりなど起因した通水能力の低下に対して信頼性が高い。
<4>土留壁構築時から内部開削・躯体構築時の全施工過程において通水能力を確保することができる。
<5>請求項2記載の発明では、内側と外側の各通水筒にポンプを設置して、土留壁により仕切られた前面地盤と背面地盤に異なる水圧を付加することができる。
The steel sheet pile for water flow and the structure of the water flow retaining wall described in each of the above claims and the construction method thereof can obtain the following effects.
<1> Even if a retaining wall is constructed, the construction does not block the flow of groundwater, and a high water flow capacity can be secured.
<2> Water stoppage with a water stopcock can stop the water flow function reliably and easily.
<3> Since the solidification material such as soil cement is not injected around the well during the construction of the retaining wall, it is highly reliable against the decrease in water flow capacity caused by clogging.
<4> Water flow capacity can be secured in the entire construction process from the time of construction of the retaining wall to the time of internal excavation and frame construction.
<5> According to the invention described in claim 2, it is possible to apply different water pressures to the front and back grounds partitioned by the retaining wall by installing a pump in each of the inner and outer water pipes.

以下図面を参照しながら本発明の通水用鋼矢板および通水土留壁の構造と施工方法の実施例を説明するが、技術展開の便宜上、まず請求項2記載の発明を説明し、後に請求項1記載の発明を説明する。   Embodiments of the structure and construction method of the water-flowing steel sheet pile and water-retaining retaining wall according to the present invention will be described below with reference to the drawings. The invention according to Item 1 will be described.

<1>通水土留壁の構成。(図2)
地下構造物を構築するために、地盤を掘削する必要がある。
しかし地盤を掘削すれば周囲の壁面が崩壊してしまう。
そのために、開削する範囲の外側に、事前に地下に構築しておく連続した壁体が土留壁1である。
この土留壁1は水を通さない非通水性の機能を備えていて、開削側へは水を通さないことが要求される。
この非通水性の土留壁1は、地中に柱状の止水柱を連続して形成する構造、シートパイルや鋼管矢板を連続して打設した土留壁1、あるいはSMW工法などの名称で知られる公知の各種の工法に本発明の構成、方法を適用することもできる。
本発明の通水土留壁の構造は、非通水部である土留壁1の一部に、通水縦孔2を削孔して通水部を設けて構成するものである。
以下ではSMW工法などの名称で知られている、いわゆる柱列工法によって構成した土留壁1を例として、通水部の構造について説明する。
土留壁の一部に設ける通水部は、以下に説明するとおり、通水縦孔2の内部に通水用鋼矢板3を挿入して構成する。
<1> Configuration of the water retaining wall. (Figure 2)
It is necessary to excavate the ground to build the underground structure.
However, if the ground is excavated, the surrounding walls will collapse.
Therefore, the retaining wall 1 is a continuous wall body that is constructed underground in advance outside the range to be cut.
The retaining wall 1 has a water-impermeable function that does not allow water to pass through, and is required to prevent water from passing to the cut-off side.
This non-water-permeable retaining wall 1 is known by a structure such as a structure in which column-shaped water-stopping columns are continuously formed in the ground, a retaining wall 1 in which sheet piles and steel pipe sheet piles are continuously placed, or an SMW method. The configuration and method of the present invention can also be applied to various known methods.
The structure of the water retaining wall of the present invention is constructed by drilling the water vertical holes 2 in a part of the retaining wall 1 which is a non-water-permeable part to provide a water-permeable part.
Below, the structure of a water flow part is demonstrated by making into an example the earth retaining wall 1 comprised by what is called a columnar row method known by names, such as a SMW method.
The water flow part provided in a part of the retaining wall is constituted by inserting a water flow steel sheet pile 3 into the water flow vertical hole 2 as described below.

<2>削孔。
いずれの工法によっても一連の土留壁1は複数のユニットごとに構築してゆくから、そのユニットとユニットの間に、本発明の構造を形成するための通水縦孔2を削孔する。
したがって、この通水縦孔2は土留壁1の線上に、土留壁1の一部として構築されることになる。
通水縦孔2の削孔は、リバースサーキュレーション、オーガー削孔など、公知の方法を採用できる。
<2> Drilling.
Since a series of retaining walls 1 are constructed for each of a plurality of units by any of the construction methods, a water passage vertical hole 2 for forming the structure of the present invention is drilled between the units.
Therefore, the water flow vertical hole 2 is constructed as a part of the retaining wall 1 on the line of the retaining wall 1.
A known method such as reverse circulation, auger drilling, or the like can be employed for drilling the water passage vertical hole 2.

<3>通水用鋼矢板の構造。(図1)
通水用鋼矢板3は、一般の鋼矢板と、その長手方向にそって、その内側に配置した二本の筒によって構成する。
本発明の鋼矢板も一般の鋼矢板と同様にその両端に止水構造の継手を備えている。
以下に「内側」とは断面が「U」字状の鋼矢板において、「U」字の底の部分、あるいは底の方向を言い、「外側」とはその反対をいう。
鋼矢板に配置した二本の筒は、U字状の鋼矢板の底に近い側の内側通水筒31と、底から離れた側の外側通水筒32である。
<3> Structure of the steel sheet pile for water flow. (Figure 1)
The water-permeable steel sheet pile 3 is constituted by a general steel sheet pile and two cylinders arranged on the inner side along the longitudinal direction thereof.
The steel sheet pile of this invention is equipped with the joint of a water stop structure in the both ends similarly to a general steel sheet pile.
In the following, “inside” refers to the bottom portion of the “U” shape or the direction of the bottom in a steel sheet pile having a “U” cross section, and “outside” refers to the opposite.
The two cylinders arranged on the steel sheet pile are an inner water pipe 31 on the side close to the bottom of the U-shaped steel sheet pile and an outer water pipe 32 on the side away from the bottom.

<3−1>内側通水筒。
内側通水筒31は、底部を閉塞した筒体である。
内側通水筒31は、通水用鋼矢板3の内側面に、鋼矢板の長手方向と平行に設置し、その一部、あるいは全部を直方体で構成する。
一部または全部を直方体で構成するのは、鋼矢板の内面への取り付けを容易にするためである。
内側通水筒31の上部には内筒開口部31aを開口する。
内側通水筒31の下部で、通水用鋼矢板3が接する位置には、通水用鋼矢板3と貫通する矢板開口部3aを開口する。
内筒開口部31aと矢板開口部3aとの間の位置には弁座31dを設ける。
弁座31dとしては、例えば内側通水筒31の内部にゴム製のリングを配置して、内側通水筒31の内径を一部で小さくしておく。
そして、その小径部を弁座31dとして機能させ、その弁座31dに球体や円錐台状の栓31cを嵌合させるような構成を採用することができる。
<3-1> Inside water pipe.
The inner water flow cylinder 31 is a cylinder whose bottom is closed.
The inner water pipe 31 is installed on the inner surface of the water-use steel sheet pile 3 in parallel with the longitudinal direction of the steel sheet pile, and a part or all of the inner water-pipe 31 is constituted by a rectangular parallelepiped.
The reason why part or all is formed in a rectangular parallelepiped is to facilitate attachment to the inner surface of the steel sheet pile.
An inner cylinder opening 31 a is opened at the upper part of the inner water-permeable cylinder 31.
In the lower part of the inner water pipe 31, a sheet pile opening 3 a penetrating the water steel sheet pile 3 is opened at a position where the water sheet pile 3 contacts.
A valve seat 31d is provided at a position between the inner cylinder opening 31a and the sheet pile opening 3a.
As the valve seat 31d, for example, a rubber ring is disposed inside the inner water pipe 31, and the inner diameter of the inner water pipe 31 is partially reduced.
And the structure which makes the small diameter part function as the valve seat 31d, and fits the spherical body or the truncated cone-shaped stopper 31c to the valve seat 31d is employable.

<3−2>外側通水筒。
外側通水筒32は、通水用鋼矢板3の外側に、鋼矢板の長手方向と平行に設置した中空の筒体である。
外側通水筒32の一部には外筒開口部32aを開口する。
内側通水筒31と外側通水筒32の下部には、下部通水路33を位置させる。
この下部通水路33の内側は、通水用鋼矢板3の内側面に固定する。
下部通水路33の上部は、外側通水筒32と連通しており、かつ内側通水筒31とは連通していない。
<3-2> Outside water pipe.
The outer water pipe 32 is a hollow cylinder installed on the outer side of the water sheet pile 3 for water passage in parallel with the longitudinal direction of the steel sheet pile.
An outer cylinder opening 32 a is opened at a part of the outer water flow cylinder 32.
A lower water passage 33 is positioned below the inner water pipe 31 and the outer water pipe 32.
The inner side of the lower water passage 33 is fixed to the inner surface of the water sheet pile 3 for water passage.
The upper part of the lower water passage 33 is in communication with the outer water pipe 32 and is not in communication with the inner water pipe 31.

<4>通水用鋼矢板3の挿入。
上記のように、その内側に2本の通水筒を抱かせた状態の通水用鋼矢板3を、
通水縦孔2内に挿入する。
通水縦孔2は、削孔中に壁が崩壊しないよう、その内部にベントナイトのような比重の大きい安定液が充填してある。
このような溶液は通水縦孔2の壁面に止水性を与えているから、本発明の目的とするように通水縦孔2に上流側から地下水を集め、あるいは通水縦孔2から下流側へ地下水を放出するためには不適当な場合があるため極力除去する必要がある。
地盤がよく崩壊の可能性の少ない場合には、通常のパイプを洗浄管として通水縦孔2内に挿入し、通水縦孔2の底部から清水を供給することによってベントナイトなどを通水縦孔2の上部から排出して通水縦孔2の壁面の通水性を回復させておく。
<4> Insertion of the steel sheet pile 3 for water flow.
As described above, the steel sheet pile 3 for water passage in a state where two water pipes are held inside,
Insert into the water passage vertical hole 2.
The water passage vertical hole 2 is filled with a stable liquid having a large specific gravity such as bentonite so that the wall does not collapse during drilling.
Since such a solution gives the water blocking property to the wall surface of the water passage vertical hole 2, groundwater is collected from the upstream side of the water passage vertical hole 2 or downstream from the water passage vertical hole 2 as the object of the present invention. It may be inappropriate to discharge groundwater to the side, so it is necessary to remove it as much as possible.
When the ground is good and the possibility of collapse is low, a normal pipe is inserted into the water passage vertical hole 2 as a washing pipe, and fresh water is supplied from the bottom of the water passage vertical hole 2 so that bentonite etc. It discharges | emits from the upper part of the hole 2, and the water permeability of the wall surface of the water flow vertical hole 2 is recovered.

<5>通水材の充填。
内側通水筒31および外側通水筒32と通水縦孔2との間には空隙がある。
その空隙に通水材25を充填する。
この通水材25は通常の骨材を利用できる。
通水材25の充填によって、地下水は通水縦孔2の内部に流れ込むこと、あるいは通水縦孔2から流れ出すことが可能となる。
<5> Filling with water-permeable material.
There are gaps between the inner water flow tube 31 and the outer water flow tube 32 and the water flow vertical hole 2.
The gap is filled with a water-permeable material 25.
This water-permeable material 25 can use a normal aggregate.
By filling the water flow material 25, the groundwater can flow into the water flow vertical hole 2 or flow out of the water flow vertical hole 2.

<6>開削前の通水状態。(図3)
以上にように開削予定の範囲の両側に土留壁1を構築する。
その土留壁1の一部に通水縦孔2を構築することによって、通水性を維持する通水縦孔2と、非通水性の土留壁1とは一体となる。
地下水は土留壁1の位置ではその流れを遮断される。
しかし以下に説明するように、通水縦孔2を設置した位置でのみ上流から下流への流下を維持することができる。
すなわち上流からの地下水は上流側の通水縦孔2の通水材25を通過して内筒開口部31aから内側通水筒31内に流入し、矢板開口部3aから下流側へ排出される。
こうして通水縦孔2に流入した地下水は開削予定範囲の地中を流れて、開削予定範囲の下流側の通水縦孔2に到着する。
下流側の通水縦孔2では矢板開口部3aから内側通水筒31内へ流入し、内筒開口部31aから排出されて通水縦孔2の下流側の地中内へ流出する。
<6> Water flow state before excavation. (Figure 3)
As described above, the retaining wall 1 is constructed on both sides of the range to be excavated.
By constructing a water passage vertical hole 2 in a part of the retaining wall 1, the water passage vertical hole 2 for maintaining water permeability and the non-water-permeable soil retaining wall 1 are integrated.
The flow of groundwater is blocked at the position of the retaining wall 1.
However, as will be described below, the flow from the upstream to the downstream can be maintained only at the position where the water passage vertical hole 2 is installed.
That is, the groundwater from the upstream passes through the water passage material 25 of the upstream water passage vertical hole 2, flows into the inner water tube 31 from the inner tube opening 31a, and is discharged downstream from the sheet pile opening 3a.
Thus, the groundwater flowing into the water passage vertical hole 2 flows through the ground in the planned excavation range and arrives at the vertical water passage hole 2 on the downstream side of the planned excavation range.
In the water flow vertical hole 2 on the downstream side, it flows into the inner water flow cylinder 31 from the sheet pile opening 3 a, is discharged from the inner cylinder opening 31 a, and flows out into the ground downstream of the water flow vertical hole 2.

<7>開削工事中。(図4)
両側の土留壁の間の地盤を掘削する前に、掘削にともない上流側および下流側の地下水が内側通水筒31を介して掘削内部に流入することを阻止する。
そのために、内側通水筒31の内部の弁座に栓31cをして、通水を阻止する。
そして、上流側の外側通水筒32内にポンプを設置し、ポンプ6によって外側通水筒32内の集まった地下水を汲みあげる。
そして開削部の反対側へ設けた通水縦孔2の外側通水筒32へ、パイプ61を介して通水する。
このパイプ61は開削部を越えて地下水を横断させることになる。
受水した下流側の外側通水筒32内の水は、外側通水筒32の外筒開口部32aを通って下流側の地中に流れ込む。
こうして開削工事中にも、地下水の流れを遮断することがない。
<7> Under excavation work. (Fig. 4)
Before excavating the ground between the retaining walls on both sides, the groundwater on the upstream side and the downstream side is prevented from flowing into the excavation inside through the inner water pipe 31 during excavation.
For this purpose, a plug 31c is provided on the valve seat inside the inner water pipe 31 to block water flow.
Then, a pump is installed in the outer side water pipe 32 on the upstream side, and the collected ground water in the outer side water pipe 32 is pumped up by the pump 6.
Then, water is passed through the pipe 61 through the outer water flow pipe 32 of the water flow vertical hole 2 provided on the opposite side of the cut portion.
This pipe 61 crosses the groundwater beyond the cut-out portion.
The water in the downstream outer water pipe 32 that has received water flows into the downstream ground through the outer cylinder opening 32 a of the outer water pipe 32.
Thus, the groundwater flow is not interrupted during the excavation work.

<8>掘削の完了時。(図5)
開削が掘削予定の底部に至ったら、地下構築物8の構築にあわせて、すなわち帯水層と地下構築物8の位置関係を考慮して、地下水位以深の最適な深度に埋設水路7を設ける。
この埋設水路7は、掘削底面に溝を掘り、その溝内に管路を埋設するなどして構築することができる。
この水路7の両端は、通水用鋼矢板3を貫通させて、下部通水路33に接続する。これらの接続は、開削内から容易に行うことができる。
この状態でポンプ6によるくみ上げを停止すれば、外側通水筒32内に溜まった地下水は、上流側の下部通水路33を通り、埋設水路7を通し下流側の下部通水路33にいたる。
こうして開削場所を越えた場所において、上流側から下流側へ地中をとおして通水することができる。
<8> At the completion of excavation. (Fig. 5)
When the excavation reaches the bottom of the excavation schedule, the buried water channel 7 is provided at an optimum depth below the groundwater level in accordance with the construction of the underground structure 8, that is, considering the positional relationship between the aquifer and the underground structure 8.
The buried water channel 7 can be constructed by digging a groove in the bottom of the excavation and burying a pipe in the groove.
Both ends of the water passage 7 are connected to the lower water passage 33 through the steel sheet pile 3 for water passage. These connections can be easily made from within the excavation.
If pumping up by the pump 6 is stopped in this state, the groundwater accumulated in the outer water pipe 32 passes through the lower water passage 33 on the upstream side, passes through the buried water passage 7 and reaches the lower water passage 33 on the downstream side.
Thus, water can be passed through the ground from the upstream side to the downstream side at a place beyond the excavation place.

<9>地下構築物の構築。(図5)
掘削が予定深さまで完了したら、その後に地下構築物8の構築を行う。
その場合に、掘削内部に埋設水路7が配置してあるから、構築物8の下面の埋設水路7はそのまま地下水の流路として永久的に利用できる。
なお、地下水の水位の関係から、埋設水路7は地下構築物8の構築と平行して、構築物8の上部に配管して、あるいは地下構築物8の躯体の内部に配管して設置することも可能である。
<9> Construction of underground structures. (Fig. 5)
When excavation is completed to the planned depth, the underground structure 8 is constructed thereafter.
In that case, since the buried water channel 7 is arranged inside the excavation, the buried water channel 7 on the lower surface of the structure 8 can be used as a ground water channel as it is.
From the groundwater level, the buried waterway 7 can be installed in parallel with the construction of the underground structure 8 by piping to the top of the structure 8 or piping inside the housing of the underground structure 8. is there.

<10>通水材25の洗浄。
長年の使用によって、通水材25の通水能力が低下する場合も考えられる。
その場合には、内側通水筒31、外側通水筒32の内部は開放状態として維持してあるから、その開放部からジェットノズルを挿入して通水材25の洗浄を行うなど、各種のメンテナンスを行うことができる。
<10> Cleaning of the water passing material 25.
It is also conceivable that the water flow capacity of the water flow material 25 decreases due to long-term use.
In that case, since the inside of the inner water pipe 31 and the outer water pipe 32 is maintained in an open state, various maintenance such as cleaning the water passage material 25 by inserting a jet nozzle from the open portion is performed. It can be carried out.

<11>内側通水筒のみの場合。(図6〜9)
以上の実施例では、内側通水筒31と外側通水筒32とを備えた通水用鋼矢板3について説明した。
しかし、特に帯水層が厚い場合、地下水位が高い場合、あるいは透水性が良好な場合には、図6に示すように、外側通水筒32を設けない通水用鋼矢板3を、図9に示すように配置する構成を採用することができる。
この実施例を施工順序にしたがって説明すると、図3に示すような掘削前の場合には、内側通水筒31のみを利用して上流側では掘削前の地中への通水を、下流側では地中からの通水を行うことができる。
掘削途中では図7に示すように内側通水筒31の途中に設けた弁座31dに栓31cを挿入することによって内筒開口部31aと、矢板開口部3aとの通水を遮断する。
その状態で内側通水筒31の上方からポンプ6を挿入し、内側通水筒31内部の水をくみ上げる。
そして掘削部を横断する横断パイプ61を介して下流側の内側通水筒31の内部に注水する。
掘削後には、図8に示すように地下構築物8の構築と前後して、埋設水路7を設ける。この水路7は矢板開口部3aよりも上部の位置で、かつ止水栓31cよりも下の位置まで配置させた管路であり、例えば角パイプを図8に示すように地下構築物8の下半分の周囲に沿ってU字状に配置する。
地下構築物8の完成後に内側通水筒31の内部からポンプ6を撤去し、例えばロープを付けた栓31cを引き上げる。
すると上流側の地下水は、内筒開口部31aから内側通水筒31、矢板開口部3a、埋設水路7を通って下流側の内側通水筒31内へ流入する。
なお、矢板に新たに開口部を開口し、この新たな矢板開口部の間を埋設水路7によって連結して使用することもできる。
<11> In the case of only the inner water pipe. (Figs. 6-9)
In the above embodiment, the water flow steel sheet pile 3 including the inner water flow tube 31 and the outer water flow tube 32 has been described.
However, particularly when the aquifer is thick, when the groundwater level is high, or when water permeability is good, as shown in FIG. It is possible to employ a configuration that is arranged as shown in FIG.
This embodiment will be described according to the construction sequence. In the case of before excavation as shown in FIG. 3, the upstream side uses only the inner water pipe 31 to pass water into the ground before excavation, and on the downstream side. Water can be passed from the ground.
During excavation, as shown in FIG. 7, the plug 31c is inserted into a valve seat 31d provided in the middle of the inner water pipe 31, thereby blocking the water flow between the inner cylinder opening 31a and the sheet pile opening 3a.
In this state, the pump 6 is inserted from above the inner water pipe 31 to draw up water inside the inner water pipe 31.
Then, water is injected into the downstream inner water pipe 31 through a cross pipe 61 that crosses the excavation part.
After excavation, as shown in FIG. 8, the buried water channel 7 is provided before and after the construction of the underground structure 8. This water channel 7 is a pipe arranged at a position above the sheet pile opening 3a and to a position below the stop cock 31c. For example, a square pipe is a lower half of the underground structure 8 as shown in FIG. It is arranged in a U shape along the periphery of.
After completion of the underground structure 8, the pump 6 is removed from the inside of the inner water pipe 31, and the stopper 31c with a rope, for example, is pulled up.
Then, the upstream groundwater flows from the inner cylinder opening 31 a through the inner water pipe 31, the sheet pile opening 3 a, and the buried water channel 7 into the downstream inner water pipe 31.
In addition, an opening part can be newly opened to a sheet pile, and it can also be used by connecting between this new sheet pile opening part by the buried water channel 7. FIG.

<12>複数本の外側通水筒。
図の実施例では、外側通水筒32を設ける場合に、それは1本の実施例だけを掲載している。
しかし外側通水筒32は1本に限らず、複数本の外側通水筒32を設けることもできる。外側通水筒32を複数本にすることによって地下水の取り込みが容易になる場合がある。
<12> A plurality of outer water pipes.
In the embodiment shown in the figure, when the outer water pipe 32 is provided, only one embodiment is shown.
However, the number of outer water pipes 32 is not limited to one, and a plurality of outer water pipes 32 may be provided. Incorporation of groundwater may be facilitated by using a plurality of outer water pipes 32.

本発明の通水土留壁を構成する通水用鋼矢板の実施例の説明図。Explanatory drawing of the Example of the steel sheet pile for water flow which comprises the water flow retaining wall of this invention. 土留壁の一部に通水用鋼矢板を配置した状態の説明図。Explanatory drawing of the state which has arrange | positioned the steel sheet pile for water flow through a part of earth retaining wall. 開削前の地下水の通水状態の説明図。Explanatory drawing of the water flow state of groundwater before excavation. 開削中の地下水の送水状態の説明図。Explanatory drawing of the water supply state of groundwater under excavation. 開削が完了した場合の地下水の通水状態の説明図。Explanatory drawing of the water flow state of groundwater when excavation is completed. 外側通水筒を設け ない通水用鋼矢板の説明図。Explanatory drawing of the steel sheet pile for water flow which does not provide an outer water flow cylinder. 外側通水筒を設けない通水用鋼矢板による施工順序の説明図。Explanatory drawing of the construction order by the steel sheet pile for water flow which does not provide an outer water flow cylinder. 外側通水筒を設けない通水用鋼矢板による施工順序の説明図。Explanatory drawing of the construction order by the steel sheet pile for water flow which does not provide an outer water flow cylinder. 外側通水筒を設けない通水用鋼矢板の配置状態の説明図。Explanatory drawing of the arrangement | positioning state of the steel sheet pile for water flow which does not provide an outer water flow cylinder.

符号の説明Explanation of symbols

1:土留壁
2:通水縦孔
3:通水用鋼矢板
31:内側通水筒
31a:内筒開口部
31c:栓
32:外側通水筒
32a:外筒開口部
33:下部通水路
6:ポンプ
61:パイプ
7:埋設水路
8:地下構築物

1: retaining wall
2: Vertical water passage
3: Steel sheet pile for water flow
31: Inside water pipe
31a: Inner cylinder opening
31c: stopper
32: Outside water pipe
32a: outer cylinder opening
33: Lower waterway
6: Pump
61: Pipe
7: buried channel
8: Underground structure

Claims (5)

鋼矢板と、
その長手方向に沿って配置した内側通水筒とによって構成し、
内側通水筒は底部を閉塞した筒体であって、
その上部には内筒開口部を開口し、
その下部には、通水用鋼矢板を貫通した矢板開口部を開口し、
内筒開口部と矢板開口部との間には弁を配置する弁座を設けてなる、
通水用鋼矢板の構造。
Steel sheet piles,
It is constituted by an inner water pipe arranged along the longitudinal direction,
The inner water pipe is a cylinder whose bottom is closed,
Open the inner cylinder opening at the top,
In the lower part, open the sheet pile opening that penetrates the steel sheet pile for water flow,
A valve seat is provided between the inner cylinder opening and the sheet pile opening to place the valve.
Structure of steel sheet pile for water flow.
鋼矢板と、
その長手方向に沿って配置した内側通水筒と、外側通水筒とによって構成し、
内側通水筒は底部を閉塞した筒体であって、
その上部には内筒開口部を開口し、
その下部には、通水用鋼矢板を貫通した矢板開口部を開口し、
内筒開口部と矢板開口部との間には弁を配置する弁座を設け、
外側通水筒は底部を通水用鋼矢板に向けて開口した筒体であって、
その上部には外筒開口部を開口してなる、
通水用鋼矢板の構造。
Steel sheet piles,
It is constituted by an inner water pipe arranged along the longitudinal direction and an outer water pipe,
The inner water pipe is a cylinder whose bottom is closed,
Open the inner cylinder opening at the top,
In the lower part, open the sheet pile opening that penetrates the steel sheet pile for water flow,
A valve seat is provided between the inner cylinder opening and the sheet pile opening to place the valve.
The outer water pipe is a cylinder body that opens toward the steel sheet pile for water flow through the bottom,
In the upper part, an outer cylinder opening is opened,
Structure of steel sheet pile for water flow.
止水性の土留壁の一部に掘削した通水縦孔と、
その通水縦孔の内部に挿入した請求項1または2に記載した通水用鋼矢板と
通水用鋼矢板の周囲に配置した通水材とにより構成した、
通水土留壁の構造。
A water passage vertical hole excavated in a part of the water retaining wall,
The water flow steel sheet pile according to claim 1 or 2 inserted in the water flow vertical hole and a water flow material disposed around the water flow steel sheet pile,
Structure of water retaining wall.
開削予定の範囲の両側に土留壁を構築し、
土留壁の一部には、通水縦孔を削孔し、
この通水縦孔の内部には請求項1記載の通水用鋼矢板を設置し、
通水用鋼矢板の周囲には通水材を充填し、
開削前には、
上流側の地下水を、
上流側の通水用鋼矢板の内側通水筒に開口した内筒開口部から導入して、矢板開口部を通過させて開削予定部地中に流出させ、
その地下水を、下流側の通水用鋼矢板の矢板開口部から導入して、内筒開口部を通過させて下流側へ流出させ、
開削中には、
上流側、下流側の通水用鋼矢板において、内側通水筒内の弁座に栓を設置して閉塞し、
上流側の地下水を、
上流側の通水用鋼矢板内側通水筒の内部に配置したポンプによって吸引し、
その地下水を、下流側の通水用鋼矢板内側通水筒の内部へ流入させ、
内筒開口部を通過させて下流側へ流出させ、
開削完了後には、
掘削底、あるいは開削部に設ける地下構築物の一部に埋設水路を設置し、この埋設水路と、両側の通水用鋼矢板の矢板開口部の間、あるいは通水用鋼矢板に新たに開口した矢板開口部の間を連結し、
上流側、下流側の通水用鋼矢板の内側通水筒内の弁座の栓を除去して開放し、
上流側の地下水を、上流側の通水用鋼矢板の矢板開口部、あるいは新たに開口した矢板開口部から埋設水路へ導入し、
その地下水を、下流側の通水用鋼矢板の矢板開口部から内側通水筒の内部に流入させ、
内筒開口部を通過させて下流側へ流出させて行う、
通水土留壁の施工方法。
Build retaining walls on both sides of the planned excavation area,
A part of the retaining wall is drilled with a water passage vertical hole,
The steel sheet pile for water flow according to claim 1 is installed inside the water flow vertical hole,
Fill the periphery of the steel sheet pile for water flow with a water flow material,
Before excavation,
Upstream groundwater,
Introducing from the inner cylinder opening that opened to the inner water pipe of the upstream steel sheet pile for water flow, let the sheet pile opening pass, and let it flow into the planned cutting area,
Introducing the groundwater from the sheet pile opening of the downstream steel sheet pile for water flow, passing through the inner cylinder opening and letting it flow downstream,
During excavation,
In the steel sheet pile for water flow on the upstream side and downstream side, a plug is installed on the valve seat in the inner water pipe to close it,
Upstream groundwater,
Suction by a pump arranged inside the inner water pipe of the steel sheet pile for water flow on the upstream side,
The groundwater is allowed to flow into the inner water pipe of the downstream steel sheet pile,
Let it pass through the inner cylinder opening and let it flow downstream,
After excavation is complete,
A buried waterway was installed in a part of the underground structure to be installed in the excavation bottom or excavated part, and a new opening was made between this buried waterway and the sheet pile opening of the water sheet piles on both sides, or in the water sheet piles for water flow. Connecting between sheet pile openings,
Open and remove the valve seat plug in the inner water pipe of the upstream and downstream water sheet piles,
The upstream groundwater is introduced into the buried channel from the sheet pile opening of the upstream water sheet pile, or from the newly opened sheet pile opening,
The groundwater is allowed to flow into the inside water pipe from the sheet pile opening of the downstream water sheet pile,
Perform by passing the inner cylinder opening and letting it flow downstream.
Construction method of water retaining wall.
開削予定の範囲の両側に土留壁を構築し、
土留壁の一部には、通水縦孔を削孔し、
この通水縦孔の内部には請求項2記載の通水用鋼矢板を設置し、
通水用鋼矢板の周囲には通水材を充填し、
開削前には、
上流側の地下水を、
上流側の通水用鋼矢板内側通水筒に開口した内筒開口部から導入して、矢板開口部を通過させて開削部地中に流出させ、
その地下水を、下流側の通水用鋼矢板矢板開口部から導入して、内筒開口部を通過させて下流側へ流出させ、
開削中には、
上流側、下流側の通水用鋼矢板の内側通水筒内の弁座に栓を設置して閉塞し、
上流側の地下水を、
上流側の通水用鋼矢板の外側通水筒の内部に配置したポンプによって吸引し、
その地下水を、下流側の通水用鋼矢板の外側通水筒の内部へ流入させ、
外側通水筒の外筒開口部を通過させて下流側へ流出させ、
開削完了後には、
上流側、下流側の通水用鋼矢板の内側通水筒内の弁座に栓を設置したままで閉塞し、
掘削底、あるいは開削部に設ける地下構築物の一部に埋設水路を設置し、この埋設水路と、両側の外側通水筒の底部とを連結し、
上流側の地下水を、
上流側の通水用鋼矢板の外側通水筒の外筒開口部を通して埋設水路へ導入し、
その地下水を、下流側の通水用鋼矢板の外側通水筒内部へ流入させ、
外筒開口部を通過させて下流側へ流出させて行う、
通水土留壁の施工方法。
Build retaining walls on both sides of the planned excavation area,
A part of the retaining wall is drilled with a water passage vertical hole,
The steel sheet pile for water flow according to claim 2 is installed inside the water flow vertical hole,
Fill the periphery of the steel sheet pile for water flow with a water flow material,
Before excavation,
Upstream groundwater,
Introducing from the inner cylinder opening that opened to the inner water pipe of the upstream water sheet pile , let the sheet pile opening pass through, and let it flow into the excavation area.
Introducing the groundwater from the sheet pile opening of the downstream steel sheet pile for water flow, passing through the inner cylinder opening and letting it flow downstream,
During excavation,
Install a stopper on the valve seat in the inner water pipe of the steel sheet pile for water flow on the upstream side and downstream side to close it,
Upstream groundwater,
Suction by a pump placed inside the outer water pipe of the steel sheet pile for water flow on the upstream side,
Let the groundwater flow into the inside of the outer water pipe of the downstream steel sheet pile,
Let it pass through the outer cylinder opening of the outer water pipe and let it flow downstream,
After excavation is complete,
The upstream side and the downstream side of the water sheet pile for water flow are closed with the stoppers installed in the valve seats inside the water flow pipes,
A buried water channel is installed in the excavation bottom or a part of the underground structure provided in the excavation part, and this buried water channel is connected to the bottoms of the outer water pipes on both sides.
Upstream groundwater,
Introducing into the buried channel through the outer cylinder opening of the outer water pipe of the steel sheet pile for water flow on the upstream side,
The groundwater is allowed to flow inside the outer water pipe of the downstream steel sheet pile,
This is done by passing the outer cylinder opening and letting it flow downstream.
Construction method of water retaining wall.
JP2005292701A 2005-10-05 2005-10-05 Structure of steel sheet pile for water flow and water retaining wall, and its construction method. Expired - Lifetime JP4074313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292701A JP4074313B2 (en) 2005-10-05 2005-10-05 Structure of steel sheet pile for water flow and water retaining wall, and its construction method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005292701A JP4074313B2 (en) 2005-10-05 2005-10-05 Structure of steel sheet pile for water flow and water retaining wall, and its construction method.

Publications (2)

Publication Number Publication Date
JP2007100416A JP2007100416A (en) 2007-04-19
JP4074313B2 true JP4074313B2 (en) 2008-04-09

Family

ID=38027621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292701A Expired - Lifetime JP4074313B2 (en) 2005-10-05 2005-10-05 Structure of steel sheet pile for water flow and water retaining wall, and its construction method.

Country Status (1)

Country Link
JP (1) JP4074313B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905296B2 (en) * 2007-08-29 2012-03-28 株式会社大林組 Method for constructing retaining wall and retaining wall
JP5236531B2 (en) * 2009-03-03 2013-07-17 公益財団法人鉄道総合技術研究所 Groundwater collection method for construction of underground structures by excavation
JP5527173B2 (en) * 2010-11-24 2014-06-18 新日鐵住金株式会社 Water-permeable steel sheet pile and water-permeable steel wall using it
JP5648850B2 (en) * 2011-02-28 2015-01-07 清水建設株式会社 Groundwater collection structure and groundwater flow structure
JP6441692B2 (en) * 2015-01-22 2018-12-19 戸田建設株式会社 Underground structure with flood control function and its construction method
CN114837221B (en) * 2022-04-15 2024-01-02 山东建筑大学 Water passing system for open cut subway station construction and construction method

Also Published As

Publication number Publication date
JP2007100416A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP5212070B2 (en) Common well and construction method of regular well
JP5982027B1 (en) Water leakage countermeasures for tunnels constructed by the Natom method
CN110896645B (en) Pile bottom grouting device and method of use, and construction method of cast-in-place pile body and cast-in-place pile body
JP2009179945A (en) Well conduit for road and its construction method
JP4493699B2 (en) Water-permeable segment and tunnel using this water-permeable segment
JP4074313B2 (en) Structure of steel sheet pile for water flow and water retaining wall, and its construction method.
JP4358207B2 (en) Ground reinforcement method for excavated bottom
JP5180152B2 (en) tunnel
KR100593786B1 (en) Tunnel drainage structure
JP6480745B2 (en) How to install water injection wells
KR20050013659A (en) A pile for cofferdam and cofferdam method using it
JP4589084B2 (en) A retaining wall with a built-in water pipe composed of a plurality of water passages, and a method for ensuring the flow of groundwater using the retaining wall
JP2005139890A (en) Ground drilling system and ground drilling method
KR101736117B1 (en) Construction equipment and construction method of underground watertight wall
KR100828710B1 (en) Boring machine for weak ground
JP6441692B2 (en) Underground structure with flood control function and its construction method
CN111622249B (en) Narrow foundation pit groundwater micro-pumping device and its construction method
CN104060636B (en) Pressure release anti-float method during high water level regional architecture foundation construction and device
CN114215165A (en) Anti-clogging drainage structure and drainage method for road administration
JP2005330769A (en) Structure and construction method of water passing earth retaining wall
JP4274898B2 (en) Groundwater flow conservation method
CN205077490U (en) Prevent suck -back and prevent slip casting device that deposits in deep full water sand bed
CN114575883B (en) Decompression guide grouting method suitable for airtight stratum
JP2004211422A (en) Impervious-wall construction method
CN103850262B (en) Drain water-stopping method between Punching Borehole Cast-in-place Concrete Pile campshed support pile

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4074313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250