JP4073109B2 - 燃焼装置 - Google Patents

燃焼装置 Download PDF

Info

Publication number
JP4073109B2
JP4073109B2 JP08192399A JP8192399A JP4073109B2 JP 4073109 B2 JP4073109 B2 JP 4073109B2 JP 08192399 A JP08192399 A JP 08192399A JP 8192399 A JP8192399 A JP 8192399A JP 4073109 B2 JP4073109 B2 JP 4073109B2
Authority
JP
Japan
Prior art keywords
combustion
mode
burner
primary
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08192399A
Other languages
English (en)
Other versions
JP2000274667A (ja
Inventor
新悟 木村
正登 近藤
康士 尾島
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP08192399A priority Critical patent/JP4073109B2/ja
Publication of JP2000274667A publication Critical patent/JP2000274667A/ja
Application granted granted Critical
Publication of JP4073109B2 publication Critical patent/JP4073109B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Feeding And Controlling Fuel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は給湯器等の燃焼装置に関し、特に、全一次式燃焼モードとブンゼンタイプ燃焼方式の間欠燃焼モードとの切替機構を備えた燃焼装置に関するものである。
【0002】
【従来の技術】
図10には燃焼装置として一般的な給湯器の模式構成が示されている。同図において、燃焼室1内にはバーナ装置2が配置され、このバーナ装置2に燃料供給系としての燃料ガス供給通路3が接続されている。燃料ガス供給通路3には通路の開閉を行う電磁弁4と開弁量によってガス供給量を制御する比例弁5とが介設されている。バーナ装置2の下方側には該バーナ装置2の燃焼の給排気を行う燃焼ファン6が設けられている。なお、図中、7は燃焼ファン6の回転数(回転速度)を検出するファン回転数検出センサである。
【0003】
前記バーナ装置2の上方側には熱交換器8が配置されており、この熱交換器8の入側に給水通路9が、出側に給湯通路10がそれぞれ接続されている。給水通路9側の通路には流量センサ14と入水温度センサ15が設けられ、また、給湯通路10側の通路には給湯温度センサ11が設けられている。なお、図中、12は制御装置であり、13は制御装置12に信号接続されたリモコンである。
【0004】
この種の給湯器の運転は制御装置12により制御される。すなわち、リモコン13に給湯設定温度が設定されている状態で給湯通路10の先方の水栓(図示せず)を開けると、給水通路9から給水が熱交換器8に入り込む。流量センサ14により作動流量以上の流量が検出されると、燃焼ファン6を回転し、電磁弁4および比例弁5を開いてガスをバーナ装置2に供給し、点火手段(図示せず)を動作してバーナ装置2のバーナに点火してバーナ燃焼を行う。
【0005】
そして、制御装置12は給湯温度センサ11で検出される給湯温度がリモコン13に設定されている給湯設定温度となるように要求熱量を演算によって求め(この要求熱量の演算手法は周知であるので、その説明は省略する)、その要求熱量が得られるように比例弁5の開弁量を制御(ガス供給量を制御)して熱交換器8を通る水を加熱し、給湯設定温度の湯を給湯通路10を介して所望の給湯場所へ導出する。その一方で、制御装置12はファン回転数検出センサ7の検出信号を受けて、給気風量がガス供給量にマッチングした設定空燃比の空気比率となるように燃焼ファン6の回転を制御する。
【0006】
ところで、最近の給湯環境の充実化に伴い家庭用においても大能力の給湯器が使用されるようになっており、また、環境汚染防止の観点から給湯器のクリーン燃焼が要求され、大能力給湯器のバーナ装置として、低NOx性の全一次燃焼式のバーナ装置が採用されつつある。大能力の家庭用給湯器のバーナ装置としては、最小燃焼能力4500kcal/hr〜最大燃焼能力45000kcal/hrの大きなTDR(ターンダウン比)1/10のものが主流になっている。TDRとは最大燃焼能力に対して最小燃焼能力が何分の一まで絞れるかの比率を示すもので、分母の数が大きいほどTDRは大であると言っている。
【0007】
しかし、全一次燃焼式のバーナ装置はTDRが1/2〜1/3までしか燃焼量が確保できないという事情がある。つまり、大きなTDRでもって燃焼させると、小燃焼能力の領域において、バーナ燃焼面が赤熱し、さらに赤熱化が進むと逆火現象を引き起こすという問題が生じ、そのため全一次燃焼式のバーナ装置ではTDRが1/2〜1/3までしか絞れないという事情があり、そのため、大能力範囲を全一次燃焼式のバーナ装置で燃焼させる場合には燃焼面を分割して多段の能力段に形成し、燃焼能力に応じて燃焼段(燃焼面)を切替える方式が採用されている。
【0008】
図8は燃焼段切替方式の全一次燃焼式のバーナ装置を模式的に示す。この全一次燃焼式のバーナ装置は燃焼面がA面とB面とC面の3段に区分されており、ノズルヘッダー16の内部がA、B、Cの3室に区分され、各室に別個のガス分岐通路17A、17B、17Cが接続されている。このガス分岐通路17A、17B、17Cは図10に示す燃料ガス供給通路3の先端側を分岐することにより形成され、各ガス分岐通路17A、17B、17Cには通路開閉の電磁弁(図示せず)が設けられている。
【0009】
前記ノズルヘッダー16の上面には複数のガスノズル18が配列配置されており、各ガスノズル18の上側には燃焼管(バーナとも言う)20が対向配置されている。各燃焼管20は隙間無く隣合わせに配列配置されており、前記ノズルヘッダー16のA区分のガスノズル18に対向する燃焼管20の列はA面の燃焼面を形成し、同様に、B区分のガスノズル18に対向する燃焼管20の列はB面、C区分のガスノズル18に対向する燃焼管20の列はC面の燃焼面を形成している。なお、図中では、(a)は全面燃焼状態、(b)は(A+B)面の切替燃焼状態を示している。
【0010】
前記ガスノズル18から噴出される燃料ガスと燃焼ファン6から供給される空気は燃焼管20のガス導入口21から燃焼管20の内部に取り込まれ、燃焼管20の内部で攪拌混合した燃料ガスと空気との混合ガスは出口の炎口22から燃焼室に噴出し、火炎23を形成する構成となっている。この全一次式バーナ装置は燃焼管20に取り込まれた一次空気のみを利用して燃焼するものであり、燃焼管20に取り込まれる空気量は理論空気量の1.2〜1.4倍の空気率(空気比率)となるように設定されている。
【0011】
この燃焼段切替えタイプ(燃焼面切替えタイプ)の全一次式バーナ装置2を使用した燃焼装置の制御装置12には図9に示すような燃焼段切替えのデータが与えられている。すなわち、4500kcal/hr〜45000kcal/hrの全燃焼範囲が4500kcal/hr〜15000kcal/hr(TDRが約1/3)のA面燃焼範囲(区間)と、13000kcal/hr〜26000kcal/hr(TDRが1/2)の(A+B)面燃焼範囲と、22500kcal/hr〜45000kcal/hr(TDRが1/2)の全面(A+B+Cの全面)燃焼範囲とに区分されており、制御装置12の燃焼制御部は要求熱量(要求能力)が燃焼段の能力を上側に超えるときに1段上の燃焼面に切替え、要求熱量(要求能力)が燃焼段の能力を下側に超えるときに1段下の燃焼面に燃焼段を切替え制御する。
【0012】
このように、燃焼面を切替え制御することにより、全燃焼範囲を全一次式燃焼に適したTDRで燃焼運転できるので、小さい能力範囲の燃焼において、燃焼面の赤熱や逆火の問題がなくなり、低NOxのクリーン燃焼が達成できるというものである。
【0013】
【発明が解決しようとする課題】
しかしながら、現在主流となっている家庭用大能力給湯器の4500kcal/hr〜45000kcal/hrの燃焼熱量範囲を全一次式のTDRでもって燃焼させるには、燃焼能力段を3段以上に区分しなければならず、必然的に燃焼面の能力段の区分数が多くなり、それに伴いガス分岐通路17A、17B、17C等の数およびガス通路切替え用の電磁弁の数も増え、装置が大型化するとともに装置構成が複雑となって、装置コストも高くなるという問題が生じる。
【0014】
また、全一次式の燃焼においては、低能力側の燃焼空気の制御範囲(良好に燃焼させるための燃焼空気の制御幅)が狭いため、厳密な高精度の燃焼ファン6の風量制御を行わなければならず、燃焼ファン6の制御回路が複雑化し、回路コストが高くなるという問題がある。また、このように、低能力側の燃焼空気の制御範囲が狭いために、給湯器の長期使用中に経時変化により排気閉塞が進行すると、ファン風量が最適範囲からずれて燃焼が悪化するという問題もあった。
【0015】
本発明は上記課題を解決するためになされたものであり、その目的は、大きな能力範囲の燃焼においても、燃焼能力段の数を少なくして装置構成の簡易化、装置コストの低減化が可能であり、低能力燃焼においても厳密な高精度のファン風量制御を要することなく良好な燃焼を維持できるクリーン燃焼が可能な燃焼装置を提供することにある。
【0016】
【課題を解決するための手段】
本発明は上記目的を達成するために次のような構成をもって課題を解決する手段としている。すなわち、第1の発明は、燃焼ファンから供給される空気を利用して燃料供給系を介して供給される燃料を燃焼するバーナ装置を備えた燃焼装置において、前記バーナ装置は複数の燃焼管が隣接配列されて成るバーナユニットが2つ以上燃焼管の配列方向に互いに隣り合わせに配置された構成と成しており、バーナ装置は、前記各バーナユニット毎に、各バーナユニット全燃焼管が一次空気のみによって燃焼する全一次式燃焼モードと;各バーナユニットの全燃焼管のうち間欠位置の燃焼管への燃料供給が遮断されてバーナユニットの燃焼面に燃料供給により燃焼する燃焼管の燃焼ゾーンと燃料が遮断されて燃焼管から二次空気が噴出する非燃焼ゾーンとが交互に形成される間欠燃焼モードと;を切替える燃焼モード切替機構が備えられ、各バーナユニットの燃焼管配列方向の両端部の燃焼面は間欠燃焼モードでの燃焼時には燃焼ゾーンとなる構成と成している構成をもって課題を解決する手段としている。
【0017】
また、第2の発明は、前記第1の発明の構成を備えたものにおいて、燃焼装置の要求燃焼能力の大きさに応じて間欠燃焼モード全一次式燃焼モードの燃焼モードの組み合わせを燃焼モード切替機構の動作を制御して切替える燃焼モード切替制御手段が設けられている構成をもって課題を解決する手段としている。
【0018】
さらに、第3の発明は、前記第1又は第2の発明の構成を備えたものにおいて、燃焼モードが全一次式燃焼モードから間欠燃焼モードへ切替えられるときに間欠の燃焼ゾーンを形成する燃焼管の一次空気の空気比率を減少方向へ切替え、燃焼モードが間欠燃焼モードから全一次式燃焼モードへ切替えられるときに減少方向へ切替えられていた一次空気の空気比率を切替え前の元の空気比率に戻す空気比率切替え手段が設けられている構成をもって課題を解決する手段としている。
【0019】
さらに、第の発明は、前記第1又は第2又は第3の発明の構成を備えたものにおいて、バーナ装置の燃焼面は1つ又は2つ以上のバーナユニットを単位として燃焼面が切替えられる構成と成していることをもって課題を解決する手段としている。さらにまた、第5の発明は、前記第1乃至第4の発明の何れか一つの発明の構成を備え、間欠燃焼モードは、ブンゼンタイプの燃焼形態で燃焼する構成と成していることをもって課題を解決するための手段としている。
【0020】
上記構成の本発明において、燃焼熱量範囲(燃焼能力範囲)の高能力側の燃焼では全一次式の燃焼でもってバーナユニットの全面燃焼を行う。要求熱量が低能力側に移ったときには間欠燃焼モードの燃焼に移行し、燃焼ゾーンに位置する燃焼管の炎口から噴出する燃料と一次空気との混合ガスはその隣側の燃料供給が遮断された燃焼管から噴出する空気を二次空気として利用してブンゼンタイプの燃焼方式でもって燃焼する。
【0021】
本発明においては、高能力側の燃焼では全一次式の燃焼によって低NOxのクリーン燃焼が達成され、高能力側では燃焼空気の適正制御範囲が広目であるので、全一次式の燃焼であっても厳密な高精度の風量制御を要することなく良好な燃焼状態を維持できる。燃焼能力が低能力側に移ったときには間欠モードの燃焼に切替わるが、この間欠モードの燃焼はブンゼンタイプの燃焼方式となり、燃焼空気の適正制御範囲が広いので、厳密な高精度の風量制御を要することなく良好な燃焼状態を維持でき、燃焼能力が低能力であるので、窒素酸化物NOxの発生も少なく、低能力から高能力にわたり全体的に見てクリーンな燃焼が達成できるものである。
【0022】
【発明の実施の形態】
以下、本発明の実施形態例を図面に基づき説明する。なお、以下の説明において、従来例と共通の構成部分には同一符号を付してその重複説明は省略又は簡略化する
【0023】
実施形態例の燃焼装置は前記図10に示した給湯器の模式構成と同様であり、本実施形態例において特徴的なことは、バーナ装置2を特有な構成としたことである。本実施形態例におけるバーナ装置2は、後述する特徴的なバーナユニットを複数有するものであるが、ここではまず、その複数のバーナユニットを持つバーナ装置2の構成を説明する前に、上記特徴的なバーナユニットが1つだけ設けられているバーナ装置2の構成例を説明する。図1には、そのバーナユニットが1つだけ設けられているバーナ装置2の構成例が模式的に示されている。
【0024】
図1において、ノズルヘッダー16の上面にはガスノズル18Aと18Bが交互に配列配置され、ノズルヘッダー16の内部はガスノズル18A群に通じる室24Aとガスノズル18B群に通じる室24Bに区分されており、室24Aにはガス分岐通路27Aが接続され、室24Bにはガス分岐通路27Bが接続されている。このガス分岐通路27A、27Bは前記図10に示されている燃料ガス供給通路3の先方側を分岐することによって形成されている。なお、ガス分岐通路27A、27Bにはそれぞれ通路の開閉を行う電磁弁(図示せず)が介設されている。
【0025】
ノズルヘッダー16の上側にはガスノズル18A、18Bに対向させて燃焼管20A、20Bが配置されている。燃焼管20Aと20Bはバーナケース内で互いに隣り合わせに隙間無く配列されてバーナユニットを構成しており、燃焼管20Aはガスノズル18Aから噴出する燃料ガスと燃焼ファン6から供給される燃焼空気をガス導入口21から取り入れ、内部で攪拌混合して燃料ガスと燃焼空気(一次空気)との混合ガスを炎口22から噴出して火炎23を形成する。同様に、燃焼管20Bはガスノズル18Bから噴出する燃料ガスと燃焼ファン6から供給される燃焼空気をガス導入口21から取り入れ、内部で攪拌混合して燃料ガスと燃焼空気(一次空気)との混合ガスを炎口22から噴出して火炎23を形成する。図1において、ガス分岐通路27Aからガスノズル18Aを介して燃焼管20Aに至る通路構成と、ガス分岐通路27Bからガスノズル18Bを介して燃焼管20Bに至る通路構成と、各ガス分岐通路27A、27Bに介設されている電磁弁は燃焼モード切替機構を構成する。
【0026】
図2は図1に示されているバーナ装置2における燃焼モード切替えの制御構成を示す。この制御構成は制御装置12に設けられ、燃焼モード切替制御手段25と、空気比率切替手段26と、ファン制御部28と、メモリ29とを有して構成されている。燃焼モード切替制御手段25には図3に示すような燃焼モードの切替えデータが与えられている。図3の例では、全燃焼熱量範囲が4500kcal/hr〜45000kcal/hrで与えられており、この燃焼熱量範囲のうち、低能力側の4500kcal/hr〜27000kcal/hr(TDRが1/6)の範囲が間欠燃焼モードの範囲として区分され、高能力側の22500kcal/hr〜45000kcal/hr(TDRが1/2)の範囲が全一次式燃焼モードの範囲として区分されている。
【0027】
燃焼モード切替制御手段25は制御装置12の燃焼制御部で演算される要求燃焼能力(要求燃焼熱量)の情報を受け、要求燃焼能力が間欠燃焼モードの範囲を上回るときには燃焼モード切替機構を全一次式燃焼モード側に切替える。具体的には、ガス分岐通路27Aと27Bの電磁弁を共に開き、図1の(a)に示すようにガス分岐通路27A、27Bから燃料ガスを供給し、全燃焼管20A、20Bを全一次式の燃焼モードで燃焼させる。この全一次式燃焼においては、一次空気比率は理論空気量の1.2〜1.4倍の比率に設定される。
【0028】
また、燃焼モード切替制御手段25は要求燃焼能力が全一次式燃焼モードの範囲を下回るときには燃焼モード切替機構を間欠燃焼モード側に切替える。具体的には、ガス分岐通路27A側の電磁弁を開いた状態にしてガス分岐通路27B側の電磁弁を閉じ、図1の(b)に示すようにガス分岐通路27Aのみから燃料ガスを供給し、燃焼管20Aの炎口22に火炎23を形成し、燃焼管20Bからは空気のみを噴出させる。この結果、燃焼管20Aから噴出する空気と燃料ガスとの混合ガスは隣の燃焼管20Bから噴出する空気を二次空気として利用して燃焼する。
【0029】
この間欠燃焼モードではバーナ装置2の燃焼面は燃焼管20Aの燃焼による燃焼ゾーンと燃焼管20Bの非燃焼ゾーンとが交互に生じる間欠燃焼となり、この燃焼は二次空気を利用して燃焼するブンゼンタイプの燃焼形態となる。本明細書で、ブンゼンタイプの燃焼形態とは、ブンゼンバーナやセミブンゼンバーナの燃焼形態を意味する。
【0030】
この構成例では、燃焼モード切替制御手段25による燃焼モード切替機構に対する制御動作の信号は空気比率切替手段26に加えられており、空気比率切替手段26は制御モードの切替信号を受け、燃焼ファン6のファン回転制御の制御データを全一次式燃焼モードと間欠燃焼モードに応じて切替える。
【0031】
すなわち、メモリ29には図4に示すような、全一次式燃焼モード用と間欠燃焼モード用の、燃焼量(燃焼熱量)とファン回転数(ファン風量)との関係データ(ファン回転制御データ)がそれぞれ記憶されており、空気比率切替手段26は燃焼モード切替制御手段25から全一次式燃焼モードへの切替信号を受けたときにファン回転制御データとして全一次式燃焼モードのファン回転制御データを選択し、燃焼モード切替制御手段25から間欠燃焼モードへの切替信号を受けたときにファン回転制御データとして間欠燃焼モードのファン回転制御データを選択する。そして、その選択結果の信号をファン制御部28に加える。
【0032】
なお、この構成例では、全一次式燃焼モードのファン回転制御データは燃焼管20A、20Bに取り込まれる空気比率が理論空気量の1.2〜1.4倍の一次空気比率となるように設定されており、また、間欠燃焼モードのファン回転制御データは燃焼側の燃焼管20Aに取り込まれる空気比率が理論空気量の0.4〜0.8倍の一次空気比率となるように設定されている。なお、この間欠燃焼モードの一次空気比率はブンゼンタイプのバーナの燃焼時における一次空気比率と同じ値である。
【0033】
ファン制御部28は前記空気比率切替手段26からのファン回転制御データの選択結果の信号を受け、空気比率切替手段26によって選択されたファン回転制御データを用いて燃焼ファン6の回転制御を行う。すなわち、ファン制御部28は燃焼制御部により求められた要求燃焼量に応じたファン回転数を選択されたファン回転制御データに基づき目標ファン回転数として求め、ファン回転数検出センサ7で検出されるファン回転数が前記目標回転数と一致するようにファン回転数を制御する。
【0034】
図1に示すバーナ装置2は上記のように構成され、燃焼モード切替制御手段25によって切替えられる燃焼モードに応じて対応するファン回転制御データが選択され、選択された燃焼モードに適したファン回転制御(風量制御)が達成される。
【0035】
図1に示すバーナ装置2の構成例によれば、低燃焼能力側の範囲を間欠燃焼モードによって燃焼し、高燃焼能力側を全一次式燃焼モードで燃焼する構成としたので、4500kcal/hr〜45000kcal/hrの大能力範囲を、2つのガス分岐通路27A、27Bとそのガス分岐通路にそれぞれ介設される合計2つの切替弁(電磁弁)を設けることによって、良好に燃焼させることができ、前記大能力範囲を全一次式燃焼モードのみによって燃焼させる燃焼能力段切替方式の従来例に比べガス分岐通路および切替弁(電磁弁)の数を少なくでき、これに伴い、装置構成の簡易化、小型化、装置コストの低減化を図ることができる。
【0036】
また、高燃焼能力側の範囲は全一次式燃焼モードによって燃焼させるので、低NOx化が図れることとなり、低燃焼能力側は間欠燃焼モードで燃焼させるので、全一次式燃焼よりはNOxの発生が大きいが、元々低燃焼能力側は燃焼量が小さいのでNOxの発生が少なく、全一次式燃焼に対するNOxの増加量は無視できる程度であるので、燃焼能力範囲を全体的に低NOxのクリーン燃焼で燃焼させることが可能である。
【0037】
さらに、低燃焼能力側の間欠燃焼モードでの燃焼は二次空気を利用したブンゼンタイプの燃焼であるので、TDRを大きくでき、燃焼面の赤熱化や逆火の弊害現象を効果的に防止できる。しかも、間欠燃焼モードでの燃焼時には空気比率切替手段26により、燃焼側の燃焼管20Aに取り込まれる空気量がブンゼンタイプ燃焼に適した空気比率となるように切替えられるので、良好な燃焼性能を発揮することが可能である。また、このように、間欠燃焼モードではブンゼンタイプの燃焼方式で燃焼するので、適正空気の制御範囲(制御幅)が広くなり、厳密な風量制御(ファン回転数制御)を要することなく安定した良好燃焼を達成可能である。
【0038】
なお、上記の構成例では全一次式燃焼モードから間欠燃焼モードへ切替えるときに空気比率切替手段26により、ファン回転制御データを切替えるようにしたが、この空気比率の切替えは機械的駆動により行うようにしてもよい。その場合は、例えば、図5の(a)に示すように燃焼管20A、20Bのガス導入口21側とガスノズル18A、18B側との間に空気量切替板30を燃焼管の配列方向に往復移動可能に配置する。
【0039】
図5の(b)に示すように、空気量切替板30には長手方向に空気量調整穴31Aと31Bが交互に等ピッチ間隔で配列形成され、この空気量調整穴31Aと31Bは貫通スリット35によって連通されている。空気量調整穴31Aは全一次式燃焼に適した一次空気比率となるように燃焼管20A、20Bへの空気取り込み量を調整する穴であり、空気量調整穴31Bは間欠燃焼に適した一次空気比率となるように燃焼管20Aへの空気取り込み量を調整する穴である。空気量調整穴31Aおよび空気量調整穴31Bの配列ピッチは燃焼管20およびガスノズル18の配列ピッチと等しく、空気量調整穴31A同士の配列ピッチと空気量調整穴31B同士の配列ピッチは互いに半ピッチずれている。つまり、隣り合う空気量調整穴31Aの中間位置に空気量調整穴31Bが配置されている。
【0040】
空気量切替板30の一端側には作動アーム32が連係されており、この作動アーム32はギアモータあるいはロータリーソレノイド等のアクチュエータ33によって往復方向に揺動回転されるようになっており、この作動アーム32の揺動回転によって空気量切替板30が往復移動する構成となっている。
【0041】
このアクチュエータ33の駆動制御は空気比率切替手段26により行われ(図2参照)、空気比率切替手段26は燃焼モード切替制御手段25から全一次式燃焼モードへの切替え信号を受けたときにアクチュエータ33を動作制御して各空気量調整穴31Aを対応する燃焼管20A、20Bのガス導入口21に対向する配置に移動する。そうすると、空気量切替板30の下側の各ガスノズル18A、18Bと空気量切替板30の上側の各燃焼管20A、20Bのガス導入口21は対応する空気量調整穴31Aを挟んで対向し、各ガスノズル18A、18Bから噴出する燃焼ガスと燃焼ファン6から供給される空気は空気量調整穴31Aを通して対応する燃焼管20A、20Bに取り込まれ、全一次式燃焼に適した一次空気比率でもって全一次式燃焼が行われる。
【0042】
この状態で、燃焼モード切替制御手段25から間欠燃焼モードへの切替信号が出されたときには、空気比率切替手段26はアクチュエータ33を逆方向に空気量調整穴の半ピッチ移動分だけ回転制御する。このアクチュエータ33の逆回転により、空気量切替板30は前記半ピッチ分だけ復帰方向へ移動し、各ガスノズル18A、18Bは対応する燃焼管20A、20Bのガス導入口21と空気量調整穴31Bを挟んで対向し、各ガスノズル18Aから噴出する燃焼ガスと燃焼ファン6から供給される空気は空気量調整穴31Bを通して対応する燃焼管20Aに取り込まれ、ガス噴出が停止されたガスノズル18Bに対向する空気量調整穴31Bには空気のみが通過して対応する燃焼管20Bに二次空気用の燃焼空気として取りこまれ、間欠燃焼に適した一次空気比率でもってブンゼンタイプの間欠燃焼が行われる。
【0043】
このように、燃焼モード切替制御手段25の燃焼モード切替信号に応じて空気比率切替手段26によりアクチュエータ33の動作が制御されることで、前記構成例で説明したファン回転制御データの切替方式の場合と同様に全一次式燃焼と間欠燃焼に応じた最適一次空気比率の切替制御が可能となる。
【0044】
この機械駆動式の一次空気比率の切替え手法はその他に、空気量切替板30に空気量調整穴31Bの配列のみを設け、間欠燃焼時にはこの空気量調整穴31Bを燃焼管20A、20Bとガスノズル18A、18B間に配置するようにし、全一次式燃焼時には空気量切替板30を燃焼管20A、20Bとガスノズル18A、18Bの間から退避移動させるようにしてもよいものであり、あるいは、燃焼ファン6の空気風量の出口にダンパを設け、このダンパの回動移動を制御して一次空気比率を切替制御してもよく、様々な構成形態でもって一次空気比率の切替制御機構を構築することが可能である。
【0045】
以下に、本発明に係る実施形態例の燃焼装置において特徴的なバーナ装置の構成例を説明する。前記図1に示すバーナ装置2の構成例では、同じ燃焼面上で、全一次式燃焼と間欠燃焼を切替えたが、この実施形態例では、全一次式燃焼と間欠燃焼との切替機構を持つ複数のバーナユニットを燃焼管の配列方向に配列配置してバーナ装置を形成し、1つ以上のバーナユニットを単位として燃焼段を切替え制御する構成と成している。図6、図7はこの燃焼段切替方式のバーナ装置2をもつ燃焼装置の実施形態例を示すものである。なお、バーナ装置2以外の燃焼装置の構成部分は前記図10に示すものと同様であるので、図示を省略してある。
【0046】
図6、図7に示すバーナ装置2は前述した図1に示す構成のバーナユニットを2個向かい合わせに隣接配置して2段の燃焼段としたものであり、各段のバーナユニット40、50の構成は前述した図1のバーナユニットの構成と同一なので、その重複説明は省略する。この燃焼段切替式のバーナ装置2においては、各バーナユニット40、50が全一次式燃焼モードと間欠燃焼モードの燃焼モード切替機構を備えており、図6に示す如く、バーナユニット40、50の全ガス分岐通路27A、27Bから燃料ガスを供給することにより、バーナ装置2の全燃焼面は全一次式燃焼モードで燃焼する。
【0047】
また、図7に示す如く、バーナユニット40、50のガス分岐通路27Aのみから燃料ガスを供給することにより、バーナ装置2の全燃焼面は間欠燃焼モードで燃焼する。この実施形態例では、バーナユニット40、50が間欠燃焼するときには、バーナユニット40、50の両端は必ず燃焼ゾーンとなるように構成されており、そのため、保炎性がよい上に、バーナユニット40、50が共に間欠燃焼する燃焼モードではバーナユニット40と50の境界領域は必ず燃焼ゾーンとなり、そのため、火炎の安定性がよく、一方のバーナユニットから他方のバーナユニットへの火移りを良好に行うことが可能である。
【0048】
この燃焼段切替式のバーナ装置2において、バーナユニット50のガス分岐通路27A、27Bを閉じ、バーナユニット40のガス分岐通路27,27Bを開けることにより、バーナユニット40のみの燃焼面が全一次式燃焼モードで燃焼し、バーナユニット50のガス分岐通路27A、27Bを閉じ、バーナユニット40のガス分岐通路27Aを開け、27Bは閉じることにより、バーナユニット40の燃焼面のみが間欠燃焼モードで燃焼する。
【0049】
同様に、バーナユニット40のガス分岐通路27A、27Bを閉じ、バーナユニット50のガス分岐通路27,27Bを開けることにより、バーナユニット50のみの燃焼面が全一次式燃焼モードで燃焼し、バーナユニット40のガス分岐通路27A、27Bを閉じ、バーナユニット50のガス分岐通路27Aを開け、27Bは閉じることにより、バーナユニット50の燃焼面のみ間欠燃焼モードで燃焼する。
【0050】
さらに、バーナユニット40のガス分岐通路27A、27Bを共に開け、バーナユニット50側はガス分岐通路27Aを開け27Bは閉じることにより、バーナユニット40の全燃焼面は全一次式燃焼モードで燃焼し、バーナユニット50の燃焼面は間欠燃焼モードで燃焼する。その逆に、バーナユニット50のガス分岐通路27A、27Bを共に開け、バーナユニット40側はガス分岐通路27Aを開け27Bは閉じることにより、バーナユニット50の全燃焼面は全一次式燃焼モードで燃焼し、バーナユニット40の燃焼面は間欠燃焼モードで燃焼する。
【0051】
上記のように、バーナユニット40とバーナユニット50のガス分岐通路27A,27Bの開閉の組み合わせを選択することにより、様々な燃焼モードの組み合わせで、バーナユニット40とバーナユニット50の燃焼面を切替え燃焼することができる。この燃焼面の切替えにおいても、全一次式燃焼モードと間欠燃焼モードでの切替に応じて、一次空気比率の切替えが行われる。
【0052】
この場合、バーナユニット40、50に図5に示した空気量切替板30を設けることにより、どのような燃焼モードの組み合わせに対しても対応可能である。これに対し、ファン回転制御データの切替え方式を採用するときには、バーナユニット40、50の一方が全一次式燃焼モードで、他方が間欠燃焼モードとなる燃焼形態のときは、1個の共通の燃焼ファン6を用いて全一次式燃焼に見合う一次空気比率と間欠燃焼に見合う一次空気比率を共に調整することは困難となるので、その場合は、各バーナユニット40、50毎に専用の燃焼ファン6を設けて、各バーナユニット40、50に対してファン回転制御データによる風量制御を個別に行えばよく、あるいは、燃焼ファン6は共通の1個のファンを使用し、一方のバーナユニットは空気量切替板30を用いて間欠燃焼とし、他方のバーナユニットは全一次式燃焼モードで燃焼させればよい。
【0053】
なお、本発明は上記実施形態例に限定されることなく様々な実施の形態を採り得る。例えば、上記図6、図7の例では、2個のバーナユニット40、50を燃焼管の配列方向に隣接配置したが、さらに大能力の燃焼熱量が要求される場合には、3個以上のバーナユニットを配列配置して燃焼段の切替を行うようにしてもよく、このように複数のバーナユニットが配設される場合においても、各バーナユニットの燃焼面を全て全一次式燃焼モードで燃焼させて燃焼能力段の切替を行う方式に比べ、ガス分岐通路の数とその切替弁(電磁弁)の数を少なくすることができる。
【0054】
また、上記実施形態例では燃焼装置として給湯器を例に説明したが、この給湯器の装置構成は図10に示したモデルのものに限定されることなく様々な変形が可能であり、本発明は、単能給湯器以外に、風呂釜、暖房機、冷房機、冷暖房機、給湯複合機等のバーナ装置を具備する様々な燃焼装置に適用されるものである。
【0055】
【発明の効果】
本発明は、バーナ装置の燃焼面を、全一次式燃焼モードによる燃焼と、間欠燃焼モードによる燃焼とに切替燃焼可能に形成したので、与えられる燃焼能力範囲のうち、高能力側の範囲を全一次式燃焼モードで燃焼させ、低能力側の範囲を間欠燃焼モードで燃焼することが可能となる。この燃焼制御形態を採ることで、高能力側は低NOxの燃焼となり、低能力側はブンゼンタイプの燃焼形態となるので、TDRが大となり、燃焼面の赤熱や、逆火の弊害現象を防止できる。
【0056】
ただし、ブンゼンタイプの燃焼形態は、全一次式燃焼に比べ、NOxの発生量が大きいが、ブンゼンタイプの燃焼は元々NOxの発生量が少ない低燃焼能力側で行うので、全一次式燃焼に比べてのNOxの増加量は無視できる程度であり、全体的に見て、全燃焼能力範囲を低NOx化のクリーン燃焼が可能である。
【0057】
また、低燃焼能力側を全一次式燃焼モードで燃焼させた場合には、適正な風量の制御幅が狭く、そのため、厳密な高精度のファン回転制御が必要であったが、本発明では、低燃焼能力側を間欠燃焼モード(ブンゼンタイプの燃焼形態)で燃焼させるようにしているので、適正な風量の制御幅が広くなり、必ずしも厳密な高精度のファン回転制御を要すること無しに適正風量をバーナ装置に供給して良好な燃焼を行うことが可能である。このように、厳密な高精度のファン回転制御を必要としないので、ファン回転の制御回路の簡易化が可能であり、これに伴い、回路コストの低減化を図ることができる。
【0058】
さらに、空気比率切替手段により、高能力側の全一次式燃焼においてはその全一次式燃焼に見合う一次空気比率となるように、また、低能力側の間欠燃焼においてはそのブンゼンタイプの燃焼に見合う一次空気比率となるように燃焼モードに応じて風量の切替えを行うようにしているので、バーナ装置の全燃焼能力範囲に亙って、安定した適正燃焼が可能となる。
【0059】
さらに、高能力側の範囲を全一次式燃焼モードで燃焼させ、低能力側の範囲を間欠燃焼モードで燃焼させるべく燃焼モードの切替え制御を行う構成としたので、燃焼モードの切替え無しに全一次式燃焼モードのみで燃焼能力段を切替える従来例に比べ、切替弁を含む切替機構の部品点数を少なくでき、これに伴い、装置の小型化、低コスト化を達成可能である。
【0060】
さらに、2つ以上のバーナユニットを隣り合わせに配置し、1つ以上のバーナユニットを単位として燃焼面を切替える構成としたものにあっては、全一次式燃焼モードと間欠燃焼モードとを燃焼能力に応じ選択して各バーナユニットの燃焼面を切替え可能となるので、要求燃焼能力に応じ、より適切な燃焼形態を選択して燃焼面のより緻密な切替え制御が可能となるものである。
【図面の簡単な説明】
【図1】 全一次式燃焼モードと間欠燃焼モードとの切替機構を備えたバーナユニットが1つだけ設けられているバーナ装置の一構成説明するための図である。
【図2】 図1に示されるバーナ装置の制御構成の一例を説明するためのブロック図である。
【図3】 図1に示されるバーナ装置における全一次式燃焼モードと間欠燃焼モードとの切替え能力区分のデータを示す図である。
【図4】 図1に示されるバーナ装置における全一次式燃焼モードと間欠燃焼モードのファン回転制御データを示グラフである。
【図5】 全一次式燃焼モードと間欠燃焼モードの一次空気比率切替え手段の他の形態例の説明図である。
【図6】 2個のバーナユニットを隣接配置した燃焼面切替式のバーナ装置の実施形態例を全面が全一次式燃焼モードで燃焼している状態で示す説明図である。
【図7】 2個のバーナユニットを隣接配置した燃焼面切替式のバーナ装置の実施形態例を全面が間欠燃焼モードで燃焼している状態で示す説明図である。
【図8】 従来の燃焼段切替形式のバーナ装置の構成説明図である。
【図9】 図8の燃焼段切替形式のバーナ装置に与えられる燃焼面切替えの能力区分を示すグラフである。
【図10】 燃焼装置として代表的な給湯器の模式構成の説明図である。
【符号の説明】
2 バーナ装置
18(18A、18B) ガスノズル
20(20A、20B) 燃焼管
25 燃焼モード切替制御手段
26 空気比率切替手段
27(27A、27B) ガス分岐通路
28 ファン制御部
30 空気量切替板
40、50 バーナユニット

Claims (5)

  1. 燃焼ファンから供給される空気を利用して燃料供給系を介して供給される燃料を燃焼するバーナ装置を備えた燃焼装置において、前記バーナ装置は複数の燃焼管が隣接配列されて成るバーナユニットが2つ以上燃焼管の配列方向に互いに隣り合わせに配置された構成と成しており、バーナ装置は、前記各バーナユニット毎に、各バーナユニット全燃焼管が一次空気のみによって燃焼する全一次式燃焼モードと;各バーナユニットの全燃焼管のうち間欠位置の燃焼管への燃料供給が遮断されてバーナユニットの燃焼面に燃料供給により燃焼する燃焼管の燃焼ゾーンと燃料が遮断されて燃焼管から二次空気が噴出する非燃焼ゾーンとが交互に形成される間欠燃焼モードと;を切替える燃焼モード切替機構が備えられ、各バーナユニットの燃焼管配列方向の両端部の燃焼面は間欠燃焼モードでの燃焼時には燃焼ゾーンとなる構成と成していることを特徴とする燃焼装置。
  2. 焼装置の要求燃焼能力の大きさに応じて間欠燃焼モード全一次式燃焼モードの燃焼モードの組み合わせを燃焼モード切替機構の動作を制御して切替える燃焼モード切替制御手段が設けられている請求項1記載の燃焼装置。
  3. 燃焼モードが全一次式燃焼モードから間欠燃焼モードへ切替えられるときに間欠の燃焼ゾーンを形成する燃焼管の一次空気の空気比率を減少方向へ切替え、燃焼モードが間欠燃焼モードから全一次式燃焼モードへ切替えられるときに減少方向へ切替えられていた一次空気の空気比率を切替え前の元の空気比率に戻す空気比率切替え手段が設けられている請求項1又は請求項2記載の燃焼装置。
  4. バーナ装置の燃焼面は1つ又は2つ以上のバーナユニットを単位として燃焼面が切替えられる構成と成していることを特徴とする請求項1又は請求項2又は請求項3記載の燃焼装置。
  5. 間欠燃焼モードは、ブンゼンタイプの燃焼形態で燃焼する構成と成していることを特徴とする請求項1乃至請求項4の何れか1つに記載の燃焼装置。
JP08192399A 1999-03-25 1999-03-25 燃焼装置 Expired - Fee Related JP4073109B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08192399A JP4073109B2 (ja) 1999-03-25 1999-03-25 燃焼装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08192399A JP4073109B2 (ja) 1999-03-25 1999-03-25 燃焼装置

Publications (2)

Publication Number Publication Date
JP2000274667A JP2000274667A (ja) 2000-10-03
JP4073109B2 true JP4073109B2 (ja) 2008-04-09

Family

ID=13759989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08192399A Expired - Fee Related JP4073109B2 (ja) 1999-03-25 1999-03-25 燃焼装置

Country Status (1)

Country Link
JP (1) JP4073109B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4121440B2 (ja) * 2003-10-10 2008-07-23 大阪瓦斯株式会社 燃焼装置、給湯暖房装置、及び、コージェネレーションシステム
US7494337B2 (en) * 2004-04-22 2009-02-24 Thomas & Betts International, Inc. Apparatus and method for providing multiple stages of fuel
JP4754414B2 (ja) * 2006-06-12 2011-08-24 リンナイ株式会社 燃焼装置
CN109737400A (zh) * 2019-02-13 2019-05-10 珠海格力电器股份有限公司 燃烧器及燃气热水器

Also Published As

Publication number Publication date
JP2000274667A (ja) 2000-10-03

Similar Documents

Publication Publication Date Title
JP4595599B2 (ja) ガスコンロ
JP2016502640A (ja) 燃焼装置
JP4551971B2 (ja) 高温空気燃焼技術を用いた反応炉
JP4073109B2 (ja) 燃焼装置
EP1913306B1 (en) Industrial burner and method for operating an industrial burner
JPH0886416A (ja) ノズルホルダ及びノズルホルダを有する燃焼装置
CN213362472U (zh) 一种四分段燃烧结构及热水器
US7771192B2 (en) Combustion apparatus
CN111578274B (zh) 燃烧器、燃烧器装置及热水器
KR101733061B1 (ko) Tdr 댐퍼
JP3468940B2 (ja) ガス燃焼装置
JP3509945B2 (ja) 複合燃焼器
JPH116617A (ja) 燃焼装置
JP3611622B2 (ja) 蓄熱型バーナシステム
JP3669171B2 (ja) 燃焼装置ならびにそれを備える給湯装置
JPH0670487B2 (ja) 低窒素酸化物バーナ
JP4250324B2 (ja) 燃焼装置
JP5495052B2 (ja) 燃焼装置
JP2877486B2 (ja) 燃焼装置
JP2002081618A (ja) 燃焼装置及びそれを備えた流体加熱装置
JPH074640A (ja) 燃焼装置
JP2023048285A (ja) 予混合装置およびこれを備えた燃焼装置
JP4315615B2 (ja) 給湯装置
JP3611381B2 (ja) 燃焼器の制御装置および制御方法
JP2011145027A (ja) ガスバーナユニット及び燃焼機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees