JP4065051B2 - Surface mount LED and manufacturing method thereof - Google Patents

Surface mount LED and manufacturing method thereof Download PDF

Info

Publication number
JP4065051B2
JP4065051B2 JP12273398A JP12273398A JP4065051B2 JP 4065051 B2 JP4065051 B2 JP 4065051B2 JP 12273398 A JP12273398 A JP 12273398A JP 12273398 A JP12273398 A JP 12273398A JP 4065051 B2 JP4065051 B2 JP 4065051B2
Authority
JP
Japan
Prior art keywords
conductive block
insulating portion
emitting diode
insulating
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12273398A
Other languages
Japanese (ja)
Other versions
JPH11307820A (en
Inventor
佳子 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP12273398A priority Critical patent/JP4065051B2/en
Publication of JPH11307820A publication Critical patent/JPH11307820A/en
Application granted granted Critical
Publication of JP4065051B2 publication Critical patent/JP4065051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面実装型発光ダイオ−ドの構造及びその製造方法に関するものであり、特に表面実装型発光ダイオ−ド(以下表面実装型LED)のうち、特に高出力で大電流を必要とする場合に熱的問題が大きくなる用途に用いる時に最適である。詳細には、赤外LEDや、車両用灯具として多数LEDを使用した場合に好適である。
【0002】
【従来の技術】
従来のこの種の表面実装型LEDの製造方法を工程の順に示すものが図14〜図21であり、先ず最初の工程としては、図14に示すようにガラスファイバ−、不織布などにエポキシなどを含浸させた基材81の上下の面を圧延銅82などの導電性物質にて挟みプリント基板を形成する。この時、導電性物質は、アンカ−効果にて接着している。図15は、このようにして出来たプリント基板90を示す。次に図16に示すようにプリント基板90を適宜間隔で表裏面に貫通するスロット91をプレス加工などにより形成する。
【0003】
この状態では、プリント基板90の側面および上記で形成されたスロット91の内面には、導電性皮膜が形成されていないので、図17に示すように、無電解メッキなどの手段で前記側面及びスロット91の内面に銅などによる導電性皮膜92を形成し、前記プリント基板90の外面の全てが導電性皮膜92で覆われるものとして表裏面を電気的に接続する。
【0004】
次いで、図18に示すように前記プリント基板90の表面側のスロット91には、エッチングなどの手段で前記圧延銅82を除去することで、パット部93と配線部94とを形成し、同時に裏面側においてもスロット91間で略長方形に圧延銅82を除去することで絶縁部95を形成し、これにより、プリント基板90が完成する。
【0005】
続いて、図19に示すように前記パット部93にLEDチップ96を一方の極に例えば導電性接着剤などによりマウントし、このLEDチップ96の他方の極と前記配線部94との配線を金線などのワイヤ97で行ない、更に、図19に示すように前記LEDチップ96とワイヤ97とを透明樹脂若しくは半透明樹脂でモ−ルドしレンズ部98を形成する。
【0006】
そして、図20に示すように前記プリント基板90を夫々のLEDチップ96の中間の位置となる切断面Aで切断を行なえば、前記プリント基板90は、スロット91の部分で個々の素子基板81に分割され、図21に示すような面実装型LED素子99が複数得られる。
【0007】
【発明が解決しようとする課題】
しかしながら、上記説明の製造方法にもあるように上下の導通をとるために、図17でも示すような無電解メッキなどの手法で全面を銅などの導電性皮膜で覆う工程が必要である。従って、コストが高くなるばかりでなく、生産性も著しく低下してしまう。また、プリント基板部分の加工の制度から発生する誤差と、メッキ工程によるメッキ厚みの誤差により、仕上がり寸法の精度が低下してしまう問題も抱えている。
【0008】
更に、赤外LEDや車両用灯具等として多数表面実装型LEDを使用する場合、その他通信機器に搭載するのにも、熱による劣化の問題があり放熱対策が求められる。本発明は、これらの点に鑑みて作り出されたものであり、これらの問題を解決させるためにコストパフォ−マンス及び放熱性に優れた表面実装型LEDを提供することにより課題を解決するものである。
【0009】
【課題を解決するための手段】
本発明は、上記した問題点を解決するための具体的手段として、その構造は、1対となった導電ブロック部に挟まれた第一の絶縁部と、
前記導電ブロック部にまたがって導電的に固定された発光ダイオ−ドチップと、
前記発光ダイオ−ドチップを所定の間隔をもって取り囲むように前記導電ブロック部及び前記第一の絶縁部上に設けられた第二の絶縁部と、
表面を覆う透明樹脂又は半透明樹脂とを有し、
前記第一の絶縁部と前記第二の絶縁部が、同一材料で一体に形成される表面実装型発光ダイオ−ドである。
【0010】
また、前記絶縁部は、反射ホ−ンとして作用し、前記導電ブロック部は、高温はんだであることも特徴である。更に、製造方法は、従来の製造方法と比較して工程数が少なくコスト的メリットがうかがえるものとなっている。
【0011】
詳細には、平板状導電ブロック部を平行に複数枚並べる工程と前記導電ブロック部により挟持される第一の絶縁部と、前記導電ブロック部および前記第一の絶縁部上に略円形若しくは略楕円形の凹部を、該凹部底面に前記第一の絶縁部が前記導電ブロック部に挟持された状態で露出するよう形成する第二の絶縁部とを、同一材料で同時に形成する工程と、前記導電ブロック部に前記第一の絶縁部をまたがってLEDチップを実装する工程と、前記凹部に透明樹脂をモ−ルドする工程と各々一つずつの表面実装型発光ダイオ−ドに裁断する工程とからなる表面実装型LEDの製造方法によって、導電ブロック部に挟まれ且つ該導電ブロック部の上に略円形若しくは楕円形の絶縁部からなる凹部を形成し、該凹部底面には、導電ブロック部が絶縁部を挟持した状態で露出し、該導電ブロック部に発光ダイオ−ドチップが電気的に接続されて、前記凹部に透明樹脂にてモ−ルドされている表面実装型発光ダイオ−ドを提供することを目的としたものである。
【0012】
【発明の実施の形態】
本発明の実施形態について説明する。図1〜図7には、第一の実施の形態を示す。
【0013】
最初に図1には、平板状の導電性ブロック部1を平行に複数枚ならべる工程を示す。この平板状ブロック部1は、使用条件から体積抵抗率が0.07Ω・m未満、熱伝導率が60W/( m・K) 以上が望ましい。この数値をクリアする材質に限る。しかしながら、たいていの金属であればこの数値を満足している。又、高温はんだでも可能である。
【0014】
続いて図2に示すように、図1で並べた平板状の導電性ブロック部1に絶縁部2を一体に成形する。この時絶縁部2が平板状導電ブロック部1挟持されると同時に、この平板状の導電性ブロック部1、1の上にまたがるように略楕円形の凹部3が成形される。導電性ブロック部に挟持される絶縁部2を第一の絶縁部、凹部を形成する絶縁部2を第二の絶縁部として、異なる材料で、別々の工程で作成しても良いが、本実施形態では同一材料で同時に形成されるものとする。この凹部3の底面に前記平板状導電ブロック部1に絶縁部2が挟持された状態で露出するような状態に一体成形される工程を図2に示してある。絶縁部2は、使用条件から光(可視光、赤外光)の反射率の高いもの、耐熱性に優れるもの、形成が容易なものが望ましい。
【0015】
このことから、プラスチック(特にベクトラ、PPS)などの熱可塑性樹脂、エポキシなどの熱硬化性樹脂が望ましい。図3は、図2のB−B断面を示した図である。図3に示される凹部3は、絶縁部2によって、形成された反射ホ−ンである。図4に図3に示す断面図にLEDチップ4を導電性接着剤やはんだ等で電気的に接続する工程を示す。ここでは、はんだ5にて接合している。続いて図5は、図4の凹部3を透明樹脂若しくは、半透明樹脂でモ−ルドし、レンズ部6を形成する工程である。モ−ルドする樹脂として、透明エポキシ樹脂が最適である。ただし、用途によって拡散剤を添加したものを使用する場合もある。図5では、凹部3を越える高さでモ−ルドされているが、下回る高さでも特に問題ない。図6は、図5でできた透明樹脂等をモ−ルドしレンズ部6を形成した複数のLEDチップが実装されたユニットが示されており、破線に沿ってダイサ−等で裁断する工程を示す図である。
【0016】
図7は、図6から取出した一個の表面実装型LEDの完成品を示す図である。図7からもわかるように、通常のプリント基板を使った表面実装型LEDと比べ導電部1が占める体積が大きいため、放熱性が向上する。また、体積だけでなく導電部1の占める表面積も増えるので接触面積の増加に伴い電気的接続をより容易にすることが予想される。更に、プリント基板を使用した表面実装型LEDと比べメッキ等の工程がない為に、コストダウンも期待できる。
【0017】
次に本発明の第二の実施形態について説明する。図8〜図13である。最初に第一の実施形態同様に図1のように平板状の導電性ブロック部1を平行に複数枚ならべる。使用条件は、体積抵抗率が0.07Ω・m未満,熱伝導率が60W/(m・K) 以上が望ましい。この数値をクリアする材質に限る。しかしながら、たいていの金属であればこの数値を満足している。又、高温はんだでも可能である。
【0018】
続いて図8に示すように、図1で並べた平板状ブロック部1、1に絶縁部7を一体に成形する。この時絶縁部7が平板状導電ブロック部1、1に挟持されると同時に、この平板状導電ブロック部1の上にまたがるように略円形の凹部8がテ−パ−を持って成形される。この凹部8の底面に前記平板状導電ブロック部1に絶縁部7が挟持された状態で露出するような状態に一体成形される工程を図8に示してある。絶縁部7は、使用条件から光(可視光、赤外光)の反射率の高いもの、耐熱性に優れるもの、形成が容易なものが望ましい。このことから、プラスチック(特にベクトラ、PPS)などの熱可塑性樹脂、エポキシなどの熱硬化性樹脂が望ましい。
【0019】
図9は、図8のC−C断面を示した図である。図9に示されるテ−パ−を持った凹部8は、絶縁部7によって、形成された反射ホ−ンであり傾斜面9を持つ。図10に図9に示す断面図にLEDチップ10を導電性接着剤やはんだ等で電気的に接続する工程を示す。ここでは、はんだ11にて接合している。
【0020】
続いて図11は、図10の凹部8を透明樹脂若しくは、半透明趣旨でモ−ルドし、レンズ部12を形成する工程である。モ−ルドする樹脂として、透明エポキシ樹脂が最適である。ただし、用途によって拡散剤を添加したものを使用する場合もある。
【0021】
図11では、凹部8を越えない高さでモ−ルドしており、これは製品の小型化及び樹脂の節約の為である。レンズ効果を考え凹部を越えてもかまわない。図12は、図11でできた透明樹脂等を凹部8にモ−ルドしレンズ部12を形成した複数のLEDチップが実装されたユニットが示されており、破線に沿ってダイサ−等で裁断する工程を示す図である。図13は、図12から取出した一個の表面実装型LEDの完成品を示す図である。図13を見てもわかるように、通常のプリント基板を使った表面実装型LEDと比べ導電部1が占める体積が大きいため、放熱性が向上する。また、体積だけでなく導電部1の占める表面積も増えるので接触面積の増加に伴い電気的接続をより容易にすることが予想される。更に、プリント基板を使用した表面実装型LEDと比べメッキ等の工程がない為に、コストダウンも期待できる。
【0022】
このように、二つの実施形態から、絶縁部に形成される凹部3,8に相当する反射ホ−ンは、必要な配向に合わせその時必要なな形状に形成される。また、モ−ルド樹脂を凹部3,8にポッティングするときも、小型・軽量化で樹脂料が少なくて済みコスト的にメリットがあることからも凹部を越えない高さでのレンズ化が効果を奏する。
【0023】
第一、第二の実施形態ともに、各1個のLEDチップを有するように裁断したが、必要に応じて、複数のLEDチップを並列又は直列接続となるように裁断しても良い。又その場合、LEDチップの発光色を変える等も考えられる。これにより、複数色や混合色のLED発光色が得られる。
【0024】
【発明の効果】
以上説明したように、本発明による表面実装型LEDとその製造方法には、さまざまな効果が挙げられる。製造方法では、プリント基板を使用したものに比べプレス加工によるスロットを形成させる工程やスロット内面にプリント基板の上下導通をとる為無電解メッキによる導電性被膜の形成といった工程をなくすことにより、工程の簡略化をはかり大幅にコストを低減させることができる。また、導電性ブロック部の体積が、従来品と比べ大幅に増えているので、放熱性も良く従来品にない放熱効果が期待できる。更に、可視光及び赤外光の反射率の高いものを絶縁部材として使用し凹部を形成し、反射ホ−ンとしておりさまざまな形状を作り出すことによって配向を変えることも可能である。以上述べたように、従来に比べ工程の大幅減によるコスト削減及び放熱性の改善及び用途に応じた配向を形成できる表面実装型LEDを提供している。
【図面の簡単な説明】
【図1】 本発明における表面実装型LEDの製造方法で平板状の導電性ブロック部を並べる工程。
【図2】 同じく絶縁部材を形成する工程を示す図である。
【図3】 同じく絶縁性部材を形成する工程のB−B断面図である。
【図4】 同じくLEDチップをダイボンドする工程である。
【図5】 同じく樹脂モ−ルドしてレンズ部を形成する工程である。
【図6】 同じく複数のLEDチップをダイボンドしたユニットを破線によって裁断する工程である。
【図7】 図6で裁断された完成品の表面実装型LEDを示す図である。
【図8】 本発明における表面実装型LEDの製造方法で第二の実施形態を示す図で同じく絶縁部材を形成する工程を示す図である。
【図9】 同じく絶縁性部材を形成する工程のB−B断面図である。
【図10】 同じくLEDチップをダイボンドする工程である。
【図11】 同じく樹脂モ−ルドしてレンズ部を形成する工程である。
【図12】 同じく複数のLEDチップをダイボンドしたユニットを破線によって裁断する工程である。
【図13】 図12で裁断された完成品の表面実装型LEDを示す図である。
【図14】 基材の上下の面を圧延銅などの導電性物質にて挟みプリント基板を形成する工程。
【図15】 図14でできたプリント基板を示す図。
【図16】 プリント基板を適宜間隔で表裏面に貫通するスロットをプレス加工などにより形成する工程。
【図17】 無電解メッキなどの手段で側面及びスロットの内面に導電性被膜を形成する工程。
【図18】 プリント基板の表面側のスロットには、エッチングなどの手段で圧延銅を除去し、パット部と配線部とを形成し、同時に裏面側においてもスロット間で略長方形に圧延銅を除去することで絶縁部を形成しする工程。
【図19】 図18の断面図である。
【図20】 複数のLED素子をダイボンドしたプリント基板を夫々のLEDチップの中間の位置となるA−A断面で切断する工程。
【図21】 面実装型LED素子の完成品を示す図。
【符号の説明】
1 平板状の導電性ブロック部
2,7 絶縁部
3,8 凹部
4,10 LEDチップ
5,11 はんだ
6,12 透明樹脂(レンズ部)
9 傾斜面
81 基材
82 圧延銅
90 プリント基板
91 スロット
92 導電性被膜
93 パット部
94 配線部
95 絶縁部
96 LEDチップ
97 導電性ワイヤ
98 透明樹脂(レンズ部)
99 従来の表面実装型LED
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a surface-mounted light-emitting diode and a manufacturing method thereof, and particularly requires a high output and a large current among surface-mounted light-emitting diodes (hereinafter referred to as surface-mounted LEDs). It is optimal when used in applications where thermal problems are significant. In detail, it is suitable when many LEDs are used as an infrared LED or a vehicular lamp.
[0002]
[Prior art]
FIGS. 14 to 21 show a conventional method for manufacturing a surface-mounted LED of this type in the order of steps. First, as shown in FIG. 14, an epoxy or the like is applied to a glass fiber, a nonwoven fabric, or the like. The upper and lower surfaces of the impregnated base material 81 are sandwiched between conductive materials such as rolled copper 82 to form a printed board. At this time, the conductive substance is bonded by the anchor effect. FIG. 15 shows a printed circuit board 90 made in this way. Next, as shown in FIG. 16, a slot 91 penetrating the printed circuit board 90 through the front and back surfaces at appropriate intervals is formed by pressing or the like.
[0003]
In this state, a conductive film is not formed on the side surface of the printed circuit board 90 and the inner surface of the slot 91 formed as described above. Therefore, as shown in FIG. A conductive film 92 made of copper or the like is formed on the inner surface of 91, and the front and back surfaces are electrically connected assuming that the entire outer surface of the printed circuit board 90 is covered with the conductive film 92.
[0004]
Next, as shown in FIG. 18, in the slot 91 on the front surface side of the printed circuit board 90, the rolled copper 82 is removed by means such as etching to form a pad portion 93 and a wiring portion 94, and at the same time the back surface Also on the side, the insulating portion 95 is formed by removing the rolled copper 82 in a substantially rectangular shape between the slots 91, whereby the printed circuit board 90 is completed.
[0005]
Subsequently, as shown in FIG. 19, an LED chip 96 is mounted on one of the electrodes on the pad portion 93 by, for example, a conductive adhesive, and the wiring between the other electrode of the LED chip 96 and the wiring portion 94 is made of gold. Then, as shown in FIG. 19, the LED chip 96 and the wire 97 are molded with a transparent resin or a translucent resin to form a lens portion 98.
[0006]
Then, as shown in FIG. 20, if the printed circuit board 90 is cut at a cutting plane A that is an intermediate position between the LED chips 96, the printed circuit board 90 is formed on each element substrate 81 at the slot 91. A plurality of surface-mounted LED elements 99 as shown in FIG. 21 are obtained.
[0007]
[Problems to be solved by the invention]
However, as shown in the manufacturing method described above, in order to achieve vertical conduction, a process of covering the entire surface with a conductive film such as copper is required by a technique such as electroless plating as shown in FIG. Therefore, not only the cost is increased, but the productivity is significantly reduced. Further, there is a problem that the accuracy of the finished dimension is lowered due to an error generated from the processing system of the printed circuit board portion and an error of the plating thickness due to the plating process.
[0008]
Further, when a large number of surface-mounted LEDs are used as infrared LEDs, vehicular lamps, etc., there is a problem of deterioration due to heat in order to mount them on other communication devices, and a heat dissipation measure is required. The present invention was created in view of these points, and in order to solve these problems, the present invention solves the problems by providing a surface-mounted LED excellent in cost performance and heat dissipation. is there.
[0009]
[Means for Solving the Problems]
As a specific means for solving the above-described problems, the present invention includes a first insulating portion sandwiched between a pair of conductive block portions,
And Dochippu, - said conductive block emission is conductively secured across the portion diode
And said Dochippu to surround with a predetermined interval conductive block portion and the second insulating portion provided on the first insulating portion on, - the light emitting diode
Having transparent resin or translucent resin covering the surface ,
In the surface-mount type light emitting diode, the first insulating portion and the second insulating portion are integrally formed of the same material .
[0010]
The insulating portion acts as a reflection horn, and the conductive block portion is high-temperature solder. Furthermore, the manufacturing method has fewer steps than the conventional manufacturing method, and the cost advantage can be seen.
[0011]
Specifically, a step of arranging a plurality of flat conductive block parts in parallel, a first insulating part sandwiched by the conductive block part, and a substantially circular or elliptical shape on the conductive block part and the first insulating part a recess shape, and a second insulating portion formed so as to expose in a state where the the recess bottom surface the first insulating portion is sandwiched to the conductive block portion, and forming at the same time by using the same material, the conductive From the step of mounting the LED chip across the first insulating portion on the block portion, the step of molding the transparent resin in the concave portion, and the step of cutting each one into a surface-mounted light emitting diode By forming the surface-mount type LED manufacturing method, a concave portion made of a substantially circular or elliptical insulating portion is formed on the conductive block portion, and the conductive block portion is insulated on the bottom surface of the concave portion. A surface-mounted light-emitting diode that is exposed in a state where the light-emitting diode is sandwiched, is electrically connected to the conductive block portion, and is molded with a transparent resin in the concave portion. It is intended.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described. 1 to 7 show a first embodiment.
[0013]
First, FIG. 1 shows a step of arranging a plurality of flat conductive block portions 1 in parallel. The flat block portion 1 desirably has a volume resistivity of less than 0.07 Ω · m and a thermal conductivity of 60 W / (m · K) or more from the usage conditions. Limited to materials that clear this value. However, this value is satisfied for most metals. High temperature soldering is also possible.
[0014]
Subsequently, as shown in FIG. 2, the insulating portion 2 is formed integrally with the flat conductive block portions 1 arranged in FIG. 1. At this time, the insulating portion 2 is sandwiched between the flat conductive block portions 1, and at the same time, a substantially elliptical recess 3 is formed so as to straddle the flat conductive block portions 1, 1. Although the insulating part 2 sandwiched between the conductive block parts may be made as a first insulating part and the insulating part 2 forming the concave part as a second insulating part, they may be made of different materials and in separate steps. In the form, the same material is formed at the same time. FIG. 2 shows a process of integrally molding the bottom surface of the recess 3 so as to be exposed in a state where the insulating portion 2 is sandwiched by the flat conductive block portion 1. The insulating part 2 is preferably one having a high light reflectance (visible light, infrared light), one having excellent heat resistance, and one that can be easily formed, depending on use conditions.
[0015]
For this reason, thermoplastic resins such as plastic (particularly Vectra, PPS), and thermosetting resins such as epoxy are desirable. FIG. 3 is a view showing a BB cross section of FIG. 2. The recess 3 shown in FIG. 3 is a reflection horn formed by the insulating portion 2. FIG. 4 is a cross-sectional view shown in FIG. 3 showing a process of electrically connecting the LED chip 4 with a conductive adhesive, solder, or the like. Here, it joins with the solder 5. FIG. Next, FIG. 5 is a process of forming the lens portion 6 by molding the concave portion 3 of FIG. 4 with a transparent resin or a translucent resin. A transparent epoxy resin is optimal as the resin to be molded. However, depending on the application, a material to which a diffusing agent is added may be used. In FIG. 5, the mold is molded at a height exceeding the recess 3. FIG. 6 shows a unit on which a plurality of LED chips in which the transparent resin or the like made in FIG. 5 is molded to form the lens portion 6 is mounted, and the process of cutting with a dicer or the like along the broken line is shown. FIG.
[0016]
FIG. 7 is a view showing a finished product of one surface-mounted LED taken out from FIG. As can be seen from FIG. 7, since the volume occupied by the conductive portion 1 is larger than that of a surface-mounted LED using a normal printed circuit board, heat dissipation is improved. Further, since not only the volume but also the surface area occupied by the conductive portion 1 is increased, it is expected that the electrical connection becomes easier as the contact area increases. Furthermore, since there are no steps such as plating as compared with surface-mounted LEDs using a printed circuit board, cost reduction can be expected.
[0017]
Next, a second embodiment of the present invention will be described. 8 to 13. First, as in the first embodiment, a plurality of plate-like conductive block portions 1 are arranged in parallel as shown in FIG. The usage conditions are preferably a volume resistivity of less than 0.07 Ω · m and a thermal conductivity of 60 W / (m · K) or more. Limited to materials that clear this value. However, this value is satisfied for most metals. High temperature soldering is also possible.
[0018]
Then, as shown in FIG. 8, the insulating part 7 is integrally formed in the flat block parts 1 and 1 arranged in FIG. At this time, the insulating portion 7 is sandwiched between the flat conductive block portions 1 and 1 and at the same time, a substantially circular concave portion 8 is formed with a taper so as to straddle the flat conductive block portion 1. . FIG. 8 shows a process of integrally molding the bottom surface of the concave portion 8 so that the insulating portion 7 is exposed while being sandwiched by the flat conductive block portion 1. The insulating portion 7 is preferably one having a high light (visible light, infrared light) reflectance, excellent heat resistance, and one that can be easily formed in accordance with usage conditions. For this reason, thermoplastic resins such as plastic (particularly Vectra, PPS), and thermosetting resins such as epoxy are desirable.
[0019]
FIG. 9 is a view showing a CC cross section of FIG. A recess 8 having a taper shown in FIG. 9 is a reflection horn formed by the insulating portion 7 and has an inclined surface 9. FIG. 10 is a cross-sectional view shown in FIG. 9 showing a process of electrically connecting the LED chip 10 with a conductive adhesive, solder, or the like. Here, it joins with the solder 11. FIG.
[0020]
Next, FIG. 11 is a step of forming the lens portion 12 by molding the concave portion 8 of FIG. 10 with a transparent resin or a semi-transparent effect. A transparent epoxy resin is optimal as the resin to be molded. However, depending on the application, a material to which a diffusing agent is added may be used.
[0021]
In FIG. 11, the mold is molded at a height that does not exceed the recess 8 for the purpose of downsizing the product and saving the resin. In consideration of the lens effect, the concave portion may be exceeded. FIG. 12 shows a unit on which a plurality of LED chips in which the transparent resin or the like made in FIG. 11 is molded in the concave portion 8 to form the lens portion 12 is mounted, and is cut along a broken line with a dicer or the like. It is a figure which shows the process to do. FIG. 13 is a view showing a finished product of one surface-mounted LED taken out from FIG. As can be seen from FIG. 13, since the volume occupied by the conductive portion 1 is larger than that of a surface-mounted LED using a normal printed circuit board, heat dissipation is improved. Further, since not only the volume but also the surface area occupied by the conductive portion 1 is increased, it is expected that the electrical connection becomes easier as the contact area increases. Furthermore, since there are no steps such as plating as compared with surface-mounted LEDs using a printed circuit board, cost reduction can be expected.
[0022]
As described above, according to the two embodiments, the reflective horn corresponding to the concave portions 3 and 8 formed in the insulating portion is formed in a necessary shape in accordance with a required orientation. In addition, when potting mold resin into the recesses 3 and 8, a lens with a height that does not exceed the recesses is effective because it is small and light and requires less resin. Play.
[0023]
Although both the first and second embodiments are cut so as to have one LED chip, a plurality of LED chips may be cut in parallel or in series as necessary. In that case, it is also possible to change the emission color of the LED chip. Thereby, LED emission colors of multiple colors or mixed colors are obtained.
[0024]
【The invention's effect】
As described above, the surface-mounted LED and the manufacturing method thereof according to the present invention have various effects. The manufacturing method eliminates the process of forming a slot by press processing compared to the one using a printed circuit board and the process of forming a conductive film by electroless plating to make the printed circuit board vertically conductive on the inner surface of the slot. Simplification can be made and the cost can be greatly reduced. Moreover, since the volume of the conductive block portion is greatly increased compared to the conventional product, the heat dissipation is good and a heat dissipation effect not found in the conventional product can be expected. Further, a material having a high reflectance of visible light and infrared light is used as an insulating member to form a recess, and a reflection horn can be used to change the orientation by creating various shapes. As described above, the present invention provides a surface-mounted LED capable of forming an orientation according to cost reduction, heat dissipation improvement, and application by significantly reducing the number of processes as compared with the prior art.
[Brief description of the drawings]
FIG. 1 shows a step of arranging flat conductive blocks in a method for producing a surface-mounted LED according to the present invention.
FIG. 2 is a view similarly showing a step of forming an insulating member.
FIG. 3 is a cross-sectional view taken along the line BB in the same step of forming an insulating member.
FIG. 4 is a process for die-bonding LED chips in the same manner.
FIG. 5 is a step of forming a lens portion by resin molding in the same manner.
FIG. 6 is a step of cutting a unit in which a plurality of LED chips are die-bonded by a broken line.
7 is a view showing a finished surface-mounted LED cut in FIG. 6. FIG.
FIG. 8 is a view showing a second embodiment in the method for manufacturing a surface-mounted LED in the present invention, and is a view showing a process of forming an insulating member in the same manner.
FIG. 9 is a cross-sectional view taken along the line B-B in the same step of forming an insulating member.
FIG. 10 is a process for die-bonding LED chips in the same manner.
FIG. 11 is a process for forming a lens portion by resin molding in the same manner.
FIG. 12 is a step of cutting a unit in which a plurality of LED chips are die-bonded by a broken line.
13 is a view showing a finished surface-mounted LED cut in FIG. 12. FIG.
FIG. 14 is a process of forming a printed circuit board by sandwiching the upper and lower surfaces of a base material with a conductive material such as rolled copper.
FIG. 15 is a view showing a printed circuit board made in FIG. 14;
FIG. 16 is a step of forming slots penetrating the printed circuit board at appropriate intervals on the front and back surfaces by pressing or the like.
FIG. 17 shows a step of forming a conductive film on the side surface and the inner surface of the slot by means such as electroless plating.
FIG. 18 Removes rolled copper from the surface side slot of the printed circuit board by means such as etching to form a pad portion and a wiring portion, and simultaneously removes the rolled copper into a substantially rectangular shape between the slots on the back side. The process of forming an insulating part by doing.
FIG. 19 is a cross-sectional view of FIG.
FIG. 20 is a process of cutting a printed circuit board obtained by die-bonding a plurality of LED elements along an AA section that is an intermediate position between the LED chips.
FIG. 21 is a view showing a finished product of a surface-mounted LED element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flat conductive block part 2,7 Insulating part 3,8 Recessed part 4,10 LED chip 5,11 Solder 6,12 Transparent resin (lens part)
DESCRIPTION OF SYMBOLS 9 Inclined surface 81 Base material 82 Rolled copper 90 Printed circuit board 91 Slot 92 Conductive film 93 Pad part 94 Wiring part 95 Insulation part 96 LED chip 97 Conductive wire 98 Transparent resin (lens part)
99 Conventional surface mount LED

Claims (5)

1対となった導電ブロック部に挟まれた第一の絶縁部と、
前記導電ブロック部にまたがって導電的に固定された発光ダイオ−ドチップと、
前記発光ダイオ−ドチップを所定の間隔をもって取り囲むように前記導電ブロック部及び前記第一の絶縁部上に設けられた第二の絶縁部と、
表面を覆う透明樹脂又は半透明樹脂とを有し、
前記第一の絶縁部と前記第二の絶縁部が、同一材料で一体に形成される表面実装型発光ダイオ−ド。
A first insulating part sandwiched between a pair of conductive block parts;
And Dochippu, - said conductive block emission is conductively secured across the portion diode
And said Dochippu to surround with a predetermined interval conductive block portion and the second insulating portion provided on the first insulating portion on, - the light emitting diode
Having transparent resin or translucent resin covering the surface ,
A surface-mounted light emitting diode in which the first insulating portion and the second insulating portion are integrally formed of the same material .
前記第一の絶縁部と前記第二の絶縁部は、前記導電ブロックに一体成形される請求項1記載の表面実装型発光ダイオード。The surface-mount light-emitting diode according to claim 1, wherein the first insulating portion and the second insulating portion are formed integrally with the conductive block. 前記第ニの絶縁部は、反射ホ−ンとして作用することを特徴とする請求項1または請求項2記載の表面実装型発光ダイオ−ド。 3. The surface mount type light emitting diode according to claim 1, wherein the second insulating portion functions as a reflection horn. 前記導電ブロック部は、高温はんだであることを特徴とする請求項1乃至3のいずれかに記載の表面実装型発光ダイオ−ド。The conductive block portion, a surface-mount type light emitting diode according to any one of claims 1 to 3, characterized in that a high temperature solder - de. 導電ブロック部からなる平板状ブロック体を平行に複数枚並べる工程と
前記導電ブロック部により挟持される第一の絶縁部と、前記導電ブロック部および前記第一の絶縁部上に略円形若しくは略楕円形の凹部を、該凹部底面に前記第一の絶縁部が前記導電ブロック部に挟持された状態で露出するよう形成する第二の絶縁部とを、同一材料で同時に形成する工程と
前記導電ブロック部に前記第一の絶縁部をまたがって発光ダイオ−ドチップを実装する工程と、
前記凹部に透明樹脂若しくは、半透明樹脂をモ−ルドする工程と
個々又は複数の発光ダイオ−ドチップを有する表面実装型発光ダイオ−ドに裁断する工程とを備える表面実装型発光ダイオ−ドの製造方法。
Arranging a plurality of flat block bodies made of conductive block parts in parallel ;
A first insulating portion sandwiched by the conductive block portion; a substantially circular or substantially elliptical recess on the conductive block portion and the first insulating portion; and the first insulating portion on the bottom surface of the recess. and the second insulating portion to be formed to be exposed in a state of being sandwiched between the conductive block portion, and simultaneously forming the same material,
Mounting a light emitting diode chip across the first insulating portion on the conductive block portion ; and
A step of molding a transparent resin or a translucent resin in the recess ;
And a step of cutting the surface-mounted light-emitting diode having individual or a plurality of light-emitting diode chips.
JP12273398A 1998-04-17 1998-04-17 Surface mount LED and manufacturing method thereof Expired - Fee Related JP4065051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12273398A JP4065051B2 (en) 1998-04-17 1998-04-17 Surface mount LED and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12273398A JP4065051B2 (en) 1998-04-17 1998-04-17 Surface mount LED and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11307820A JPH11307820A (en) 1999-11-05
JP4065051B2 true JP4065051B2 (en) 2008-03-19

Family

ID=14843251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12273398A Expired - Fee Related JP4065051B2 (en) 1998-04-17 1998-04-17 Surface mount LED and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4065051B2 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW507482B (en) * 2000-06-09 2002-10-21 Sanyo Electric Co Light emitting device, its manufacturing process, and lighting device using such a light-emitting device
TW506236B (en) * 2000-06-09 2002-10-11 Sanyo Electric Co Method for manufacturing an illumination device
US6949771B2 (en) * 2001-04-25 2005-09-27 Agilent Technologies, Inc. Light source
TW591990B (en) * 2001-07-25 2004-06-11 Sanyo Electric Co Method for making an illumination device
US20030057421A1 (en) * 2001-09-27 2003-03-27 Tzer-Perng Chen High flux light emitting diode having flip-chip type light emitting diode chip with a transparent substrate
JP2003304000A (en) * 2002-04-08 2003-10-24 Citizen Electronics Co Ltd Method for manufacturing package for light-emitting diode
JP4062672B2 (en) * 2002-06-26 2008-03-19 シチズン電子株式会社 Laser diode package
TW563263B (en) * 2002-09-27 2003-11-21 United Epitaxy Co Ltd Surface mounting method for high power light emitting diode
JP4277508B2 (en) * 2002-10-28 2009-06-10 パナソニック電工株式会社 Semiconductor light emitting device
JP2004265986A (en) * 2003-02-28 2004-09-24 Citizen Electronics Co Ltd High luminance light emitting element, and method for manufacturing the same and light emitting device using the same
JP4085917B2 (en) * 2003-07-16 2008-05-14 松下電工株式会社 Circuit components for high thermal conductivity light emitting devices and high heat dissipation modules
JP4360858B2 (en) * 2003-07-29 2009-11-11 シチズン電子株式会社 Surface mount type LED and light emitting device using the same
DE102004003929B8 (en) * 2004-01-26 2016-03-10 Dominant Opto Technologies Sdn Bhd SM-technology optoelectronic component
JP2006005290A (en) 2004-06-21 2006-01-05 Citizen Electronics Co Ltd Light emitting diode
GB2417824A (en) * 2004-09-02 2006-03-08 Custom Interconnect Ltd LED light source
JP6346724B2 (en) * 2004-11-30 2018-06-20 日亜化学工業株式会社 Surface mount type light emitting device and manufacturing method thereof
JP5956937B2 (en) * 2006-02-03 2016-07-27 日立化成株式会社 Method for manufacturing package substrate for mounting optical semiconductor element
US9502624B2 (en) 2006-05-18 2016-11-22 Nichia Corporation Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
US8610143B2 (en) 2007-03-12 2013-12-17 Nichia Corporation High output power light emitting device and package used therefor
US7791096B2 (en) * 2007-06-08 2010-09-07 Koninklijke Philips Electronics N.V. Mount for a semiconductor light emitting device
JP2010003743A (en) * 2008-06-18 2010-01-07 Toshiba Corp Light-emitting device
JP5217800B2 (en) 2008-09-03 2013-06-19 日亜化学工業株式会社 Light emitting device, resin package, resin molded body, and manufacturing method thereof
US9224915B2 (en) 2010-09-17 2015-12-29 Rohm Co., Ltd. Semiconductor light-emitting device, method for producing same, and display device
JP2012094679A (en) * 2010-10-27 2012-05-17 Showa Denko Kk Substrate manufacturing method
JP6164087B2 (en) 2011-09-30 2017-07-19 株式会社カネカ RESIN MOLDED BODY FOR SURFACE MOUNT LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND SURFACE MOUNTED LIGHT EMITTING DEVICE
JP2013225713A (en) * 2013-08-08 2013-10-31 Towa Corp Production method of optical device
JP5796649B2 (en) * 2014-03-06 2015-10-21 日亜化学工業株式会社 Optical semiconductor device and manufacturing method thereof
JP6367593B2 (en) * 2014-04-03 2018-08-01 日立化成株式会社 Optical semiconductor element mounting substrate and optical semiconductor device
JP6163131B2 (en) * 2014-04-14 2017-07-12 日立化成株式会社 A thermosetting resin composition for light reflection, an optical semiconductor mounting substrate using the same, a manufacturing method thereof, and an optical semiconductor device.
JP2017054933A (en) * 2015-09-09 2017-03-16 株式会社東芝 Light-emitting device and method of manufacturing the same
JP6210576B2 (en) * 2016-10-06 2017-10-11 日立化成株式会社 Optical semiconductor element mounting substrate and optical semiconductor device
JP6409845B2 (en) * 2016-10-06 2018-10-24 日立化成株式会社 Optical semiconductor element mounting substrate and optical semiconductor device
JP6210575B2 (en) * 2016-10-06 2017-10-11 日立化成株式会社 Optical semiconductor element mounting substrate and optical semiconductor device
JP6269774B2 (en) * 2016-10-06 2018-01-31 日立化成株式会社 Optical semiconductor element mounting substrate and optical semiconductor device
JP6210577B2 (en) * 2016-10-06 2017-10-11 日立化成株式会社 Optical semiconductor element mounting substrate and optical semiconductor device
JP6628752B2 (en) * 2017-02-01 2020-01-15 日亜化学工業株式会社 Resin molded body, surface mount type light emitting device, and method of manufacturing the same
JP6740997B2 (en) * 2017-12-27 2020-08-19 日立化成株式会社 Substrate for mounting optical semiconductor element and optical semiconductor device
JP6809518B2 (en) * 2018-08-28 2021-01-06 日亜化学工業株式会社 Resin molded products and surface mount type light emitting devices and their manufacturing methods
JP7054019B2 (en) * 2020-04-27 2022-04-13 日亜化学工業株式会社 Resin molded body and surface mount type light emitting device and their manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138468U (en) * 1986-02-21 1987-09-01
JPS63146453A (en) * 1986-12-10 1988-06-18 Matsushita Electric Ind Co Ltd Semiconductor package and manufacture of same
JPH04258184A (en) * 1991-02-12 1992-09-14 Fuji Xerox Co Ltd Light emitting display device
JP2714272B2 (en) * 1991-06-04 1998-02-16 シャープ株式会社 Electronic components
JP3247436B2 (en) * 1992-08-07 2002-01-15 シャープ株式会社 Light emitting device and method of manufacturing the same
JPH07106638A (en) * 1993-09-30 1995-04-21 Rohm Co Ltd Manufacture of light emitting diode chip
US5650640A (en) * 1995-04-05 1997-07-22 Motorola Integrated electro-optic package
JP3146452B2 (en) * 1995-08-11 2001-03-19 スタンレー電気株式会社 Surface mount type LED element and method of manufacturing the same
JP2960882B2 (en) * 1996-01-31 1999-10-12 スタンレー電気株式会社 Surface mount type LED element and method of manufacturing the same

Also Published As

Publication number Publication date
JPH11307820A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
JP4065051B2 (en) Surface mount LED and manufacturing method thereof
JP3146452B2 (en) Surface mount type LED element and method of manufacturing the same
US3938177A (en) Narrow lead contact for automatic face down bonding of electronic chips
JP3741512B2 (en) LED chip parts
JP3227295B2 (en) Light emitting diode manufacturing method
KR910002035B1 (en) Semiconductor device and manufacture thereof
JP4305896B2 (en) High brightness light emitting device and manufacturing method thereof
JP3069082B2 (en) Method of manufacturing photoelectric device and photoelectric device
EP1187202A2 (en) Semiconductor package
JP2574388B2 (en) Light emitting diode and method of forming electrode thereof
JP2003163378A (en) Surface mount light emitting diode and its manufacturing method
CN105684561A (en) Flexible circuit board for LED lighting fixtures
JP2018530918A (en) Optoelectronic components including lead frames with reinforced structures
JP4023698B2 (en) Manufacturing method of side-use electronic component with bottom electrode
JP4010424B2 (en) Electrode structure of side surface type electronic component and manufacturing method thereof
US3999280A (en) Narrow lead contact for automatic face down bonding of electronic chips
JP2001332769A (en) Light emitting diode lighting equipment
KR100937136B1 (en) A light-emitting diode module with a lead frame comprising packages
JPH1174420A (en) Surface mount chip and manufacture thereof
WO2005083807A1 (en) A pcb-mounted radiator and an led package using the pcb, and the manufacturing method thereof
TWI483437B (en) Light emitting diode package and method for fabricating the same
JP2000196153A (en) Chip electronic component and manufacture thereof
JP3139613B2 (en) Surface mounted semiconductor light emitting device and method of manufacturing the same
JP3302203B2 (en) Light emitting diode
JPH08186284A (en) Surface-mounting photocoupler and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees