JP4064808B2 - Thermocompression bonding apparatus and thermocompression bonding method - Google Patents

Thermocompression bonding apparatus and thermocompression bonding method Download PDF

Info

Publication number
JP4064808B2
JP4064808B2 JP2002369257A JP2002369257A JP4064808B2 JP 4064808 B2 JP4064808 B2 JP 4064808B2 JP 2002369257 A JP2002369257 A JP 2002369257A JP 2002369257 A JP2002369257 A JP 2002369257A JP 4064808 B2 JP4064808 B2 JP 4064808B2
Authority
JP
Japan
Prior art keywords
connection pad
thermocompression bonding
pressing portion
divided
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002369257A
Other languages
Japanese (ja)
Other versions
JP2003289090A (en
Inventor
清行 越前谷
秀樹 富山
公一 池上
Original Assignee
東芝松下ディスプレイテクノロジー株式会社
東芝電子エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝松下ディスプレイテクノロジー株式会社, 東芝電子エンジニアリング株式会社 filed Critical 東芝松下ディスプレイテクノロジー株式会社
Priority to JP2002369257A priority Critical patent/JP4064808B2/en
Publication of JP2003289090A publication Critical patent/JP2003289090A/en
Application granted granted Critical
Publication of JP4064808B2 publication Critical patent/JP4064808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75302Shape
    • H01L2224/75303Shape of the pressing surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75302Shape
    • H01L2224/75303Shape of the pressing surface
    • H01L2224/75304Shape of the pressing surface being curved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75302Shape
    • H01L2224/75303Shape of the pressing surface
    • H01L2224/75305Shape of the pressing surface comprising protrusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75314Auxiliary members on the pressing surface
    • H01L2224/75315Elastomer inlay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7598Apparatus for connecting with bump connectors or layer connectors specially adapted for batch processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Wire Bonding (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、TCP(Tape Carrier Package)を用いて外部駆動系統から表示セルへの信号入力を行う平面表示装置を製造するにあたり、表示セルの周縁部にTCP等を実装するための熱圧着装置及びその方法に関する。
【0002】
【従来の技術】
液晶表示装置は、画素が配列されて画像表示領域が形成された液晶セルと、この液晶セルに画像信号その他の駆動信号を入力する駆動回路とからなる。この駆動回路から液晶セルへの駆動信号の入力は、液晶セルの周縁部に設けられた接続部を通じて行なわれる。一般には、この周縁部に、入力信号を所定のタイミングで制御して出力信号を生成する駆動ICチップが複数配置される。
【0003】
駆動ICチップを液晶セルに実装する方式には、駆動ICチップを直接搭載するCOG(Chip On Glass)方式もあるが、TCPを用いる方式が多く用いられている。
【0004】
図16、17に示すように、TCP3とは、通常、ポリイミド等の絶縁フィルム9上に配線パターンが形成されてなる矩形小片状のフレキシブルプリント基板(FPC)に、駆動ICチップ6が搭載されたものである。
【0005】
TCP3の矩形状の一辺に沿って出力側端子7が複数設けられ、これに対向する辺に入力側端子が複数設けられる。各TCP3の出力側端子7が、液晶セル1の周縁にある接続パッド8に機械的かつ電気的に接続される。
【0006】
また、各TCP3の入力側の辺に沿った部分は、ハンダ付けにより駆動入力用のプリント基板(以下、PCBという)2に機械的かつ電気的に接続される。
【0007】
TCPの出力側端子7の部分と、液晶セル1の接続パッド8との接続は、これら端子群の端子ピッチが狭いことから、一般に、異方性導電膜により行なわれる。異方性導電膜とは、熱硬化性または熱可塑性の樹脂膜の中に、導電性粒子を分散させたものであり、熱圧着を受けた箇所で、樹脂膜を挟む端子間の電気的導通を実現するものである。異方性導電膜としては、作業工程上の便宜のため、一般には、テープ状のフィルムとして供給される異方性導電膜(ACF;Anisotropic Conductive Film)が用いられる。
【0008】
液晶セル1のガラス基板5の周縁部、及び、PCB2へのTCP3の実装は、ACF4を用いる場合、例えば、下記(1)〜(5)の工程により行なわれる。図11には、これらの工程を模式的に示す。
【0009】
(1)ACF4を液晶セル1の周縁部に貼り付ける。
【0010】
(2)予備加熱ヘッド71を用いてACF4を予備加熱する。
【0011】
(3)各TCP3の出力側端子7と液晶セル1上の接続パッド8とを、図10に示すようにCCD106等を用いて位置合わせした後、TCP3の仮圧着を行う。
【0012】
(4)ヒーターツール111により、TCP3の本圧着を行う。
【0013】
(5)ハンダ付け加熱ヘッド172を用いて、TCP3の入力側端子群と、駆動入力用PCB2上の端子群とを、はんだ付けにより接続する。
【0014】
また上記のようにして、液晶セル1にTCP3を取り付けても、その製品が不良品の場合にはTCP3を取り外すリペア作業を行う。
【0015】
このリペア作業の方法は、ハンダごてでACF4を過熱し、TCP3を剥離した後、残ったACF4を取り除くために、有機溶剤を用いたり、接続パッド8を擦ったりした後、この接続パッド8の部分を拭いて仕上げを行っている。
【0016】
そして、製品の不良部分を修理した後、再び上記で説明した方法で新たなTCPを取り付けている。
【0017】
【発明が解決しようとする課題】
上記(4)の本圧着工程において、TCP3の出力側端子7と液晶セル1の接続パッド8との接続を確実にするため、熱圧着装置のヒーターヘッド111と、液晶セル1の接続パッド8が形成されるガラス基板5とが互いに精密に平衡になるようにする必要がある。すなわち、ヒーターヘッド111の圧着面と、液晶セル1の載置台との間の平行度の度合いを充分なものとする必要がある。平行度は、通常、ヒーターヘッド111の圧着面とガラス基板5との間隔が最小となる箇所と最大となる箇所との間での、感覚の値の差により表される。したがって、値が小さいほど、平行の度合いが高い。ACFに用いる導電粒子の直径が典型的には焼く5〜6μmであり、このとき平行度の値は約5μm以内とする必要がある。
【0018】
ところが、最近の液晶表示装置においては、薄型化が要求されているため、ガラスメーカから納入されたガラス基板5を更に研磨する必要が生じてきている。すなわち、液晶セル1を組み立てた後、液晶セル1の表面及び裏面を、再び研磨して、その厚みを薄くしている。
【0019】
具体的には、従来、ガラス基板の厚みは1.1mmから0.7mmであり、その厚みのばらつきは上気した5μm以下となっている。しかしながら、このガラス基板5を研磨して、最近ではその厚みが0.8mmから0.4mmとしている。そのため、このような研磨によって厚みのばらつきが大きくなり、そのばらつきは40μm程度となってきている。
【0020】
従って、ACF4によってTCP3を液晶セル1に接続した場合に、厚みのばらつきが大きいため、ACF4が浮いた状態となって、接続パッド8と出力側端子7との間に接続不良が発生するという問題点がある。
【0021】
また前述の通りリペア作業を行って、再びTCP3を取り付けた液晶セル1においては、リペア作業時における汚染物が接続パッド8付近に付着し、電気的に断線したり、線欠陥不良や動作不良等、画質に悪影響を及ぼす場合がある。
【0022】
この理由は、接続パッド8の上にリペア作業時における作業者の汗やその他の汚染物(主にイオン系の汚染物)が付着し、その上にACF4が配されて、TCP3が積層される。
【0023】
このような汚染物を含んだACF4を用いて接続パッド8とTCP3の出力端子を熱圧着すると、溶融したACF4が溜まった接続パッド8の基部側においては、汚染物が凝集してくるため、他の部分よりも接続パッド8の金属腐食が促進され、接続パッド8が断線することがある。
【0024】
そこで、この発明は上記問題点に鑑み、平面表示装置に用いられるガラス基板の厚みのばらつきが多少大きくても、表示セルにTCPなどの配線体を確実に接続することができる熱圧着装置及びその方法を提供するものである。
またこの発明は、リペア作業等を行って、接続パッドの表面に汚染物が存在した状態でTCPなどの配線体をACFで熱圧着した場合であっても、接続パッドが金属腐食を起こさないようにすることができる熱圧着装置及びその方法を提供するものである。
【0025】
【課題を解決するための手段】
この発明に係る熱圧着装置は、平面表示装置の表示セルを載置台の上へ載置し、前記表示セルの周縁部にある接続パッド群と、シート状の配線体の端子群とを異方性導電膜を介してヒーターツールによって上方から熱圧着する熱圧着装置において、前記ヒーターツールにおける前記配線体を押圧する押圧部が複数に分割され、前記分割された各押圧部を下方に移動させる移動手段が設けられ、前記分割された複数の押圧部は、互いに非圧縮時の全長が異なる複数のスプリングにより個々に主押圧部の下面に接続され、前記主押圧部は、前記移動手段によって下方に移動し、前記主押圧部が前記移動手段によって下方に移動すると、前記スプリングを介して前記各押圧部も個々に下方に移動することを特徴とする。
【0027】
この発明の係る熱圧着方法は、平面表示装置の表示セルの周縁部にある接続パッド群と、シート状の配線体の端子群を異方性導電膜を介してヒーターツールによって上方から熱圧着する熱圧着方法であって、前記ヒーターツールの押圧部が、前記接続パッド群の配列方向に沿って分割され、前記端子群を前記分割された中央部分の押圧部によって押圧した後、前記端子群を前記中央部分の押圧部を挟む両側の押圧部が順番に押圧することを特徴とする。
【0028】
この発明に係る熱圧着方法は、平面表示装置の表示セルの周縁部にある接続パッド群と、シート状の配線体の端子群を異方性導電膜を介してヒーターツールによって上方から熱圧着する熱圧着方法であって、前記ヒーターツールの押圧部が、前記接続パッド群の長さ方向に沿って分割され、前記端子群を前記接続パッドの基部側の押圧部によって押圧した後、前記接続パッドの端部に向かって、前記分割された押圧部が順番に押圧することを特徴とする。
【0030】
この発明の第一発明に係る熱圧着装置によれば、配線体を押圧する押圧部が複数に分割されているので、ヒーターツールの押圧力分布を制御することが可能となる。この分割された押圧部は、スプリングなどの弾性部材によって主押圧部と接続することができる。押圧部を配線体の幅方向に分割すれば、幅方向における押圧力の分布を制御でき、基板の湾曲を吸収して熱圧着を行うことが可能となり、基板が薄型化しても良好な接続を得ることができる。
【0031】
また押圧部を配線体の長さ方向に分割すれば、長さ方向における押圧力の分布を制御でき、不純物が凝集しやすい接続パッドの基部側から押圧すれば、この領域に不純物は凝集せず金属腐食を抑止することができる。
【0032】
また、この発明の第二発明に係る熱圧着装置によれば、ヒーターツールにおける前記配線体を押圧する押圧部がローラ体によって構成されているので、配線体を接続パッドの基部側から押圧することにより、接続パッドの基部側に不純物が凝集することを抑止することができる。
【0033】
また、この発明の第三発明に係る熱圧着方法によれば、ヒーターツールの押圧部が、接続パッド群の配列方向に沿って分割され、端子群を分割された中央部分の押圧部によって押圧した後、端子群を前記中央部分の押圧部を挟む両側の押圧部が順番に押圧するため、配線体の幅方向における押圧力の分布を制御でき、基板の湾曲を吸収して熱圧着を行うことが可能となり、基板が薄型化しても良好な接続を得ることができる。
【0034】
また、この発明の第四発明に係る熱圧着方法によれば、ヒーターツールの押圧部が、接続パッド群の長さ方向に沿って分割され、端子群を接続パッドの基部側の押圧部によって押圧した後、前記接続パッドの端部に向かって、前記分割された押圧部が順番に押圧するため、配線体を接続パッドの基部側から押圧することにより、接続パッドの基部側に不純物が凝集することを抑止することができる。
【0035】
また、この発明の第五発明に係る熱圧着方法によれば、ヒーターツールの押圧部がローラ体によって構成され、端子群を接続パッドの基部側から接続パッドの端部側に向かってローラ体を転動させて押圧するため、配線体を接続パッドの基部側から押圧することにより、接続パッドの基部側に不純物が凝集することを抑止することができる。
【0036】
【発明の実施の形態】
(第1の実施例)
以下、本発明の第1の実施例である熱圧着装置10について、図1から図6に基づいて説明する。
【0037】
(1)熱圧着装置10の構成
熱圧着装置10は、液晶表示装置の液晶セル1の接続パッド8と、TCP3の出力側端子7を電気的かつ機械的に接続するために、ACF4を介して熱圧着するものである。
【0038】
図1は、熱圧着装置10の斜視図である。
【0039】
この熱圧着装置10は、液晶セル1を載置する載置台12と、この載置台12の一辺から立設された支持部14と、この支持部14に吊り下げられたヒーターヘッド16とよりなり、ヒーターヘッド16は、支持部14の内部に設けられているモータより駆動する移動装置18によって下方へ移動する。なお、以下の説明において、図1に示すように信号線駆動側に沿った方向をX軸方向と言い、走査線駆動側に沿った方向をY軸方向と言い、高さ方向をZ軸方向と言う。
【0040】
図2は、ヒーターヘッド16の内部の構造を示したものであり、図3は図2におけるA−A断面図である。
【0041】
ヒーターヘッド16には、各TCP3毎にヒーターツール20が設けられ、各ヒーターツール20は、複数の押圧部22によって構成されている。ヒーターツール20の上方には、主押圧部24が配されている。この主押圧部24の下面は、圧縮された時の長さが同一であり、中央が長く外側に行くほど短くなった弾性部材であるスプリングを介して、ヒーターツール20の各押圧部22と接続されている。
【0042】
この弾性部材は、例えば同じ長さの部材を用いて同一巻数でなるスプリングでなり、非圧縮時のスプリングの全長を異ならせている。つまり、中央から外側にいくほど圧縮したものを用いている。そして、全ての押圧部が押し付けられた時に均等の圧力となるよう制御されている。
【0043】
各主押圧部24は一体に連結されて移動装置18の移動柱19に支持された、一体になって下方に移動する構造となっている。また、ヒーターツール20は、ヒーターヘッド16を加熱することにより、200℃から300℃に加熱されている。即ち、金属等の熱伝導体からなるヒーターヘッド16には、ヒータが内蔵されており、ヒーターツール20の各押圧部22の側面と接触することにより、押圧部22を加熱する構成となっている。また図10に示すように、押圧部22を加熱する熱源をヒーターヘッド16本体から分離し、各押圧部22の側面に接して枠状に囲むヒーターヘッド200を設けてもよい。また各押圧部22の内部にヒーターを内蔵してもよい。
【0044】
次に、押圧部22の構成について、図3に基づいて説明する。
【0045】
上記したようにヒーターツール20は、複数の押圧部22に分割されているが、その状態は図3に示すように、液晶セル1の接続パッド8の配列方向に沿って分割されている。すなわち、TCP3の矩形の一辺方向に沿って分割された状態となっている。図3では、説明を簡単にするために接続パッド8は8本しか存在していないが、実際には、より多数の接続パッド8が存在している。
【0046】
図6は、熱圧着装置10の電気系統を示すブロック図である。
【0047】
図6に示すように、熱圧着装置10はコンピュータよりなる制御装置26に、移動装置18のモータ28と、ヒーターヘッド16を加熱する加熱装置30と、CCDなどよりなる位置合わせ装置32が接続されている。
【0048】
(2)熱圧着方法
上記構成の熱圧着装置10において、熱圧着する方法を図4及び図5に基づいて説明する。
【0049】
載置台12の上に、液晶セル1を載置する。この場合に、液晶セル1のガラス基板5は膜厚0.5mmとなるよう研磨されてその厚みのばらつきは40μm程度存在しているものとする。
【0050】
次に、図4に示すように、位置合わせ装置32などを使用してACF4を介して、TCP3の出力側端子7と、液晶セル1の接続パッド8とを位置合わせした状態で仮圧着する。
【0051】
次に、制御装置26は移動装置18を下方に移動させる。すると、主押圧部24が下方に移動し、複数のスプリング34に吊り下げられた各押圧部22も下方に移動し、TCP3の上面に接触して押圧する。この場合に、主押圧部24の仮面は中央部ほど下方に突出した状態となっているため、分割された押圧部22の面は中央部ほど下方に突出した状態となっているため,分割された押圧部22のうち、まず中央部分に位置する押圧部22がTCP3を液晶セル1に対して押圧するため、ACF4によって、その位置の出力端子7と接続パッド8とが電気的、機械的に接続される。
【0052】
さらに、図5に示すように、主押圧部24が下方に移動すると、今度は中央部から順番に両側に向かって押圧部22がTCP3を押圧して、順番に両側に向かってTCP3の出力側端子7と液晶セル1の接続パッド8とを熱圧着していく。全ての押圧部22がTCP3を押し付けられた状態で、押圧部22の央圧力は均等となるよう制御される。
【0053】
熱圧着が終了すると、制御装置26はヒーターヘッド16を上昇させて熱圧着工程が終了する。
【0054】
上記熱圧着方法であると、まず、中央部分から両側に向かって順番に熱圧着していくため、液晶セル1とTCP3とが位置ずれを起こすことなく、所定の位置で正確に熱圧着することができる。
【0055】
また、押圧部22が分割された状態となっているため、液晶セル1のガラス基板5に多少のばらつきがあっても、押圧部22が個々にTCP3の出力端子7を押圧するため,ACF4内の導電粒子がつぶれて電気的かつ機械的に熱圧着を確実に行うことができる。
【0056】
(第2の実施例)
第1の実施例では、主押圧部24と各押圧部22とをスプリング34によって個々に接続したが、これに代えて、次のような構造もある。
【0057】
すなわち、図7に示すように、主押圧部24の下方に、袋体36に流動体38を収納した弾性部材40を設け、この弾性部材40の下方に分割された押圧部22を設けるものである。
【0058】
この構造であっても、主押圧部24が下方に移動すると、弾性部材40を介して、各押圧部22が中央部分ほど先にTCP3を押圧するように熱圧着することができる。
【0059】
(第3の実施例)
上記実施例では、押圧部22を接続パッド8の配線方向、すなわちTCP3の出力側端子7の配置される辺に沿ってストライプ状に分割したが、図8に示すように、格子状に分割したヒーターツール20であってもよい。
【0060】
そして、この分割された押圧部22を個々に押圧する構造にする。
【0061】
この構造であると、より細かくTCP3をガラス基板5の厚みに応じて熱圧着することができる。
【0062】
(第4の実施例)
第1の実施例では、押圧部22を接続パッド8の配線方向、すなわち出力側端子7の配線方向に沿って分割したが、本実施例では、図9に示すようにこれら配線とは傾斜した方向でヒーターツール20を分割して押圧部22を構成している。
【0063】
このような分割の構造であると、各接続パッド8に対して傾斜し、かつ配線方向と直交する方向に隣接する押圧部22が形成されるため、1つの押圧部22で複数の配線間の接続を行うことができる、より確実に熱圧着を行うことができる。そして、仮に動作しない押圧部22があったとしても、隣接する他の押圧部22で圧着可能となるため、製造歩留まりをさらに向上させることができる。
【0064】
また、各押圧部22は離間して配置してもよい。
【0065】
(変更例1)
上記実施例では、液晶セル1にTCP3を接続する構造であったが、これに代えてフレキシブル基板(FPC)を液晶セル1に接続する場合であっても、この熱圧着装置10を適用することができる。
【0066】
(変更例2)
液晶表示装置に限らず、有機EL表示装置など表示装置一般においても適用することができる。
【0067】
(変更例3)
各押圧部の上下動をコンピュータ制御によって行ってもよい。
【0068】
(第5の実施例)
図11乃至図13を用いて、本実施例の熱圧着装置及び熱圧着方法について説明する。尚本実施例の熱圧着装置の図1に示す第1の実施例との相違点は、第1の実施例においては押圧部が押圧される配線の幅方向に分割されているのに対し、本実施例においては押圧部が、押圧される配線の長さ方向に分割されている点である。
第1の工程としては、載置台12の上に液晶セル1を載置する。なお、この載置する液晶セル1は、組み立てられて初めてTCP3を取り付ける製品でもよく、また、リペア作業後に修理を行った製品でもよい。
【0069】
第2の工程として、液晶セル1の接続パッド8とTCP3の出力端子7の位置合わせを、位置合わせ装置32によって行う。この位置合わせを行った状態が図11である。
【0070】
第3の工程として、移動装置18によって支持柱19を下方に移動させて(Z軸方向)、ヒーターヘッド16を下方に移動させると、主押圧部24も下方に移動し、スプリング34に吊り下げられた各押圧部22も下方に移動する。そして、分割された押圧部22のうち、まず接続パッド8の基部側(液晶セル1の端辺に対し内側)に位置する押圧部22がTCP3を押圧し(図12の状態)、その後接続パッド8の端部側に向かって順番に押圧部22がTCP3を押圧していく。この場合に、弾性部材であるスプリング34が介されているため、TCP3の表面に沿って押圧部22がTCP3を押圧することができる。このように接続パッド8の基部側から端部側に向かって押圧すると、溶けたACFは、接続パッド8の基部側から端部側に流れて、ACF4のはみ出る部分は接続パッド8の端部側になる。そして、一番端の押圧部22がTCP3を押圧して、TCP3の熱圧着工程が終了する。この場合に、ACF4は、上記したように接続パッド8の端部側に溜まり、接続パッド8の基部側には溜まらない(図13)。
【0071】
第4の工程として、ヒーターヘッド16を移動装置18によって上昇させて、熱圧着工程が終了する。
【0072】
本実施例の熱圧着方法によれば、ACF4が接続パッド8の端部側に溜まり、基部側に溜まらないため、接続パッド8の基部側で金属腐食を起こすことがない。そのため、従来のような表示不良が発生することはない。
【0073】
(第6の実施例)
図14に基づいて、第6の実施例について説明する。
【0074】
第5の実施例では、弾性部材としてスプリング34を使用したが、これに代えて、図14に示すように袋体36に流動体38を収納した弾性体40を用いてもよい。
【0075】
この弾性体40を用いることにより、接続パッド8の長さ方向に沿って分割された押圧部22がTCP3を順次押圧することができる。
【0076】
(第7の実施例)
図15に基づいて、第7の実施例について説明する。
【0077】
第5の実施例では、ヒーターツール20を分割した押圧部22によってTCP3を押圧したが、本実施例ではこれに代えて、図15に示すような加熱されたローラ体によってTCPを押圧するものである。このローラ体の加熱は、図1に示す熱圧着装置と同様に、金属等の熱伝導体からなるヒーターヘッド16にヒータを内蔵させ、ローラ体の側面と接触させることにより行ってもよく、またローラ体にヒータを内蔵させてもよい。
【0078】
この加熱されたローラ体42によってTCP3を押圧する方法としては、接続パッド8の基部側に位置するTCP3をローラ体42によって押圧し、その後このローラ体42を接続パッド8の端部側に向かって転動させつつTCP3を押圧する。
【0079】
これによって、TCP3がACF4によって熱圧着されるとともに、ACF4は第5の実施例と同様に接続パッド8の端部側に押し出されて、汚染物も同様に接続パッド8の端部側に凝集することとなる。
【0080】
従って接続パッド8の金属腐食を防止することができ、表示不良が発生することがない。
【0081】
【発明の効果】
本発明によれば、ヒーターツールを構成する押圧部が複数に分割されて、各分割された押圧部毎にTCPなどの配線体を押圧することができる。
押圧部を配線体幅方向に分割することにより、表示セルを構成するガラス基板に多少の厚みのばらつきがあっても、配線体を確実に押圧して、電気的、機械的な接続を行うことができる。また押圧部を配線体長さ方向に分割することにより、ACFの汚染物が接続パッドの基部側に凝集することを抑止し、金属腐食等の不良の発生を抑止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す熱圧着装置の斜視図である。
【図2】ヒーターヘッドの内部構造を示す正面図である。
【図3】図2におけるA−A線断面図である。
【図4】熱圧着をする前の状態の説明図である。
【図5】熱圧着をしている途中の説明図である。
【図6】熱圧着装置10のブロック図である。
【図7】第2の実施例のヒーターヘッド16の構造である。
【図8】第3の実施例のヒーターツール20の分割した状態を示す底面図である。
【図9】第4の実施例のヒーターツール20の分割した状態を示す底面図である。
【図10】図1の熱圧着装置の変形例を示す図である。
【図11】第5の実施例の熱圧着工程を説明する図である。
【図12】第5の実施例の熱圧着工程を説明する図である。
【図13】第5の実施例の熱圧着工程を説明する図である。
【図14】第6の実施例の熱圧着装置を示す図である。
【図15】第7の実施例の熱圧着装置を示す図である。
【図16】液晶セルとTCPの位置合わせ状態を示す斜視図である。
【図17】TCPの組立状態を示す工程図である。
【符号の説明】
1 液晶セル
2 PCB
3 TCP
4 ACF
5 ガラス基板
6 駆動チップIC
7 出力端子
8 接続パッド
9 絶縁フィルム
10 熱圧着装置
12 載置台
14 支持部
16 ヒーターヘッド
18 移動装置
20 ヒーターツール
22 押圧部
24 主押圧部
26 制御装置
28 モータ
30 加熱装置
32 位置合わせ装置
34 スプリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermocompression bonding apparatus for mounting a TCP or the like on a peripheral portion of a display cell in manufacturing a flat display device that inputs a signal from an external drive system to the display cell using a TCP (Tape Carrier Package). It relates to that method.
[0002]
[Prior art]
The liquid crystal display device includes a liquid crystal cell in which pixels are arranged to form an image display region, and a drive circuit that inputs an image signal and other drive signals to the liquid crystal cell. Input of a drive signal from the drive circuit to the liquid crystal cell is performed through a connecting portion provided at a peripheral portion of the liquid crystal cell. In general, a plurality of driving IC chips that generate an output signal by controlling an input signal at a predetermined timing are arranged on the peripheral portion.
[0003]
There is a COG (Chip On Glass) method in which the drive IC chip is mounted directly on the liquid crystal cell, but a method using TCP is often used.
[0004]
As shown in FIGS. 16 and 17, TCP 3 is usually a driving IC chip 6 mounted on a rectangular small piece flexible printed circuit board (FPC) in which a wiring pattern is formed on an insulating film 9 such as polyimide. It is a thing.
[0005]
A plurality of output side terminals 7 are provided along one side of the rectangular shape of the TCP 3, and a plurality of input side terminals are provided on the opposite side. The output terminal 7 of each TCP 3 is mechanically and electrically connected to the connection pad 8 on the periphery of the liquid crystal cell 1.
[0006]
Further, the portion along the input side of each TCP 3 is mechanically and electrically connected to a drive input printed circuit board (hereinafter referred to as PCB) 2 by soldering.
[0007]
Connection between the TCP output side terminal 7 and the connection pad 8 of the liquid crystal cell 1 is generally performed by an anisotropic conductive film because the terminal pitch of these terminal groups is narrow. An anisotropic conductive film is a dispersion of conductive particles in a thermosetting or thermoplastic resin film, and electrical continuity between terminals sandwiching the resin film at the location subjected to thermocompression bonding. Is realized. As an anisotropic conductive film, an anisotropic conductive film (ACF) supplied as a tape-like film is generally used for the convenience of work process.
[0008]
When the ACF 4 is used, the peripheral edge of the glass substrate 5 of the liquid crystal cell 1 and the mounting of the TCP 3 on the PCB 2 are performed by, for example, the following steps (1) to (5). FIG. 11 schematically shows these steps.
[0009]
(1) ACF 4 is attached to the peripheral edge of the liquid crystal cell 1.
[0010]
(2) The ACF 4 is preheated using the preheating head 71.
[0011]
(3) After aligning the output side terminal 7 of each TCP 3 and the connection pad 8 on the liquid crystal cell 1 using the CCD 106 or the like as shown in FIG. 10, the TCP 3 is temporarily crimped.
[0012]
(4) The main pressure bonding of TCP 3 is performed by the heater tool 111.
[0013]
(5) Using the soldering heating head 172, the input terminal group of the TCP 3 and the terminal group on the drive input PCB 2 are connected by soldering.
[0014]
As described above, even if the TCP 3 is attached to the liquid crystal cell 1, if the product is defective, a repair operation for removing the TCP 3 is performed.
[0015]
In this repair work method, the ACF 4 is heated with a soldering iron, the TCP 3 is peeled off, an organic solvent is used to remove the remaining ACF 4, and the connection pad 8 is rubbed. The part is wiped and finished.
[0016]
Then, after repairing the defective portion of the product, a new TCP is attached again by the method described above.
[0017]
[Problems to be solved by the invention]
In the main crimping step (4), the heater head 111 of the thermocompression bonding device and the connection pad 8 of the liquid crystal cell 1 are connected to ensure the connection between the output terminal 7 of the TCP 3 and the connection pad 8 of the liquid crystal cell 1. It is necessary that the glass substrate 5 to be formed is precisely balanced with each other. That is, the degree of parallelism between the pressure bonding surface of the heater head 111 and the mounting table of the liquid crystal cell 1 needs to be sufficient. The degree of parallelism is usually represented by a difference in sensory value between a location where the distance between the pressure-bonding surface of the heater head 111 and the glass substrate 5 is minimum and maximum. Therefore, the smaller the value, the higher the degree of parallelism. The diameter of the conductive particles used for ACF is typically 5 to 6 μm, and the value of parallelism needs to be within about 5 μm.
[0018]
However, since recent liquid crystal display devices are required to be thin, it is necessary to further polish the glass substrate 5 delivered from a glass manufacturer. That is, after the liquid crystal cell 1 is assembled, the front and back surfaces of the liquid crystal cell 1 are polished again to reduce the thickness.
[0019]
Specifically, conventionally, the thickness of the glass substrate is 1.1 mm to 0.7 mm, and the variation in the thickness is 5 μm or less. However, the glass substrate 5 is polished, and recently its thickness is 0.8 mm to 0.4 mm. For this reason, the variation in thickness is increased by such polishing, and the variation is about 40 μm.
[0020]
Therefore, when TCP3 is connected to the liquid crystal cell 1 by ACF4, since the variation in thickness is large, the ACF4 is in a floating state and a connection failure occurs between the connection pad 8 and the output side terminal 7. There is a point.
[0021]
Further, in the liquid crystal cell 1 in which the repair operation is performed as described above and the TCP 3 is attached again, contaminants at the time of the repair operation adhere to the vicinity of the connection pad 8 and are electrically disconnected, defective in line, defective in operation, etc. May adversely affect image quality.
[0022]
The reason for this is that the operator's sweat and other contaminants (mainly ionic contaminants) adhere to the connection pad 8 during repair work, and the ACF 4 is disposed thereon, and the TCP 3 is laminated. .
[0023]
When the connection pad 8 and the output terminal of the TCP 3 are thermocompression bonded using the ACF 4 containing such contaminants, the contaminants aggregate on the base side of the connection pad 8 where the melted ACF 4 is accumulated. The metal corrosion of the connection pad 8 is promoted more than this part, and the connection pad 8 may be disconnected.
[0024]
Therefore, in view of the above problems, the present invention provides a thermocompression bonding apparatus capable of reliably connecting a wiring body such as a TCP to a display cell even if the thickness variation of the glass substrate used in the flat display device is somewhat large, and its A method is provided.
Further, the present invention prevents the connection pad from being corroded even when a repair work or the like is performed and a wiring body such as TCP is thermocompression bonded with ACF in a state where contaminants exist on the surface of the connection pad. The present invention provides a thermocompression bonding apparatus and a method thereof.
[0025]
[Means for Solving the Problems]
In the thermocompression bonding apparatus according to the present invention , the display cell of the flat display device is mounted on a mounting table, and the connection pad group on the periphery of the display cell and the terminal group of the sheet-like wiring body are anisotropic. In a thermocompression bonding apparatus that performs thermocompression bonding from above with a heater tool through a conductive film, the pressing part that presses the wiring body in the heater tool is divided into a plurality of parts, and the divided pressing parts are moved downward. The plurality of divided pressing portions are individually connected to the lower surface of the main pressing portion by a plurality of springs having different overall lengths when not compressed, and the main pressing portion is moved downward by the moving means. When the main pressing portion is moved downward by the moving means, the pressing portions are also individually moved downward via the springs .
[0027]
In the thermocompression bonding method according to the present invention, the connection pad group at the peripheral edge of the display cell of the flat display device and the terminal group of the sheet-like wiring body are thermocompression bonded from above with a heater tool through an anisotropic conductive film. In the thermocompression bonding method, the pressing portion of the heater tool is divided along the arrangement direction of the connection pad group, and the terminal group is pressed by the pressing portion of the divided central portion, and then the terminal group is pressed. The pressing portions on both sides sandwiching the pressing portion of the central portion press in order.
[0028]
In the thermocompression bonding method according to the present invention , a connection pad group at a peripheral portion of a display cell of a flat display device and a terminal group of a sheet-like wiring body are thermocompression bonded from above by a heater tool through an anisotropic conductive film. In the thermocompression bonding method, the pressing portion of the heater tool is divided along the length direction of the connection pad group, and after the terminal group is pressed by the pressing portion on the base side of the connection pad, the connection pad The divided pressing portions are pressed in order toward the end portion.
[0030]
According to the thermocompression bonding apparatus according to the first aspect of the present invention, since the pressing portion that presses the wiring body is divided into a plurality of parts, the pressing force distribution of the heater tool can be controlled. The divided pressing portion can be connected to the main pressing portion by an elastic member such as a spring. If the pressing part is divided in the width direction of the wiring body, the distribution of the pressing force in the width direction can be controlled, it becomes possible to perform thermocompression bonding by absorbing the curvature of the substrate, and a good connection even if the substrate is thinned Obtainable.
[0031]
Also, if the pressing part is divided in the length direction of the wiring body, the distribution of the pressing force in the length direction can be controlled, and if pressed from the base side of the connection pad where impurities are likely to aggregate, impurities will not aggregate in this region. Metal corrosion can be suppressed.
[0032]
Moreover, according to the thermocompression bonding apparatus according to the second aspect of the present invention, since the pressing portion that presses the wiring body in the heater tool is constituted by the roller body, the wiring body is pressed from the base side of the connection pad. Thus, it is possible to prevent the impurities from aggregating on the base side of the connection pad.
[0033]
Further, according to the thermocompression bonding method according to the third invention of the present invention, the pressing portion of the heater tool is divided along the arrangement direction of the connection pad group, and the terminal group is pressed by the pressing portion of the divided central portion. After that, since the pressing portions on both sides sandwiching the pressing portion of the central portion are sequentially pressed against the terminal group, the distribution of the pressing force in the width direction of the wiring body can be controlled, and the thermocompression bonding is performed by absorbing the curvature of the substrate. Therefore, even if the substrate is thinned, good connection can be obtained.
[0034]
According to the thermocompression bonding method according to the fourth aspect of the present invention, the pressing portion of the heater tool is divided along the length direction of the connection pad group, and the terminal group is pressed by the pressing portion on the base side of the connection pad. Then, since the divided pressing portions press in order toward the end portion of the connection pad, impurities are aggregated on the base side of the connection pad by pressing the wiring body from the base side of the connection pad. Can be deterred.
[0035]
Further, according to the thermocompression bonding method according to the fifth aspect of the present invention, the pressing portion of the heater tool is constituted by a roller body, and the terminal group is moved from the base side of the connection pad toward the end side of the connection pad. Since it rolls and presses, it can suppress that an impurity aggregates on the base side of a connection pad by pressing a wiring body from the base side of a connection pad.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
Hereinafter, a thermocompression bonding apparatus 10 according to a first embodiment of the present invention will be described with reference to FIGS.
[0037]
(1) Configuration of thermocompression bonding apparatus 10 The thermocompression bonding apparatus 10 is connected via an ACF 4 to electrically and mechanically connect the connection pad 8 of the liquid crystal cell 1 of the liquid crystal display device and the output side terminal 7 of the TCP 3. It is thermocompression bonded.
[0038]
FIG. 1 is a perspective view of the thermocompression bonding apparatus 10.
[0039]
The thermocompression bonding apparatus 10 includes a mounting table 12 on which the liquid crystal cell 1 is mounted, a support unit 14 erected from one side of the mounting table 12, and a heater head 16 suspended from the support unit 14. The heater head 16 is moved downward by a moving device 18 driven by a motor provided inside the support portion 14. In the following description, as shown in FIG. 1, the direction along the signal line driving side is referred to as the X-axis direction, the direction along the scanning line driving side is referred to as the Y-axis direction, and the height direction is referred to as the Z-axis direction. Say.
[0040]
FIG. 2 shows the internal structure of the heater head 16, and FIG. 3 is a cross-sectional view taken along the line AA in FIG.
[0041]
The heater head 16 is provided with a heater tool 20 for each TCP 3, and each heater tool 20 includes a plurality of pressing portions 22. A main pressing portion 24 is disposed above the heater tool 20. The lower surface of the main pressing portion 24 has the same length when compressed, and is connected to each pressing portion 22 of the heater tool 20 via a spring which is an elastic member having a longer center and shorter outer side. Has been.
[0042]
For example, the elastic member is a spring having the same number of turns using a member having the same length, and the total length of the spring when not compressed is different. That is, the one compressed from the center to the outside is used. And when all the press parts are pressed, it is controlled to become equal pressure.
[0043]
Each main pressing portion 24 is integrally connected and supported by the moving column 19 of the moving device 18, and has a structure that moves downward integrally. The heater tool 20 is heated from 200 ° C. to 300 ° C. by heating the heater head 16. That is, the heater head 16 made of a heat conductor such as metal has a built-in heater, and is configured to heat the pressing portion 22 by contacting the side surface of each pressing portion 22 of the heater tool 20. . Further, as shown in FIG. 10, a heater head 200 may be provided in which a heat source for heating the pressing portion 22 is separated from the main body of the heater head 16 and is surrounded by a frame in contact with the side surface of each pressing portion 22. A heater may be built in each pressing portion 22.
[0044]
Next, the structure of the press part 22 is demonstrated based on FIG.
[0045]
As described above, the heater tool 20 is divided into a plurality of pressing portions 22, and the state is divided along the arrangement direction of the connection pads 8 of the liquid crystal cell 1 as shown in FIG. 3. That is, it is in a state of being divided along one side of the TCP3 rectangle. In FIG. 3, only eight connection pads 8 exist to simplify the explanation, but actually, a larger number of connection pads 8 exist.
[0046]
FIG. 6 is a block diagram showing an electrical system of the thermocompression bonding apparatus 10.
[0047]
As shown in FIG. 6, the thermocompression bonding apparatus 10 is connected to a control device 26 made of a computer with a motor 28 of the moving device 18, a heating device 30 for heating the heater head 16, and an alignment device 32 made of a CCD or the like. ing.
[0048]
(2) Thermocompression bonding method A method of thermocompression bonding in the thermocompression bonding apparatus 10 having the above-described configuration will be described with reference to FIGS.
[0049]
The liquid crystal cell 1 is placed on the mounting table 12. In this case, it is assumed that the glass substrate 5 of the liquid crystal cell 1 is polished so as to have a film thickness of 0.5 mm, and the thickness variation is about 40 μm.
[0050]
Next, as shown in FIG. 4, the output side terminal 7 of the TCP 3 and the connection pad 8 of the liquid crystal cell 1 are temporarily pressure-bonded through the ACF 4 using the alignment device 32 or the like.
[0051]
Next, the control device 26 moves the moving device 18 downward. Then, the main pressing part 24 moves downward, and each pressing part 22 suspended from the plurality of springs 34 also moves downward, and contacts and presses the upper surface of the TCP 3. In this case, since the temporary surface of the main pressing portion 24 protrudes downward toward the center portion, the surface of the divided pressing portion 22 protrudes downward toward the center portion. First, the pressing portion 22 located at the center of the pressing portion 22 presses the TCP 3 against the liquid crystal cell 1, so that the output terminal 7 and the connection pad 8 at that position are electrically and mechanically connected by the ACF 4. Connected.
[0052]
Further, as shown in FIG. 5, when the main pressing portion 24 moves downward, the pressing portion 22 presses the TCP 3 toward the both sides in turn from the central portion, and the output side of the TCP 3 toward the both sides in turn. The terminals 7 and the connection pads 8 of the liquid crystal cell 1 are thermocompression bonded. In the state where all the pressing portions 22 are pressed against the TCP 3, the central pressure of the pressing portions 22 is controlled to be equal.
[0053]
When the thermocompression bonding is finished, the control device 26 raises the heater head 16 and the thermocompression bonding process is finished.
[0054]
In the above-described thermocompression bonding method, first, the thermocompression bonding is performed in order from the central portion toward both sides, so that the liquid crystal cell 1 and the TCP3 are accurately thermocompression bonded at a predetermined position without causing a positional shift. Can do.
[0055]
Further, since the pressing portion 22 is divided, even if there is some variation in the glass substrate 5 of the liquid crystal cell 1, the pressing portion 22 individually presses the output terminal 7 of the TCP 3, so that the inside of the ACF 4 Thus, the conductive particles are crushed and the thermocompression bonding can be reliably performed electrically and mechanically.
[0056]
(Second embodiment)
In the first embodiment, the main pressing portion 24 and each pressing portion 22 are individually connected by the spring 34. Instead, the following structure is also available.
[0057]
That is, as shown in FIG. 7, an elastic member 40 in which a fluid 38 is stored in a bag body 36 is provided below the main pressing portion 24, and a pressing portion 22 that is divided below the elastic member 40 is provided. is there.
[0058]
Even in this structure, when the main pressing portion 24 moves downward, each pressing portion 22 can be thermocompression bonded so as to press the TCP 3 earlier toward the central portion via the elastic member 40.
[0059]
(Third embodiment)
In the above embodiment, the pressing portion 22 is divided into a stripe shape along the wiring direction of the connection pad 8, that is, the side where the output side terminal 7 of the TCP 3 is arranged. However, as shown in FIG. The heater tool 20 may be used.
[0060]
And it is set as the structure which presses this divided | segmented press part 22 individually.
[0061]
With this structure, the TCP 3 can be thermocompression bonded more finely according to the thickness of the glass substrate 5.
[0062]
(Fourth embodiment)
In the first embodiment, the pressing portion 22 is divided along the wiring direction of the connection pad 8, that is, the wiring direction of the output side terminal 7, but in this embodiment, these wirings are inclined as shown in FIG. The heater tool 20 is divided by the direction to constitute the pressing portion 22.
[0063]
With such a divided structure, the pressing portions 22 that are inclined with respect to each connection pad 8 and are adjacent to each other in the direction orthogonal to the wiring direction are formed. Connection can be performed, and thermocompression bonding can be performed more reliably. And even if there exists the press part 22 which does not operate | move, since it becomes crimping | bonding by the other adjacent press part 22, a manufacturing yield can be improved further.
[0064]
Moreover, you may arrange | position each press part 22 spaced apart.
[0065]
(Modification 1)
In the above embodiment, the TCP 3 is connected to the liquid crystal cell 1, but this thermocompression bonding apparatus 10 is applied even when a flexible substrate (FPC) is connected to the liquid crystal cell 1 instead. Can do.
[0066]
(Modification 2)
The present invention can be applied not only to a liquid crystal display device but also to a general display device such as an organic EL display device.
[0067]
(Modification 3)
You may perform the vertical motion of each press part by computer control.
[0068]
(Fifth embodiment)
The thermocompression bonding apparatus and thermocompression bonding method of this embodiment will be described with reference to FIGS. The difference between the thermocompression bonding apparatus of the present embodiment and the first embodiment shown in FIG. 1 is that, in the first embodiment, the pressing portion is divided in the width direction of the pressed wire. In the present embodiment, the pressing portion is divided in the length direction of the pressed wiring.
As a first step, the liquid crystal cell 1 is mounted on the mounting table 12. The liquid crystal cell 1 to be placed may be a product to which the TCP 3 is attached only after being assembled, or may be a product that has been repaired after repair work.
[0069]
As a second step, the alignment device 32 aligns the connection pad 8 of the liquid crystal cell 1 and the output terminal 7 of the TCP 3. FIG. 11 shows a state in which this alignment is performed.
[0070]
As a third step, when the support column 19 is moved downward by the moving device 18 (Z-axis direction) and the heater head 16 is moved downward, the main pressing portion 24 also moves downward and is suspended by the spring 34. Each pressed portion 22 also moves downward. Of the divided pressing portions 22, first, the pressing portion 22 located on the base side of the connection pad 8 (inward with respect to the end side of the liquid crystal cell 1) presses the TCP 3 (the state of FIG. 12), and then the connection pad. The pressing part 22 presses the TCP 3 in order toward the end part 8 side. In this case, since the spring 34 which is an elastic member is interposed, the pressing portion 22 can press the TCP 3 along the surface of the TCP 3. When pressing from the base side to the end side of the connection pad 8 in this way, the melted ACF flows from the base side to the end side of the connection pad 8, and the protruding portion of the ACF 4 is the end side of the connection pad 8. become. Then, the pressing portion 22 at the end presses the TCP 3, and the thermocompression bonding process of the TCP 3 is completed. In this case, the ACF 4 accumulates on the end side of the connection pad 8 as described above, and does not accumulate on the base side of the connection pad 8 (FIG. 13).
[0071]
As a fourth step, the heater head 16 is raised by the moving device 18, and the thermocompression bonding step is completed.
[0072]
According to the thermocompression bonding method of the present embodiment, ACF 4 accumulates on the end side of the connection pad 8 and does not accumulate on the base side, so that metal corrosion does not occur on the base side of the connection pad 8. For this reason, display defects as in the conventional case do not occur.
[0073]
(Sixth embodiment)
A sixth embodiment will be described with reference to FIG.
[0074]
In the fifth embodiment, the spring 34 is used as the elastic member, but instead, an elastic body 40 in which a fluid 38 is housed in a bag body 36 as shown in FIG. 14 may be used.
[0075]
By using this elastic body 40, the pressing part 22 divided | segmented along the length direction of the connection pad 8 can press TCP3 sequentially.
[0076]
(Seventh embodiment)
A seventh embodiment will be described with reference to FIG.
[0077]
In the fifth embodiment, the TCP 3 is pressed by the pressing portion 22 obtained by dividing the heater tool 20, but in this embodiment, instead of this, the TCP is pressed by a heated roller body as shown in FIG. is there. The heating of the roller body may be performed by incorporating a heater in the heater head 16 made of a heat conductor such as metal and bringing it into contact with the side surface of the roller body, as in the thermocompression bonding apparatus shown in FIG. A heater may be built in the roller body.
[0078]
As a method of pressing the TCP 3 by the heated roller body 42, the TCP 3 positioned on the base side of the connection pad 8 is pressed by the roller body 42, and then the roller body 42 is moved toward the end side of the connection pad 8. The TCP 3 is pressed while rolling.
[0079]
As a result, the TCP 3 is thermocompression bonded by the ACF 4, and the ACF 4 is pushed out to the end side of the connection pad 8 as in the fifth embodiment, and the contaminants are also aggregated to the end side of the connection pad 8 in the same manner. It will be.
[0080]
Therefore, metal corrosion of the connection pad 8 can be prevented, and display failure does not occur.
[0081]
【The invention's effect】
According to this invention, the press part which comprises a heater tool is divided | segmented into plurality, and wiring bodies, such as TCP, can be pressed for every divided | segmented press part.
By dividing the pressing part in the width direction of the wiring body, even if there is some variation in the thickness of the glass substrate that constitutes the display cell, the wiring body can be surely pressed to make electrical and mechanical connections. Can do. Further, by dividing the pressing portion in the length direction of the wiring body, it is possible to suppress the ACF contaminants from aggregating on the base side of the connection pad, and to suppress the occurrence of defects such as metal corrosion.
[Brief description of the drawings]
FIG. 1 is a perspective view of a thermocompression bonding apparatus showing a first embodiment of the present invention.
FIG. 2 is a front view showing an internal structure of a heater head.
FIG. 3 is a cross-sectional view taken along line AA in FIG.
FIG. 4 is an explanatory diagram of a state before thermocompression bonding.
FIG. 5 is an explanatory diagram in the middle of thermocompression bonding.
6 is a block diagram of the thermocompression bonding apparatus 10. FIG.
FIG. 7 shows the structure of the heater head 16 of the second embodiment.
FIG. 8 is a bottom view showing a divided state of the heater tool 20 of the third embodiment.
FIG. 9 is a bottom view showing a divided state of the heater tool 20 of the fourth embodiment.
10 is a view showing a modification of the thermocompression bonding apparatus of FIG.
FIG. 11 is a diagram illustrating a thermocompression bonding process according to a fifth embodiment.
FIG. 12 is a diagram illustrating a thermocompression bonding process according to a fifth embodiment.
FIG. 13 is a diagram illustrating a thermocompression bonding process according to a fifth embodiment.
FIG. 14 is a view showing a thermocompression bonding apparatus according to a sixth embodiment.
FIG. 15 is a view showing a thermocompression bonding apparatus according to a seventh embodiment.
FIG. 16 is a perspective view showing an alignment state of a liquid crystal cell and TCP.
FIG. 17 is a process diagram showing an assembled state of TCP.
[Explanation of symbols]
1 Liquid crystal cell 2 PCB
3 TCP
4 ACF
5 Glass substrate 6 Drive chip IC
7 Output terminal 8 Connection pad 9 Insulating film 10 Thermocompression bonding device 12 Mounting table 14 Supporting portion 16 Heater head 18 Moving device 20 Heater tool 22 Pressing portion 24 Main pressing portion 26 Control device 28 Motor 30 Heating device 32 Positioning device 34 Spring

Claims (3)

平面表示装置の表示セルを載置台の上へ載置し、前記表示セルの周縁部にある接続パッド群と、シート状の配線体の端子群とを異方性導電膜を介してヒーターツールによって上方から熱圧着する熱圧着装置において、
前記ヒーターツールにおける前記配線体を押圧する押圧部が複数に分割され、
前記分割された各押圧部を下方に移動させる移動手段が設けられ、
前記分割された複数の押圧部は、互いに非圧縮時の全長が異なる複数のスプリングにより個々に主押圧部の下面に接続され、
前記主押圧部は、前記移動手段によって下方に移動し、前記主押圧部が前記移動手段によって下方に移動すると、前記スプリングを介して前記各押圧部も個々に下方に移動することを特徴とする熱圧着装置。
The display cell of the flat display device is mounted on a mounting table, and the connection pad group on the peripheral portion of the display cell and the terminal group of the sheet-like wiring body are connected by a heater tool through an anisotropic conductive film. In a thermocompression bonding apparatus that performs thermocompression bonding from above,
The pressing part that presses the wiring body in the heater tool is divided into a plurality of parts,
A moving means for moving the divided pressing portions downward is provided,
The plurality of divided pressing portions are individually connected to the lower surface of the main pressing portion by a plurality of springs having different overall lengths when not compressed,
The main pressing portion is moved downward by the moving means, and when the main pressing portion is moved downward by the moving means, the pressing portions are also individually moved downward via the springs. Thermocompression bonding equipment.
平面表示装置の表示セルの周縁部にある接続パッド群と、シート状の配線体の端子群を異方性導電膜を介してヒーターツールによって上方から熱圧着する熱圧着方法であって、
前記ヒーターツールの押圧部が、前記接続パッド群の配列方向に沿って分割され、
前記端子群を前記分割された中央部分の押圧部によって押圧した後、前記端子群を前記中央部分の押圧部を挟む両側の押圧部が順番に押圧することを特徴とする熱圧着方法。
It is a thermocompression bonding method in which a connection pad group in a peripheral portion of a display cell of a flat display device and a terminal group of a sheet-like wiring body are thermocompression bonded from above with a heater tool through an anisotropic conductive film,
The pressing portion of the heater tool is divided along the arrangement direction of the connection pad group,
A method of thermocompression bonding, wherein the terminal group is pressed by the divided central portion pressing portions, and then the pressing portions on both sides sandwiching the central portion pressing portion are pressed in order.
平面表示装置の表示セルの周縁部にある接続パッド群と、シート状の配線体の端子群を異方性導電膜を介してヒーターツールによって上方から熱圧着する熱圧着方法であって、
前記ヒーターツールの押圧部が、前記接続パッド群の長さ方向に沿って分割され、
前記端子群を前記接続パッドの基部側の押圧部によって押圧した後、前記接続パッドの端部に向かって、前記分割された押圧部が順番に押圧することを特徴とする熱圧着方法。
It is a thermocompression bonding method in which a connection pad group in a peripheral portion of a display cell of a flat display device and a terminal group of a sheet-like wiring body are thermocompression bonded from above with a heater tool through an anisotropic conductive film,
The pressing portion of the heater tool is divided along the length direction of the connection pad group,
After the terminal group is pressed by the pressing portion on the base side of the connection pad, the divided pressing portions are sequentially pressed toward the end of the connection pad.
JP2002369257A 2001-12-25 2002-12-20 Thermocompression bonding apparatus and thermocompression bonding method Expired - Fee Related JP4064808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002369257A JP4064808B2 (en) 2001-12-25 2002-12-20 Thermocompression bonding apparatus and thermocompression bonding method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001392886 2001-12-25
JP2001-392886 2001-12-25
JP2002019077 2002-01-28
JP2002-19077 2002-01-28
JP2002369257A JP4064808B2 (en) 2001-12-25 2002-12-20 Thermocompression bonding apparatus and thermocompression bonding method

Publications (2)

Publication Number Publication Date
JP2003289090A JP2003289090A (en) 2003-10-10
JP4064808B2 true JP4064808B2 (en) 2008-03-19

Family

ID=29255076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369257A Expired - Fee Related JP4064808B2 (en) 2001-12-25 2002-12-20 Thermocompression bonding apparatus and thermocompression bonding method

Country Status (1)

Country Link
JP (1) JP4064808B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180025415A (en) * 2016-08-30 2018-03-09 주식회사 나래나노텍 An Improved Apparatus of Bonding Curved Cover Element
US11764198B2 (en) 2017-03-02 2023-09-19 Ev Group E. Thallner Gmbh Method and device for bonding of chips

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649829B2 (en) * 2003-10-27 2011-03-16 セイコーエプソン株式会社 Electro-optical device and method of manufacturing electro-optical device
CN100362653C (en) * 2003-11-05 2008-01-16 友达光电股份有限公司 Display assembly
CN100397213C (en) * 2003-12-31 2008-06-25 友达光电股份有限公司 Manufacturing method of thin film transistor array substrate
DE102005038416B3 (en) * 2005-08-12 2006-09-21 Mühlbauer Ag Thermode mechanism for manufacturing smart label, has heating plates aligned vertically and arranged next to one another, in lower side of base plates, where heating units are arranged at front and bottom sides of heating plates
KR100756411B1 (en) 2005-09-08 2007-09-10 삼성전자주식회사 Hot pressing tool and hot pressing apparatus having the same
JP4770438B2 (en) * 2005-12-09 2011-09-14 カシオ計算機株式会社 Thermocompression bonding equipment for flexible wiring boards
US8067253B2 (en) 2005-12-21 2011-11-29 Avery Dennison Corporation Electrical device and method of manufacturing electrical devices using film embossing techniques to embed integrated circuits into film
JP4996859B2 (en) * 2006-02-10 2012-08-08 ソニーケミカル&インフォメーションデバイス株式会社 Crimping device
JP4616793B2 (en) * 2006-05-17 2011-01-19 株式会社新川 Multi-stage pressure collet
JP4917994B2 (en) * 2007-08-09 2012-04-18 芝浦メカトロニクス株式会社 Electronic component mounting apparatus and mounting method
JP2009289959A (en) * 2008-05-29 2009-12-10 Elpida Memory Inc Bonder and bonding method
JP2011009357A (en) * 2009-06-24 2011-01-13 Fujitsu Ltd Mounting device
US7845543B1 (en) * 2009-11-17 2010-12-07 Asm Assembly Automation Ltd Apparatus and method for bonding multiple dice
JP5526756B2 (en) * 2009-12-21 2014-06-18 船井電機株式会社 Mounting method of liquid crystal display device and chip mounting wiring board suitable for the same
CN102595794B (en) * 2012-02-24 2014-08-06 友达光电(厦门)有限公司 Flexible circuit board compression joint equipment
KR101870241B1 (en) * 2012-05-14 2018-06-25 삼성디스플레이 주식회사 Bonding apparatus and method for display device
JP2017092313A (en) * 2015-11-12 2017-05-25 株式会社東芝 Semiconductor manufacturing equipment
JP7166807B2 (en) * 2018-06-26 2022-11-08 株式会社ジャパンディスプレイ Crimping device
JP7377656B2 (en) * 2019-09-19 2023-11-10 株式会社ジャパンディスプレイ Device transfer equipment and device module fabrication method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180025415A (en) * 2016-08-30 2018-03-09 주식회사 나래나노텍 An Improved Apparatus of Bonding Curved Cover Element
KR101871967B1 (en) 2016-08-30 2018-06-28 주식회사 나래나노텍 An Improved Apparatus of Bonding Curved Cover Element
US11764198B2 (en) 2017-03-02 2023-09-19 Ev Group E. Thallner Gmbh Method and device for bonding of chips
US11990463B2 (en) 2017-03-02 2024-05-21 Ev Group E. Thallner Gmbh Device for bonding chips

Also Published As

Publication number Publication date
JP2003289090A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
JP4064808B2 (en) Thermocompression bonding apparatus and thermocompression bonding method
CN107765454B (en) Crimping device
KR100533766B1 (en) Thermocompression bonding device and method therefor
JP3393562B2 (en) Thermocompression bonding equipment
JP4664235B2 (en) Component thermocompression bonding apparatus and thermocompression bonding method
CN107770970B (en) Electronic component mounting apparatus
JP2009260379A (en) Bonding apparatus and bonding method using the same
TW526351B (en) Manufacturing method of flat panel display device
KR101139252B1 (en) A bonding appartus
JP2000347590A (en) Mounting structure of multiple chips, electro-optic device, and electronic equipment
KR100782233B1 (en) Independent pressing tool bar and bonding device using the same
JP4075323B2 (en) Circuit board bonding method
JP5159259B2 (en) Crimping device and flat panel display manufacturing device
JPH08304845A (en) Liquid crystal display device
KR100487581B1 (en) Bonding device of surface mounting equipment
KR100643434B1 (en) Pressing tool bar for anistropic conductive film and bonding devece using the same
JP2007115892A (en) Manufacturing method and production device for display device
JP2010283131A (en) Substrate crimping device and substrate crimping method
JPH1096944A (en) Electrical connecting structure and liquid crystal display device
JP4579658B2 (en) Mounting device and mounting method for mounted member
JP2005086145A (en) Manufacturing methods of thermocompression bonding device and display device
JP5347258B2 (en) Functional inspection equipment for electronic devices
JP2002244146A (en) Method for internal connection of flat panel display provided with opaque substrate, and device formed by the method
JPH11251373A (en) Tape carrier package
JP2001196422A (en) Thermocompression bonding device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070514

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees