JP5347258B2 - Functional inspection equipment for electronic devices - Google Patents

Functional inspection equipment for electronic devices Download PDF

Info

Publication number
JP5347258B2
JP5347258B2 JP2007252917A JP2007252917A JP5347258B2 JP 5347258 B2 JP5347258 B2 JP 5347258B2 JP 2007252917 A JP2007252917 A JP 2007252917A JP 2007252917 A JP2007252917 A JP 2007252917A JP 5347258 B2 JP5347258 B2 JP 5347258B2
Authority
JP
Japan
Prior art keywords
inspection
electronic device
function
integrated circuit
circuit element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007252917A
Other languages
Japanese (ja)
Other versions
JP2009085648A (en
Inventor
修一 石堂
利直 加藤
俊格 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2007252917A priority Critical patent/JP5347258B2/en
Publication of JP2009085648A publication Critical patent/JP2009085648A/en
Application granted granted Critical
Publication of JP5347258B2 publication Critical patent/JP5347258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides

Landscapes

  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a function inspection device for an electronic device capable of bringing a probe into conductive contact with a contact terminal of high-definition pitches stably and accurately, and executing easily highly-accurate function inspection approximately in the same condition as an actual driving time without loading a driving circuit element thereon. <P>SOLUTION: An inspection frame 15 on which a pair of a driver chip 2 for function inspection and an inspection probe 3 is installed movably is rotated toward an inspection object liquid crystal display panel 1, and the inspection probe 3 is brought into conductive contact with input wiring corresponding thereto. Then, the driver chip 2 for function inspection which is the same as a driver chip used for actual driving is brought into conductive contact with each connection terminal corresponding to a gate line, a data line and the input wiring through conductive particles fixed to the tip face of a projecting electrode 202, and an inspection signal supplied from an inspection signal supply device 4 through a flexible wiring substrate 7 is input from the inspection probe 3 into a liquid crystal display panel 1 through the driver chip 2 for function inspection. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

この発明は、駆動回路素子としての集積回路素子(ICチップ)が直接搭載されるデバイスの機能検査装置に関する。   The present invention relates to a function inspection apparatus for a device on which an integrated circuit element (IC chip) as a drive circuit element is directly mounted.

駆動回路素子としての集積回路素子(ICチップ)が直接搭載されたデバイスとしては、ドライバチップがCOG(Chip On Glass)搭載された液晶表示パネルが知られている。このCOG方式の液晶表示パネルは、特許文献1に示されるように、液晶を挟持する一対のガラス基板の一方に駆動回路素子としてのドライバチップが異方性導電接着材等を介して直接搭載されている。   As a device in which an integrated circuit element (IC chip) as a drive circuit element is directly mounted, a liquid crystal display panel in which a driver chip is mounted on COG (Chip On Glass) is known. In this COG type liquid crystal display panel, as shown in Patent Document 1, a driver chip as a drive circuit element is directly mounted on one of a pair of glass substrates sandwiching liquid crystal via an anisotropic conductive adhesive or the like. ing.

上述のようなCOG方式の液晶表示パネルの表示機能を検査するのに、従来では、ドライバチップの無駄な廃棄を避けるため、液晶表示パネルにドライバチップを搭載せず、ドライバチップの出力バンプと導通接合されるリード配線の出力端子に検査プローブを導通接触させ、この検査プローブを介し、オープン、ショート、中間調表示ムラ等の各検査項目に対応した検査信号を入力していた。
特開2006−278442号公報
Conventionally, in order to inspect the display function of the above-mentioned COG type liquid crystal display panel, in order to avoid wasteful disposal of the driver chip, the driver chip is not mounted on the liquid crystal display panel, and the output bump of the driver chip is electrically connected. The inspection probe is brought into conductive contact with the output terminal of the lead wiring to be joined, and inspection signals corresponding to each inspection item such as open, short, and halftone display unevenness are input through the inspection probe.
JP 2006-278442 A

近年、液晶表示パネルの高精細化が顕著に推進され、そのリード配線の接続端子の並設ピッチも高度にファイン化されており、このようなCOG方式の高精細液晶表示パネルに対し上記の機能検査方法を適用する場合、ファインピッチ化された接続端子に検査プローブを安定して正確に導通接触させることが極めて困難である。   In recent years, high definition of the liquid crystal display panel has been remarkably promoted, and the pitch of the connection terminals of the lead wirings has been highly refined. When the inspection method is applied, it is extremely difficult to stably and accurately bring the inspection probe into contact with the connection terminals having a fine pitch.

また、上記の機能検査方法による場合、ドライバチップの出力バンプが導通接続される出力端子に検査信号を直接入力するから、ドライバチップがCOG搭載されて液晶表示パネルを実駆動するときと異なり、ドライバチップのバンプと対応する接続端子間の導通接触抵抗や内部インピーダンスが省略されているため、実駆動時における表示ムラの評価ができない。   Further, in the case of the above function inspection method, since the inspection signal is directly input to the output terminal to which the output bump of the driver chip is conductively connected, the driver chip is different from the case where the liquid crystal display panel is actually driven with the COG mounted. Since the conduction contact resistance and internal impedance between the connection terminals corresponding to the bumps of the chip are omitted, it is not possible to evaluate display unevenness during actual driving.

本発明の目的は、液晶表示パネルを高い精度で機能検査することができる電子デバイス用機能検査装置を提供することである。   An object of the present invention is to provide an electronic device function inspection apparatus capable of performing a function inspection of a liquid crystal display panel with high accuracy.

本発明の請求項1に記載の電子デバイス用機能検査装置は、検査対象の電子デバイスを支持する基台と、前記電子デバイスに実機搭載される実駆動用集積回路素子と同一に製造され、電子デバイスの対応する接続端子に導通接触させる端子電極を備える機能検査用集積回路素子と、前記電子デバイスの外部から駆動制御信号が入力される入力配線に導通接触させる検査プローブと、前記検査プローブに機能検査信号を入力させる機能検査信号供給手段と、前記機能検査用集積回路素子と前記検査プローブとを、前記機能検査用集積回路素子の端子電極を前記電子デバイスの対応する接続端子に導通接触させると共に前記検査プローブを対応する入力配線に導通接触させた接触位置と、前記端子電極を前記接続端子から離隔させると共に前記検査プローブを前記入力配線から離隔させた離隔位置との間で、往復移動させる検査駆動手段とを有し、
前記機能検査用集積回路素子は、集積回路を内蔵する本体と、前記本体から突出させた端子電極と、前記端子電極の突出端面に設置された複数の導電性粒子と、前記導電性粒子を前記突出端面に導通接触させるとともに少なくともその導通接触面とは反対側の表面を露出させて接着保持するバインダ樹脂とからなり、
前記バインダ樹脂は、実機搭載に用いる異方性導電接着材のバインダ樹脂よりも薄くなるように設けられていること、を特徴とするものである。
According to a first aspect of the present invention, there is provided a functional testing apparatus for an electronic device that is manufactured in the same manner as a base that supports an electronic device to be tested and an actual driving integrated circuit element mounted on the electronic device. Function testing integrated circuit element having terminal electrodes that are in conductive contact with corresponding connection terminals of the device, an inspection probe that is in conductive contact with an input wiring to which a drive control signal is input from the outside of the electronic device, and a function of the inspection probe The function test signal supply means for inputting the test signal, the function test integrated circuit element, and the test probe are brought into conductive contact with the terminal electrode of the function test integrated circuit element to the corresponding connection terminal of the electronic device. The contact position where the inspection probe is brought into conductive contact with the corresponding input wiring and the terminal electrode are separated from the connection terminal and the inspection is performed. A probe between the spaced positions is spaced apart from the input lines, possess an inspection drive means for reciprocating,
The functional test integrated circuit element includes a main body containing an integrated circuit, a terminal electrode protruding from the main body, a plurality of conductive particles disposed on a protruding end surface of the terminal electrode, and the conductive particles. It consists of a binder resin that makes conductive contact with the projecting end face and at least exposes the surface opposite to the conductive contact face and holds it adhered,
The binder resin is provided so as to be thinner than a binder resin of an anisotropic conductive adhesive used for mounting on an actual machine .

請求項2に記載の電子デバイス用機能検査装置は、請求項1の電子デバイス用機能検査装置において、前記バインダ樹脂の厚さが、前記端子電極の高さよりも小さくなるように設けられていること、を特徴とするものである。 According to a second aspect of the present invention, there is provided the electronic device functional inspection apparatus according to the first aspect, wherein the binder resin has a thickness smaller than a height of the terminal electrode. , Is characterized by.

請求項3に記載された電子デバイス用機能検査装置は、請求項1又は2に記載の電子デバイス用機能検査装置において、前記機能検査用集積回路素子が、前記電子デバイスの対応する接続端子に実駆動用集積回路素子の端子電極を導通接続させるための異方性導電接着材に分散される導電性粒子と同じ導電性粒子と、異方性導電接着材の前記バインダ樹脂と同じバインダ樹脂とを備えること、を特徴とするものである。 According to a third aspect of the present invention, there is provided the electronic device functional test apparatus according to the first or second aspect, wherein the functional test integrated circuit element is mounted on a corresponding connection terminal of the electronic device. Conductive particles that are the same as the conductive particles dispersed in the anisotropic conductive adhesive for electrically connecting the terminal electrodes of the driving integrated circuit element, and the same binder resin as the binder resin of the anisotropic conductive adhesive It is characterized by comprising.

請求項に記載された電子デバイス用機能検査装置は、請求項1乃至請求項のうちの何れかの請求項に記載された電子デバイス用機能検査装置において、前記検査駆動手段が、前記機能検査用集積回路素子と前記検査プローブとを前記接触位置に対して一体に接離移動可能に保持する保持機構を備えていること、を特徴とするものである。 The electronic device function inspection apparatus according to claim 4 is the electronic device function inspection apparatus according to any one of claims 1 to 3 , wherein the inspection drive means includes the function. A holding mechanism for holding the inspection integrated circuit element and the inspection probe so as to be movable toward and away from the contact position is provided.

請求項に記載された電子デバイス用機能検査装置は、請求項1乃至請求項のうちの何れかの請求項に記載の電子デバイス用機能検査装置において、前記電子デバイスが、一対の基板間に液晶が挟持され、前記実駆動用集積回路素子が前記一対の基板のうちの少なくとも一方の基板に直接搭載された液晶表示パネルであることを、特徴とするものである。 The electronic device function inspection apparatus according to claim 5 is the electronic device function inspection apparatus according to any one of claims 1 to 4 , wherein the electronic device is between a pair of substrates. And a liquid crystal display panel in which the actual driving integrated circuit element is directly mounted on at least one of the pair of substrates.

本発明が適用された電子デバイス用機能検査装置によれば、実駆動時と略同じ条件で機能検査を実施することができ、検査の精度が向上する。   According to the electronic device functional inspection apparatus to which the present invention is applied, the functional inspection can be performed under substantially the same conditions as in actual driving, and the inspection accuracy is improved.

図1(a)は本発明の一実施形態としての液晶表示パネル用機能検査装置の検査対象デバイスである液晶表示パネルを示す模式的平面図で、(b)はその機能検査装置により実施される機能検査方法の概略を示す概念図である。   FIG. 1A is a schematic plan view showing a liquid crystal display panel which is a device to be inspected of a functional inspection apparatus for a liquid crystal display panel as one embodiment of the present invention, and FIG. 1B is implemented by the functional inspection apparatus. It is a conceptual diagram which shows the outline of a function test | inspection method.

検査対象の液晶表示パネル1は、アクティブマトリックス型液晶表示パネルであり、一対のガラス基板101、102が枠状シール材103により所定の間隙を保って接合され、枠状シール材103で囲まれた一対のガラス基板101、102間に液晶(不図示)が封入されてなる。一対のガラス基板101、102のうちの一方のガラス基板101の一端部を他方のガラス基板102の対応する端面よりも所定長突出させ、このガラス基板101の各対向面(内面)には複数のゲートライン104とデータライン105とが互いに直交する方向に平行に配設され、隣接するゲートライン104とデータライン105とで囲まれた各区画には画素電極(不図示)とスイッチング素子としての薄膜トランジスタ(不図示)が夫々配設されている。   The liquid crystal display panel 1 to be inspected is an active matrix type liquid crystal display panel, and a pair of glass substrates 101 and 102 are joined together with a frame-shaped sealing material 103 while maintaining a predetermined gap, and surrounded by the frame-shaped sealing material 103. A liquid crystal (not shown) is sealed between the pair of glass substrates 101 and 102. One end of one glass substrate 101 of the pair of glass substrates 101, 102 protrudes a predetermined length from the corresponding end surface of the other glass substrate 102, and a plurality of opposing surfaces (inner surfaces) of the glass substrate 101 have a plurality of surfaces. A gate line 104 and a data line 105 are arranged in parallel in a direction orthogonal to each other, and a pixel electrode (not shown) and a thin film transistor as a switching element are provided in each section surrounded by the adjacent gate line 104 and data line 105. (Not shown) are respectively provided.

他方のガラス基板102の内面には、一枚膜状の共通電極(不図示)が設置されている。この共通電極には、コモン配線106が電気接続されている。コモン配線106は、ガラス基板102から基板間導通部材(不図示)を介してガラス基板101側へ引き回されている。   A single-film common electrode (not shown) is provided on the inner surface of the other glass substrate 102. A common wiring 106 is electrically connected to the common electrode. The common wiring 106 is routed from the glass substrate 102 to the glass substrate 101 side through an inter-substrate conducting member (not shown).

液晶を挟んで1個の画素電極が共通電極と対向して1画素を形成し、従って、マトリクス配置された画素電極に対応して画素がマトリックス配置された表示部が形成されている。   One pixel electrode forms one pixel so as to face the common electrode with the liquid crystal interposed therebetween, and accordingly, a display unit in which pixels are arranged in a matrix corresponding to the pixel electrodes arranged in a matrix is formed.

各ゲートライン104及び各データライン105の一方の各端部は基板突出部101aに延出されて引き回し配設され、各先端部の接続端子104a、105aがドライバチップがCOG搭載される矩形のチップ搭載エリアAにおける表示部側長辺の内側に沿って2列の千鳥配置で配設されている。また、基板を跨いで引き回されたコモン配線16の接続端子106aも、チップ搭載エリアA内に配置されている。   One end of each of the gate lines 104 and the data lines 105 is extended to the substrate protruding portion 101a and is routed, and the connection terminals 104a and 105a at the leading ends are rectangular chips on which a driver chip is mounted COG. Arranged in a zigzag arrangement in two rows along the inner side of the display section side long side in the mounting area A. Further, the connection terminal 106a of the common wiring 16 routed across the substrate is also arranged in the chip mounting area A.

上述したCOG方式の液晶表示パネル1に対して、図1(b)に示すように、本発明の一実施形態としてのCOG式液晶表示パネル用機能検査装置により、オープン、ショート、及び中間調表示ムラの項目にわたり機能検査を行う。本実施形態の機能検査装置は、大略、機能検査用ドライバチップ2、検査プローブ3、及び検査信号供給装置4からなる。   With respect to the above-described COG type liquid crystal display panel 1, as shown in FIG. 1B, an open, short, and halftone display is performed by the function inspection apparatus for a COG type liquid crystal display panel as one embodiment of the present invention. Perform functional inspection over unevenness items. The functional inspection device of this embodiment is generally composed of a functional inspection driver chip 2, an inspection probe 3, and an inspection signal supply device 4.

機能検査用ドライバチップ2では、図3(c)に示されるように、チップ本体201から突出させた突起電極202の表面に複数の導電性粒子501がバインダ樹脂502により固着されている。これら導電性粒子501のうち、少なくとも突起電極202の先端面に固着されている導電性粒子501は、その周表面の一部を突起電極202の先端面に確実に導通接触させ、且つ、その導通接触面とは反対側の表面を露出させた状態で、バインダ樹脂502により接着固定されている。なお、各突起電極202の側面や突起電極202間のチップ本体201表面には、導電性粒子501が先端面よりも疎らな密度で分散付着されており、隣り合う突起電極202同士が導電性粒子501を介してショートする虞は無い。   In the function test driver chip 2, as shown in FIG. 3C, a plurality of conductive particles 501 are fixed to the surface of the protruding electrode 202 protruding from the chip body 201 with a binder resin 502. Among these conductive particles 501, at least the conductive particles 501 fixed to the tip surface of the protruding electrode 202 are surely brought into conductive contact with a part of the peripheral surface of the conductive particle 501 and connected to the tip surface of the protruding electrode 202. It is bonded and fixed by a binder resin 502 with the surface opposite to the contact surface exposed. Note that conductive particles 501 are dispersed and attached to the side surfaces of each protruding electrode 202 and the surface of the chip main body 201 between the protruding electrodes 202 at a density lower than that of the tip surface, and adjacent protruding electrodes 202 are electrically connected to each other. There is no risk of short circuit via 501.

機能検査に際しては、半露出状態の導電性粒子501が固着された突起電極202の先端面を検査対象液晶表示パネル側の対応する接続端子に導通接触させる。この際、接触抵抗が充分に小さく且つ確実な導通接触状態を得るためには、導電性粒子の平均粒径を5μmとした場合、各突起電極202先端面の導電性粒子401の分布密度、つまり1平方μm当たりの固着個数Nが、
(1/400)<N<(1/80) ・・・ (1)
を満たすように設定されている。従って、例えば突起電極202先端面の面積が1600平方μmである場合、適正固着個数は、4個より多く20個より少ない範囲となる。
In the function test, the tip surface of the protruding electrode 202 to which the semi-exposed conductive particles 501 are fixed is brought into conductive contact with the corresponding connection terminal on the test target liquid crystal display panel side. At this time, in order to obtain a reliable conductive contact state with sufficiently small contact resistance, when the average particle diameter of the conductive particles is 5 μm, the distribution density of the conductive particles 401 on the tip surface of each protruding electrode 202, that is, The number of fixings N per square μm is
(1/400) <N <(1/80) (1)
It is set to satisfy. Therefore, for example, when the area of the tip end surface of the protruding electrode 202 is 1600 square μm, the proper number of fixings is in the range of more than 4 and less than 20.

次に、上記機能検査用ドライバチップ2の製造方法について、図2(a)〜(d)と図3(a)〜(c)に基づき説明する。
まず、第1ステップとして、図2(a)に示すように、実駆動に使用されるドライバチップと同じドライバチップ2を準備する。
Next, a method for manufacturing the function testing driver chip 2 will be described with reference to FIGS. 2 (a) to 2 (d) and FIGS. 3 (a) to 3 (c).
First, as a first step, as shown in FIG. 2A, the same driver chip 2 as that used for actual driving is prepared.

次いで、第2ステップとして、図2(b)に示すように、機能検査用ドライバチップ2の突起電極202を凸設した面に異方性導電接着材5を押圧して被(以下、仮圧着という)させる。異方性導電接着材5は、導電性粒子501を熱硬化性バインダ樹脂502中に分散混合してシート状に成形したものである。本実施形態で使用される異方性導電接着材5は、樹脂ビーズを核としてこの周囲にニッケル(Ni)と金(Au)からなる合金をメッキしてなる平均粒径が5μm程度の導電性粒子501を、バインダ樹脂502としてのエポキシ樹脂中に分散混合させた材料を用い、ドライバチップ2の平面形状に対応した短冊状シートに成形したものである。樹脂ビーズにNi−Au膜をメッキした導電性粒子501は、Ni粒子やNi−Au粒子からなる導電性粒子に比べて剛性が小さく、突起電極202と対応する接続端子間に挟圧された際に圧縮変形され易く、より広い導通接触面積が確保されて接触抵抗を小さくすることができる。   Next, as a second step, as shown in FIG. 2B, the anisotropic conductive adhesive 5 is pressed against the surface of the functional test driver chip 2 on which the protruding electrodes 202 are provided so as to be covered (hereinafter referred to as provisional pressure bonding). Say). The anisotropic conductive adhesive 5 is obtained by dispersing and mixing conductive particles 501 in a thermosetting binder resin 502 and molding the sheet into a sheet shape. The anisotropic conductive adhesive 5 used in the present embodiment is a conductive material having an average particle diameter of about 5 μm formed by plating an alloy made of nickel (Ni) and gold (Au) around resin beads as a core. A material obtained by dispersing and mixing particles 501 in an epoxy resin as a binder resin 502 is formed into a strip-like sheet corresponding to the planar shape of the driver chip 2. The conductive particles 501 in which the Ni—Au film is plated on the resin beads are less rigid than the conductive particles made of Ni particles or Ni—Au particles, and are sandwiched between the projecting electrodes 202 and the corresponding connection terminals. Therefore, the contact resistance can be reduced by securing a wider conductive contact area.

また、仮圧着される異方性導電接着材5の厚さは、突起電極202の高さHよりも小さい寸法に設定されており、これは実機搭載に用いる異方性導電接着材よりも薄い厚さである。例えば、本実施形態の突起電極202の高さHが12〜15μmであれば、異方性導電接着材5は厚さが10μm程度のシートに成形される。   In addition, the thickness of the anisotropic conductive adhesive 5 to be temporarily pressed is set to a dimension smaller than the height H of the protruding electrode 202, which is thinner than the anisotropic conductive adhesive used for mounting on the actual machine. Is the thickness. For example, if the height H of the protruding electrode 202 of the present embodiment is 12 to 15 μm, the anisotropic conductive adhesive 5 is formed into a sheet having a thickness of about 10 μm.

この場合の仮圧着条件としては、加熱温度を50〜70℃、加圧力を通常のドライバチップをCOG実搭載する際の圧力と同程度の3〜4MPa、加圧時間を1〜2秒とするのが好ましい。   Temporary pressure bonding conditions in this case include a heating temperature of 50 to 70 ° C., a pressing force of 3 to 4 MPa which is the same as the pressure when a normal driver chip is COG mounted, and a pressing time of 1 to 2 seconds. Is preferred.

仮圧着された異方性導電接着材5では、図2(b)のQ部を詳細に示した図2(c)のように、大部分の導電性粒子501がバインダ樹脂502中に埋没した状態で保持されている。   In the anisotropically conductive adhesive 5 that has been preliminarily pressure-bonded, most of the conductive particles 501 are buried in the binder resin 502 as shown in FIG. 2 (c) showing the Q portion in FIG. 2 (b) in detail. Held in a state.

次の第3ステップにおいては、図2(d)に示すように、上述の異方性導電接着材5が仮圧着されたドライバチップ2を、ガラス台6上に設置された厚さが3μm程度のフッ素コーティングシート層7に熱圧着(以下、本圧着という)させる。この本圧着条件としては、通常のCOG実装時の条件、すなわち、加熱温度を160〜170℃、加圧力を3〜4MPa、加圧時間を20秒程度とするのが好ましい。   In the next third step, as shown in FIG. 2 (d), the thickness of the driver chip 2 on which the above-mentioned anisotropic conductive adhesive material 5 is temporarily bonded is set on the glass table 6 is about 3 μm. The fluorine coating sheet layer 7 is subjected to thermocompression bonding (hereinafter referred to as main compression bonding). As the main press-bonding conditions, it is preferable that the conditions during normal COG mounting, that is, the heating temperature is 160 to 170 ° C., the applied pressure is 3 to 4 MPa, and the pressing time is about 20 seconds.

この後の第4ステップでは、図3(a)に示されるように、フッ素コーティングシート層7に圧接された機能検査用ドライバチップ2を白抜き矢印Pで示すフッ素コーティングシート層7表面に平行な横方向に押圧し、機能検査用ドライバチップ2をフッ素コーティングシート層7から剥離させる。この際、フッ素コーティングシート層7の離型効果により、ドライバチップ2がフッ素コーティングシート層7の表面から円滑に剥離する。   In the subsequent fourth step, as shown in FIG. 3A, the function inspection driver chip 2 pressed against the fluorine coating sheet layer 7 is parallel to the surface of the fluorine coating sheet layer 7 indicated by the white arrow P. The function test driver chip 2 is peeled from the fluorine coating sheet layer 7 by pressing in the lateral direction. At this time, the driver chip 2 is smoothly peeled off from the surface of the fluorine coating sheet layer 7 due to the releasing effect of the fluorine coating sheet layer 7.

図3(b)は、フッ素コーティングシート層7から剥離された機能検査用ドライバチップ2の完成品を示しており、そのQ部詳細図の図3(c)に示されるように、各突起電極202の先端面には、各導電性粒子501がその周表面の一部を突起電極202先端面に確実に導通接触させると共に少なくとも導通接触面とは反対側の表面をバインダ樹脂502から露出させた状態で、硬化したバインダ樹脂502により固着されている。そして、この固着設置された導電性粒子501の分布密度は、上記(1)式を満たしている。   FIG. 3B shows a finished product of the function inspection driver chip 2 peeled from the fluorine coating sheet layer 7, and each protruding electrode is shown in FIG. Each of the conductive particles 501 is in a conductive contact with the tip surface of the protruding electrode 202 reliably on the front end surface of 202 and at least a surface opposite to the conductive contact surface is exposed from the binder resin 502. In the state, it is fixed by a cured binder resin 502. The distribution density of the conductive particles 501 fixedly installed satisfies the above formula (1).

なお、突起電極202間にも導電性粒子501が固着されているが、異方性導電接着材5としてその厚さが突起電極202の高さHよりも薄いものを使用しているから、その間の導電性粒子501の分布密度は電極先端面よりも小さくなり、隣り合う突起電極202間がショートする虞は無い。   The conductive particles 501 are also fixed between the protruding electrodes 202. Since the anisotropic conductive adhesive 5 is thinner than the height H of the protruding electrodes 202, The distribution density of the conductive particles 501 is smaller than that of the electrode front end surface, and there is no possibility that the adjacent protruding electrodes 202 are short-circuited.

検査プローブ3は、図1(a)に示される検査対象液晶表示パネル1の入力配線107と同じ数のプローブが2列の千鳥配置でアレイ設置されてなる。   The inspection probe 3 is formed by arranging the same number of probes as the input wiring 107 of the inspection target liquid crystal display panel 1 shown in FIG.

図4は、上述のようにして製造された機能検査用ドライバチップ2と検査プローブ3が組み込まれた本実施形態の機能検査装置の要部を拡大して示す構造説明図である。   FIG. 4 is a structural explanatory view showing, in an enlarged manner, a main part of the function inspection apparatus according to the present embodiment in which the function inspection driver chip 2 and the inspection probe 3 manufactured as described above are incorporated.

機能検査用ドライバチップ2が真空吸着ブロック8により吸着保持され、検査プローブ3がフレキシブル配線基板9に電気接続されてプローブブロック11により保持され、各ブロック8、11は、移動ユニット12に一対体移動可能に設置されている。移動ユニット12には、検査プローブ3の位置調整ネジ13が設けられており、これを操作することにより、ブロック11を介して検査プローブ3を接触対象面に平行なX軸(紙面平行面)方向とY軸(紙面垂直方向)方向に移動させることができる。また、この移動ユニット12は、X−Y平面に垂直なZ軸方向に往復移動し、機能検査用ドライバチップ2と検査プローブ3のZ軸方向の位置を調整できる構成となっている。そして、移動ユニット12は、軸14によって回動自在に支持された検査フレーム15に一体回動可能に設置されている。検査フレーム15には、検査対象液晶表示パネル1の表示を観察するための窓16が設けられている。   The function inspection driver chip 2 is sucked and held by the vacuum suction block 8, the inspection probe 3 is electrically connected to the flexible wiring board 9 and held by the probe block 11, and each block 8, 11 moves to the moving unit 12 as a single body. It is installed as possible. The moving unit 12 is provided with a position adjusting screw 13 for the inspection probe 3. By operating this, the inspection probe 3 is moved via the block 11 in the X-axis (paper surface parallel plane) direction parallel to the contact target surface. And the Y-axis (perpendicular to the paper surface) direction. The moving unit 12 is configured to reciprocate in the Z-axis direction perpendicular to the XY plane and adjust the position of the function inspection driver chip 2 and the inspection probe 3 in the Z-axis direction. The moving unit 12 is installed so as to be integrally rotatable on an inspection frame 15 that is rotatably supported by a shaft 14. The inspection frame 15 is provided with a window 16 for observing the display on the inspection target liquid crystal display panel 1.

検査対象液晶表示パネル1は、その背面側を基台17により調整移動可能に保持されている。基台17には、縦、横位置規制板171、172が設置されており、これらにより検査対象液晶表示パネル1の縦横端面位置が規制される。   The liquid crystal display panel 1 to be inspected is held so that the back side thereof can be adjusted and moved by the base 17. Vertical and horizontal position regulating plates 171 and 172 are installed on the base 17, and the vertical and horizontal end face positions of the inspection target liquid crystal display panel 1 are regulated by these.

また、基台17には、表示部背面とチップ搭載エリアA(図1(a)参照)に夫々対向させて、検査用バックライト18と画像認識用カメラ19が設置されている。画像認識用カメラ19は、ガラス基板101を介して、チップ搭載エリアA内の接続端子104a、105a、及び入力配線107の接続端子部とこれらに導通接続される機能検査用ドライバチップ2側の突起電極201を撮像する。この画像認識用カメラ19は、本機能検査装置全体の駆動を制御する検査駆動制御手段21に電気接続されている。   In addition, an inspection backlight 18 and an image recognition camera 19 are installed on the base 17 so as to face the back of the display unit and the chip mounting area A (see FIG. 1A), respectively. The image recognition camera 19 is connected to the connection terminals 104a and 105a in the chip mounting area A and the connection terminal portion of the input wiring 107 through the glass substrate 101, and the protrusion on the function test driver chip 2 side connected to these. The electrode 201 is imaged. The image recognition camera 19 is electrically connected to inspection drive control means 21 that controls the drive of the entire functional inspection apparatus.

検査駆動制御手段21は、画像認識カメラ19からの画像データに応じ、ボールネジ等の図示しない駆動機構22を介して縦、横位置規制板171、172を駆動し、機能検査用ドライバチップ2と検査対象液晶表示パネル1の位置合わせを行う。また、軸14に連結された駆動モータ23を駆動して検査フレーム15を往復回動させる。   The inspection drive control means 21 drives the longitudinal and lateral position restricting plates 171 and 172 via a drive mechanism 22 (not shown) such as a ball screw in accordance with image data from the image recognition camera 19, and the function inspection driver chip 2 and the inspection drive control unit 21. The target liquid crystal display panel 1 is aligned. Further, the driving motor 23 connected to the shaft 14 is driven to reciprocate the inspection frame 15.

次に、本実施形態の機能検査装置によるLCD機能検査手順とその動作について、図5(a)、(b)の段階別説明図に基づき説明する。   Next, an LCD function inspection procedure and its operation by the function inspection apparatus of the present embodiment will be described based on the step-by-step explanatory diagrams of FIGS.

まず、検査対象液晶表示パネル1を基台17にセットする。基台17は、図示されるように、検査作業者が液晶表示パネル1の表示面を観察するのに適した角度に傾斜させて設置されている。   First, the inspection target liquid crystal display panel 1 is set on the base 17. As shown in the figure, the base 17 is installed to be inclined at an angle suitable for an inspection operator to observe the display surface of the liquid crystal display panel 1.

次に、機能検査用ドライバチップ2を真空吸着ブロック8により吸着保持し、検査フレーム15を、図5(a)に示す検査対象液晶表示パネル1から離隔させた位置(離隔位置)から、図5(b)に示す機能検査用ドライバチップ2の突起電極2先端部を導電性粒子を介して対応する導通接続すべき接続端子に導通接触させる位置(接触位置)まで回動させ、機能検査用ドライバチップ2をチップ搭載エリアA(図1(a)参照)に載置する。   Next, the function inspection driver chip 2 is sucked and held by the vacuum suction block 8, and the inspection frame 15 is separated from the inspection target liquid crystal display panel 1 shown in FIG. The tip of the protruding electrode 2 of the function test driver chip 2 shown in (b) is rotated to a position (contact position) where the corresponding connection terminal to be conductively connected via the conductive particles is brought into contact (contact position). The chip 2 is placed in the chip mounting area A (see FIG. 1A).

この機能検査用ドライバチップ2をチップ搭載エリアに載置した状態において、画像認識用カメラ19により導通接触状態を撮像し、その画像データを検査駆動制御手段21に出力させる。検査駆動制御手段21は、入力された画像データに基づき縦、横位置規制板171、172を移動させて液晶表示パネル1の位置を調整し、機能検査用ドライバチップ2の突起電極202先端面が対応する接続端子に適正に重なるように位置合わせを行う。   In a state where the function inspection driver chip 2 is placed on the chip mounting area, the image recognition camera 19 captures the conductive contact state and causes the inspection drive control means 21 to output the image data. The inspection drive control means 21 adjusts the position of the liquid crystal display panel 1 by moving the vertical and horizontal position restricting plates 171 and 172 based on the input image data, and the tip surface of the protruding electrode 202 of the function inspection driver chip 2 is Align so that it properly overlaps the corresponding connection terminal.

上記位置合せに併行して、位置調整ネジ13を操作し、検査プローブ3の各接触子先端を対応する入力配線の接続端子部の適正位置に当接させる。この場合、入力配線の並設ピッチは、出力配線(ゲートラインやデータライン)側の接続端子の並設ピッチよりも大きいため、検査プローブ3の接触子を対応する入力配線の接続端子部に正確且つ容易に導通接触させることができる。   In parallel with the above positioning, the position adjusting screw 13 is operated to bring the contact tips of the inspection probes 3 into contact with the appropriate positions of the connection terminals of the corresponding input wiring. In this case, since the parallel pitch of the input wiring is larger than the parallel pitch of the connection terminals on the output wiring (gate line or data line) side, the contact of the inspection probe 3 is accurately placed on the connection terminal portion of the corresponding input wiring. In addition, it can be easily brought into conductive contact.

検査プローブ3と機能検査用ドライバチップ2の位置合わせが終わったら、検査フレーム15を液晶表示パネル1に向けて規定の圧力で押圧し、この押圧接続状態下で、検査プローブ3に検査信号を入力する。検査作業者は、検査信号の入力に応じた表示を窓16を介して観察し、配線のオープン、ショート及び中間調での表示ムラの有無を判定する。   When the alignment between the inspection probe 3 and the function inspection driver chip 2 is completed, the inspection frame 15 is pressed toward the liquid crystal display panel 1 with a specified pressure, and an inspection signal is input to the inspection probe 3 in this pressed connection state. To do. The inspection operator observes the display corresponding to the input of the inspection signal through the window 16 and determines the presence or absence of display unevenness in the open, short, and halftone of the wiring.

以上のように、本実施形態のCOG式液晶表示パネル用機能検査装置によれば、実駆動に用いるドライバチップと同じドライバチップを機能検査用ドライバチップ2として用い、ドライバチップの入力配線に検査プローブ3を導通接触させて前記機能検査用ドライバチップ2を介し検査信号を供給するから、ドライバチップを介さずその出力配線の接続端子に検査プローブ3を導通接触させて検査信号を供給する従来の装置と異なり、実駆動時と略同じ接触抵抗や内部インピーダンスが加わった駆動状態下で機能検査を実施でき、その結果、オープン、ショートの検査項目だけでなく実駆動時での表示ムラについても適正に評価することができる。   As described above, according to the COG type liquid crystal display panel function testing device of the present embodiment, the same driver chip as the driver chip used for actual driving is used as the function testing driver chip 2, and the test probe is used for the input wiring of the driver chip. Since the inspection signal is supplied through the functional inspection driver chip 2 by bringing the inspection probe 3 into conductive contact, the inspection probe 3 is brought into conductive contact with the connection terminal of the output wiring without passing through the driver chip. Unlike the actual driving, the function inspection can be performed under the driving condition with almost the same contact resistance and internal impedance as the actual driving. As a result, not only the inspection items of open and short, but also the display unevenness in the actual driving properly Can be evaluated.

また、検査プローブ3を並設ピッチの大きい入力配線の接続端子部に導通接触させ、且つ、検査プローブ3と機能検査用ドライバチップ2とを検査フレーム15でユニット化して検査対象液晶表示パネル1に回動自在に接離させる構成としたから、COG式液晶表示パネルに対する精度の高い機能検査を常に正確且つ容易に実施することができる。   Further, the inspection probe 3 is brought into conductive contact with the connection terminal portion of the input wiring having a large parallel pitch, and the inspection probe 3 and the function inspection driver chip 2 are unitized by the inspection frame 15 to form the inspection target liquid crystal display panel 1. Since it is configured such that it can be pivoted and separated, a high-precision function inspection for the COG type liquid crystal display panel can always be performed accurately and easily.

更に、機能検査用ドライバチップ2を、COG方式により実機搭載されるドライバチップと同じドライバチップに実装で用いる異方性導電接着材と同じものを熱圧着して形成したから、実駆動時により近い条件下で機能検査を実施でき、且つ、その導電性粒子501が樹脂ビーズ表面にNi−Auをメッキ被着したものであるから、圧接時に圧縮変形されることによってより広い導通接触面積が確保され、その結果、接触抵抗を小さくして確実な導通接触状態を容易に得ることができる。   Furthermore, since the function inspection driver chip 2 is formed by thermocompression bonding of the same anisotropic conductive adhesive material used for mounting on the same driver chip as that mounted on the actual machine by the COG method, it is closer to the actual driving time. Since the functional test can be performed under the conditions, and the conductive particles 501 are made of Ni-Au plated on the resin bead surface, a larger conductive contact area is secured by being compressed and deformed during the pressure welding. As a result, it is possible to easily obtain a reliable conductive contact state by reducing the contact resistance.

また更に、機能検査用ドライバチップ2に異方性導電接着材を薄く熱圧着して導電性粒子51を適正範囲の分布密度で突起電極21先端面に露出させるから、隣り合う突起電極21同士をショートさせることなく突起電極21と対応する接続端子を常に確実に導通接触させることができ、且つ、この機能検査用ドライバチップ2を同じ種類の液晶表示パネルに対して共通使用するから、不合格品の液晶表示パネルを廃棄してもドライバチップも共に廃棄して無駄にすることがない。   Furthermore, since the anisotropic conductive adhesive is thinly thermocompression-bonded to the function test driver chip 2 to expose the conductive particles 51 at the tip end surface of the protruding electrode 21 with a distribution density in an appropriate range, the adjacent protruding electrodes 21 are connected to each other. The projecting electrode 21 and the corresponding connection terminal can always be brought into conductive contact without being short-circuited, and the function test driver chip 2 is commonly used for the same type of liquid crystal display panel. Even if the liquid crystal display panel is discarded, the driver chip is not discarded and wasted.

なお、本発明は、上記の実施形態に限定されるものではない。
例えば、機能検査用集積回路素子は、上記実施形態のような突起電極21の先端面に導電性粒子51をバインダ樹脂52により固着設置した機能検査用ドライバチップ2に限るものではなく、例えば、実機搭載されるドライバチップが半田接合される場合であれば、機能検査用ドライバチップの突起電極先端面に半田ボールを設置すればよい。すなわち、機能検査用集積回路素子としては、実機搭載において用いる導通接続材料と同じかそれに近似した材料を突起電極先端面に設置すればよい。
In addition, this invention is not limited to said embodiment.
For example, the integrated circuit element for function inspection is not limited to the function inspection driver chip 2 in which the conductive particles 51 are fixedly installed on the front end surface of the protruding electrode 21 with the binder resin 52 as in the above embodiment. If the driver chip to be mounted is soldered, a solder ball may be placed on the tip end surface of the protruding electrode of the function testing driver chip. In other words, as an integrated circuit element for function inspection, a material that is the same as or close to that of a conductive connection material used in mounting on an actual device may be installed on the tip surface of the protruding electrode.

また、機能検査用集積回路素子と検査プローブは、対応する接続端子部に同時に導通接触させなくてもよく、例えば、機能検査用集積回路素子と対応する接続端子を導通接触させた後に検査プローブを対応する接続端子部に導通接触させてもよく、或いは逆に検査プローブを導通接触させた後に機能検査用集積回路素子を導通接触させてもよく、要は、検査信号を供給して機能検査を行う際に検査プローブと機能検査用集積回路素子とを対応する接続端子部に確実に導通接触させておけばよい。   In addition, the functional test integrated circuit element and the test probe do not have to be in conductive contact with the corresponding connection terminal portions at the same time. For example, after the functional test integrated circuit element and the corresponding connection terminal are in conductive contact, The corresponding connection terminal portion may be brought into conductive contact, or conversely, the test probe may be brought into conductive contact and then the function test integrated circuit element may be brought into conductive contact. When performing, the inspection probe and the function inspection integrated circuit element may be surely brought into conductive contact with the corresponding connection terminal portions.

さらに、本発明は、COG方式の液晶表示パネルの機能検査装置だけでなく、ドライバチップを直接搭載した各種電子デバイスの機能検査装置に広く適用できることは、勿論である。   Further, the present invention can be widely applied not only to a function inspection apparatus for a COG type liquid crystal display panel but also to a function inspection apparatus for various electronic devices directly mounted with a driver chip.

(a)は本発明の一実施形態としてのCOG式液晶表示パネル用機能検査装置により検査されるCOG式液晶表示パネルを示す模式的平面図で、(b)は前記機能検査装置により実施される検査方法の概略を示す概念図である。(A) is a typical top view which shows the COG type | mold liquid crystal display panel test | inspected with the function test | inspection apparatus for COG type | mold liquid crystal display panels as one Embodiment of this invention, (b) is implemented by the said function test | inspection apparatus. It is a conceptual diagram which shows the outline of an inspection method. (a)〜(d)は、夫々、前記COG式液晶表示パネル用機能検査装置に用いる機能検査用ドライバチップの製造方法における第1、第2ステップ、第2ステップでのQ部詳細、及び第3ステップを示す各説明図である。(A) to (d) are details of the Q part in the first, second and second steps in the method of manufacturing the function testing driver chip used in the function testing device for the COG type liquid crystal display panel, respectively. It is each explanatory drawing which shows 3 steps. (a)〜(c)は、夫々、前記機能検査用ドライバチップの製造方法における第4、第5ステップと、第5ステップでのQ部詳細を示す各説明図である。(A)-(c) is each explanatory drawing which shows the Q section detail in the 4th, 5th step, and 5th step in the manufacturing method of the driver chip for function inspection, respectively. 前記COG式液晶表示パネル用機能検査装置の要部を拡大して示す構成説明図である。FIG. 4 is an explanatory diagram illustrating an enlarged configuration of a main part of the COG type liquid crystal display panel function testing device. (a)、(b)は、夫々、前記COG式液晶表示パネル用機能検査装置の動作を示す各段階別説明図である。(A), (b) is explanatory drawing according to each step | level which shows operation | movement of the said function test | inspection apparatus for COG type | mold liquid crystal display panels, respectively.

符号の説明Explanation of symbols

1 液晶表示パネル
101、102 前、後ガラス基板
101a 突出部
2 機能検査用ドライバチップ
201 チップ本体
202 突起電極
3 検査プローブ
4 検査信号供給装置
5 異方性導電接着材
501 導電性粒子
502 バインダ樹脂
6 ガラス台
7 フッ素コーティングシート層
8 吸着ブロック
9 フレキシブル配線基板
11 プローブブロック
12 移動ユニット
13 位置調整ネジ
14 軸
15 検査フレーム
16 窓
17 基台
171、172 位置規制版
18 検査用バックライト
19 画像認識カメラ
21 検査駆動制御手段
22 駆動機構
23 駆動モータ
DESCRIPTION OF SYMBOLS 1 Liquid crystal display panel 101,102 Front and back glass board | substrate 101a Protrusion part 2 Driver chip | tip 201 for function test | inspection Chip body 202 Protrusion electrode 3 Inspection probe 4 Inspection signal supply apparatus 5 Anisotropic conductive adhesive 501 Conductive particle 502 Binder resin 6 Glass base 7 Fluorine coating sheet layer 8 Suction block 9 Flexible wiring board 11 Probe block 12 Moving unit 13 Position adjusting screw 14 Shaft 15 Inspection frame 16 Window 17 Bases 171 and 172 Position control plate 18 Backlight for inspection 19 Image recognition camera 21 Inspection drive control means 22 Drive mechanism 23 Drive motor

Claims (5)

検査対象の電子デバイスを支持する基台と、
前記電子デバイスに実機搭載される実駆動用集積回路素子と同一に製造され、電子デバイスの対応する接続端子に導通接触させる端子電極を備える機能検査用集積回路素子と、
前記電子デバイスの外部から駆動制御信号が入力される入力配線に導通接触させる検査プローブと、
前記検査プローブに機能検査信号を入力させる機能検査信号供給手段と、
前記機能検査用集積回路素子と前記検査プローブとを、前記機能検査用集積回路素子の端子電極を前記電子デバイスの対応する接続端子に導通接触させると共に前記検査プローブを対応する入力配線に導通接触させた接触位置と、前記端子電極を前記接続端子から離隔させると共に前記検査プローブを前記入力配線から離隔させた離隔位置との間で、往復移動させる検査駆動手段とを、有し、
前記機能検査用集積回路素子は、集積回路を内蔵する本体と、前記本体から突出させた端子電極と、前記端子電極の突出端面に設置された複数の導電性粒子と、前記導電性粒子を前記突出端面に導通接触させるとともに少なくともその導通接触面とは反対側の表面を露出させて接着保持するバインダ樹脂とからなり、
前記バインダ樹脂は、実機搭載に用いる異方性導電接着材のバインダ樹脂よりも薄くなるように設けられていることを特徴とする電子デバイス用機能検査装置。
A base supporting the electronic device to be inspected;
An integrated circuit element for function testing, which is manufactured in the same manner as the actual driving integrated circuit element mounted on the electronic device, and includes a terminal electrode which is brought into conductive contact with a corresponding connection terminal of the electronic device;
An inspection probe for conducting contact with an input wiring to which a drive control signal is input from the outside of the electronic device;
A function test signal supply means for inputting a function test signal to the test probe;
The functional test integrated circuit element and the test probe are brought into conductive contact with the terminal electrodes of the functional test integrated circuit element with the corresponding connection terminals of the electronic device, and the test probe is brought into conductive contact with the corresponding input wiring. a contact location, between the allowed the separation position spaced the test probe from the input lines causes separating the said terminal electrode from said connecting terminal, and a test drive means for reciprocating, possess,
The functional test integrated circuit element includes a main body containing an integrated circuit, a terminal electrode protruding from the main body, a plurality of conductive particles disposed on a protruding end surface of the terminal electrode, and the conductive particles. It consists of a binder resin that makes conductive contact with the projecting end face and at least exposes the surface opposite to the conductive contact face and holds it adhered,
The electronic device function inspection apparatus , wherein the binder resin is provided so as to be thinner than a binder resin of an anisotropic conductive adhesive used for mounting on an actual machine .
前記バインダ樹脂の厚さが、前記端子電極の高さよりも小さくなるように設けられていることを特徴とする請求項1に記載の電子デバイス用機能検査装置。2. The electronic device functional inspection apparatus according to claim 1, wherein the binder resin is provided so that a thickness of the binder resin is smaller than a height of the terminal electrode. 前記機能検査用集積回路素子は、前記電子デバイスの対応する接続端子に実駆動用集積回路素子の端子電極を導通接続させるための異方性導電接着材に分散される導電性粒子と同じ導電性粒子と、異方性導電接着材の前記バインダ樹脂と同じバインダ樹脂とを備えること、を特徴とする請求項1又は2に記載の電子デバイス用機能検査装置。 The functional test integrated circuit element has the same conductivity as the conductive particles dispersed in the anisotropic conductive adhesive for electrically connecting the terminal electrode of the actual drive integrated circuit element to the corresponding connection terminal of the electronic device. particles and, further comprising the same binder resin as the binder resin of the anisotropic conductive adhesive, the electronic device for function testing device according to claim 1 or 2, characterized in. 前記検査駆動手段は、前記機能検査用集積回路素子と前記検査プローブとを前記接触位置に対して一体に接離移動可能に保持する保持機構を備えていることを特徴とする請求項1乃至請求項のうちの何れかの請求項に記載の電子デバイス用機能検査装置。 2. The inspection driving means includes a holding mechanism that holds the functional inspection integrated circuit element and the inspection probe so as to be movable toward and away from the contact position. any electronic device for function testing device of claim of claim 3. 前記電子デバイスは、一対の基板間に液晶が挟持され、前記実駆動用集積回路素子が前記一対の基板のうちの少なくとも一方の基板に直接搭載された液晶表示パネルであることを特徴とする請求項1乃至請求項のうち何れかの請求項に記載の機能検査装置。 The electronic device is a liquid crystal display panel in which liquid crystal is sandwiched between a pair of substrates, and the actual driving integrated circuit element is directly mounted on at least one of the pair of substrates. function testing device according to claim one of claims 1 to 4.
JP2007252917A 2007-09-28 2007-09-28 Functional inspection equipment for electronic devices Expired - Fee Related JP5347258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007252917A JP5347258B2 (en) 2007-09-28 2007-09-28 Functional inspection equipment for electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252917A JP5347258B2 (en) 2007-09-28 2007-09-28 Functional inspection equipment for electronic devices

Publications (2)

Publication Number Publication Date
JP2009085648A JP2009085648A (en) 2009-04-23
JP5347258B2 true JP5347258B2 (en) 2013-11-20

Family

ID=40659282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252917A Expired - Fee Related JP5347258B2 (en) 2007-09-28 2007-09-28 Functional inspection equipment for electronic devices

Country Status (1)

Country Link
JP (1) JP5347258B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9274166B2 (en) * 2013-08-26 2016-03-01 Fujitsu Limited Pin verification device and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495929A (en) * 1990-08-08 1992-03-27 Fujitsu Ltd Device and method for test using active probe
JP3624570B2 (en) * 1996-09-02 2005-03-02 セイコーエプソン株式会社 Liquid crystal display panel inspection apparatus, liquid crystal display panel inspection method, and integrated circuit mounting method
JPH1171560A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Anisotropically electroconductive adhesive material, and liquid crystal display and its production

Also Published As

Publication number Publication date
JP2009085648A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
KR100676156B1 (en) Method for mounting electronic element, method for producing electronic device, circuit board, and electronic instrument
KR100416675B1 (en) Connector and probing system
US6501525B2 (en) Method for interconnecting a flat panel display having a non-transparent substrate and devices formed
JP2010276541A (en) Thin-film probe sheet, method of manufacturing the same, probe card, and semiconductor chip inspecting apparatus
JP2018029172A (en) Crimping device
JP3785821B2 (en) Liquid crystal display panel inspection apparatus and inspection method
JP4193453B2 (en) Electronic component mounting substrate, electro-optical device, electronic component mounting substrate manufacturing method, electro-optical device manufacturing method, and electronic apparatus
KR101012799B1 (en) Manufacturing system of liquid crystal display and manufacturing method using the same
TW201406249A (en) Connected body manufacturing method, connection method
JP4575845B2 (en) Wiring connection structure and liquid crystal display device
KR101981173B1 (en) Bonding apparatus and method for display device
JP5347258B2 (en) Functional inspection equipment for electronic devices
JPH08254677A (en) Contact device for testing lighting of liquid crystal panel
KR20030056863A (en) A Liquid Crystal Display Device
KR20040057692A (en) Pad structure for testing liquid crystal display panel
JP2000347590A (en) Mounting structure of multiple chips, electro-optic device, and electronic equipment
KR101830606B1 (en) Auto-probe block of shorting bar type auto-probe apparatus
JP2004087940A (en) Electronic component mounted board, electro-optical device, method of manufacturing the same, and electronic apparatus
US20030112331A1 (en) Positioning and inspecting system and method using same
JP2007123344A (en) Liquid crystal display device
CN113573474A (en) Circuit board structure and display device
JP2004087938A (en) Electronic component mounted board, electro-optical device, method of manufacturing the same, and electronic apparatus
JP3671886B2 (en) Substrate, electro-optical device, electronic apparatus, component mounting method, and electro-optical device manufacturing method
KR20190139149A (en) Ultrasonic junction device and ultrasonic junction method
JP2006086328A (en) Method of conduction bonding between electric circuits and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees