JP4044428B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP4044428B2
JP4044428B2 JP2002354479A JP2002354479A JP4044428B2 JP 4044428 B2 JP4044428 B2 JP 4044428B2 JP 2002354479 A JP2002354479 A JP 2002354479A JP 2002354479 A JP2002354479 A JP 2002354479A JP 4044428 B2 JP4044428 B2 JP 4044428B2
Authority
JP
Japan
Prior art keywords
silicon substrate
layer
silicide
film
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002354479A
Other languages
English (en)
Other versions
JP2004186603A5 (ja
JP2004186603A (ja
Inventor
和郎 川村
和人 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002354479A priority Critical patent/JP4044428B2/ja
Publication of JP2004186603A publication Critical patent/JP2004186603A/ja
Publication of JP2004186603A5 publication Critical patent/JP2004186603A5/ja
Application granted granted Critical
Publication of JP4044428B2 publication Critical patent/JP4044428B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置の製造方法に関し、特にシリコン表面にシリサイド層を形成する半導体装置の製造方法に関する。
【0002】
【従来の技術】
半導体装置において、半導体に不純物を添加することにより、導電度を調整できる。但し、金属と同程度の低抵抗率は得られない。MOSトランジスタのゲート電極や、ソース/ドレイン電極の抵抗は低いほど望ましい。
【0003】
電極領域の抵抗を低減させるため、シリコン層の上にシリサイド層を形成することが行われる。シリサイド層は、接触抵抗の低減にも有効である。シリコン層の上に、NiやCo等のシリサイド化可能な金属を堆積し、加熱すると、シリサイド化反応が生じる。絶縁層の上ではシリサイド化反応は生じないため、下地のシリコン表面の上にのみシリサイド層を形成することができる。この工程をサリサイド工程と呼ぶ。
【0004】
シリサイド化反応を2段階に分割し、先ず1次アニールにより中間的シリサイドを生成する反応を生じさせ、未反応の金属を除去した後2次シリサイド化反応を生じさせ、低抵抗率のシリサイドを形成することが行われている。
【0005】
シリサイド化可能な金属層を形成した後、その表面を酸素透過能の小さいTiN等のキャップ層で覆い、シリサイド化可能金属層の酸化を防ぐ技術も報告されている。1次アニールは例えば窒素雰囲気中400〜550℃で行われ、2次アニールは例えば窒素雰囲気中750〜900℃で行われる(IEDM 95〜449)。
【0006】
シリコン基板を加熱した状態で、シリサイド化可能な金属層をスパッタすることも報告されている。例えば、シリコン基板を450℃に保ち、Co膜をスパッタし、続いて真空中で450℃を保ちその場アニールを行う。さらに窒素雰囲気中で1次アニールを行い、未反応Co膜を除去する。その後窒素雰囲気中で2次アニールを行なう(IEDM 95−445)。
【0007】
特開平1−143359号公報は、不純物が再分布しない温度、たとえば600℃に加熱したシリコン基板にTiを堆積してシリサイド層を形成することを開示する。
【0008】
特開平9−186113号公報は、500℃〜1000℃に加熱したシリコン基板上にCoまたはTiを堆積してシリサイド層を形成することを開示する。
特開平11−111642号公報は、自然酸化膜等の多孔性絶縁層をバリア層としてシリコン基板上に形成し、その上に例えば450℃の高温でCoをスパッタすることを提案している。Co膜スパッタ後、その場アニールを行うことにより、堆積したCo膜の全量をシリコン基板と反応させる。その後未反応Co層、バリア層を除去し、窒素雰囲気中600℃の1次アニール、窒素雰囲気中800℃の2次アニールを行なう。
【0009】
又、バリア層を用いず、シリコン基板を400℃に加熱し、0.05〜3nm/secの低堆積速度でスパッタリングを行い、スパッタしたCoを全量基板と反応させ、その後600℃の1次アニール、800℃の2次アニールを行うことも提案している。
【0010】
特開平11−233456号公報は、300℃〜500℃にシリコン基板を加熱し、コバルトを含む材料をスパッタリングし、窒素雰囲気中450℃〜650℃で1次アニールを行ない、未反応部分を除去した後、窒素雰囲気中700℃〜900℃で2次アニールを行うことを提案している。
【0011】
マグネトロンスパッタリングにおいて、Co、Ni等の強磁性体ターゲットに常磁性のTi等を2.5at%〜33at%または10〜90at%混合してスパッタ速度を向上させる提案もある。(特開平10−195643号公報、特開平07−321069号公報)。
【0012】
このように、種々のシリサイド工程が提案されているが、電気特性に優れ、制御性に優れたシリサイド化工程の詳細は未だ十分解明されているとは言えない。特に、半導体デバイスの集積度が上がるにつれ、MOSトランジスタのゲート長は50nm以下、ソース/ドレイン領域の整合深さは80nm以下と微細化されてくる。このような微細化されたMOSトランジスタにおいては、シリサイド層の厚さも20nm以下と薄くなっている。シリサイド層がpn接合に近づきすぎたり、接触したりすれば、リーク電流は増大する。微細化されたMOSトランジスタにおいて、リーク電流を増大させことなく、できる限り低い抵抗率と、シート抵抗とを有するシリサイド層を形成することは容易でない。
【0013】
【非特許文献1】
IEDM 95〜449
【0014】
【非特許文献2】
IEDM 95〜445
【0015】
【特許文献1】
特開平11−111642号公報
【特許文献2】
特開平11−233456号公報
【特許文献3】
特開平1−143359号公報
【特許文献4】
特開平9−186113号公報
【特許文献5】
特開平10−195643号公報
【特許文献6】
特開平07−321069号公報
【0016】
【発明が解決しようとする課題】
本発明の目的は、電気特性に優れ、制御性の良いシリサイド化工程を含む半導体装置の製造方法を提供することである。
【0017】
本発明の他の目的は、抵抗が低く、リーク電流の低い、シリサイド層を含む半導体装置の製造方法を提供することである。
【0018】
【課題を解決するための手段】
本発明の1観点によれば、
(a)シリコン基板表面上に50nm以下のゲート長を有するゲート電極を形成する工程と、
(b)前記ゲート電極をマスクに前記シリコン基板に第1のイオン注入を行ない、エクステンション領域を形成する工程と、
(c)前記ゲート電極の側壁にサイドウォールスペーサを形成する工程と、
(d)前記サイドウォールスペーサをマスクとして前記シリコン基板に第2のイオン注入を行ない、80nm以下の接合深さを有するソースドレイン領域を形成する工程と、
(e)前記シリコン基板を処理室内で320℃〜480℃の温度に加熱する工程と、
(f)前記加熱したシリコン基板表面上にTiを0.3at%〜2.0at%添加したCoを堆積し、少なくとも前記シリコン基板表面においてSi−Co混合層を形成する工程と、
(g)前記Coを堆積した前記シリコン基板上にTiN膜を堆積する工程と、
(h)前記工程(g)の後、前記シリコン基板に窒素雰囲気中で急速熱アニールで1次アニールを行い、シリサイド化反応を生じさせる工程と、
(i)前記工程(h)の後、前記TiN膜と未反応Co膜とを除去する工程と、
(j)前記工程(i)の後、前記シリコン基板に前記1次アニールよりも高い温度で2次アニールを行い、シリサイド化反応を完了させる工程と、
を含む半導体装置の製造方法
が提供される。
【0019】
【発明の実施の形態】
先ず、本発明の実施例を説明する前に、発明者等の行った解析を説明する。
図7(A)、(B)は、微細化されたMOSトランジスタのゲート電極上及びソース/ドレイン領域上にシリサイド層を形成する際に生じる現象を示す。
【0020】
図7(A)において、シリコン基板50にシャロートレンチアイソレーション(STI)51が形成され、活性領域上にゲート酸化膜52、多結晶シリコン層(ゲート電極)53が形成され、このゲート電極をマスクとしてエクステンション領域54のイオン注入が行われる。ゲート電極53側壁上にサイドウォールスペーサ56をシリコン酸化膜等で形成した後、高濃度ソース/ドレイン領域57のイオン注入が行われる。
【0021】
MOSトランジスタ構造を形成したシリコン基板上に、Co層、TiN層を積層し、アニール処理を行うことによってシリサイド層58を形成する。シリサイド層58の形成は、必ずしも露出しているシリコン表面全領域で均一に進行するとは限らず、局所的な不均一が発生する。シリサイド層58のグレインの大きさにバラツキが生じる。図に示すように、シリサイドグレイン58xとソース/ドレイン領域の接合との距離が短くなると、リークパスLが生じ、リーク電流が増大してしまう。このようなリークパスLの発生を防止するためには、シリコン表面上に均一にシリサイド層を形成することが望まれる。
【0022】
図7(B)は、シリサイド層58からさらにスパイク59が発生した状態を示す。常温でCo層を堆積し、その後アニール処理によってシリサイド化反応を行なうと、シリサイド層からスパイク59が発生し得る。スパイク59が接合を貫通したり、接合近傍まで延在すると、リークパスLが生じてしまう。
【0023】
ゲート電極やソース/ドレイン領域の表面に十分抵抗率の低いシリサイド層を形成しようとすると、シリサイド層の厚さは一定以上の値が必要である。しかしながら、浅い接合深さを有する半導体領域において、シリサイド層のグレインにバラツキが生じると、リークパスが発生し易くなる。又、スパイクが発生し接合近くまで延びれば、リークパスが発生する。
【0024】
Coのシリサイド反応においては、CoとSiとが反応するとまずCo2Siが発生する。反応の進行によりCo2SiがCoSiになり、さらにCoSi2になる。この反応中、CoがSi中を拡散すると考えられている。スパイクはこのようなCoがSi中を拡散する性質に基づいて発生すると考えられる。
【0025】
これに対し、Tiのシリサイド反応においては、まずアモルファス状のTiーSi混合物が生じ、反応の進行により結晶化が進行すると考えられている。反応中は、TiよりもSiが拡散すると考えられている。Tiシリサイドの場合、スパイクの発生はない。また、Tiシリサイド形成のため、Si表面にTi層を形成すると、Si表面の酸化膜をTiが吸収する現象も生じる。
【0026】
Coシリサイドの代りにTiシリサイドを用いれば、スパイクの発生等を低減することはできるが、Tiシリサイドは線幅が狭くなると抵抗率が十分低くならない現象を生じる。このため、TiシリサイドよりもCoシリサイドを用いることが、微細化されたMOSトランジスタのためには好ましい。
【0027】
Tiは、シリコン表面の自然酸化膜等を吸収する性質を有する。本発明者等は、CoにTiを添加し、シリコン表面にCo層をなじみ良く形成することを考えた。但し、Tiの添加量は、Coシリサイドの好ましい特性を阻害しない程度に抑えることが好ましい。
【0028】
図1、図2は、本発明者等が行ったTiを添加したCoを用いたシリサイド層の特性を示す表及びグラフである。
図1(A)に示すように、シリコン基板上に堆積するCo膜に、Tiを0、0.25、0.75、1.25、1.75、2.25、2.5at%添加し、それぞれシリサイド層を形成した。2段階アニール方式で形成したシリサイド層の特性を抵抗率、シート抵抗、膜厚、及びシート抵抗と膜厚のバラツキ(分布)で調べた。図1(A)の表はこれらの値をまとめて示している。
【0029】
図1(B)は、Ti添加量に対する抵抗率の変化を示す。Tiを添加しない純Coを用いたシリサイド層においては、抵抗率は18.9μΩ・cmであった。Tiをxat%添加すると、抵抗率は徐々に増大し、
f(x)=20.7−1.85×exp(x/1.24)
で表わされる式に従って変化する。抵抗率を低く押さえるためには、Ti添加量は少ないほどよい。
【0030】
図2(A)は、Ti添加量に対するシート抵抗及びシート抵抗の分布の変化を示すグラフである。シート抵抗は、Ti添加量0で4.90Ω/□であったが、Ti添加量0.25at%で一旦4.83Ω/□まで低下し、その後のTi添加量の増加と共に増大し、Ti添加量2.5at%で5.64Ω/□となった。Tiを添加した場合、添加量の増大と共にシート抵抗も増大した。従って、低いシート抵抗を得る目的からは、添加量は少ないほどよいようである。
【0031】
ところが、シート抵抗の分布は異なる挙動を示した。Ti添加量0の時には分布は2.00%であり、Ti添加量0.25at%とすると、一旦分布は4.13%まで上昇した。その後、Ti添加量の増加と共にシート抵抗の分布は減少し、Ti添加量1.25at%で2.23%となった。さらに、Ti添加量を増加すると、シート抵抗の分布は増加し、Ti添加量2.5at%では5.54%となった。シート抵抗の分布を低く抑えるためには、例えばTi添加量を約0.3at%〜約2.2at%に選択することが好ましいであろう。より好ましくは、Ti添加量を0.5at%〜2.0at%に選ぶと良い。
【0032】
図2(B)は、形成したシリサイド膜の膜厚と、膜厚分布を示すグラフである。膜厚は、Ti添加量0の時の38.6nmからTi添加量0.25at%で39.7nmまで一旦増大し、その後Ti添加量の増加と共に徐々に減少し、Ti添加量2.5at%で36.3nmとなった。
【0033】
膜厚分布は、Ti添加量0.25at%の時2.99%であったが、Ti添加量の増加と共に減少し、Ti添加量1.25at%では1.58%まで低下した。その後は、Ti添加量の増加と共に膜厚分布も増加し、Ti添加量2.5at%では4.38%まで上昇した。膜厚分布を低く抑えるためには、Ti添加量は約0.3at%〜約2.0at%に選択することが望ましい。さらに膜厚分布を低く抑えるためには、Ti添加量は約0.5at%〜約1.75at%とすることが好ましい。
【0034】
図2(A)、(B)の特性を総合的に判断すると、プロセスマージンを拡大し、分布幅を狭くするためには、Ti添加量は0.3at%〜2.0at%、より好ましくは0.5at%〜1.75at%とすることが望ましい。
【0035】
このように、Tiを微少量添加したCoターゲットを用いることにより、良好な特性を有するCoシリサイド層を形成することが可能となる。このCoシリサイド層は、抵抗が低く、抵抗や膜厚の分布も狭い範囲に収まる。
【0036】
常温でCo層を堆積し、ゲート電極、ソース/ドレイン領域上で2段階シリサイド化反応を生じさせたMOSトランジスタにおいて、リーク電流が無視できない値となっている。Co堆積時の温度を上昇させることにより、リーク電流を低減させる事が可能である。
【0037】
図3(A)、(B)は、高温スパッタリングによって形成した(Ti添加なしの)Coシリサイド層のリーク電流特性を示す。
図3(A)は、リーク電流の累積確率を示すグラフである。横軸にリーク電流を示し、縦軸に累積確率を示す。堆積温度が300℃までにおいては、曲線LTに示すように低い累積確率でリーク電流は直ちに増加している。ところが、堆積温度を350℃、375℃、400℃、465℃に上昇させると、曲線HTに示すようにリーク電流累積確率は真直ぐ立上り、かつほぼ同一の特性となり、300℃の場合と較べ明らかな減少を示した。
【0038】
このように、Coを高温スパッタリングすることにより、リーク電流を低減することができる。
図3(B)は常温(150℃)でCoを堆積した場合と、465℃の高温でCoを堆積した場合とで形成される細線シリサイド層のシート抵抗の値を調べた結果を示す。横軸はシート抵抗をΩ/□で示し、縦軸は累積確率を示す。高温スパッタリングした時の特性HTは、常温スパッタリングした時の特性RTと較べ、明らかに一定のシート抵抗減少を示している。すなわち、リーク電流を減少し、シート抵抗を減少させるには、Coを高温スパッタリングすることが好ましい。
【0039】
図4は、10μm以上の広幅コバルトシリサイド層のシート抵抗を465℃堆積と30℃堆積の場合で調べた結果を示す。シート抵抗の平均値は、30℃堆積の場合と較べ、465℃堆積で増加している。さらに、シート抵抗の最小値、最大値及び分布も高温スパッタリングで増加している。特に分布が30℃の2.64%から465℃では15.15%に大幅に増加している。
【0040】
図4(B)は、465℃の高温スパッタリングを用いて形成したコバルトシリサイドの上面の顕微鏡写真を示す。活性領域及びゲート電極上に形成したコバルトシリサイドは、隣接する絶縁領域上にも延在し、いわゆる這い上がりが生じていることを示している。
【0041】
図8(A),(B)は、Tiを添加したCo(Co:Ti)を用いて作成したCo:Tiシリサイド層の接合リーク電流特性とシート抵抗特性を示す。図8(A)は、リーク電流の堆積温度依存性を示す。横軸が堆積温度を℃で示し、縦軸が平均リーク電流を示す。□が5nm厚のCo膜の場合、○が6nm厚のCo:Ti膜の場合、△が5nm厚のCo:Ti膜の場合を示す。Co膜の場合、300℃以下で接合リーク電流は増加している。図3(A)に示した結果と符合している。
【0042】
Co:Ti膜の場合、420℃から300℃の範囲ではリーク電流は低レベルである。275℃になると、リーク電流は急激な増大を示している。Ti添加により、低い接合リーク電流が得られる堆積温度が拡大している。この結果からは、堆積温度は290℃以上、好ましくは300℃以上とすることが望ましい。
【0043】
図8(B)は、シート抵抗のCoないしCo:Ti膜厚依存性を示す。横軸が膜厚を単位nmで示し、縦軸がシート抵抗を単位Ω/□で示す。□が基板温度375℃で堆積したCo膜の場合を示し、○が基板温度150℃で堆積したCo:Ti膜の場合を示し、△が基板温度375℃で堆積したCo:Ti膜の場合を示し、▽が基板温度485℃で堆積したCo:Ti膜の場合を示す。基板温度485℃の場合を除き、Co:Ti膜を用いて、Co膜を用いた時とほぼ同様のシート抵抗の膜厚依存性が得られている。
【0044】
図8(A),(B)の結果から、適切に条件を選べば、Co:Ti膜を用いてシリサイド化を行ったときも、Coを用いてシリサイド化を行った時とほぼ同様の結果を得られることが期待できる。
【0045】
これらの観点から高温スパッタリングの温度も、ある範囲以内におさめたほうが好ましいことが類推される。図3、図4、図8の結果を総合すると、Co堆積時の基板温度は、320℃〜480℃、より好ましくは350℃〜400℃とするのがよいであろう。
【0046】
図5、図6は、上述の結果を利用した半導体装置の製造方法の主要工程を示す断面図である。
図5(A)に示すように、p型シリコン基板1の表面に素子分離用溝を形成し、酸化シリコン等の絶縁層を埋め込んでシャロートレンチアイソレーション(STI)2を形成する。基板表面に必要なイオン注入を行ない、例えばp型ウエル4を形成する。イオン注入領域をマスクで分け、p型ウエル、n型ウエルをそれぞれ形成してもよい。
【0047】
STIで囲まれた活性領域表面上に、熱酸化により例えば厚さ3nmのゲート酸化膜6を形成する。ゲート酸化膜6の上に、例えば厚さ100nmの多結晶シリコン層8を形成する。レジストマスクを用いたエッチングにより、多結晶シリコン層8、ゲート酸化膜6をパターニングし、絶縁ゲート電極を形成する。ゲート電極8のゲート長は例えば50nmである。絶縁ゲート電極をマスクとし、p型活性領域表面にn型不純物の浅いイオン注入を行なうことにより、エクステンション領域9を形成する。
【0048】
エクステンション領域9形成後、基板表面上に酸化シリコン等の絶縁層又は絶縁積層を例えば厚さ80nm堆積し、リアクティブイオンエッチング(RIE)により異方性エッチングを行なって、ゲート電極8側壁上にのみサイドウォールスペーサ10を残す。ゲート電極8及びサイドウォールスペーサ10をマスクとし、高不純物濃度のn型不純物をイオン注入し、高濃度のソース/ドレイン領域11を形成する。イオン注入した不純物を活性化した後のソース/ドレイン領域11の接合深さは、例えば80nmである。
【0049】
図5(B)に示すように、基板表面をフッ酸処理し、ソース/ドレイン領域表面上の自然酸化膜等を除去する。表面を清浄化したシリコン基板を、スパッタ室内に搬入し、例えば400℃に加熱する。400℃に加熱したシリコン基板表面上に、例えば1at%のTiを添加したCoターゲットを用いて、Coをスパッタ堆積する。絶縁層上に堆積したCo膜13は、例えば厚さ5〜6nmである。
【0050】
ソース/ドレイン領域の深さが浅くなると、スパイク等による接合リーク電流の増加を抑制するためには、Co(:Ti)膜の厚さ、従って最終的なCo(:Ti)シリサイド層の厚さが制限される。接合深さ80nmのとき、Co(:Ti)膜の厚さは5〜6nmであるが、ゲート長が50nmより短くなり、接合深さが80nmよりさらに浅くなれば、Co(:Ti)膜の厚さもさらに薄くする。
【0051】
フッ酸で酸化膜を除去しても、化学処理による自然酸化膜が生じる。CoにTiを添加したことにより、Si表面上に化学処理による自然酸化膜が存在しても、Tiにより効率的に吸収されると期待される。
【0052】
なお、400℃に加熱したシリコン基板上にCoをスパッタ堆積すると、飛来するCo原子は、露出しているシリコン表面と少なくとも混合し、Si−Co混合層ないしは予備シリサイド層と呼べる層14xを形成する。以下この層をSi−Co混合層と呼ぶ。
【0053】
なお、通常の基板温度150℃程度のスパッタリングで形成したCo層では、その後加熱しても高温スパッタリングによるSi−Co混合層と同じ性質は得られない。
【0054】
Si−Co混合層は、RIEによるダメージ等の影響を受け難く、影となる領域を形成することなく、露出しているSi表面に均一に形成され易い。なお、高温スパッタリングの加熱温度、CoターゲットへのTi添加量は、上述の値に限らない。
【0055】
図5(C)に示すように、Co堆積に続き、シリコン基板を例えば150℃に降温し、厚さ約30nmのTiN層16をスパッタリングで堆積する。スパッタリング後、別体のアニール装置に移送するため、半導体基板を空気中に取り出すことが多い。また、窒素雰囲気中でアニールを行なう場合、窒素ガス中の酸素を完全に除去することは難しい。Co層が露出していると、これらの原因によりCo層表面が酸化される可能性が無視できない。Co層13表面を覆うTiN層16は、酸素を遮蔽する機能を有し、Co層13の酸化を防止する。
【0056】
なお、図5(B)、(C)の堆積を、スパッタリングに代え電子ビーム蒸着で行なうことも可能であろう。
図6(D)に示すように、シリコン基板表面に急速熱アニール〈RTA〉を行ない、窒素雰囲気中480℃で例えば30秒間加熱する。この1次アニール処理は、高温スパッタリングで形成されたSi−Co混合層14xのシリサイド化反応を促進し、さらにCo層13とシリコンとの間のシリサイド化反応を生じさせる。このようにして、1次シリサイド層14yが形成される。
【0057】
図6(E)に示すように、1次アニールを終了したシリコン基板表面から、TiN層16及び未反応のCo層13を例えば硫酸・過酸化水素水(=3:1)で化学処理する。例えば、20分間の化学処理でTiN層16、Co層13を除去する。
【0058】
図6(F)に示すように、未反応Co層を除去したシリコン基板に対し、再び窒素雰囲気中でRTA処理を行ない、2次シリサイド化反応を生じさせる。例えば750℃で30秒間のアニール処理を行なう。この2次アニール処理により、高抵抗シリサイドも低抵抗シリサイドに変換され、所望のシリサイド層14zが形成される。
【0059】
堆積するCoにTiを添加することにより、シリコン基板表面とのなじみを促進し、均一なシリサイド層の形成が促進される。加熱した基板上にCoを堆積することにより、シリサイド化反応がより均一に効率的に進む。
【0060】
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、上述の実施例はゲート長50nm以下、ソース/ドレイン接合深さ80nm以下の場合に特に有効であるが、これらの数値以上での実施を禁じるものではない。その他、種々の変更、改良、組合わせが可能なことは当業者に自明であろう。
【0061】
【発明の効果】
以上説明したように、本発明によれば、特性が優れ、均一なシリサイド層を有する半導体装置が形成される。
【図面の簡単な説明】
【図1】 Ti添加量の変化によるCoシリサイドの特性を示す表及びグラフである。
【図2】 Ti添加量の変化によるCoシリサイドの特性の変化を示すグラフである。
【図3】 高温スパッタリングによる特性の変化を示すグラフである。
【図4】 高温スパッタリングによる特性の変化及び形成されるシリサイド層の表面構造を示す表及び写真である。
【図5】 本発明の実施例による半導体装置の製造方法を示す断面図である。
【図6】 本発明の実施例による半導体装置の製造方法を示す断面図である。
【図7】 Coシリサイドの製造における問題点を示す概略断面図である。
【図8】 Co:Tiシリサイド層を用いた場合の接合リーク電流の堆積温度依存性、シート抵抗のCo:Ti膜厚依存性を示すグラフである。
【符号の説明】
1 シリコン基板
2 STI
4 ウエル
6 ゲート酸化膜
8 多結晶シリコンゲート電極
9 エクステンション
10 サイドウォールスペーサ
11 高濃度ソース/ドレイン領域
13 Co層
14 Co−Si混合領域
14x 1次シリサイド層
14z 最終シリサイド層
16 TiN層

Claims (3)

  1. (a)シリコン基板表面上に50nm以下のゲート長を有するゲート電極を形成する工程と、
    (b)前記ゲート電極をマスクに前記シリコン基板に第1のイオン注入を行ない、エクステンション領域を形成する工程と、
    (c)前記ゲート電極の側壁にサイドウォールスペーサを形成する工程と、
    (d)前記サイドウォールスペーサをマスクとして前記シリコン基板に第2のイオン注入を行ない、80nm以下の接合深さを有するソースドレイン領域を形成する工程と、
    (e)前記シリコン基板を処理室内で320℃〜480℃の温度に加熱する工程と、
    (f)前記加熱したシリコン基板表面上にTiを0.3at%〜2.0at%添加したCoを堆積し、少なくとも前記シリコン基板表面においてSi−Co混合層を形成する工程と、
    (g)前記Coを堆積した前記シリコン基板上にTiN膜を堆積する工程と、
    (h)前記工程(g)の後、前記シリコン基板に窒素雰囲気中で急速熱アニールで1次アニールを行い、シリサイド化反応を生じさせる工程と、
    (i)前記工程(h)の後、前記TiN膜と未反応Co膜とを除去する工程と、
    (j)前記工程(i)の後、前記シリコン基板に前記1次アニールよりも高い温度で2次アニールを行い、シリサイド化反応を完了させる工程と、
    を含む半導体装置の製造方法。
  2. 前記Tiの添加量が0.5at%〜1.75at%である請求項記載の半導体装置の製造方法。
  3. 前記工程()が、シリコン基板を約350℃〜400℃に加熱する請求項1または2記載の半導体装置の製造方法。
JP2002354479A 2002-12-06 2002-12-06 半導体装置の製造方法 Expired - Fee Related JP4044428B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002354479A JP4044428B2 (ja) 2002-12-06 2002-12-06 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002354479A JP4044428B2 (ja) 2002-12-06 2002-12-06 半導体装置の製造方法

Publications (3)

Publication Number Publication Date
JP2004186603A JP2004186603A (ja) 2004-07-02
JP2004186603A5 JP2004186603A5 (ja) 2005-11-04
JP4044428B2 true JP4044428B2 (ja) 2008-02-06

Family

ID=32755451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354479A Expired - Fee Related JP4044428B2 (ja) 2002-12-06 2002-12-06 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP4044428B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165469A (ja) 2004-12-10 2006-06-22 Fujitsu Ltd 半導体装置及びその製造方法

Also Published As

Publication number Publication date
JP2004186603A (ja) 2004-07-02

Similar Documents

Publication Publication Date Title
US6475888B1 (en) Method for forming ultra-shallow junctions using laser annealing
JP4484392B2 (ja) 半導体素子のゲート電極形成方法
KR100218894B1 (ko) 반도체장치의 제조방법
JPH11251591A (ja) 浅いソース/ドレイン接合を形成する部分的シリサイド化方法
JP2707415B2 (ja) 半導体装置のゲート形成方法
JP2877104B2 (ja) 半導体装置の製造方法
JP2820122B2 (ja) 半導体装置の製造方法
US20060003534A1 (en) Salicide process using bi-metal layer and method of fabricating semiconductor device using the same
JP4044428B2 (ja) 半導体装置の製造方法
KR100690910B1 (ko) 샐리사이드 공정 및 이를 사용한 반도체 소자의 제조 방법
JP2000252366A (ja) Cmosデバイスのデュアル・ゲート構造を製造するプロセス
JP3362722B2 (ja) 半導体装置の製造方法
JP3921437B2 (ja) 半導体装置の製造方法
JP3033525B2 (ja) 半導体装置の製造方法
JP2004228351A (ja) 半導体装置及びその製造方法
JP4186247B2 (ja) 半導体装置の製造方法および導電性シリコン膜の形成方法
TWI222113B (en) Silicide layer and fabrication method thereof and method for fabricating metal-oxide semiconductor transistor
KR100433054B1 (ko) 반도체소자의 제조방법
JP2004319567A (ja) 半導体装置の製造方法及び半導体装置
KR100630769B1 (ko) 반도체 소자 및 그 소자의 제조 방법
JPH04299825A (ja) 半導体装置の製造方法
JPH10116797A (ja) 半導体装置の製造方法
JP4909503B2 (ja) 高融点金属シリサイド膜の製造方法、半導体装置の製造方法
KR100504192B1 (ko) 반도체 소자의 제조 방법
TW531795B (en) Self-aligned metal silicide process using cobalt silicide

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071115

R150 Certificate of patent or registration of utility model

Ref document number: 4044428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees