JP4037482B2 - メモリセルのスレッシュホールド電圧を読取る場合に粗目−微細サーチを使用する読取回路 - Google Patents

メモリセルのスレッシュホールド電圧を読取る場合に粗目−微細サーチを使用する読取回路 Download PDF

Info

Publication number
JP4037482B2
JP4037482B2 JP6989497A JP6989497A JP4037482B2 JP 4037482 B2 JP4037482 B2 JP 4037482B2 JP 6989497 A JP6989497 A JP 6989497A JP 6989497 A JP6989497 A JP 6989497A JP 4037482 B2 JP4037482 B2 JP 4037482B2
Authority
JP
Japan
Prior art keywords
gate voltage
voltage
memory cell
stage
threshold voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6989497A
Other languages
English (en)
Other versions
JPH10116495A (ja
Inventor
エム. ダンロップ フランク
シイ. ソ ホック
シイ. ウォン ソウ
Original Assignee
インボックス テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インボックス テクノロジー filed Critical インボックス テクノロジー
Publication of JPH10116495A publication Critical patent/JPH10116495A/ja
Application granted granted Critical
Publication of JP4037482B2 publication Critical patent/JP4037482B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5642Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • G11C27/005Electric analogue stores, e.g. for storing instantaneous values with non-volatile charge storage, e.g. on floating gate or MNOS
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/16Storage of analogue signals in digital stores using an arrangement comprising analogue/digital [A/D] converters, digital memories and digital/analogue [D/A] converters 

Description

【0001】
【発明の属する技術分野】
本発明は、トランジスタのスレッシュホールド電圧を読取る回路及び方法に関するものであって、更に、アナログ及びマルチレベルメモリに対する読取回路に関するものである。
【0002】
【従来の技術】
1994年11月2日付で出願したSau. C Wong及びHock C. Soによる「高分解能アナログ記憶EPROM及びフラッシュEPROM(High Resolution Analog Storage EPROMand Flash EPROM」)という名称の米国特許出願第08/333,381号はアナログメモリを記載しており且つその全体を引用によって本明細書に取込む。この特許出願に記載されているメモリの一実施例は、メモリセル内のフローティングゲートトランジスタのゲート電圧をゆっくりとランプ、即ち所定の勾配で変化させ、且つ該メモリセルが電流を導通し始める時を検知する読取回路を含んでいる。メモリセルが導通を開始するゲート電圧は、メモリセルのスレッシュホールド電圧を表わしており、従ってスレッシュホールド電圧としてメモリセル内に記憶即ち格納されているアナログ値を表わしている。
【0003】
読取られたアナログ値の精度は、ゲート電圧がランプされるレート(速度)及びメモリセルが導通しているか否かを検知する回路の速度及び感度に依存する。精度を改善するために、メモリセルが導通を開始するのとメモリセルが導通していることを検知することとの間でゲート電圧が殆ど変化することがないようにゲート電圧はゆっくりとランプされる。然しながら、ゆっくりとしたランプレートはセルのスレッシュホールド電圧へ到達するのにより多くの時間を必要とし、そのことはメモリの読取時間を増加させる。高精度を維持しながらより高速の読取回路が所望されている。
【0004】
【発明が解決しようとする課題】
本発明は、以上の点に鑑みなされたものであって、上述した如き従来技術の欠点を解消し、高精度で且つ高速の読取回路及び方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明によれば、読取回路が読取プロセス期間中に選択したメモリセルのゲート電圧を段階的にランプアップまたはランプダウンさせるワード線ドライバを有している。各段階においてゲート電圧は一方の方向へランプされ且つ選択されたメモリセルがトリップしたこと、即ち導通状態を停止するかまたは開始させたことを表わす信号を検知回路が発生する場合に終了する。各段階の終了時におけるゲート電圧は、選択されたメモリセルがトリップしたことを検知するのに必要とされた時間及びゲート電圧が変化するレート(即ち、速度または割合)に依存する量だけ該メモリセルに対するトリップ点から異なっている。読取プロセスの初期の段階においては比較的高いランプレートを有しており、従ってゲート電圧は選択されたメモリセルをトリップさせるのに充分に迅速に変化する。高いランプレートは、トリップ点の不正確な値であるゲート電圧において初期の段階を終了させる。後の段階において、特に最後の段階においては、低いランプレートを有しており且つ正確な値のトリップ点において終了し、従って最後の段階の終了時におけるゲート電圧はメモリセルのスレッシュホールド電圧及びその中に記憶されている値を正確に表わす。
【0006】
読取の開始時においての一層高いランプレートと読取の終了時においての一層低いランプレートとの結合がより小さな平均読取時間を与える。何故ならば、読取プロセスの精度を制御するより低いランプレートは早期の段階によって与えられる近似的な読取から小さな量だけゲート電圧を変化させるに過ぎないからである。平均及び最大読取時間を更に減少させるために、選択されたセルのゲートは選択されたメモリセルに対する可能なトリップ点の範囲に対する中間である電圧へ充電させることが可能である。このことはトリップ点へ到達するのに必要な最大ゲート電圧変化を半分にすることによって読取時間を減少させる。
【0007】
本発明の一側面によれば、ドライバと、検知回路と、ランプ制御回路とを有する読取回路が、メモリセルのスレッシュホールド電圧がアナログ値又はマルチビットデジタル値を表わすアナログメモリ又はマルチレベルメモリの夫々におけるメモリセルを読取るために読取プロセスを実行する。該読取プロセスは、読取時間が全てのステージ即ち段階を完了するのに必要な時間に依存する場合には固定数の段階に対して実施することが可能であり、又は読取時間が固定されている場合には、固定数の段階の後に得られた値は読取時間の終了まで保持される。一方、固定した読取時間を有する読取プロセスは可変数の完了された段階を有しており、且つ最後の段階期間中に、非常に低いランプレートがゲート電圧を選択されたメモリセルのトリップ点の小さな範囲内に維持する。
【0008】
最後の段階の終了時におけるゲート電圧がサンプルされ且つ選択されたメモリセル内に記憶されている値を決定するために使用される。このサンプルされたゲート電圧は、最後の段階のランプレートによって決定される精度でのトリップ点を表わすものであり、選択されたセルの絶対スレッシュホールド電圧から幾分異なるものであるが、選択されたメモリセルの相対的なスレッシュホールド電圧及び選択されたメモリセル内に記憶されている値を正確に表わすものである。
【0009】
【発明の実施の形態】
本発明の一側面によれば、トランジスタのスレッシュホールド電圧を読取る方法が一連のステージ即ち段階で進行する。各段階はトランジスタのゲート電圧をその段階に対して選択された一方向及びレート(速度又は割合)でランプさせ(即ち、変化させ)且つゲート電圧における変化が該トランジスタをして該トランジスタがターンオン又はターンオフするトリップ点を交差させた後に終了する。ランプの方向及び大きさは、各段階が先行する段階から反対方向へゲート電圧をランプさせ且つ後の段階におけるランプレートは通常先の段階におけるランプレートよりも一層小さいように選択される。
【0010】
図1Aはトランジスタを読取る粗目−微細サーチプロセス期間中のNチャンネルトランジスタのゲート電圧VGの一例を示している。Pチャンネルに対する読取プロセスも同様であり以下の説明から明らかである。最初に、該トランジスタに対するゲート電圧VG及びソース電圧VSは0であり、且つトランジスタはオフである。読取プロセスの第一段階110期間中、ゲート電圧VGは約1.4×105 V/秒のレートでランプアップされる。例えば、全容量が14pFへ印加される約2.0μAの定電流はゲート電圧を1.4×105 V/秒でランプアップさせる。該トランジスタのゲート電圧がそのトランジスタのスレッシュホールド電圧VTを通過すると、該トランジスタはターンオンする。段階110は該トランジスタのターンオンが検知される後まで継続する。従って、ゲート電圧VGは、トランジスタのターンオンを検知するのに必要な有限の応答時間期間中継続して上昇し且つランプレート及び検知時間に依存する量だけトリップ点及びスレッシュホールド電圧VTをオーバーシュートする。ゲート電圧VGはスレッシュホールド電圧VTよりも一層大きな電圧VG1において段階110を終了する。読取プロセス120の第二段階は、段階110が終了する時に開始する。段階120期間中、ゲート電圧VGはランプダウンされる。ゲート電圧VGがスレッシュホールド電圧VTより降下すると、該トランジスタはターンオフする(再度トリップする)。ゲート電圧が該トランジスタのスレッシュホールド電圧を交差した後に発生するトランジスタのトリッピングが検知されると、段階120は終了する。図1に示したプロセスにおいては、段階120は電圧VGが第一段階110期間中にランプアップされたものとほぼ同一のレートで、即ち約1.4×105 V/秒のレートでゲート電圧VGをランプダウンさせる。然しながら、段階120においては、トリッピングと検知との間の遅延は段階110における遅延よりも一層少ない場合がある。何故ならば、段階120期間中、検知回路はトリップ点により近いレベルへ充電されるからである。段階120に対して検知時間が減少されると、段階120は電圧VG1よりもスレッシュホールド電圧VTへ一層近いゲート電圧VG2において終了する。
【0011】
第三段階130期間中、ランプ動作は先行する段階120から方向が逆転され且つ大きさが約7×104 V/秒へ減少される。段階110及び120と比較して段階130期間中のより遅いランプ動作は、段階110及び120期間中に発生したものよりもより少ないオーバーシュートを与え、且つ段階130の終了時におけるゲート電圧VG3はゲート電圧VG1又はVG2よりもスレッシュホールド電圧VTへ一層近い。
【0012】
後の段階140,150,160,170の各々は、夫々の先行する段階130,140,150,160とはランプ方向を逆転している。より後の段階ではより低いランプレートを使用しており且つそのトランジスタに対するトリップ点へ収束するゲート電圧で終了する。最後の段階である段階170は約2×104 V/秒より小さな最も低いランプレートを使用している。図1Aに示した読取プロセスの利点は、最終的な読みは、段階170のランプレートによって決定される精度を有している。然しながら、先行する段階期間中において、より高いランプレートがゲート電圧VGをスレッシュホールドレベルへより迅速に駆動している。従って、図1Aの読取プロセスは、段階170のランプレートに等しい一定のランプレートを使用する読取プロセスよりも必要とする時間は著しく少ない。図1Aのプロセスにおいて、ランプレートはほぼ1つおきの段階において約半分だけ減少されている。別のプロセスでは各段階毎にランプレートを減少させる。然しながら、ランプレートを減少させるための多くのパターンを使用することが可能である。例えば、ランプレートは各相次ぐ段階に対して比例的に減少させることが可能であり、例えば、半分、3分の1又は4分の1だけ減少させることが可能であり、又は、始めのうちの段階においては大きな(又は小さな)減少分で且つ後の段階においては小さな(又は大きな)減少分で不規則的に減少させることが可能である。更に、ランプレートは1段階期間中に変化させることが可能である。一方、ランプレートを一定に保持し、それによって読取中のトリップ点周りにゲート電圧を振動させ、且つフィルタを使用してこの振動信号からトリップ点を抽出する。更に別の変形例においては、所望の精度でトリップ点を決定する段階の後にランプ動作を完全に停止し、且つシステム内の容量が後のサンプル動作に対する測定電圧を保持する。
【0013】
理想的には、ランプゲートの減少は、所望の精度を与えるために必要とされる読取時間を最小とすべく選択される。読取時間の最小化は、ゲート電圧の開始点、読取ることの可能な可能なスレッシュホールド電圧の範囲、最大の使用可能なランプレート、最小のランプレート(即ち、所望の精度)及び段階の終了を検知するのに必要な時間に依存する。
【0014】
図1Aのプロセスに対する最も悪い場合においては、第一段階110はゲート電圧VGを0Vから可及的に最も高いスレッシュホールド電圧、例えば最大で6Vへランプさせる。この最も悪い場合は最も長い読取時間を与え且つ各読取に対して割当てられねばならない時間の量を増加させる。図1Bは最も悪い場合の読取時間を減少させる読取プロセスを示している。図1Bのプロセスにおいては、ゲート電圧VGは、可能なスレッシュホールド電圧即ちトリップ点の中間である電圧レベルVTMへ充電される。ゲート電圧VGを電圧レベルVTMへ初期的に充電させることは、電源を使用して迅速に行なうことが可能である。ゲートが初期的に充電されると、トランジスタが電圧VTMにおいて導通するか否かが検知され、且つ第一段階115に対するランプ方向が電圧VGをトリップ点へ向けて駆動すべく選択される。図1Bにおいて、スレッシュホールド電圧VTは電圧VTMよりも一層大きく、従ってトランジスタは、初期的には、導通状態ではなく且つ段階115に対してはランプアップ即ち上昇する方向が選択される。トランジスタが初期的に導通状態であると、段階115はゲート電圧VGをランプダウン即ち下方向へランプさせる。
【0015】
該プロセスが電圧VTMで開始すると、可能な終了ゲート電圧の範囲の中間は平均値及び最悪の読取時間を減少させる。何故ならば、VTMと可能なスレッシュホールド電圧との間の最大差は可能なスレッシュホールド電圧の範囲の半分であり且つ初期的なランプ段階115は時間が短くなるからである。初期段階115の後に、図1Bの読取プロセスは図1Aのプロセスに対して上述したのと同様に進行する。
【0016】
図2は本発明の一実施例に基づく読取回路を有するアナログメモリ200の一部を示している。メモリ200は複数個のメモリセル211のN個の行とM個の列からなるアレイ210を有しており、行デコーダ220及び列デコーダ230は読取期間中に読取回路へ接続する。該読取回路は、検知回路240と、ランプ制御回路250と、ワード線ドライバ260とを有している。メモリ200の構成要素である書込回路及び入力/出力インターフェースは当該技術分野において公知であり、従って図2においては図示していない。メモリセル211はフローティングゲートトランジスタ、金属窒化物酸化物シリコン(MNOS)トランジスタ、又は各々が単一のアクセス可能なゲート及び記憶されている値を表わすスレッシュホールド電圧を有するスプリットゲートメモリセルとすることが可能である。本発明の別の実施例では別個の選択ゲート(不図示)及び制御ゲートを有するマルチトランジスタメモリセルを使用している。
【0017】
更に別の実施例においては、メモリ200は各メモリセル211において複数個のビットの情報を記憶するマルチレベルメモリである。マルチレベルメモリはメモリセルのスレッシュホールド電圧としてデジタル値を書き込む場合にデジタル・アナログ変換を与え且つメモリセルから読取ったスレッシュホールド電圧のアナログ・デジタル変換を与える。
【0018】
メモリアレイ210における各ワード線212は1つの行のメモリセル211の制御ゲート及び行デコーダ220へ接続している。メモリセル211の選択した1つを読取る場合に、行デコーダ220はワード線ドライバ260を選択したメモリセルの制御ゲートへ接続しているワード線212の選択した1つへ接続させる。残りの選択されなかったワード線は接地される。アドレス信号によって表わされる1つの行を選択する例えば行デコーダ220のような行デコーダは当該技術分野において公知である。
【0019】
初期的に、選択されたワード線は、プレチャージ回路280によってサーチの所望の開始点へ充電される。サーチの開始点は、可及的に最も低いスレッシュホールド電圧か、可能なスレッシュホールド電圧の範囲の中間か、可及的に最も高いスレッシュホールド電圧か、接地電圧か、電源電圧Vccか、又はその他の任意の所望の電圧とすることが可能である。粗目−微細サーチの第一段階において、ワード線ドライバ260は選択されたワード線上の電圧である電圧VGを選択したメモリセルのスレッシュホールド電圧へ向けてランプさせる。メモリセル211はNチャンネル装置であり、ソース線を接地しており、従って電圧VGが選択したメモリセルのスレッシュホールド電圧よりも一層高い場合には、選択されたメモリセルはターンオンする。
【0020】
メモリアレイ210における各ビット線213は一列のメモリセル211のドレインへ接続すると共に列デコーダ230へ接続している。選択したメモリセルの読取期間中、列デコーダ230は検知回路240を選択されたメモリセルのドレインへ接続しているビット線213の選択した1つへ接続させる。検知回路240は選択されたビット線へ接続しているいずれかのメモリセル211が導通状態であるか否かを検知する。選択されたビット線へ接続しているいずれのメモリセルも導通状態にない場合には検知回路240からのデジタル信号SAOUTは高状態であり、且つ、検知回路240が選択したメモリセルが導通状態であることを検知すると、デジタル信号SAOUTは低状態である。
【0021】
ランプ制御回路250は信号SAOUTをモニタする。信号SAOUTが高状態であると、ランプ制御回路250は信号UPをアサート即ち活性化させ、且つワード線ドライバ260は電圧VGをランプアップさせる。信号SAOUTが低状態であると、ランプ制御回路250は信号UPを脱活性化させ、且つワード線ドライバ260は電圧VGをランプダウンさせる。従って、選択したメモリセルがトリップする度に、検知回路240は信号SAOUTを変化させ且つワード線ドライバ260はランプ方向を逆転させる。
【0022】
メモリ200において、ワード線ドライバ260はプルアップ回路261−264を有しており、Pチャンネルトランジスタ271は、信号UPが活性化されると、コンデンサ270へ接続する。コンデンサン270はランプレートを遅くさせるために付加され典型的に数pFの典型的なワード線容量を支配する約10乃至100pFの容量を有している。Nチャンネルトランジスタ272は、信号UPが脱活性化されると、プルアップ装置265−268をコンデンサ270へ接続させる。
【0023】
読取プロセスにおける各段階の終了時において、信号UPは高状態から低状態又は低状態から高状態へスイッチする。このスイッチ動作は、電圧VGにおいて迅速な変化を発生させる場合がある。何故ならば信号UPにおける変化はトランジスタ271及び272のゲート容量を通過するからである。例えば、図1Aにおいて、段階120の開始時は信号UPが供給電圧Vccから接地へ降下することによって発生されるゲート電圧における迅速な降下125を有している。ワード線ドライバ260において、トランジスタ273及び274はトランジスタ271及び272のゲート電圧と相補的なゲート電圧を有しており、従ってトランジスタ273及び274のゲート電圧のスイッチングはトランジスタ271及び272のゲート電圧のスイッチングによって発生される変化と対抗する。トランジスタ273及び274のゲート容量は変化する信号UPによって発生される電圧VGにおける変化をほぼ取り除くために、夫々のトランジスタ271及び272と一致すべく選択することが可能である。
【0024】
コンデンサ270を充電又は放電させる電流の大きさは、プルアップ回路261乃至264又はプルダウン回路265乃至268のいずれがディスエーブル即ち動作不能状態にされるかに依存する。ランプ制御回路250はプルアップ回路262乃至264又はプルダウン回路266乃至268のいずれをもディスエーブルさせることがないか、幾つかをディスエーブルさせるか又は全てをディスエーブルさせることを選択的に行なうために信号IN0,IN1,IN2を発生する。信号UP,IN0,IN1,IN2がプルアップ回路261乃至264の全てをイネーブルさせる場合には、電圧VGは最大のレートでランプアップし、それはプルアップ回路261乃至264を介しての電流の和で制御される。信号UPが脱活性化され且つプルダウン回路265乃至268の全てがイネーブルされると、電圧VGは最大のレートでランプダウンする。読取プロセスの後の段階においては、ランプ制御回路250が信号IN0,IN1,IN2を変化させてプルアップ回路262乃至264又はプルダウン回路266乃至268の幾つか又は全てをディスエーブルさせ且つランプレートを減少させる。
【0025】
回路261乃至268の各々を介しての電流の量はPチャンネルトランジスタ261A乃至26A及びNチャンネルトランジスタ265A乃至268Aの寸法に依存する。Pチャンネルトランジスタ261A乃至264Aはメモリセル211の最大スレッシュホールド電圧よりも一層大きい電圧VCPへ接続され且つそれらのゲートへ印加されるバイアス電圧PBIASを有している。Nチャンネルトランジスタ265A乃至268Aは接地へ接続され且つそれらのゲートへ印加されるバイアス電圧NBIASを有している。回路262乃至264及び266乃至268の各々は、トランジスタ262B乃至264B及び266B乃至268Bの対応する1つをターンオン又はターンオフさせることによって個別的にイネーブル又はディスエーブルされる。回路261及び265はトランジスタ271及び272によってのみイネーブル又はディスエーブルされる。
【0026】
本発明の一実施例においては、プルアップ回路261は存在しておらず、且つ各プルアップ回路262乃至264はトランジスタ262A乃至264Aの寸法に依存して異なる量の電流を供給する。例えば、プルアップ回路262は最も小さな電流を供給し、プルアップ回路263はプルアップ回路264によって供給される電流の3倍の電流を供給し、且つプルアップ回路264はプルアップ回路262の電流の12倍の電流を供給する。信号IN0,IN1,IN2の全てが高状態に活性化されると、プルアップ回路262を介して電流の16倍である全電流がゲート電圧VGをランプアップさせる。信号IN2を脱活性化させると、ランプレートを4倍だけ低下させ、且つ信号IN2及びIN1を脱活性化させると、ランプレートは16倍減少される。
【0027】
図3はランプ制御回路250の一実施例を示している。ランプ制御回路250はフリップフロップ310,320,330,340,350を有している。検知回路からの信号SAOUTがフリップフロップ310のデータ入力端子へ印加され、且つフリップフロップ310の非反転出力端子はフリップフロップ320のデータ入力端子へ結合している。信号CLKはフリップフロップ310及び320をクロック動作させる。フリップフロップ320の反転出力端子からの信号CNTはフリップフロップ330,340,350をクロック動作させ、尚フリップフロップ330,340,350は、フリップフロップ330の非反転出力端子がフリップフロップ340のデータ入力端子へ結合されており且つフリップフロップ340の非反転出力端子がフリップフロップ350のデータ入力端子へ結合されて一体的に接続されている。出力信号UP,IN2,IN1,IN0は、夫々、フリップフロップ310の非反転出力端子及びフリップフロップ330,340,350の反転出力端子から供給される。
【0028】
図4は、信号RESETBが低状態へ活性化されてフリップフロップ310,320,330,340,350をリセット即ちクリアする時間405において開始される読取プロセス期間中の図3のランプ制御回路250における信号のタイミング線図を示している。これらのフリップフロップをリセットさせると、信号UP,IN2,IN1,IN0を、夫々、低状態、高状態、高状態、高状態とさせ、従ってワード線ドライバ260は選択されたワード線を接地へ向かって駆動する。次いで、検知回路240が活性化され且つ時間415において信号SAOUTを高状態へ活性化させ、選択されたメモリセルが導通状態でないことを表わす。時間420において、信号CLKのエッジがフリップフロップ310をトリガし、それは信号UPを活性化させて電圧VGのランプアップを開始させる。フリップフロップ320も時間420においてトリガされるが、信号CNTは変化することはない。何故ならば、時間420においてフリップフロップ320のデータ入力端子における信号は低状態だからである。
【0029】
検知回路240が選択されたメモリセルがトリップされたことを検知する時間425の後まで、ランプアップは継続する。特に、時間430において信号CLKの別のエッジがフリップフロップ310をトリガし、そのことは信号UPを脱活性化させて電圧VGのランプダウンを開始させる。フリップフロップ320は時間430において信号CNTを脱活性化させる。フリップフロップ330,340,350は正エッジトリガ型であり、信号IN2,IN1又はIN0を変化させることはなく、従ってランプダウンはいまだに最大のランプレートにある。選択したメモリセルが再度トリップしたことを検知回路240が検知する後であって且つフリップフロップ310が信号UPを活性化させて電圧VGのランプアップを開始させる時間440までランプダウンが継続する。フリップフロップ320は時間440において信号CNTを活性化させ、そのことはフリップフロップ330,340,350をトリガする。フリップフロップ330はそのデータ入力を供給電圧Vccへ結合しており且つトリガされると信号IN2を脱活性化させる。信号IN2を脱活性化させるとワード線ドライバ260をしてランプレートを減少させる。信号IN1及びIN0は時間440において活性された状態を維持する。何故ならば、フリップフロップのデータ入力端子における信号は低状態だからである。信号CLKの次ぎのエッジである時間450において、ワード線ドライバ260はいまだに電圧VGをランプアップさせ、且つ選択されたメモリセルは導通状態にはない。信号CLKがフリップフロップ320をトリガし、そのことは信号CNTを脱活性化させる。何故ならば、信号UPは時間440において変化しているからである。
【0030】
検知回路240は、次に、時間455において選択されたメモリセルがトリッップすることを検知し、且つ時間460において、フリップフロップ310は信号UPを変化させる。ランプダウンはその前のランプアップ段階と同じレートで開始する。何故ならば、信号IN2,IN1,IN0は時間460において変化しないからである。フリップフロップ320は、信号UPにおける該変化に続く信号CLKのエッジである時間470まで信号CNTを変化させることはない。時間470において、フリップフロップ340は信号IN1を脱活性化させ且つランプレートは降下する。
【0031】
図4のタイミング線図の場合には、読取プロセスの各段階は、選択したメモリセルがトリップしたことを検知回路240が検知することに続く信号CLKのエッジにおいて終了する。ランプレートは、全ての信号IN2,IN1,IN0が脱活性化されるまで、各段階(第一の段階を除く)の開始の後1サイクルの信号CLK減少し、その後に、プルアップ回路261又はプルダウン回路265のみがゲート電圧VGを制御する。プルアップ回路261及びプルダウン回路265は、信号IN0が脱活性化された段階の終了時において存在するレベル近くにゲート電圧VGを維持する最小電流のみを供給及び引出すべく設計することが可能である。このように、各読取に対する全読取時間が一定である場合には、サーチプロセスが読取るべき電圧へ迅速に収束する場合に対して読取電圧が維持される。所望により、フィルタが電圧VGから平均値を抽出し、一方電圧VGはトリップ点周りを振動する。
【0032】
サンプル・ホールド回路290は読取プロセスの終了時に存在する電圧VGを保持する。この電圧は検知回路240によって検知されたトリガ点に依存し且つ選択されたセルのスレッシュホールド電圧と多少異なる場合がある。図5は、メモリセルのスレッシュホールド電圧とトリップ点との間の差を示した例示的なメモリ500を示している。メモリ500は複数個のメモリセル211からなるアレイ210と、行デコーダ220とワード線ドライバ260と、図2に関して上述した如くに動作するランプ制御回路250とを有している。メモリ500における検知回路は、増幅器545と、基準セル511と、トリップ点において選択されたメモリセルを介しての電流が基準セル511を介しての電流と等しいような回路を形成するトランジスタ542,543,544,546,547とを有している。
【0033】
基準セル511は構造的にメモリセル211と同一であり且つ複数個の基準セルからなる1つの行の一部である。基準セルはアレイ210と同一の区域内に且つメモリセル211と同一の間隔で形成することが可能であり、従って基準セルはメモリセル211と実質的に同一の処理変動に露呈される。基準セルがメモリセル211と異なる点としては、基準セルの制御ゲートはワード線212へ結合されておらず、且つ基準セルのドレインへ接続するビット線513は列デコーダ530によって選択可能なものではないということである。
【0034】
選択したメモリセルの読取期間中に、基準セル511のスレッシュホールド電圧よりも僅かに大きな基準電圧VREFが基準セル511の制御ゲートへ印加され、且つドレイン電圧が基準セルのドレインへ接続しているビット線へ印加され、従って基準セル511を介して電流が流れる。好適には、その電流は小さく典型的なアナログメモリセル構造に対して1μAの程度である。第二基準電圧VBIASによって固定されたゲート電圧を有するカスコード装置547はこのドレイン電圧を制御するために使用することが可能である。VBIASは典型的に、約2Vであり、ドレイン電圧を制限し且つ基準セル511の読取擾乱を防止する。トランジスタ542がターンオンされて、ドレイン電圧を基準セル511へ印加する。
【0035】
トリップ点において、基準セル511を介しての電流は選択されたメモリセルを介しての電流と等しい。このことを達成するために、トランジスタ542及び547及び基準セル511と直列接続したトランジスタ543を使用してカレントミラーが形成されている。トランジスタ543のゲート及びドレインはトランジスタ544のゲートへ結合しており、トランジスタ544は、カスコード装置546、列デコーダ530内においてターンオンされるトランジスタ531、選択されたメモリセルと直列接続している。トランジスタ544はトランジスタ543と同一である。カスコード装置546及び547は同一であり且つ同一のゲート電圧(VBIAS)を有しており、且つトランジスタ542は検知回路を選択したセルへ接続させるために列デコーダ内においてターンオンされるトランジスタ531と同一である。
【0036】
増幅器545がカレントミラーの両側のノードへ接続している。選択されたメモリセルを介しての電流が基準セル511を介しての電流と等しくない場合には、カレントミラーは不均衡である。例えば、選択されたメモリセルが基準セル511よりも少ない電流を導通させる場合には、増幅器545の正入力端子544における電圧は増幅器545の負入力端子549における電圧よりも一層高く、増幅器545は信号SAOUTを高状態へ駆動する。選択されたメモリセルが基準セル511よりも一層多くの電流を導通させる場合には、正入力端子548における電圧は負入力端子549における電圧よりも一層低く、且つ増幅器545は信号SAOUTを脱活性化させる。
【0037】
図5の検知回路のトリップ点は電流が等しい点である。このトリップ点において、選択されたメモリセルに対するワード線電圧VGは、基準電圧VREFが基準セル511のスレッシュホールド電圧よりも一層大きいのと同一の量だけ選択されたメモリセルのスレッシュホールド電圧よりも一層大きい。典型的に、電圧VGがスレッシュホールド電圧と異なるということは重要なことではない。何故ならば、読取期間中に、絶対的なスレッシュホールド電圧ではなく、メモリセルの相対的なスレッシュホールド電圧がメモリセル内に記憶されている値を表わし、電圧VGは相対的スレッシュホールド電圧を表わすものだからである。
【0038】
図6はワード線21へ接続した制御ゲートを有する基準セル611を有するメモリ600を示している。本発明の一実施例によれば、基準セル611はプログラムされておらず、即ち可及的に最も低いスレッシュホールド電圧を有している。読取期間中、ワード線ドライバ260はゲート電圧VGを選択されたメモリセルと選択されたメモリセルと同一の行内の基準セル611の両方へ印加する。電圧VGをランプアップさせる場合に、基準セルは、選択されたメモリセルの最も低いスレッシュホールド電圧を有するものでない限り、選択されたメモリセルが導通を開始する前に導通を開始する。正入力端子548上の電圧は、選択されたメモリセルが導通しない場合に供給電圧Vcc近くであり、且つ負入力端子549における電圧は、トランジスタ640を介して電流が通過するので、一層低い。増幅器545は、トランジスタ211が導通しない場合に、高出力を供給する。
【0039】
電圧VGが選択されたメモリセルのスレッシュホールド電圧に近い場合には、選択されたメモリセルは導通を開始し且つ正入力端子548における電圧は降下する。負入力端子549における電圧も降下する。何故ならば、導通状態にある基準セルは電圧VGが増加するとより多くの電流を導通させるからである。然しながら、トランジスタ643はトランジスタ544よりも一層大きく(例えば、より大きなチャンネル幅を有しており)、従って選択されたメモリセルを介しての電流の増加は、選択されたメモリセルが導通を開始する場合に、負入力端子549上の電圧よりも正入力端子548上の電圧を一層速く降下させる。電圧VGをランプダウンさせる場合に、選択されたメモリセルはターンオフを開始し、且つ正入力端子548における電圧は負入力端子549における電圧よりも一層速く上昇する。
【0040】
メモリ600において、メモリセルに対するトリップ点におけるメモリセルを介しての電流は該メモリセルのスレッシュホールド電圧に依存する。一層高いスレッシュホールド電圧のメモリセルが読取られる場合には、電圧VGは基準セルに対してより大きな駆動を与えるので、基準セル及び選択されたメモリセルの両方を介してより大きな電流が流れる。従って、1個のセルに対するスレッシュホールド電圧とトリップ点との間の差はスレッシュホールド電圧が高くなると増加する。このことは絶対的なスレッシュホールド電圧の決定をより困難なものとするが、電圧VGはいまだにメモリセルの相対的なスレッシュホールド電圧の正確な値を与える。メモリ600の利点は、基準セルの制御ゲートを分離するため又は基準セルの制御ゲートに対する基準電圧を供給することの必要性なしに、アレイ210の一部として容易に基準セルを構成することが可能であるという点である。更に、読取中のセルと同一の行内の基準セルを選択するためにエキストラなデコード回路は必要とされることはない。
【0041】
以上、本発明の具体的実施の態様について詳細に説明したが、本発明は、これら具体例にのみ限定されるべきものではなく、本発明の技術的範囲を逸脱することなしに種々の変形が可能であることは勿論である。
【図面の簡単な説明】
【図1A】 トランジスタのスレッシュホールド電圧を読取るために本発明の一実施例に基づく読取プロセスを使用した場合のトランジスタへ印加されるゲート電圧のプロットを示したグラフ図。
【図1B】 図1Bと同様な本発明の別の実施例を示したグラフ図。
【図2】 本発明の一実施例に基づくメモリの一部を示した概略図。
【図3】 図2に示したメモリにおける読取回路に対するランプ制御回路を示した概略図。
【図4】 図3のランプ制御回路において発生される信号のタイミング線図。
【図5】 本発明の別の実施例に基づくメモリの一部を示した概略図。
【図6】 本発明の更に別の実施例に基づくメモリの一部を示した概略図。
【符号の説明】
110,120,130,140,150,160,170 段階
200 アナログメモリ
210 アレイ
211 メモリセル
212 ワード線
213 ビット線
220 行デコーダ
230 列デコーダ
240 検知回路
250 ランプ制御回路
260 ワード線ドライバ

Claims (6)

  1. メモリセルの読取方法において、
    第一段階と最後の段階とを含む一連の段階を実行し、尚各段階は、前記メモリセルへ印加されるゲート電圧をランプさせること及び前記ゲート電圧が前記メモリセルの導通状態を変化させることに応答して前記ランプ及び前記段階を終了させることを含んでおり、前記第一段階を除いて各段階に対して、前記段階期間中に前記ゲート電圧をランプさせる方向は先行する段階期間中の前記ゲート電圧をランプさせる方向と反対であり、
    前記最後の段階の後に前記ゲート電圧をサンプルし、
    前記最後の段階の後にサンプルしたゲート電圧から前記メモリセルから読取った値を決定する、
    上記各ステップを有することを特徴とする方法。
  2. 請求項において、前記最後の段階期間中の前記ゲート電圧におけるランプレートが前記第一段階期間中の前記ゲート電圧におけるランプレートよりも小さいことを特徴とする方法。
  3. 請求項において、前記読取った値を決定する場合にアナログ値を決定することを特徴とする方法。
  4. 請求項において、前記読取った値を決定する場合に、前記サンプルしたゲート電圧によって表わされるマルチビットのデジタル値を決定することを特徴とする方法。
  5. 請求項において、更に、
    記メモリセルのゲート電圧を初期レベルへプレチャージし、
    前記ゲート電圧の初期レベルが前記メモリセルを導通状態とさせるか否かを検知し、
    前記第一段階期間中の前記ゲート電圧のランプする方向を選択し、前記第一段階に対して選択した方向が前記ゲート電圧の初期レベルが前記メモリセルを導通させるか否かによって決定される、
    ことを特徴とする方法。
  6. 請求項において、前記初期レベルが前記メモリセルに対する可能なスレッシュホールド電圧の範囲の中間である電圧であることを特徴とする方法。
JP6989497A 1996-03-26 1997-03-24 メモリセルのスレッシュホールド電圧を読取る場合に粗目−微細サーチを使用する読取回路 Expired - Lifetime JP4037482B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/622332 1996-03-26
US08/622,332 US5748533A (en) 1996-03-26 1996-03-26 Read circuit which uses a coarse-to-fine search when reading the threshold voltage of a memory cell

Publications (2)

Publication Number Publication Date
JPH10116495A JPH10116495A (ja) 1998-05-06
JP4037482B2 true JP4037482B2 (ja) 2008-01-23

Family

ID=24493794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6989497A Expired - Lifetime JP4037482B2 (ja) 1996-03-26 1997-03-24 メモリセルのスレッシュホールド電圧を読取る場合に粗目−微細サーチを使用する読取回路

Country Status (4)

Country Link
US (1) US5748533A (ja)
EP (1) EP0798739B1 (ja)
JP (1) JP4037482B2 (ja)
DE (1) DE69717525T2 (ja)

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222762B1 (en) 1992-01-14 2001-04-24 Sandisk Corporation Multi-state memory
US5889698A (en) 1995-01-31 1999-03-30 Hitachi, Ltd. Nonvolatile memory device and refreshing method
JP3062730B2 (ja) 1996-07-10 2000-07-12 株式会社日立製作所 不揮発性半導体記憶装置および書込み方法
US6320785B1 (en) 1996-07-10 2001-11-20 Hitachi, Ltd. Nonvolatile semiconductor memory device and data writing method therefor
US5936892A (en) * 1996-09-30 1999-08-10 Advanced Micro Devices, Inc. Memory cell DC characterization apparatus and method
US5969986A (en) * 1998-06-23 1999-10-19 Invox Technology High-bandwidth read and write architectures for non-volatile memories
US6606267B2 (en) 1998-06-23 2003-08-12 Sandisk Corporation High data rate write process for non-volatile flash memories
US6038166A (en) * 1998-04-01 2000-03-14 Invox Technology High resolution multi-bit-per-cell memory
EP0971361B1 (en) 1998-06-23 2003-12-10 SanDisk Corporation High data rate write process for non-volatile flash memories
US6137739A (en) * 1998-06-29 2000-10-24 Hyundai Electronics Industries Co., Ltd. Multilevel sensing circuit and method thereof
US6208542B1 (en) 1998-06-30 2001-03-27 Sandisk Corporation Techniques for storing digital data in an analog or multilevel memory
EP1783778A1 (en) * 1998-06-30 2007-05-09 SanDisk Corporation Semiconductor memory circuit with internal voltage generation according to externally applied voltage
US7268809B2 (en) 1998-09-23 2007-09-11 San Disk Corporation Analog buffer memory for high-speed digital image capture
US6169503B1 (en) * 1998-09-23 2001-01-02 Sandisk Corporation Programmable arrays for data conversions between analog and digital
US6760068B2 (en) * 1998-12-31 2004-07-06 Sandisk Corporation Correction of corrupted elements in sensors using analog/multi-level non-volatile memory
US6275417B1 (en) * 1999-10-08 2001-08-14 Aplus Flash Technology, Inc. Multiple level flash memory
US6278633B1 (en) 1999-11-05 2001-08-21 Multi Level Memory Technology High bandwidth flash memory that selects programming parameters according to measurements of previous programming operations
US6259627B1 (en) 2000-01-27 2001-07-10 Multi Level Memory Technology Read and write operations using constant row line voltage and variable column line load
US6363008B1 (en) 2000-02-17 2002-03-26 Multi Level Memory Technology Multi-bit-cell non-volatile memory with maximized data capacity
US6396744B1 (en) 2000-04-25 2002-05-28 Multi Level Memory Technology Flash memory with dynamic refresh
US6856568B1 (en) 2000-04-25 2005-02-15 Multi Level Memory Technology Refresh operations that change address mappings in a non-volatile memory
US7079422B1 (en) 2000-04-25 2006-07-18 Samsung Electronics Co., Ltd. Periodic refresh operations for non-volatile multiple-bit-per-cell memory
US6734719B2 (en) * 2001-09-13 2004-05-11 Kabushiki Kaisha Toshiba Constant voltage generation circuit and semiconductor memory device
US6574158B1 (en) 2001-09-27 2003-06-03 Cypress Semiconductor Corp. Method and system for measuring threshold of EPROM cells
US6850441B2 (en) * 2002-01-18 2005-02-01 Sandisk Corporation Noise reduction technique for transistors and small devices utilizing an episodic agitation
US7152786B2 (en) * 2002-02-12 2006-12-26 Digimarc Corporation Identification document including embedded data
EP1686591B1 (en) * 2005-01-28 2008-01-09 STMicroelectronics S.r.l. A memory device with a ramp-like voltage biasing structure based on a current generator
EP1699054A1 (en) * 2005-03-03 2006-09-06 STMicroelectronics S.r.l. A memory device with a ramp-like voltage biasing structure and reduced number of reference cells
US7499319B2 (en) * 2006-03-03 2009-03-03 Sandisk Corporation Read operation for non-volatile storage with compensation for coupling
KR101202537B1 (ko) 2006-05-12 2012-11-19 애플 인크. 메모리 디바이스를 위한 결합된 왜곡 추정 및 에러 보정 코딩
US8239735B2 (en) 2006-05-12 2012-08-07 Apple Inc. Memory Device with adaptive capacity
KR101375955B1 (ko) * 2006-05-12 2014-03-18 애플 인크. 메모리 디바이스 내의 왜곡 추정 및 상쇄
WO2008026203A2 (en) * 2006-08-27 2008-03-06 Anobit Technologies Estimation of non-linear distortion in memory devices
US7975192B2 (en) 2006-10-30 2011-07-05 Anobit Technologies Ltd. Reading memory cells using multiple thresholds
US8151163B2 (en) 2006-12-03 2012-04-03 Anobit Technologies Ltd. Automatic defect management in memory devices
US7593262B2 (en) * 2006-12-12 2009-09-22 Macronix International Co., Ltd. Memory structure and operating method thereof
US8151166B2 (en) 2007-01-24 2012-04-03 Anobit Technologies Ltd. Reduction of back pattern dependency effects in memory devices
US8369141B2 (en) 2007-03-12 2013-02-05 Apple Inc. Adaptive estimation of memory cell read thresholds
US8429493B2 (en) * 2007-05-12 2013-04-23 Apple Inc. Memory device with internal signap processing unit
US8234545B2 (en) 2007-05-12 2012-07-31 Apple Inc. Data storage with incremental redundancy
US8259497B2 (en) * 2007-08-06 2012-09-04 Apple Inc. Programming schemes for multi-level analog memory cells
US7800951B2 (en) * 2007-08-20 2010-09-21 Marvell World Trade Ltd. Threshold voltage digitizer for array of programmable threshold transistors
US8174905B2 (en) 2007-09-19 2012-05-08 Anobit Technologies Ltd. Programming orders for reducing distortion in arrays of multi-level analog memory cells
US8068360B2 (en) 2007-10-19 2011-11-29 Anobit Technologies Ltd. Reading analog memory cells using built-in multi-threshold commands
WO2009050703A2 (en) 2007-10-19 2009-04-23 Anobit Technologies Data storage in analog memory cell arrays having erase failures
WO2009063450A2 (en) 2007-11-13 2009-05-22 Anobit Technologies Optimized selection of memory units in multi-unit memory devices
US8225181B2 (en) 2007-11-30 2012-07-17 Apple Inc. Efficient re-read operations from memory devices
US7948802B2 (en) 2007-12-04 2011-05-24 Micron Technology, Inc. Sensing memory cells
US8209588B2 (en) 2007-12-12 2012-06-26 Anobit Technologies Ltd. Efficient interference cancellation in analog memory cell arrays
US8456905B2 (en) * 2007-12-16 2013-06-04 Apple Inc. Efficient data storage in multi-plane memory devices
US8085586B2 (en) 2007-12-27 2011-12-27 Anobit Technologies Ltd. Wear level estimation in analog memory cells
US8156398B2 (en) 2008-02-05 2012-04-10 Anobit Technologies Ltd. Parameter estimation based on error correction code parity check equations
US8230300B2 (en) 2008-03-07 2012-07-24 Apple Inc. Efficient readout from analog memory cells using data compression
US8059457B2 (en) * 2008-03-18 2011-11-15 Anobit Technologies Ltd. Memory device with multiple-accuracy read commands
US8400858B2 (en) 2008-03-18 2013-03-19 Apple Inc. Memory device with reduced sense time readout
US7969235B2 (en) * 2008-06-09 2011-06-28 Sandisk Corporation Self-adaptive multi-stage charge pump
US8498151B1 (en) 2008-08-05 2013-07-30 Apple Inc. Data storage in analog memory cells using modified pass voltages
US8949684B1 (en) 2008-09-02 2015-02-03 Apple Inc. Segmented data storage
US8169825B1 (en) 2008-09-02 2012-05-01 Anobit Technologies Ltd. Reliable data storage in analog memory cells subjected to long retention periods
US8482978B1 (en) 2008-09-14 2013-07-09 Apple Inc. Estimation of memory cell read thresholds by sampling inside programming level distribution intervals
WO2010042820A1 (en) 2008-10-10 2010-04-15 Arizona Board Of Regents, For And On Behalf Of Arizona State University Differential threshold voltage non-volatile memory and related methods
WO2010042824A1 (en) 2008-10-10 2010-04-15 Arizona Board Of Regents, For And On Behalf Of Arizona State University Differential threshold voltage non-volatile memory and related methods
US8239734B1 (en) 2008-10-15 2012-08-07 Apple Inc. Efficient data storage in storage device arrays
US8713330B1 (en) 2008-10-30 2014-04-29 Apple Inc. Data scrambling in memory devices
US8208304B2 (en) 2008-11-16 2012-06-26 Anobit Technologies Ltd. Storage at M bits/cell density in N bits/cell analog memory cell devices, M>N
US8174857B1 (en) 2008-12-31 2012-05-08 Anobit Technologies Ltd. Efficient readout schemes for analog memory cell devices using multiple read threshold sets
US8248831B2 (en) 2008-12-31 2012-08-21 Apple Inc. Rejuvenation of analog memory cells
US8924661B1 (en) 2009-01-18 2014-12-30 Apple Inc. Memory system including a controller and processors associated with memory devices
US8228701B2 (en) * 2009-03-01 2012-07-24 Apple Inc. Selective activation of programming schemes in analog memory cell arrays
US8259506B1 (en) 2009-03-25 2012-09-04 Apple Inc. Database of memory read thresholds
US8832354B2 (en) 2009-03-25 2014-09-09 Apple Inc. Use of host system resources by memory controller
US8238157B1 (en) 2009-04-12 2012-08-07 Apple Inc. Selective re-programming of analog memory cells
US8479080B1 (en) 2009-07-12 2013-07-02 Apple Inc. Adaptive over-provisioning in memory systems
JP2011044186A (ja) * 2009-08-19 2011-03-03 Oki Semiconductor Co Ltd ワード線駆動装置
US8495465B1 (en) 2009-10-15 2013-07-23 Apple Inc. Error correction coding over multiple memory pages
US20110133820A1 (en) * 2009-12-09 2011-06-09 Feng Pan Multi-Stage Charge Pump with Variable Number of Boosting Stages
US8677054B1 (en) 2009-12-16 2014-03-18 Apple Inc. Memory management schemes for non-volatile memory devices
US20110148509A1 (en) * 2009-12-17 2011-06-23 Feng Pan Techniques to Reduce Charge Pump Overshoot
US8694814B1 (en) 2010-01-10 2014-04-08 Apple Inc. Reuse of host hibernation storage space by memory controller
US8677203B1 (en) 2010-01-11 2014-03-18 Apple Inc. Redundant data storage schemes for multi-die memory systems
US8694853B1 (en) 2010-05-04 2014-04-08 Apple Inc. Read commands for reading interfering memory cells
US8572423B1 (en) 2010-06-22 2013-10-29 Apple Inc. Reducing peak current in memory systems
US8595591B1 (en) 2010-07-11 2013-11-26 Apple Inc. Interference-aware assignment of programming levels in analog memory cells
US9104580B1 (en) 2010-07-27 2015-08-11 Apple Inc. Cache memory for hybrid disk drives
US8645794B1 (en) 2010-07-31 2014-02-04 Apple Inc. Data storage in analog memory cells using a non-integer number of bits per cell
US8856475B1 (en) 2010-08-01 2014-10-07 Apple Inc. Efficient selection of memory blocks for compaction
US8694854B1 (en) 2010-08-17 2014-04-08 Apple Inc. Read threshold setting based on soft readout statistics
US9021181B1 (en) 2010-09-27 2015-04-28 Apple Inc. Memory management for unifying memory cell conditions by using maximum time intervals
JP2012109022A (ja) * 2012-03-07 2012-06-07 Nippon Telegr & Teleph Corp <Ntt> 読み出し装置
KR102459077B1 (ko) * 2016-01-12 2022-10-27 삼성전자주식회사 비선형 필터링 방식을 사용하는 메모리 시스템 및 그것의 읽기 방법
CN110610738B (zh) * 2018-06-15 2023-08-18 硅存储技术公司 用于闪存存储器系统的改进的感测放大器
JP2021047966A (ja) 2019-09-19 2021-03-25 キオクシア株式会社 半導体メモリ装置及び方法
US11205480B1 (en) * 2020-09-11 2021-12-21 Micron Technology, Inc. Ramp-based biasing in a memory device
US11556416B2 (en) 2021-05-05 2023-01-17 Apple Inc. Controlling memory readout reliability and throughput by adjusting distance between read thresholds
US11847342B2 (en) 2021-07-28 2023-12-19 Apple Inc. Efficient transfer of hard data and confidence levels in reading a nonvolatile memory
CN117727349A (zh) * 2024-02-08 2024-03-19 浙江力积存储科技有限公司 存储阵列

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128895A (en) * 1989-11-21 1992-07-07 Intel Corporation Method for programming a virtual ground EPROM cell including slow ramping of the column line voltage
JP3179943B2 (ja) * 1993-07-12 2001-06-25 株式会社東芝 半導体記憶装置
US5487033A (en) * 1994-06-28 1996-01-23 Intel Corporation Structure and method for low current programming of flash EEPROMS

Also Published As

Publication number Publication date
US5748533A (en) 1998-05-05
EP0798739A3 (en) 1998-07-29
DE69717525D1 (de) 2003-01-16
EP0798739A2 (en) 1997-10-01
EP0798739B1 (en) 2002-12-04
JPH10116495A (ja) 1998-05-06
DE69717525T2 (de) 2003-07-10

Similar Documents

Publication Publication Date Title
JP4037482B2 (ja) メモリセルのスレッシュホールド電圧を読取る場合に粗目−微細サーチを使用する読取回路
US6259627B1 (en) Read and write operations using constant row line voltage and variable column line load
US7366021B2 (en) Method and apparatus for sensing flash memory using delta sigma modulation
US5748534A (en) Feedback loop for reading threshold voltage
US7532529B2 (en) Apparatus and methods for multi-level sensing in a memory array
JP4859835B2 (ja) 事前充電回路を有するmramセンス増幅器及び検知方法
US6912150B2 (en) Reference current generator, and method of programming, adjusting and/or operating same
US20170040045A1 (en) Sense circuits, memory devices, and related methods for resistance variable memory
US7324381B2 (en) Low power multiple bit sense amplifier
US8625331B1 (en) Methods of programming and erasing programmable metallization cells (PMCs)
US8254178B2 (en) Self-timed integrating differential current
EP1023731A1 (en) Sense amplifier for flash memories
US7440332B2 (en) Low power multiple bit sense amplifier
US7075844B2 (en) Parallel sense amplifier with mirroring of the current to be measured into each reference branch
JP2001523034A (ja) 各セルが複数レベルの記憶状態を有するフローティングゲート記憶装置のためのセンサ回路
US5901085A (en) Programmable reference voltage source, particularly for analog memories
JP3113520B2 (ja) 不揮発性半導体記憶装置
US8174898B2 (en) Sense amplifier and data sensing method thereof
EP1473732A1 (en) Apparatus and method of multi-level sensing in a memory array
US20020186586A1 (en) Reading circuit for a non-volatile memory
WO2006124159A2 (en) Sense amplifier circuit for parallel sensing of four current levels
JP2000322896A (ja) フラッシュメモリ
JPH10149692A (ja) 電流センス型データ読出回路及びこれを備えたメモリ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060516

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term