JP4026371B2 - 燃焼式ヒータを有する内燃機関 - Google Patents

燃焼式ヒータを有する内燃機関 Download PDF

Info

Publication number
JP4026371B2
JP4026371B2 JP2002030710A JP2002030710A JP4026371B2 JP 4026371 B2 JP4026371 B2 JP 4026371B2 JP 2002030710 A JP2002030710 A JP 2002030710A JP 2002030710 A JP2002030710 A JP 2002030710A JP 4026371 B2 JP4026371 B2 JP 4026371B2
Authority
JP
Japan
Prior art keywords
combustion
heater
engine
internal combustion
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002030710A
Other languages
English (en)
Other versions
JP2003227424A (ja
Inventor
正和 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002030710A priority Critical patent/JP4026371B2/ja
Publication of JP2003227424A publication Critical patent/JP2003227424A/ja
Application granted granted Critical
Publication of JP4026371B2 publication Critical patent/JP4026371B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼式ヒータを有する内燃機関に関し、特に内燃機関の吸気系から燃焼用空気を取り入れて燃焼させ、その燃焼ガスを内燃機関の吸気系に導入する燃焼式ヒータを有する内燃機関に関する。
【0002】
【従来の技術】
近年、自動車などに搭載される内燃機関では、機関冷間時における室内用暖房装置の性能向上や内燃機関の暖機促進などを目的として、燃焼式ヒータが併設される技術が提案されている。
【0003】
上記した燃焼式ヒータとしては、例えば、内燃機関と独立して燃料を燃焼させるための燃焼室と、内燃機関の吸気通路から前記燃焼室へ燃焼用空気を導く空気導入通路と、前記燃焼室で燃焼されたガスを内燃機関の吸気通路へ導く燃焼ガス排出通路と、前記燃焼室で発生した燃焼熱を機関冷却水へ伝達させるとの間で熱交換を行う熱交換部とを備えた燃焼式ヒータが知られている。
【0004】
このような燃焼式ヒータを備えた内燃機関では、冷間時などに燃焼式ヒータが作動されると、燃焼式ヒータの燃焼ガスが内燃機関の吸気中に導入されるとともに、機関冷却水が燃焼ガスの熱を受けて昇温する。この結果、内燃機関の燃焼安定性の向上、暖機促進、或いは車室内用暖房装置の性能向上を図ることが可能となる。
【0005】
【発明が解決しようとする課題】
ところで、車両の停止時などに内燃機関の運転を一時的に停止させる技術が提案されている。このような技術が燃焼式ヒータを備えた内燃機関に適用されると、車室内用暖房装置が作動した状態で内燃機関の運転が停止される場合があり、そのような場合には燃焼式ヒータが作動した状態で内燃機関の運転が停止されることが想定される。
【0006】
しかしながら、燃焼式ヒータが作動状態にあるときに内燃機関の運転が停止されると、吸気通路内のガスが内燃機関へ吸入されなくなるため、燃焼式ヒータから排出された燃焼ガスが内燃機関の吸気通路に充満し、吸気通路内に充満した燃焼ガスが空気導入通路を介して燃焼式ヒータに再流入し易くなる。
【0007】
燃焼式ヒータから一旦排出された燃焼ガスが燃焼式ヒータに再流入すると、燃焼式ヒータにおいて燃料を燃焼させる際に必要となる酸素量が不足するため、燃焼式ヒータの失火が誘発され、燃焼式ヒータの作動を継続することが困難となる場合がある。
【0008】
本発明は、上記したような実情に鑑みてなされたものであり、燃焼式ヒータを備えた内燃機関において、燃焼式ヒータが作動された状態で内燃機関の運転が停止される場合であっても燃焼式ヒータを好適に作動させることができる技術を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記した課題を解決するために以下のような手段を採用した。
すなわち、本発明に係る燃焼式ヒータを有する内燃機関は、
内燃機関の吸気系から燃焼用空気を取り入れて燃料とともに燃焼させ、その燃焼ガスを前記内燃機関の吸気系へ導入する燃焼式ヒータと、
前記内燃機関の運転停止時は、前記燃焼式ヒータの失火を抑制する失火抑制手段と、
を備えるようにした。
【0010】
この発明は、内燃機関の吸気通路から燃焼用空気を取り込むとともに燃焼済みのガスを内燃機関の吸気通路へ排出するよう構成された燃焼式ヒータを有する内燃機関において、内燃機関の運転停止後も燃焼式ヒータを作動させる場合に、燃焼式ヒータの失火を抑制することを最大の特徴としている。
【0011】
内燃機関の吸気通路から燃焼用空気を取り込むとともに燃焼済みのガスを内燃機関の吸気通路へ排出するよう構成された燃焼式ヒータを有する内燃機関では、内燃機関の運転停止時に燃焼式ヒータが作動すると、燃焼式ヒータから排出された燃焼ガスが内燃機関の吸気系に充満するため、前記吸気系から前記燃焼式ヒータへ燃焼ガスが再流入し、燃焼式ヒータが失火し易くなる。
【0012】
これに対し、本発明に係る燃焼式ヒータを有する内燃機関では、失火抑制手段が内燃機関の運転停止時における燃焼式ヒータの失火を抑制するため、燃焼式ヒータが失火し難くなり、以て内燃機関の運転停止時においても燃焼式ヒータが作動し易くなる。
【0013】
内燃機関の運転停止時における燃焼式ヒータの失火を抑制する方法としては、例えば、燃焼式ヒータから内燃機関の吸気系へ導入される燃焼ガスの量を減量する方法、燃焼式ヒータから内燃機関の吸気系へ導入される燃焼ガス中の酸素量を増加させる方法、燃焼式ヒータにおいて強制的に火炎を発生させる方法、燃焼式ヒータから内燃機関の吸気系に対する燃焼ガスの導入を禁止する方法、或いは上記した方法を適宜組み合わせる方法などを例示することができる。
【0014】
燃焼式ヒータから内燃機関の吸気系へ導入される燃焼ガスの量を減量する具体的な方法としては、燃焼式ヒータで燃焼に供される燃料と空気との少なくとも一方を減少させる方法を例示することができる。
【0015】
燃焼式ヒータから内燃機関の吸気系へ導入される燃焼ガス中の酸素量を増加させる方法としては、燃焼式ヒータで燃焼に供される燃料量を減量し、燃焼式ヒータをリーン雰囲気で運転させる方法を例示することができる。
【0016】
燃焼式ヒータにおいて強制的に火炎を発生させる具体的な方法としては、燃焼式ヒータが備えるグロープラグを作動させて燃料を強制的に燃焼させる方法を例示することができる。
【0017】
燃焼式ヒータから内燃機関の吸気系に対する燃焼ガスの導入を禁止する具体的な方法としては、燃焼式ヒータの燃焼ガスを内燃機関の吸気系と排気系との何れか一方に選択的に導入可能な構成を採用し、内燃機関の運転停止時は燃焼式ヒータの燃焼ガスを内燃機関の排気系へ導入する方法を例示することができる。
【0018】
その際、燃焼式ヒータを有する内燃機関は、燃焼式ヒータの燃焼ガスを内燃機関の吸気系へ導く第1の燃焼ガス排出通路と、燃焼式ヒータの燃焼ガスを内燃機関の排気系へ導く第2の燃焼ガス排出通路と、第1の燃焼ガス排出通路と第2の燃焼ガス排出通路との何れか一方を遮断する通路切換手段と、を更に備え、失火抑制手段が内燃機関の運転停止時に第1の燃焼ガス排出通路を遮断すべく通路切換手段を制御するようにしてもよい。
【0019】
このように失火抑制手段が内燃機関の運転停止時に第1の燃焼ガス排出通路を遮断すべく通路切換手段を制御する場合には、本発明に係る燃焼式ヒータを有する内燃機関は、内燃機関の運転停止要求が発生した場合に、失火抑制手段が第1の燃焼ガス排出通路を遮断すべく通路切換手段を制御したことを条件に、内燃機関の運転を停止する運転停止手段を更に備えるようにしてもよい。
【0020】
すなわち、本発明に係る燃焼式ヒータを有する内燃機関は、内燃機関の運転停止要求が発生した場合は、燃焼式ヒータから排出される燃焼ガスの排出先が内燃機関の吸気系から排気系に切り換えられた後に、内燃機関の運転を停止するようにしてもよい。
【0021】
これは、内燃機関の運転が停止された後に、燃焼式ヒータから排出される燃焼ガスの排出先が内燃機関の吸気系から排気系へ切り換えられると、内燃機関の運転が停止された時点から燃焼ガスの排出先が切り換えられるまでの期間において燃焼式ヒータの燃焼ガスが燃焼式ヒータに再循環してしまうことが想定されるからである。
【0022】
尚、失火抑制手段は、内燃機関の運転停止要求が発生した場合に、内燃機関の機関回転数が所定回転数以下であることを条件に、第1の燃焼ガス排出通路を遮断すべく通路切換手段を制御することが好ましい。
【0023】
これは、内燃機関の機関回転数が比較的高いときは、内燃機関の吸入系と排気系との圧力差が大きくなり易いため、そのような状況下で燃焼ガスの排出先が内燃機関の吸気系から排気系に切り換えられると、前記した圧力差によって燃焼式ヒータを流れるガスの流速が急激に変化し、以て燃焼式ヒータの失火が誘発される虞があるからである。
【0024】
また、本発明に係る内燃機関の吸気系に、該吸気系を流れる吸入空気量を調整する吸気絞り弁が設けられている場合には、運転停止手段は、失火抑制手段が第1の燃焼ガス排出通路を遮断すべく通路切換手段を制御したことを条件に、吸気絞り弁を閉弁させるようにすることが好ましい。
【0025】
これは、内燃機関の吸気系において第1の燃焼ガス排出通路との接続部位より下流に吸気絞り弁が配置されている場合を想定したものであり、そのような場合に吸気絞り弁が閉弁された後に燃焼式ヒータから排出される燃焼ガスの排出先が内燃機関の吸気系から排気系へ切り換えられると、吸気絞り弁が閉弁された時点から燃焼ガスの排出先が切り換えられるまでの期間において燃焼式ヒータの燃焼ガスが内燃機関の吸気系に充満し易くなり、燃焼ガスが燃焼式ヒータに再循環してしまうことが想定されるからである。
【0026】
【発明の実施の形態】
以下、本発明に係る燃焼式ヒータを有する内燃機関の具体的な実施の形態について添付した図面に基づいて説明する。
【0027】
<実施の形態1>
先ず、本発明に係る燃焼式ヒータを有する内燃機関の第1の実施の形態について図1〜図5に基づいて説明する。
【0028】
図1は、本発明を適用する内燃機関とその吸排気系の概略構成を示す図である。
図1に示す内燃機関1は、4つの気筒1aを備えた水冷式の圧縮着火式ディーゼル機関である。
【0029】
この内燃機関1には、図示しないクランクシャフトが所定角度回転する度にパルス信号を出力するクランクポジションセンサ30と、図示しないウォータージャケットを流れる冷却水の温度に対応した電気信号を出力する水温センサ31が取り付けられている。
【0030】
前記内燃機関1の各気筒1aには、その噴孔が燃焼室に臨むよう燃料噴射弁1bが取り付けられている。各燃料噴射弁1bは、図示しない燃料ポンプから供給される燃料を所定の圧力となるまで蓄える蓄圧室(コモンレール室)1cと連通している。
【0031】
このような燃料噴射系では、燃料ポンプから吐出された燃料が蓄熱室にて所定圧力に達するまで蓄圧される。蓄圧室1cにて所定圧力まで蓄圧された燃料は、各気筒1aの燃料噴射弁1bに印加され、各燃料噴射弁1bが開弁した際に各気筒1aの燃焼室へ噴射される。
【0032】
次に、前記内燃機関1には、吸気枝管2が接続され、その吸気枝管2の各枝管が各気筒1aの燃焼室と図示しない吸気ポートを介して連通している。前記吸気枝管2は、吸気管3に接続され、吸気管3は、エアフィルタを内装したエアクリーナボックス4に接続されている。
【0033】
前記吸気管3における前記エアクリーナボックス4の直下流の部位には、該吸気管3内を流れる吸入空気の質量に対応した電気信号を出力するエアフロメータ29が取り付けられている。
【0034】
前記吸気管3における前記エアフロメータ29より下流の部位には、遠心過給機(ターボチャージャ)5のコンプレッサハウジング5aが設けられている。このコンプレッサハウジング5aより下流の吸気管3には、前記コンプレッサハウジング5aにて圧縮された際に高温となった吸入空気を冷却するためのインタークーラ6が設けられている。
【0035】
前記インタークーラ6下流の吸気管3には、吸気管3内の吸入空気流量を調節する吸気絞り弁7が設けられ、この吸気絞り弁7には、該吸気絞り弁7を開閉駆動する吸気絞り用アクチュエータ8が取り付けられている。
【0036】
このように構成された吸気系では、エアクリーナボックス4に流入した新気がエアフィルタにて埃や塵を除去された後、吸気管3を経てコンプレッサハウジング5aに導かれ、コンプレッサハウジング5a内で圧縮される。コンプレッサハウジング5a内で圧縮されて高温となった新気は、インタークーラ6にて冷却される。インタークーラ6で冷却された吸入空気は、必要に応じて吸気絞り弁7によって流量を調節された後、吸気枝管2を経て各気筒1aの燃焼室に分配される。各気筒1aの燃焼室へ分配された吸入空気は、燃料噴射弁1bから噴射される燃料とともに燃焼される。
【0037】
また、内燃機関1には、排気枝管9が接続され、この排気枝管9の各枝管が各気筒1aの燃焼室と図示しない排気ポートを介して連通している。前記排気枝管9は、遠心過給器5のタービンハウジング5bを介して排気管10に接続され、排気管10は、下流にて図示しないマフラーに接続されている。
【0038】
前記排気管10の途中には、排気中の有害ガス成分を浄化する排気浄化触媒11が配置されている。この排気浄化触媒11は、該排気浄化触媒11の床温が所定の温度以上であるときに活性して排気中の有害ガス成分を浄化可能となる触媒である。
【0039】
上記したような排気浄化触媒11としては、酸化触媒、選択還元型リーンNOX触媒、吸蔵還元型リーンNOX触媒、ディーゼル・パティキュレート・フィルタ(DPF)、ディーゼル・パティキュレート・NOx・リダクション(DPNR)触媒等を例示することができる。
【0040】
前記排気管10において排気浄化触媒11の直上流の部位には、該排気管10を流通する排気の空燃比に対応した電気信号を出力する空燃比センサ12が設けられている。
【0041】
このように構成された排気系では、各気筒1aの燃焼室で燃焼された混合気(既燃ガス)が排気ポートを介して排気枝管9へ排出され、次いで排気枝管9から遠心過給器5のタービンハウジング5b内に流入する。タービンハウジング5b内に流入した排気は、タービンハウジング5b内の図示しないタービンホイールを回転させた後に該タービンハウジング5b内から流出する。
【0042】
前記タービンハウジング5bから排出された排気は、排気管10を介して排気浄化触媒11に流入する。その際、排気浄化触媒11の床温が温度浄化ウィンド内にあれば、排気浄化触媒11において排気中の有害ガス成分が除去又は浄化される。排気浄化触媒11にて有害ガス成分を除去又は浄化された排気は、マフラーを介して大気中に放出される。
【0043】
次に、内燃機関1には、燃焼式ヒータ13が併設されている。燃焼式ヒータ13は、図2に示すように、外筒130と、外筒130に内装される中間筒131と、中間筒131に内装される燃焼筒132とを備えている。
【0044】
前記外筒130と前記中間筒131との間には、内燃機関1の冷却水を流すためのヒータ内冷却水路200が形成されている。前記外筒130には、前記ヒータ内冷却水路200内に冷却水を取り入れるための冷却水導入ポート133と、前記ヒータ内冷却水路200内の冷却水を排出するための冷却水排出ポート134とが形成されている。
【0045】
前記冷却水導入ポート133には、冷却水導入管20が接続され、前記冷却水排出ポート134には、冷却水排出管21が接続されている。冷却水導入管20と冷却水排出管21は、図1に示すように、内燃機関1の図示しないウォータジャケットと接続されている。冷却水導入管20の途中には、電動式のウォーターポンプ22が設けられ、内燃機関1のウォータジャケット内を流れる冷却水が冷却水導入ポート133へ強制的に送り込まれるようになっている。一方、冷却水排出管21の途中には、室内用暖房装置のヒータコア23が配置され、該冷却水排出管21を流れる冷却水の持つ熱が暖房用空気へ伝達されるようになっている。
【0046】
前記した燃焼筒132の基端部には、燃料蒸発部(ウィック)141が設けられている。このウィック141には、内燃機関1用の燃料ポンプから吐出された燃料の一部を該ウィック141に導く燃料導入管27が接続されている。前記燃焼筒132内における前記ウィック141の近傍には、前記燃料導入管27からウィック141へ供給された燃料を気化するための燃料気化用グロープラグ142と、前記燃料気化用グロープラグ142によって気化された燃料に点火するための燃料点火用グロープラグ143とが配置されている。尚、燃料気化用グロープラグ142と燃料点火用グロープラグ143とは単一のグロープラグにより兼用されるようにしてもよい。
【0047】
前記外筒130には、前記燃焼筒132へ燃焼用の空気を送り込むための送風ファン139と、この送風ファン139を回転駆動するファンモータ140とを内装したハウジング138が取り付けられている。
【0048】
前記ハウジング138には、該ハウジング138内に燃焼用空気を取り込むための吸気ポート136が形成されている。前記吸気ポート136には、図1に示すように、吸気導入通路14が接続され、この吸気導入通路14は、吸気管3におけるインタークーラ6と吸気絞り弁7との間の部位に接続されている。
【0049】
前記燃焼筒132の周壁における複数箇所には、該燃焼筒132内と前記ハウジング138内とを連通させる貫通孔132aが設けられ、前記ハウジング138内において前記送風ファン139によって送り出された空気が前記貫通孔132aを介して燃焼筒132内へ流入することが可能になっている。
【0050】
前記中間筒131と燃焼筒132との間には、前記燃焼筒132で発生した燃焼ガスを流すための燃焼ガス通路201が形成されている。前記中間筒131の適当な部位には、前記燃焼ガス通路201と前記外筒130の外部とを連通する燃焼ガス排出ポート135が形成されている。
【0051】
前記燃焼ガス排出ポート135には、図1に示すように、燃焼ガス排出通路15が接続され、この燃焼ガス排出通路15は、三方切換弁16に接続されている。この三方切換弁16には、前記燃焼ガス排出通路15に加え、吸気側排出通路17と排気側排出通路18とが接続されている。
【0052】
前記吸気側排出通路17は前記吸気管3において前記吸気導入通路14の接続部位より下流であり且つ前記吸気絞り弁7より上流の部位に接続されており、前記排気側排出通路18は前記排気管10においてタービンハウジング5bと排気浄化触媒11との間の部位に接続されている。
【0053】
前記三方切換弁19は、吸気側排出通路17と排気側排出通路18との何れか一方を遮断することにより、吸気側排出通路17と排気側排出通路18との何れか一方を燃焼ガス排出通路15と導通させるよう構成されている。
【0054】
このように構成された燃焼式ヒータ13では、ファンモータ140、燃料気化用グロープラグ142、燃料点火用グロープラグ143、及び電動ウォーターポンプ22に駆動電力が印加されるとともに図示しない燃料ポンプが作動されると、燃料ポンプが図示しない燃料タンク内の燃料を吸い上げて前記燃焼筒132のウィック141へ供給し、ファンモータ140が送風ファン139を作動させて吸気管3内を流れる空気の一部をハウジング138内へ取り込むとともに燃焼筒132内へ向けて送り出すことになる。
【0055】
前記送風ファン139によって送り出された空気は、貫通孔132aを通って燃焼筒132内へ流入する。前記燃料ポンプにより前記ウィック141へ供給された燃料は燃料気化用グロープラグ142によって加熱されて気化する。そして、前記空気と前記気化燃料とが混ざり合って混合気を形成し、燃料点火用グロープラグ143によって更に加熱されて着火及び燃焼される。
【0056】
前記燃焼筒132内で点火されて燃焼した燃焼ガスは、送風ファン139によって送り出される空気の圧力によって燃焼筒132内から燃焼ガス通路201へ押し出され、次いで燃焼ガス通路201から燃焼ガス排出ポート135へ排出される。
【0057】
燃焼ガス排出ポート135へ排出された燃焼ガスは、燃焼ガス排出通路15を介して三方切換弁16へ導かれる。その際、三方切換弁19が排気側排出通路18を遮断していると、前記した燃焼ガスが吸気側排出通路17を介して吸気管3内へ排出されることになる。一方、三方切換弁19が吸気側排出通路17を遮断していると、前記した燃焼ガスが排気側排出通路18を介して排気管10内へ排出されることになる。
【0058】
また、電動ウォーターポンプ22は、内燃機関1のウォータジャケット内の冷却水を燃焼式ヒータ13の冷却水導入ポート133へ圧送する。冷却水導入ポート133へ圧送された冷却水は、前記冷却水導入ポート133からヒータ内冷却水路200へ導かれ、ヒータ内冷却水路200を通った後に冷却水排出ポート134へ排出される。
【0059】
その際、燃焼ガス通路201を流れる燃焼ガスの熱が中間筒131の壁面を介してヒータ内冷却水路200内を流れる冷却水に伝達され、冷却水の温度が上昇する。
【0060】
このようにして昇温された冷却水は、冷却水排出ポート134から冷却水排出管21へ排出され、ヒータコア23を経て内燃機関1のウォータジャケット内へ戻され、ウォータジャケット内を循環する。ヒータコア23では、冷却水が持つ熱の一部が暖房用空気に伝達され、暖房用空気を昇温させる。
【0061】
ここで図1に戻り、上記したように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニット(ECU:Electronic Control Unit)28が併設されている。このECU28は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。
【0062】
ECU28には、前述した空燃比センサ12、エアフローメータ29、クランクポジションセンサ30、及び水温センサ31に加え、図示しないアクセルペダルの操作量(アクセル開度)に対応した電気信号を出力するアクセルポジションセンサ33、イグニッションスイッチ34、スタータスイッチ35等の各種センサが電気配線を介して接続され、上記した各種センサの出力信号がECU28に入力されるようになっている。
【0063】
また、ECU28には、燃料噴射弁1b、吸気絞り用アクチュエータ8、三方切換弁16、電動ウォーターポンプ22、ファンモータ140、燃料気化用グロープラグ142、燃料点火用グロープラグ143等が電気配線を介して接続され、ECU28が上記した各種センサの出力信号値をパラメータとして、燃料噴射弁1b、吸気絞り用アクチュエータ8、三方切換弁16、電動ウォーターポンプ22、ファンモータ140、燃料気化用グロープラグ142、燃料点火用グロープラグ143等を制御することが可能となっている。
【0064】
ここで、ECU28は、図3に示すように、双方向性バス280によって相互に接続された、CPU281と、ROM282と、RAM283と、バックアップRAM284と、入力ポート286と、出力ポート287とを備えるとともに、前記入力ポート286に接続されたA/Dコンバータ(A/D)285を備えている。
【0065】
前記入力ポート286は、クランクポジションセンサ30、イグニッションスイッチ34、スタータスイッチ35等のように、デジタル信号形式の信号を出力するセンサの出力信号を入力し、それらの出力信号をCPU281やRAM283へ送信する。
【0066】
前記入力ポート286は、空燃比センサ12、エアフロメータ29、水温センサ31、アクセルポジションセンサ33等のように、アナログ信号形式の信号を出力するセンサのA/D285を介して入力し、それらの出力信号をCPU281やRAM283へ送信する。
【0067】
前記出力ポート287は、燃料噴射弁1b、吸気絞り用アクチュエータ8、三方切換弁16、電動ウォーターポンプ22、ファンモータ140、燃料気化用グロープラグ142、燃料点火用グロープラグ143等と電気配線を介して接続され、CPU281から出力される制御信号を、前記した燃料噴射弁1b、吸気絞り用アクチュエータ8、三方切換弁16、電動ウォーターポンプ22、ファンモータ140、燃料気化用グロープラグ142、あるいは燃料点火用グロープラグ143へ送信する。
【0068】
前記ROM282は、燃料噴射弁1bを制御するための燃料噴射弁制御ルーチン、吸気絞り弁7を制御するための吸気絞り制御ルーチン、燃焼式ヒータ13と三方切換弁37と電動ウォーターポンプ24を統括して制御するヒータ制御ルーチン等の各種アプリケーションプログラムに加え、各種の制御マップを記憶している。
【0069】
前記RAM283は、各センサからの出力信号やCPU281の演算結果等を格納する。前記演算結果は、例えば、クランクポジションセンサ30がパルス信号を出力する時間的な間隔に基づいて算出される機関回転数である。これらのデータは、クランクポジションセンサ30がパルス信号を出力する都度、最新のデータに書き換えられる。
【0070】
前記バックアップRAM284は、イグニッションスイッチ34がオフにされた後もデータを記憶可能な不揮発性のメモリである。
【0071】
前記CPU281は、前記ROM282に記憶されたアプリケーションプログラムに従って動作して、燃料噴射弁制御、吸気絞り制御、燃焼式ヒータ制御などの既知の制御に加え、本発明の要旨となる機関停止時ヒータ制御を実行する。
【0072】
以下、本発明の要旨となる機関停止時ヒータ制御について述べる。
【0073】
CPU281は、内燃機関1が運転状態にあるときに機関運転停止条件が成立すると、内燃機関1の運転を一時的に停止する機関運転停止制御を実行する。前記した機関停止条件としては、例えば、水温センサ31の出力信号値(冷却水温度)が所定温度以上である、内燃機関1を搭載した車両の走行速度が“0”である等の条件を例示することができる。
【0074】
ところで、室内用暖房装置のスイッチがオン状態にある場合のように、内燃機関1の運転停止後も燃焼式ヒータ13を作動させる必要がある場合に、上記した機関運転停止制御が実行されると、内燃機関1の運転停止により吸気管3内のガスの流れが停止するため、燃焼式ヒータ13から排出される燃焼ガスが燃焼ガス排出通路15及び吸気側排出通路16を介して吸気管3内へ供給され、排出された燃焼ガスが吸気管3内に充満し、吸気管3内から吸気導入通路14を介して燃焼式ヒータ13に再流入する事態が想定される。
【0075】
燃焼式ヒータ13の燃焼ガスが吸気導入通路14を介して燃焼式ヒータ13に再流入されると、該燃焼式ヒータ13において燃焼に供される酸素量が過剰に低下してしまい、燃焼式ヒータ13が失火する場合がある。
【0076】
これに対し、本実施の形態に係る機関停止時ヒータ制御では、CPU281は、機関運転停止条件が成立した際に燃焼式ヒータ13が作動状態にあると、流路切換弁17を遮断し且つ燃焼ガス排出通路15と排気側排出通路18とを導通させるべく三方切換弁16を制御した後に、機関運転停止制御を実行するようにした。
【0077】
この場合、燃焼式ヒータ13から排出される燃焼ガスは、燃焼ガス排出通路15及び排気側排出通路18を介して排気管10へ排出されることになるため、吸気管3内に燃焼ガスが充満することがない。この結果、燃焼式ヒータ13から排出された燃焼ガスが燃焼式ヒータ13内に再流入することがなく、燃焼式ヒータ13の失火が防止されることになる。
【0078】
但し、吸気管3内と排気管10内との圧力差が大きいときに燃焼ガスの排出先が吸気管3から排気管10へ切り換えられると、燃焼式ヒータ13内を通過するガスの流速が急速に上昇して燃焼式ヒータ13が失火する虞があるため、吸気管3内と排気管10内との圧力差が小さいことを条件に燃焼ガスの排出先を吸気管3から排気管10へ切り換えることが好ましい。
【0079】
吸気管3内と排気管10内との圧力差が小さい時としては、吸入空気量及び排気量が少なくなる低回転運転時を例示することができ、特にアイドル運転時が好ましい。
【0080】
また、三方切換弁16の状態が排気側排出通路18を遮断する状態から流路切換弁17を遮断する状態へ実際に切り換わるまでにはある程度の時間(以下、切換所要時間と称する)を要するため、CPU281は、三方切換弁16の切換制御を開始した時点から前記切換所要時間が経過した後に機関運転停止制御を行うことが好ましい。
【0081】
これは、三方切換弁16が排気側排出通路18を遮断する状態から流路切換弁17を遮断する状態へ切り換わる途中で内燃機関1の運転が停止されると、燃焼式ヒータ13から排出された燃焼ガスが吸気管3を介して燃焼式ヒータ13に再流入する場合があるからである。
【0082】
ここで、本実施の形態に係る機関停止時ヒータ制御について図5に沿って具体的に説明する。
【0083】
図5は、機関運転停止時ヒータ制御ルーチンを示すフローチャート図である。機関運転停止時ヒータ制御ルーチンは、予めROM282に記憶されているルーチンであり、CPU281によって所定時間毎(例えば、クランクポジションセンサ30がパルス信号を出力する度)に繰り返し実行されるルーチンである。
【0084】
機関運転停止時ヒータ制御ルーチンでは、CPU281は、先ずS501において機関運転停止条件が成立しているか否かを判別する。
【0085】
前記S501において機関運転停止条件が不成立であると判定された場合は、CPU281は、本ルーチンの実行を一旦終了する。
【0086】
前記S501において機関運転停止条件が成立していると判定された場合は、CPU281は、S502へ進み、燃焼式ヒータ13が作動状態にあるか否かを判別する。
【0087】
前記S502において燃焼式ヒータ13が作動状態にないと判定された場合は、CPU281は、S507へ進み、機関運転停止処理を実行する。具体的には、CPU281は、燃料噴射弁1bに対する駆動電力の印加を停止し、吸気絞り弁7を閉弁すべく吸気絞り用アクチュエータ8を制御する。
【0088】
一方、前記S502において燃焼式ヒータ13が作動状態にあると判定された場合は、CPU281は、S503へ進み、内燃機関1の機関回転数:Neが所定回転数(アイドル回転数)以下であるか否かを判別する。
【0089】
前記S503において内燃機関1の機関回転数:Neが所定回転数(アイドル回転数)より高いと判定された場合は、CPU281は、前述したS502以降の処理を再度実行する。
【0090】
一方、前記S503において内燃機関1の機関回転数:Neが所定回転数(アイドル回転数)以下であると判定された場合は、CPU281は、S504へ進み、吸気側排出通路17を遮断し且つ排気側排出通路18と燃焼ガス排出通路15とを導通させるべく三方切換弁16を制御する。すなわち、CPU281は、燃焼式ヒータ13から排出される燃焼ガスの排出先を吸気管3から排気管10へ切り換える。
【0091】
S505では、CPU281は、三方切換弁16に対する切換制御が開始された時点からの経過時間を計時するカウンタ:Cを起動する。
【0092】
S506では、CPU281は、前記カウンタ:Cのカウンタ値:Cが前述した切換所要時間以上であるか否かを判別する。
【0093】
前記S506において前記カウンタ:Cのカウンタ値:Cが前述した切換所要時間未満であると判定された場合は、CPU281は、三方切換弁16の状態が排気側排出通路18を遮断する状態から吸気側排出通路17を遮断する状態へ未だ切り換わっていないとみなし、前記したS506の処理を再度実行する。
【0094】
前記S506において前記カウンタ:Cのカウンタ値:Cが前述した切換所要時間以上であると判定された場合は、CPU281は、三方切換弁16の状態が排気側排出通路18を遮断する状態から吸気側排出通路17を遮断する状態へ切り換わったとみなし、S507へ進む。
【0095】
S507では、CPU281は、機関運転停止処理を実行する。すなわち、CPU281は、燃料噴射弁1bに対する駆動電力の印加を停止するとともに、吸気絞り弁7を閉弁すべく吸気絞り用アクチュエータ8を制御する。
【0096】
このようにCPU281が機関停止時ヒータ制御ルーチンを実行することにより、本発明に係る失火抑制手段が実現されることになる。
【0097】
従って、本実施の形態に係る燃焼式ヒータを有する内燃機関によれば、燃焼式ヒータ13が作動した状態で内燃機関1の運転が停止される場合に、燃焼式ヒータ13から排出された燃焼ガスが再度燃焼式ヒータ13に流入することを抑制することができるため、燃焼式ヒータ13が酸素不足によって失火することを防止することができ、内燃機関1の運転停止後も燃焼式ヒータ13を好適に作動させることが可能となる。
【0098】
<実施の形態2>
次に、本発明に係る燃焼式ヒータを有する内燃機関の第2の実施の形態について図6及び図7に基づいて説明する。ここでは、前述した第1の実施の形態と異なる構成について説明し、同様の構成については説明を省略するものとする。
【0099】
前述した第1の実施の形態と本実施の形態との相違点は、機関停止時ヒータ制御において三方切換弁16の切換制御を実行するにあたり、燃焼式ヒータ13の出力を低下させる点にある。
【0100】
前述した第1の実施の形態で述べたように、三方切換弁16の状態が排気側排出通路18を遮断する状態から吸気側排出通路17を遮断する状態へ切り換わるまでにはある程度の時間(切換所要時間)がかかる。
【0101】
このため、三方切換弁16の状態が排気側排出通路18を遮断する状態から吸気側排出通路17を遮断する状態へ切り換わるまでの期間内に燃焼式ヒータ13から排出された燃焼ガスの一部は、三方切換弁16の状態が吸気側排出通路17を遮断する状態へ切り換わった後も吸気側排出通路17内や吸気管3内に残留することになる。
【0102】
このように吸気側排出通路17内や吸気管3内に残留した燃焼ガスは、吸気導入通路14を介して燃焼式ヒータ13に再流入する可能性があり、そのような場合には燃焼式ヒータ13が酸素不足によって失火する虞がある。
【0103】
そこで、本実施の形態に係る機関停止時ヒータ制御では、三方切換弁16の状態が排気側排出通路18を遮断する状態から吸気側排出通路17を遮断する状態へ切り換わるまでの期間において、燃焼式ヒータ13の出力を低下させるべくヒータ出力低下制御が実行されるようにした。
【0104】
ヒータ出力低下制御を実行する具体的な方法としては、燃料ポンプの吐出量を低下させて燃焼式ヒータ13に対する燃料供給量を減量する方法、又は、燃料ポンプの吐出量を低下させるとともにファンモータ140の回転速度を低下させて燃焼式ヒータ13に対する燃料供給量及び空気供給量を減量させる方法を例示することができる。
【0105】
燃焼式ヒータ13に対する燃料供給量のみが減量された場合には、燃焼式ヒータ13に供給される燃料と空気との比率は空気過剰な比率となる。すなわち、燃焼式ヒータ13に対する燃料供給量のみが減量された場合には、燃焼式ヒータ13がリーン雰囲気で運転されることとなる。
【0106】
この場合、燃焼式ヒータ13から排出される燃焼ガスには比較的多量の酸素が残存することになるため、そのような燃焼ガスが前記した残留燃焼ガスとして燃焼式ヒータ13に再流入しても燃焼式ヒータ13における酸素不足が抑制され、以て燃焼式ヒータ13の失火が抑制されることになる。
【0107】
また、燃焼式ヒータ13に対する燃料供給量及び空気供給量が減量された場合には、燃焼式ヒータ13から単位時間当たりに排出される燃焼ガスの量が減少し、それに応じて前記した残留燃焼ガスの量が減少することになる。
【0108】
この場合、燃焼式ヒータ13に再流入する残留燃焼ガスの量が減少することになるため、燃焼式ヒータ13における酸素不足が抑制され、以て燃焼式ヒータ13の失火が抑制されることになる。
【0109】
尚、燃焼式ヒータ13の出力低下制御が燃焼式ヒータ13から実際に排出される燃焼ガスに反映されるまでには多少の時間(以下、応答遅れ時間と称する)がかかるため、図6に示すように、燃焼式ヒータ13の出力低下制御が実行された時点から前記した応答遅れ時間が経過した後に三方切換弁16の切換制御が開始されることが好ましい。
【0110】
このように燃焼式ヒータ13の出力低下制御が実行された時点から前記した応答遅れ時間が経過した後に三方切換弁16の切換制御が行われると、三方切換弁16の状態が排気側排出通路18を遮断する状態から吸気側排出通路17を遮断する状態に切り換わるまでの期間に燃焼式ヒータ13から排出される燃焼ガスは、前記した出力低下制御が反映された燃焼ガスとなる。
【0111】
この場合、三方切換弁16の状態が吸気側排出通路17を遮断する状態へ切り換わった後に吸気側排出通路17内や吸気管3内に残留する燃焼ガスは、前記出力低下制御が反映された燃焼ガスとなるため、そのような燃焼ガスが燃焼式ヒータ13に再流入しても燃焼式ヒータ13が失火することがなくなる。
【0112】
以下、本実施の形態に係る機関停止時ヒータ制御について図7に沿って具体的に説明する。
【0113】
図7は、機関運転停止時ヒータ制御ルーチンを示すフローチャート図である。機関運転停止時ヒータ制御ルーチンは、予めROM282に記憶されているルーチンであり、CPU281によって所定時間毎(例えば、クランクポジションセンサ30がパルス信号を出力する度)に繰り返し実行されるルーチンである。
【0114】
機関運転停止時ヒータ制御ルーチンでは、CPU281は、先ずS501において機関運転停止条件が成立しているか否かを判別する。
【0115】
前記S701において機関運転停止条件が不成立であると判定された場合は、CPU281は、本ルーチンの実行を一旦終了する。
【0116】
前記S701において機関運転停止条件が成立していると判定された場合は、CPU281は、S702へ進み、燃焼式ヒータ13が作動状態にあるか否かを判別する。
【0117】
前記S702において燃焼式ヒータ13が作動状態にないと判定された場合は、CPU281は、S712へ進み、機関運転停止処理を実行する。
【0118】
一方、前記S702において燃焼式ヒータ13が作動状態にあると判定された場合は、CPU281は、S703へ進み、燃焼式ヒータ13の出力低下制御を実行する。
【0119】
S704では、CPU281は、出力低下制御の実行が開始された時点からの経過時間を計時する第1のカウンタ:C1を作動させる。
【0120】
S705では、前記第1のカウンタ:C1のカウンタ値:C1が前述した応答遅れ時間以上であるか否かを判別する。
【0121】
前記S705において前記第1のカウンタ:C1のカウンタ値:C1が前述した応答遅れ時間未満であると判定された場合は、CPU281は、前記第1のカウンタ:C1のカウンタ値:C1が前記応答遅れ時間以上となるまでS705の処理を繰り返し実行する。
【0122】
一方、前記S705において前記第1のカウンタ:C1のカウンタ値:C1が前述した応答遅れ時間以上であると判定された場合は、CPU281は、S706へ進み、内燃機関1の機関回転数:Neが所定回転数(アイドル回転数)以下であるか否かを判別する。
【0123】
前記S706において内燃機関1の機関回転数:Neが所定回転数(アイドル回転数)より高いと判定された場合は、CPU281は、前述したS702以降の処理を再度実行する。
【0124】
一方、前記S706において内燃機関1の機関回転数:Neが所定回転数(アイドル回転数)以下であると判定された場合は、CPU281は、S707へ進み、吸気側排出通路17を遮断し且つ排気側排出通路18と燃焼ガス排出通路15とを導通させるべく三方切換弁16を制御する。
【0125】
S708では、CPU281は、三方切換弁16に対する切換制御が開始された時点からの経過時間を計時する第2のカウンタ:C2を起動する。
【0126】
S709では、CPU281は、前記第2のカウンタ:C2のカウンタ値:C2が前述した切換所要時間以上であるか否かを判別する。
【0127】
前記S709において前記第2のカウンタ:C2のカウンタ値:C2が前述した切換所要時間未満であると判定された場合は、CPU281は、三方切換弁16の状態が排気側排出通路18を遮断する状態から吸気側排出通路17を遮断する状態へ未だ切り換わっていないとみなし、前記したS709の処理を再度実行する。
【0128】
前記S709において前記第2のカウンタ:C2のカウンタ値:C2が前述した切換所要時間以上であると判定された場合は、CPU281は、三方切換弁16の状態が排気側排出通路18を遮断する状態から吸気側排出通路17を遮断する状態へ切り換わったとみなし、S710へ進む。
【0129】
S710では、CPU281は、機関運転停止処理を実行する。
【0130】
S711では、CPU281は、出力低下制御の実行を終了して燃焼式ヒータ13の出力を通常の出力へ戻す。
【0131】
このようにCPU281が機関停止時ヒータ制御ルーチンを実行することにより、燃焼式ヒータ13から排出される燃焼ガスの排出先が吸気管3から排気管10へ切り換えられるまでの期間に燃焼式ヒータ13から排出された燃焼ガスが再度燃焼式ヒータ13へ流入するような事態が発生した場合であっても、燃焼式ヒータ13が酸素不足によって失火することがなくなり、以て内燃機関1の運転停止後も燃焼式ヒータ13を好適に作動させることが可能となる。
【0132】
<実施の形態3>
次に、本発明に係る燃焼式ヒータを有する内燃機関の第3の実施の形態について図8及び図9に基づいて説明する。ここでは、前述した第2の実施の形態と異なる構成について説明し、同様の構成については説明を省略するものとする。
【0133】
前述した第2の実施の形態と本実施の形態との相違点は、機関停止時ヒータ制御において三方切換弁16の切換制御を実行するにあたり、燃焼式ヒータ13の出力を低下させる代わりに燃料点火用グロープラグ143を作動させる点にある。
【0134】
前述した第2の実施の形態で述べたように、三方切換弁16の状態が排気側排出通路18を遮断する状態から吸気側排出通路17を遮断する状態へ切り換わるまでの期間内に燃焼式ヒータ13から排出された燃焼ガスの一部は、三方切換弁16の状態が吸気側排出通路17を遮断する状態へ切り換わった後も吸気側排出通路17内や吸気管3内に残留する場合があり、そのような場合には前記した残留燃焼ガスが燃焼式ヒータ13に再流入して燃焼式ヒータ13の失火を誘発する虞がある。
【0135】
そこで、本実施の形態に係る機関停止時ヒータ制御では、三方切換弁16の切換制御が開始された時点から、前記した残留燃焼ガスの全てが燃焼式ヒータ13において再燃焼されるまでの期間において、燃料点火用グロープラグ143を作動させることにより燃焼式ヒータ13において強制的に火炎を発生させるようにした。
【0136】
この場合、残留燃焼ガスが燃焼式ヒータ13へ再流入することにより燃焼式ヒータ13において酸素不足が発生した場合であっても、燃料点火用グロープラグ143が燃料を強制的に燃焼させるため、燃焼式ヒータ13が失火し難くなる。
【0137】
尚、燃料点火用グロープラグ143が作動を開始した時点から該燃料点火用グロープラグ143の温度が燃料に着火可能な温度域に達するまでには多少の時間(以下、作動遅れ時間と称する)を要するため、図8に示すように、燃料点火用グロープラグ143が作動を開始した時点から前記した作動遅れ時間が経過した後に三方切換弁16の切換制御が実行されることが好ましい。
【0138】
このように燃料点火用グロープラグ143が作動を開始した時点から前記した作動遅れ時間が経過した後に三方切換弁16の切換制御が実行されると、三方切換弁16の状態が排気側排出通路18を遮断する状態から吸気側排出通路17を遮断する状態に切り換わるまでの期間に燃焼式ヒータ13から排出された燃焼ガスが燃焼式ヒータ13に再流入した場合であっても、燃料点火用グロープラグ143によって強制的に燃料が燃焼せしめられるため、燃焼式ヒータ13が失火し難くなる。
【0139】
以下、本実施の形態に係る機関停止時ヒータ制御について図9に沿って具体的に説明する。
【0140】
図9は、機関運転停止時ヒータ制御ルーチンを示すフローチャート図である。機関運転停止時ヒータ制御ルーチンは、予めROM282に記憶されているルーチンであり、CPU281によって所定時間毎(例えば、クランクポジションセンサ30がパルス信号を出力する度)に繰り返し実行されるルーチンである。
【0141】
機関運転停止時ヒータ制御ルーチンでは、CPU281は、先ずS501において機関運転停止条件が成立しているか否かを判別する。
【0142】
前記S901において機関運転停止条件が不成立であると判定された場合は、CPU281は、本ルーチンの実行を一旦終了する。
【0143】
前記S901において機関運転停止条件が成立していると判定された場合は、CPU281は、S902へ進み、燃焼式ヒータ13が作動状態にあるか否かを判別する。
【0144】
前記S902において燃焼式ヒータ13が作動状態にないと判定された場合は、CPU281は、S914へ進み、機関運転停止処理を実行する。
【0145】
一方、前記S902において燃焼式ヒータ13が作動状態にあると判定された場合は、CPU281は、S903へ進み、燃料点火用グロープラグ143を作動させるべく該燃料点火用グロープラグ143に駆動電力を印加する。
【0146】
S904では、CPU281は、燃料点火用グロープラグ143が作動を開始した時点からの経過時間を計時する第3のカウンタ:C3を作動させる。
【0147】
S905では、前記第3のカウンタ:C3のカウンタ値:C3が前述した作動遅れ時間以上であるか否かを判別する。
【0148】
前記S905において前記第3のカウンタ:C3のカウンタ値:C3が前述した作動遅れ時間未満であると判定された場合は、CPU281は、前記第3のカウンタ:C3のカウンタ値:C3が前記作動遅れ時間以上となるまで前記S905の処理を繰り返し実行する。
【0149】
一方、前記S905において前記第3のカウンタ:C3のカウンタ値:C3が前記作動遅れ時間以上であると判定された場合は、CPU281は、S906へ進み、内燃機関1の機関回転数:Neが所定回転数(アイドル回転数)以下であるか否かを判別する。
【0150】
前記S906において内燃機関1の機関回転数:Neが所定回転数(アイドル回転数)より高いと判定された場合は、CPU281は、前述したS902以降の処理を再度実行する。
【0151】
一方、前記S906において内燃機関1の機関回転数:Neが所定回転数(アイドル回転数)以下であると判定された場合は、CPU281は、S907へ進み、吸気側排出通路17を遮断し且つ排気側排出通路18と燃焼ガス排出通路15とを導通させるべく三方切換弁16を制御する。
【0152】
S908では、CPU281は、三方切換弁16に対する切換制御が開始された時点からの経過時間を計時する第4のカウンタ:C4を起動する。
【0153】
S909では、CPU281は、前記第4のカウンタ:C4のカウンタ値:C4が前述した切換所要時間以上であるか否かを判別する。
【0154】
前記S909において前記第4のカウンタ:C4のカウンタ値:C4が前記切換所要時間未満であると判定された場合は、CPU281は、三方切換弁16の状態が排気側排出通路18を遮断する状態から吸気側排出通路17を遮断する状態へ未だ切り換わっていないとみなし、前記したS909の処理を再度実行する。
【0155】
前記S909において前記第4のカウンタ:C4のカウンタ値:C4が前記切換所要時間以上であると判定された場合は、CPU281は、三方切換弁16の状態が排気側排出通路18を遮断する状態から吸気側排出通路17を遮断する状態へ切り換わったとみなし、S910へ進む。
【0156】
S910では、CPU281は、機関運転停止処理を実行する。
【0157】
S911では、CPU281は、三方切換弁16の状態が排気側排出通路18を遮断する状態から吸気側排出通路17を遮断する状態へ切り換わった時点からの経過時間を計時する第5のカウンタ:C5を作動させる。
【0158】
S912では、CPU281は、前記第5のカウンタ:C5のカウンタ値:C5が所定の残留ガス消費時間以上であるか否かを判別する。前記した残留ガス消費時間は、三方切換弁16の状態が吸気側排出通路17を遮断する状態へ切り換わった後に吸気側排出通路17や吸気管3内に残留した燃焼ガスの全てが燃焼式ヒータ13で再燃焼されるまでに要する時間であり、予め実験的に求められているものとする。
【0159】
前記S912において前記第5のカウンタ:C5のカウンタ値:C5が前記残留ガス消費時間未満であると判定された場合は、CPU281は、前記第5のカウンタ:C5のカウンタ値:C5が前記残留燃焼ガス消費時間以上となるまで前記S912の処理を繰り返し実行する。
【0160】
前記S912において前記第5のカウンタ:C5のカウンタ値:C5が前記残留ガス消費時間以上であると判定された場合は、CPU281は、S913へ進み、燃料点火用グロープラグ143の作動を停止させるべく該燃料点火用グロープラグ143に対する駆動電力の印加を停止する。
【0161】
このようにCPU281が機関停止時ヒータ制御ルーチンを実行することにより、燃焼式ヒータ13から排出される燃焼ガスの排出先が吸気管3から排気管10へ切り換えられるまでの期間に燃焼式ヒータ13から排出された燃焼ガスが再度燃焼式ヒータ13へ流入するような事態が発生した場合であっても、燃焼式ヒータ13において燃料点火用グロープラグ143が強制的に燃料を燃焼させるため、燃焼式ヒータ13が失火し難くなり、以て内燃機関1の運転停止後も燃焼式ヒータ13を好適に作動させることが可能となる。
【0162】
尚、本実施の形態では、機関停止時ヒータ制御において三方切換弁16の切換制御を実行するにあたり、燃焼式ヒータ13の出力を低下させる代わりに燃料点火用グロープラグ143を作動させる構成について説明したが、燃焼式ヒータ13の出力を低下させるとともに燃料点火用グロープラグ143を作動させるようにしてもよい。
【0163】
【発明の効果】
本発明に係る燃焼式ヒータを有する内燃機関によれば、内燃機関の運転停止時に燃焼式ヒータを作動させる場合に、燃焼式ヒータの失火を抑制することができるため、内燃機関の運転停止後も好適に燃焼式ヒータを作動させることが可能となる。
【図面の簡単な説明】
【図1】 本発明を適用する内燃機関とその吸排気系の概略構成を示す図
【図2】 燃焼式ヒータの概略構成を示す図
【図3】 ECUの内部構成を示すブロック図
【図4】 機関停止時ヒータ制御の実行時期を示すタイミングチャート図
【図5】 第1の実施形態における機関停止時ヒータ制御ルーチンを示すフローチャート図
【図6】 機関停止時ヒータ制御の実行時期を示すタイミングチャート図
【図7】 第2の実施形態における機関停止時ヒータ制御ルーチンを示すフローチャート図
【図8】 機関停止時ヒータ制御の実行時期を示すタイミングチャート図
【図9】 第3の実施形態における機関停止時ヒータ制御ルーチンを示すフローチャート図
【符号の説明】
1・・・・内燃機関
3・・・・吸気管
7・・・・吸気絞り弁
10・・・排気管
13・・・燃焼式ヒータ
14・・・吸気導入通路
15・・・燃焼ガス排出通路
16・・・三方切換弁
17・・・吸気側排出通路
18・・・排気側排出通路
28・・・ECU
139・・送風ファン
140・・ファンモータ
143・・燃料点火用グロープラグ

Claims (3)

  1. 内燃機関の吸気系から燃焼用空気を取り入れて燃料とともに燃焼させる燃焼式ヒータと、
    前記燃焼式ヒータの燃焼ガスを前記内燃機関の吸気系へ導く第1の燃焼ガス排出通路と、
    前記燃焼式ヒータの燃焼ガスを前記内燃機関の排気系へ導く第2の燃焼ガス排出通路と、
    前記第1の燃焼ガス排出通路と前記第2の燃焼ガス排出通路との何れか一方を遮断する通路切換手段と、
    前記内燃機関の運転停止要求が発生した場合に、前記内燃機関の機関回転数が所定回転数以下であることを条件に前記第1の燃焼ガス排出通路を遮断すべく前記通路切換手段を制御することにより、前記燃焼式ヒータの失火を抑制する失火抑制手段と、
    前記失火抑制手段が前記第1の燃焼ガス排出通路を遮断すべく前記通路切換手段を制御したことを条件に、前記内燃機関の運転を停止する運転停止手段と、
    を備えることを特徴とする燃焼式ヒータを有する内燃機関。
  2. 前記失火抑制手段は、前記内燃機関の運転停止要求が発生した場合に前記燃焼式ヒータで燃焼に供される燃料と空気との少なくとも一方を減少させることを特徴とする請求項1に記載の燃焼式ヒータを有する内燃機関。
  3. 前記燃焼式ヒータは燃料に着火させるためのグロープラグを備え、
    前記失火抑制手段は、前記内燃機関の運転停止要求が発生した場合に前記グロープラグを作動させることを特徴とする請求項1に記載の燃焼式ヒータを有する内燃機関。
JP2002030710A 2002-02-07 2002-02-07 燃焼式ヒータを有する内燃機関 Expired - Fee Related JP4026371B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030710A JP4026371B2 (ja) 2002-02-07 2002-02-07 燃焼式ヒータを有する内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002030710A JP4026371B2 (ja) 2002-02-07 2002-02-07 燃焼式ヒータを有する内燃機関

Publications (2)

Publication Number Publication Date
JP2003227424A JP2003227424A (ja) 2003-08-15
JP4026371B2 true JP4026371B2 (ja) 2007-12-26

Family

ID=27750394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030710A Expired - Fee Related JP4026371B2 (ja) 2002-02-07 2002-02-07 燃焼式ヒータを有する内燃機関

Country Status (1)

Country Link
JP (1) JP4026371B2 (ja)

Also Published As

Publication number Publication date
JP2003227424A (ja) 2003-08-15

Similar Documents

Publication Publication Date Title
US6868668B2 (en) Internal combustion engine
JPH09504853A (ja) 加熱可能な触媒付き内燃機関への燃料供給制御方法
JP2002038992A (ja) 内燃機関
JP5115656B2 (ja) 内燃機関の排気処理方法およびその装置
JP3880296B2 (ja) エンジンの制御装置
JP5338985B1 (ja) 排気加熱方法
EP1013997B1 (en) Internal combustion engine with combustion heater
JP3630060B2 (ja) 燃焼式ヒータを有する内燃機関
JP5829838B2 (ja) エンジンブレーキ制御装置
JP4026371B2 (ja) 燃焼式ヒータを有する内燃機関
JP2005002867A (ja) 内燃機関の排気浄化システム
JP5949942B2 (ja) 内燃機関の運転制御装置および方法
JP4304789B2 (ja) 内燃機関の排気浄化装置
JP3785870B2 (ja) 内燃機関の排気浄化装置
JP3520789B2 (ja) 内燃機関の排気浄化装置
JP2003056419A (ja) 内燃機関
JP4265121B2 (ja) 燃焼式ヒータを有する内燃機関
JP3520790B2 (ja) 燃焼式ヒータ付内燃機関
JP3386008B2 (ja) 内燃機関の排気浄化装置
JP3960720B2 (ja) 内燃機関の排気浄化装置
JP2002070663A (ja) 燃焼式ヒータを有する内燃機関
JP4239397B2 (ja) 内燃機関の始動制御装置
WO2014073022A1 (ja) 排気加熱装置および排気加熱方法
JP2003286902A (ja) 内燃機関
JP3620325B2 (ja) 燃焼式ヒータ付内燃機関

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees