JP3996419B2 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
JP3996419B2
JP3996419B2 JP2002092187A JP2002092187A JP3996419B2 JP 3996419 B2 JP3996419 B2 JP 3996419B2 JP 2002092187 A JP2002092187 A JP 2002092187A JP 2002092187 A JP2002092187 A JP 2002092187A JP 3996419 B2 JP3996419 B2 JP 3996419B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat exchanger
air
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002092187A
Other languages
English (en)
Other versions
JP2003285632A (ja
Inventor
潤一郎 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2002092187A priority Critical patent/JP3996419B2/ja
Publication of JP2003285632A publication Critical patent/JP2003285632A/ja
Application granted granted Critical
Publication of JP3996419B2 publication Critical patent/JP3996419B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車室内の温度環境を調整する車両用空調装置に関する。
【0002】
【従来の技術】
車両用空調装置は周知のように、ユニットケース内に導入された空気と冷媒との間で熱交換を行わせるエバポレータユニットと、送風空気を加熱するヒータユニットと、送風ユニットとに分けて構成したものが知られている。
【0003】
【発明が解決しようとする課題】
ところが、前記従来技術の車両用空調装置では、ヒータユニットの熱源に稼働中のエンジンを冷却するエンジン冷却水が用いられているため、燃料電池を駆動電力源とする燃料電池車両には適用することができなかった。
【0004】
そこで、本発明は、燃料電池を駆動電力源とする車両の車室内の温度環境を調整する車両用空調装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1記載の発明は、上記課題を解決するため、燃料電池を駆動電力源とする車両に配設された冷凍サイクルに、送入された冷媒を圧縮・吐出するコンプレッサと、該冷媒の熱を外気に放出する車室外熱交換器と、該車室外熱交換器で放熱した冷媒を膨張させる膨張手段と、内外気が選択的に導入される車室内空気流路中に配設され、前記膨張手段によって膨張された冷媒に該車室内空気流路を流れる空気の熱が吸熱される吸熱用車室内熱交換器とを備え、前記燃料電池内を循環するスタック冷却水と該冷凍サイクル内を循環する冷媒との間で熱の授受が行われる廃熱熱交換器と、車室内空気流路中に配設され、前記コンプレッサで圧縮された冷媒の熱によって該車室内空気流路中に流れる空気を加熱する放熱用車室内熱交換器と、前記コンプレッサ出口から前記車室外熱交換器を通じて前記膨張手段に連通される第1の冷媒ラインと、前記車室外熱交換器を迂回し、前記コンプレッサ出口から該放熱用車室内熱交換器を通じて前記膨張手段に連通される第2の冷媒ラインと、第1の冷媒ラインと第2の冷媒ラインを選択的に切替える切替え手段と、前記スタック冷却水を介して前記廃熱熱交換器と熱の授受が可能な位置に加熱器とを備え、該加熱器によって該スタック冷却水を加熱しつつ循環させて、燃料電池スタックを加熱することを特徴とする。
【0006】
請求項2記載の発明は、上記課題を解決するため、請求項1に記載の車両用空調装置において、廃熱熱交換器授受される熱量を制御する熱交換制御手段を設けたことを特徴とする。
【0007】
請求項3記載の発明は、上記課題を解決するため、請求項1、または請求項2に記載の車両用空調装置において、前記吸熱用車室内熱交換器冷媒出口と前記コンプレッサ入口との間に前記廃熱熱交換器が設けられたことを特徴とする。
【0008】
請求項4記載の発明は、上記課題を解決するため、請求項1〜3のうちいずれか1項に記載の車両用空調装置において、前記コンプレッサ出口と前記車室内熱交換器冷媒入口との間に前記廃熱熱交換器が設けられたことを特徴とする。
【0010】
請求項5記載の発明は、上記課題を解決するため、請求項1〜4のうちいずれか1項に記載の車両用空調装置において、前記加熱器の熱源が、前記燃料電池に供給される水素を酸化反応させることで発生する反応熱であることを特徴とする。
【0011】
請求項7記載の発明は、上記課題を解決するため、請求項5に記載の車両用空調装置において、前記加熱器の熱源が、前記燃料電池から排出される水素を酸化反応させることで発生する反応熱であることを特徴とする。
【0012】
請求項8記載の発明は、上記課題を解決するため、請求項5に記載の車両用空調装置において、前記加熱器が、前記燃料電池の電力を利用した電気ヒータであることを特徴とする。
【0013】
【発明の効果】
請求項1記載の発明によれば、冷凍サイクルを循環する冷媒によって車室内空気流路を流れる空気が加熱されるので、燃料電池を起動した直後の燃料電池スタックが十分に暖まっておらず、スタック冷却水によって空調風を加熱することができない状態でも、速やかに且つ急速に除湿暖房運転を開始することができ、暖房運転開始後も、外気導入および内気循環を問わず、さらに燃料電池の運転状態に関わらず、安定した除湿暖房運転を行うことが可能な車両用空調装置を提供することができる。
【0014】
また、燃料電池の廃熱を冷媒の加熱に用いることで、車両全体の動力効率を改善することができる。
さらに、廃熱熱交換器と熱の授受が可能な位置に加熱器を設けたことで、スタック冷却水の温度が低くて冷媒を加熱できない場合に、加熱器を用いて冷媒を加熱することができるので、速やかに且つ急速に除湿暖房運転を開始することができる。
【0015】
請求項2記載の発明によれば、請求項1の効果に加えて、廃熱熱交換器を通過するスタック冷却水の流量を制御する熱交換制御手段を設けることで、廃熱熱交換器でスタック冷却水と冷媒との間で授受される熱量を制御することができる。
【0016】
これにより、送風空気が放熱用車室内熱交換器で冷媒から伝えられる熱量が安定するため、車室内に送風される送風空気の温度制御を簡素化することができる。
【0017】
請求項3記載の発明によれば、吸熱用車室内熱交換器とコンプレッサの間に廃熱熱交換器を設けることで冷媒を加熱し、コンプレッサ吐出圧を速やかに昇圧することができるため、速やかに且つ急速に除湿暖房運転を開始することができる。
【0018】
請求項4記載の発明によれば、コンプレッサ出口と車室内放熱用熱交換器の間に廃熱熱交換器を設けて、冷媒を加熱することで、車室内放熱用熱交換器で送風空気に伝えられる熱量を増加させ、速やかに且つ急速に除湿暖房運転を開始することができる。
【0019】
また、冷媒を加熱するためにコンプレッサで冷媒を過度に圧縮する必要がないため、冷凍サイクルの耐圧性能を低減することができる。
【0020】
これにより、冷凍サイクルの低コスト化、および耐用年数の延長を行うことができる。
【0022】
請求項5記載の発明によれば、燃料電池の燃料成分である水素を酸化させ、このときに発生する反応熱を利用して冷媒を加熱することができるので、冷媒を加熱するための燃料を別途用意する必要がないため、加熱器を簡素化することができる。
【0023】
請求項6記載の発明によれば、燃料電池の燃料成分である水素を酸化させ、このときに発生する反応熱を利用して冷媒を加熱することができるので、冷媒を加熱するための燃料を別途用意する必要がないため、加熱器を簡素化することができる。
【0024】
また、加熱器に利用される水素は、燃料電池スタックで発電反応に利用されずに排出された水素なので、車両全体の燃料消費率を改善することができる。
【0025】
請求項7記載の発明によれば、加熱器として使用する電気ヒータは、比較的小型・軽量で、且つ制御性に優れているので、車両用空調装置を大型化することなく、速やかに冷媒を加熱することができる。
【0026】
【発明の実施の形態】
次に図面を参照して本発明の参考例、および実施形態を詳細に説明する。
【0027】
図1は、本発明に係る車両用空調装置1の第1参考例の構成を示すシステム構成図である。
【0028】
この車両用空調装置1は、ヒートポンプ方式の冷凍サイクル10と燃料電池30のスタック冷却水を循環させる温水ライン50とに分けることができ、さらに車室内と車室外とに分けられて配設されている。
【0029】
この冷凍サイクル10は、冷媒を圧縮するコンプレッサ11と、冷媒の熱を外気に放出する車室外熱交換器としてのメインコンデンサ14と、送風空気に冷媒の熱を放出する放熱用車室内熱交換器としてのサブコンデンサ17と、冷媒を膨張させる膨張手段としての膨張弁18と、膨張した冷媒に送風空気の熱を伝える吸熱用車室内熱交換器としてのエバポレータ19と、燃料電池スタック30aの廃熱を冷媒に伝える廃熱熱交換器としてのエバポレータ出口熱交換器31とから構成されている。
【0030】
また、冷凍サイクル10は、コンプレッサ11下流で冷媒ライン40が、メインコンデンサ14に通じる第1の冷媒ライン41と、メインコンデンサ14をバイパスする第2の冷媒ライン42とに分岐されており、この分岐部に第1の冷媒ライン41と第2の冷媒ライン42とを選択的に切替える切替弁12が配設され、冷媒の流れを必要に応じて切替えられる。
【0031】
第1の冷媒ライン41には、メインコンデンサ14と逆止弁15が配設され、メインコンデンサ14を通過した冷媒が逆流しないようになっている。
【0032】
第2の冷媒ライン42には、逆止弁13が配設され、メインコンデンサ14をバイパスした冷媒が逆流しないようになっている。
【0033】
また、第1の冷媒ライン41と第2の冷媒ライン42は、逆止弁13、15の下流に設けられた合流部16で合流されるので、各冷媒ライン41、42を通過した冷媒がお互いのラインに流入することはない。
【0034】
合流部16の下流には、サブコンデンサ17が車室内に設けられた車室内空気流路20内に配設されている。
【0035】
サブコンデンサ17の下流には、膨張弁18が車室外に設けられ、さらに膨張弁の下流にエバポレータ19が車室内空気流路20内に配設されている。
【0036】
エバポレータ19の下流側は、エバポレータ出口熱交換器31を介してコンプレッサ11に通じている。
【0037】
温水ライン50は、燃料電池30の燃料電池スタック30aとエバポレータ出口熱交換器31の間をスタック冷却水が循環可能に配管されている。
【0038】
車室内に配設される車室内空気流路20には、外気導入口21と、内気導入口22と、外気と内気を選択的に切替える内外気切替ドア23と、外気および内気を車室内空気流路20に導入するブロアファン24と、エバポレータ19と、サブコンデンサ17をバイパスするバイパス路25aと、サブコンデンサ17を通過する加熱路25bと、バイパス路25aと加熱路25bとの開閉を行い通過する風量を調節するエアミックスドア25と、車室内に通じる吹出口27a、28a、29aの開閉を行うモードドア27、28、29が設けられている。
【0039】
−冷房運転−
冷房運転中の冷凍サイクル10は、切替弁12によって第1の冷媒ライン41が選択されている。
【0040】
コンプレッサ11で圧縮された高温高圧状態の冷媒は、切替弁12を通じてメインコンデンサ14に送られ外気に熱を放出する。メインコンデンサ14で熱を放出して低温高圧状態の冷媒は、逆止弁15と合流部16とサブコンデンサ17を通じて膨張弁18に送入されて断熱膨張する。
【0041】
断熱膨張して低温低圧状態の冷媒はエバポレータ19に送入され、送風空気から熱を奪い、送風空気を冷却・除湿する。
【0042】
冷房運転時には、燃料電池スタック30aの廃熱で冷媒を加熱する必要がないので、エバポレータ出口熱交換器31にスタック冷却水を循環させない。
【0043】
これにより、エバポレータ19を通過した冷媒は、エバポレータ出口熱交換器31で熱の授受は行われないままコンプレッサ11に送入される。
【0044】
車室内空気流路20では、乗員の要求に応じて、外気、および内気が車室内空気流路20にブロアファン24よって取入れられ、エバポレータ19で冷却・除湿される。
【0045】
エバポレータ19で冷却・除湿された送風空気は、エアミックスドア25で加熱路25bとバイパス路25aに分配され、サブコンデンサ17で加熱された一部の送風空気とバイパス路25aを通過した残りの送風空気とが混合され、乗員が所望する温度に調節された空調風が各吹出口27a、28a、29aから車室内に送風される。
【0046】
−暖房運転−
暖房運転中の冷凍サイクル10は、切替弁12によって第2の冷媒ライン42が選択されている。
【0047】
コンプレッサ11で圧縮された高温高圧状態の冷媒は、切替弁12を通じてメインコンデンサ14をバイパスし、逆止弁13と合流部16を通じてサブコンデンサ17に送入される。
【0048】
サブコンデンサ17に送入された冷媒は、送風空気に熱を放出することで送風空気を加熱する。
【0049】
サブコンデンサ17で熱を放出し低温高圧状態の冷媒は、膨張弁18に送入されて断熱膨張する。
【0050】
断熱膨張して低温低圧状態の冷媒はエバポレータ19に送入され、送風空気から熱を奪い、送風空気を冷却・除湿する。
【0051】
暖房運転時には、燃料電池スタック30aの廃熱で低温低圧状態の冷媒を加熱するために、エバポレータ出口熱交換器31にスタック冷却水を循環させる。これにより、エバポレータ19を通過した冷媒は、エバポレータ出口熱交換器31でさらに加熱され、コンプレッサ11に送入される。
【0052】
車室内空気流路20では、冷房運転時と同様に、乗員の要求に応じて、外気、および内気が車室内空気流路20にブロアファン24よって取入れられ、エバポレータ19で冷却・除湿される。
【0053】
エバポレータ19で冷却・除湿された送風空気は、エアミックスドア25で加熱路25bとバイパス路25aに分配され、サブコンデンサ17で加熱された一部の送風空気とバイパス路25aを通過した残りの送風空気とが混合され、乗員が所望する温度に調節された空調風が各吹出口27a、28a、29aから車室内に送風される。
【0054】
−作用−
本参考例では、冷凍サイクルを循環する冷媒によって車室内空気流路20を流れる空気が加熱されるので、燃料電池30を起動した直後の燃料電池スタック30aが十分に暖まっていない状態でも、速やかに且つ急速な除湿暖房運転を開始することができ、暖房運転開始後も、外気導入および内気循環を問わず、さらに燃料電池30の運転状態に関わらず、安定した除湿暖房運転を行うことができる。
【0055】
つまり、低温外気環境下に長時間放置された燃料電池30は、起動しても燃料電池スタック30aが十分な発電を行える温度に上昇するまでに時間がかかるため、燃料電池30の廃熱を利用して送風空気を加熱することができない状態がしばらく続くため、この状態で暖房運転を開始しても温風が送風されず、乗員に不快感を与えるために暖房運転を始められない。
【0056】
しかし、送風空気を暖めることができないくらい燃料電池スタック30aの温度が低くても、スタック冷却水で冷媒を暖め、コンプレッサ吐出圧を高めていくことは可能である。
【0057】
そこで、本参考例では、エバポレータ19出口とコンプレッサ11入口の間に廃熱熱交換器としてのエバポレータ出口熱交換器31を配設し、燃料電池スタック30aから放出される熱で冷媒を加熱することで、コンプレッサ吐出圧を速やかに上昇させ、サブコンデンサ17から放出される熱によって送風空気を暖める構成となっている。
【0058】
これにより、燃料電池30を起動した直後から速やかに暖房運転を開始することが可能になり、極めて良好な急速除湿暖房性能を発揮することができる。
【0059】
つまり、除湿のために車室内空気流路に低温外気を導入した場合、従来は送風空気の温度が急激に下がるため、安定した暖房性能を確保するのが困難であったが、本参考例は、スタック冷却水で冷媒を加熱して、エバポレータ19での過度の圧力低下を防止し、コンプレッサ吐出圧を高い状態で維持させることで、サブコンデンサ17での冷媒の放熱量を増大させることが可能なため、安定した暖房性能を確保しながら車室内の除湿を行うことができる。
【0060】
また、内気循環を行った場合、送風空気によってエバポレータ19が過度に冷やされることはないため、冷媒はエバポレータ19で送風空気から熱を奪い、送風空気が除湿される。なお、スタック冷却水で冷媒を加熱することでコンプレッサ吐出圧が速やかに上昇するので、サブコンデンサ17の放熱量が高い状態で安定し、十分な暖房性能を確保することができるため、従来から行われていた煩雑な外気と内気の送風量制御が不要になる。
【0061】
加えて、燃料電池スタック30aの廃熱を利用して低温低圧冷媒を加熱することにより、冷媒のコンプレッサ吐出圧・吐出温度が上昇し、サブコンデンサでの空調風の加熱量を増加することができる。また、空調風への加熱量を一定にした場合には、コンプレッサを駆動する動力を軽減することができる。したがって、コンプレッサ11の所要動力が軽減されることで車両全体の効率を向上させることができる。
【0062】
さらに、外気と内気のどちらを導入しても十分な除湿性能と暖房性能を併せ持つため、乗員が外気導入と、内気循環とを自由に選択することが可能になる。
【0063】
なお、本参考例では、エバポレータ出口熱交換器31でスタック冷却水と冷媒との間で熱交換を行うか、行わないかを選択的に切替えることができる構成となっている。たとえば、これを実現するには、低温低圧冷媒の流路を2系統設け、第1の流路はスタック冷却水と熱交換し、第2の流路はスタック冷却水と熱交換をしない経路を構成し、さらに、この第1、第2の流路を切替える切替弁を別途設ければよい。
【0064】
図2は、本発明に係る車両用空調装置1の第2参考例の構成を示すシステム構成図である。
【0065】
本参考例と第1参考例との相違点は、第1参考例では廃熱熱交換器としてのエバポレータ出口熱交換器31をエバポレータ19出口とコンプレッサ11入口との間に配設していたが、本参考例では廃熱熱交換器としてのコンプレッサ出口熱交換器32を合流部16出口とサブコンデンサ17入口との間に配設した点である。
【0066】
したがって、温水ライン50は、燃料電池30の燃料電池スタック30aとコンプレッサ出口熱交換器32の間をスタック冷却水が循環可能に配管されている。
【0067】
なお、構成が同一の箇所に関する説明は省略する。
【0068】
−冷房運転−
冷房運転中の冷凍サイクル10は、切替弁12によって第1の冷媒ライン41が選択されている。
【0069】
コンプレッサ11で圧縮された高温高圧状態の冷媒は、切替弁12を通じてメインコンデンサ14に送られ外気に熱を放出する。メインコンデンサ14で熱を放出して低温高圧状態の冷媒は、逆止弁15と合流部16を通じて、コンプレッサ出口熱交換器32に送入される。
【0070】
冷房運転時には、燃料電池スタック30aの廃熱で冷媒を加熱する必要がないので、コンプレッサ出口熱交換器32にスタック冷却水を循環させない。これにより、コンプレッサ出口熱交換器32で熱の授受は行われないまま、外気に熱を放出して低温高圧状態の冷媒はサブコンデンサ17を通じて膨張弁18に送入されて断熱膨張する。
【0071】
断熱膨張して低温低圧状態の冷媒はエバポレータ19に送入され、送風空気から熱を奪い、送風空気を冷却・除湿して、コンプレッサ11に送入される。
【0072】
車室内空気流路20では、乗員の要求に応じて、外気、および内気が車室内空気流路20にブロアファン24よって取入れられ、エバポレータ19で冷却・除湿される。
【0073】
エバポレータ19で冷却・除湿された送風空気は、エアミックスドア25で加熱路25bとバイパス路25aに分配され、サブコンデンサ17で加熱された一部の送風空気とバイパス路25aを通過した残りの送風空気とが混合され、乗員が所望する温度に調節された空調風が各吹出口27a、28a、29aから車室内に送風される。
【0074】
−暖房運転−
暖房運転中の冷凍サイクル10は、切替弁12によって第2の冷媒ライン42が選択されている。
【0075】
コンプレッサ11で圧縮された高温高圧状態の冷媒は、切替弁12によってメインコンデンサ14をバイパスし、逆止弁13と合流部16を通じてコンプレッサ出口熱交換器32に送入される。
【0076】
暖房運転時には、燃料電池スタック30aの廃熱で高温高圧状態の冷媒をさらに加熱するために、コンプレッサ出口熱交換器32にスタック冷却水を循環させる。これにより、メインコンデンサ14をバイパスして高温高圧状態の冷媒は、コンプレッサ出口熱交換器32でさらに加熱され、サブコンデンサ17に送入される。
【0077】
サブコンデンサ17に送入された冷媒は、送風空気に熱を放出することで送風空気を加熱する。
【0078】
サブコンデンサ17で熱を放出し低温高圧状態の冷媒は、膨張弁18に送入されて断熱膨張する。
【0079】
断熱膨張して低温低圧状態の冷媒はエバポレータ19に送入され、送風空気から熱を奪い、送風空気を冷却・除湿する。
【0080】
エバポレータ19を通過した冷媒は、コンプレッサ11に送入される。
【0081】
車室内空気流路20では、冷房運転時と同様に、乗員の要求に応じて、外気、および内気が車室内空気流路20にブロアファン24よって取入れられ、エバポレータ19で冷却・除湿される。
【0082】
エバポレータ19で冷却・除湿された送風空気は、エアミックスドア25で加熱路25bとバイパス路25aに分配され、サブコンデンサ17で加熱された一部の送風空気とバイパス路25aを通過した残りの送風空気とが混合され、乗員が所望する温度に調節された空調風が各吹出口27a、28a、29aから車室内に送風される。
【0083】
−作用−
本参考例では、コンプレッサ11出口とサブコンデンサ17入口の間に廃熱熱交換器としてのコンプレッサ出口熱交換器32を配設し、燃料電池スタック30aから放出される熱で冷媒を加熱することで、冷媒の温度を速やかに上昇させ、サブコンデンサ17から放出される熱によって送風空気を暖める構成となっている。
【0084】
これにより、冷凍サイクル10を循環する冷媒によって車室内空気流路20を流れる空気が加熱されるので、燃料電池30を起動した直後の燃料電池スタック30aが十分に暖まっていない状態でも、速やかに且つ急速な除湿暖房運転を開始することができ、暖房運転開始後も、外気導入および内気循環を問わず、さらに燃料電池30の運転状態に関わらず、極めて良好な急速除湿暖房性能を発揮することができる。
【0085】
つまり、除湿のために車室内空気流路に低温外気を導入した場合、従来は送風空気の温度が急激に下がるため、安定した暖房性能を確保するのが困難であったが、本参考例は、コンプレッサで圧縮された高温高圧状態の冷媒をスタック冷却水でさらに加熱するので、エバポレータ19での過度の圧力低下を防止し、コンプレッサ吐出圧を高い状態で維持させることができる。
【0086】
これにより、サブコンデンサ17での冷媒の放熱量を増大させることが可能になるため、安定した暖房性能を確保しながら車室内の除湿を行うことができる。
【0087】
また、内気循環を行った場合、送風空気によってエバポレータ19が過度に冷やされることはないため、冷媒はエバポレータ19で送風空気から熱を奪い、送風空気が除湿される。なお、スタック冷却水で冷媒を加熱することでコンプレッサ吐出圧が速やかに上昇するので、サブコンデンサ17の放熱量が高い状態で安定し、十分な暖房性能を確保することができるため、従来から行われていた煩雑な外気と内気の送風量制御が不要になる。
【0088】
さらに、外気と内気のどちらを導入しても十分な除湿性能と暖房性能を併せ持つため、乗員が外気導入と、内気循環とを自由に選択することが可能になる。
【0089】
また、燃料電池30を起動した直後で燃料電池スタック30aが十分に暖まっておらず、スタック冷却水がコンプレッサ11で圧縮された冷媒の温度よりも低い場合には、コンプレッサ出口熱交換器32にスタック冷却水を循環させることにより燃料電池スタック31aを加熱することが可能である。
【0090】
これにより、速やかに燃料電池30を定格発電状態に移行させることができるので、燃料電池30の発電起動性を改善することができる。
【0091】
図3は、本発明に係る車両用空調装置1の第1実施形態の構成を示すシステム構成図である。
【0092】
本実施形態第1参考例との相違点は、廃熱熱交換器としてのエバポレータ出口熱交換器31と熱の授受が可能な位置に、加熱器としての電気ヒータ33を設けた点である。
【0093】
つまり、電気ヒータ33が発生した熱をエバポレータ出口熱交換器31を介して冷媒に伝えられるように、電気ヒータ33が配設されている。
【0094】
なお、構成が同一の箇所に関する説明は省略する。
【0095】
−冷房運転−
冷房運転中の冷凍サイクル10は、切替弁12によって第1の冷媒ライン41が選択されている。
【0096】
コンプレッサ11で圧縮された高温高圧状態の冷媒は、切替弁12を通じてメインコンデンサ14に送られ外気に熱を放出する。メインコンデンサ14で熱を放出して低温高圧状態の冷媒は、逆止弁15と合流部16とサブコンデンサ17を通じて膨張弁18に送入されて断熱膨張する。
【0097】
断熱膨張して低温低圧状態の冷媒はエバポレータ19に送入され、送風空気から熱を奪い、送風空気を冷却・除湿する。
【0098】
冷房運転時には、燃料電池スタック30aの廃熱で冷媒を加熱する必要がないので、エバポレータ出口熱交換器31にスタック冷却水を循環させないとともに、電気ヒータ33はOFFの状態である。これにより、エバポレータ19を通過した冷媒は、エバポレータ出口熱交換器31で熱の授受は行われないままコンプレッサ11に送入される。
【0099】
車室内空気流路20では、乗員の要求に応じて、外気、および内気が車室内空気流路20にブロアファン24よって取入れられ、エバポレータ19で冷却・除湿される。
【0100】
エバポレータ19で冷却・除湿された送風空気は、エアミックスドア25で加熱路25bとバイパス路25aに分配され、サブコンデンサ17で加熱された一部の送風空気とバイパス路25aを通過した残りの送風空気とが混合され、乗員が所望する温度に調節された空調風が各吹出口27a、28a、29aから車室内に送風される。
【0101】
−暖房運転−
暖房運転中の冷凍サイクル10は、切替弁12によって第2の冷媒ライン42が選択されている。
【0102】
コンプレッサ11で圧縮された高温高圧状態の冷媒は、切替弁12を通じてメインコンデンサ14をバイパスし、逆止弁13と合流部16を通じてサブコンデンサ17に送入される。
【0103】
サブコンデンサ17に送入された冷媒は、送風空気に熱を放出することで送風空気を加熱する。
【0104】
サブコンデンサ17で熱を放出し低温高圧状態の冷媒は、膨張弁18に送入されて断熱膨張する。
【0105】
断熱膨張して低温低圧状態の冷媒はエバポレータ19に送入され、送風空気から熱を奪い、送風空気を冷却・除湿する。
【0106】
暖房運転時には、燃料電池スタック30aの廃熱で低温低圧状態の冷媒を加熱するために、エバポレータ出口熱交換器31にスタック冷却水を循環させる。これにより、エバポレータ19を通過した冷媒は、エバポレータ出口熱交換器31で受熱し、コンプレッサ11に送入される。
【0107】
また、燃料電池を起動した直後の燃料電池スタックが十分に暖まっていない状態で、スタック冷却水温度が冷媒を加熱するまでに至っていない場合には、電気ヒータ33をONにしてエバポレータ出口熱交換器31を通過する冷媒を加熱し、暖房運転を開始する。
【0108】
車室内空気流路20では、冷房運転時と同様に、乗員の要求に応じて、外気、および内気が車室内空気流路20にブロアファン24よって取入れられ、エバポレータ19で冷却・除湿される。
【0109】
エバポレータ19で冷却・除湿された送風空気は、エアミックスドア25で加熱路25bとバイパス路25aに分配され、サブコンデンサ17で加熱された一部の送風空気とバイパス路25aを通過した残りの送風空気とが混合され、乗員が所望する温度に調節された空調風が各吹出口27a、28a、29aから車室内に送風される。
【0110】
−作用−
第1参考例と同様に、冷凍サイクルを循環する冷媒によって車室内空気流路20を流れる空気が加熱されるので、燃料電池30を起動した直後の燃料電池スタック30aが十分に暖まっていない状態でも、速やかに且つ急速な除湿暖房運転を開始することができ、暖房運転開始後も、外気導入および内気循環を問わず、さらに燃料電池30の運転状態に関わらず、安定した除湿暖房運転を行うことができる。
【0111】
また、エバポレータ19を通過した冷媒を電気ヒータ33によって加熱することで、より速やかに空調風の吹出し温度を上昇させることができる。
【0112】
さらに、電気ヒータ33が、エバポレータ出口熱交換器31と熱交換が可能な位置に配設されているので、燃料電池30を起動した直後で燃料電池スタック30aが十分に暖まっていない状態では、電気ヒータ33によって冷媒を加熱するだけでなく、スタック冷却水を加熱しつつ循環させて、燃料電池スタック30aを加熱することで、速やかに燃料電池30を定格発電状態に移行させることができるので、燃料電池30の発電機動性を改善することができる。
【0113】
図4は、本発明に係る車両用空調装置1の第3参考例の構成を示すシステム構成図である。
【0114】
本参考例第1参考例との相違点は、廃熱熱交換器としてのエバポレータ出口熱交換器31と燃料電池スタック30aとの間を循環する温水配管51に熱交換制御手段としての第1の熱交換制御手段31aと、廃熱熱交換器としてのコンプレッサ出口熱交換器32と、コンプレッサ出口熱交換器32と燃料電池スタック30aとの間を循環する温水配管52に熱交換制御手段としての第2の熱交換制御手段32aを設けた点である。
【0115】
つまり、温水配管51、52は、燃料電池30の燃料電池スタック30aとエバポレータ出口熱交換器31の間、および燃料電池30の燃料電池スタック30aとコンプレッサ出口熱交換器32の間をスタック冷却水が循環可能に配管されている。
【0116】
なお、構成が同一の箇所に関する説明は省略する。
【0117】
−冷房運転−
冷房運転中の冷凍サイクル10は、切替弁12によって第1の冷媒ライン41が選択されている。
【0118】
コンプレッサ11で圧縮された高温高圧状態の冷媒は、切替弁12を通じてメインコンデンサ14に送られ外気に熱を放出する。メインコンデンサ14で熱を放出して低温高圧状態の冷媒は、逆止弁15と合流部16を通じてコンプレッサ出口熱交換器32に送入される。
【0119】
冷房運転時には、燃料電池スタック30aの廃熱で冷媒を加熱する必要がないので、コンプレッサ出口熱交換器32には、スタック冷却水を循環させない。
【0120】
これにより、コンプレッサ出口熱交換器32で熱の授受は行われないまま、冷媒はサブコンデンサ17を通じて膨張弁18に送入されて断熱膨張する。
【0121】
断熱膨張して低温低圧状態の冷媒はエバポレータ19に送入され、送風空気から熱を奪い、送風空気を冷却・除湿する。
【0122】
冷房運転時には、コンプレッサ出口熱交換器32と同様に、燃料電池スタック30aの廃熱で冷媒を加熱する必要がないので、エバポレータ出口熱交換器31には、スタック冷却水を循環させない。
【0123】
これにより、エバポレータ出口熱交換器31で熱の授受は行われないまま、冷媒はコンプレッサ11に送入される。
【0124】
車室内空気流路20では、乗員の要求に応じて、外気、および内気が車室内空気流路20にブロアファン24よって取入れられ、エバポレータ19で冷却・除湿される。
【0125】
エバポレータ19で冷却・除湿された送風空気は、エアミックスドア25で加熱路25bとバイパス路25aに分配され、サブコンデンサ17で加熱された一部の送風空気とバイパス路25aを通過した残りの送風空気とが混合され、乗員が所望する温度に調節された空調風が各吹出口27a、28a、29aから車室内に送風される。
【0126】
−暖房運転−
暖房運転中の冷凍サイクル10は、切替弁12によって第2の冷媒ライン42が選択されている。
【0127】
コンプレッサ11で圧縮された高温高圧状態の冷媒は、切替弁12を通じてメインコンデンサ14をバイパスし、逆止弁13と合流部16を通じてコンプレッサ出口熱交換器32に送入される。
【0128】
暖房運転時には、燃料電池スタック30aの廃熱で高温高圧状態の冷媒をさらに加熱するために、コンプレッサ出口熱交換器32にスタック冷却水を循環させる。
【0129】
ここで第1の熱交換制御手段31aは、コンプレッサ出口熱交換器32の冷媒出口における冷媒の温度と圧力、およびコンプレッサ出口熱交換器32の冷却水入口におけるスタック冷却水の温度を検知し、コンプレッサ出口熱交換器32を循環するスタック冷却水の流量を制御する。
【0130】
これにより、メインコンデンサ14をバイパスして高温高圧状態の冷媒は、コンプレッサ出口熱交換器32でさらに加熱され、所定の温度に加熱され、サブコンデンサ17に送入される。
【0131】
サブコンデンサ17に送入された冷媒は、送風空気に熱を放出することで送風空気を加熱する。
【0132】
サブコンデンサ17で熱を放出し低温高圧状態の冷媒は、膨張弁18に送入されて断熱膨張する。
【0133】
断熱膨張して低温低圧状態の冷媒はエバポレータ19に送入され、送風空気から熱を奪い、送風空気を冷却・除湿する。
【0134】
暖房運転時には、コンプレッサ出口熱交換器32と同様に、燃料電池スタック30aの廃熱で低温低圧状態の冷媒を加熱するために、エバポレータ出口熱交換器31にスタック冷却水を循環させる。
【0135】
ここで第2の熱交換制御手段32aは、エバポレータ出口熱交換器31の冷媒出口における冷媒の温度と圧力、およびエバポレータ出口熱交換器31の冷却水入口におけるスタック冷却水の温度を検知し、エバポレータ出口熱交換器31を循環するスタック冷却水の流量を制御する。
【0136】
これにより、エバポレータ19を通過した冷媒は、エバポレータ出口熱交換器31で受熱し、所定の温度に加熱され、コンプレッサ11に送入される。
【0137】
車室内空気流路20では、冷房運転時と同様に、乗員の要求に応じて、外気、および内気が車室内空気流路20にブロアファン24よって取入れられ、エバポレータ19で冷却・除湿される。
【0138】
エバポレータ19で冷却・除湿された送風空気は、エアミックスドア25で加熱路25bとバイパス路25aに分配され、サブコンデンサ17で加熱された一部の送風空気とバイパス路25aを通過した残りの送風空気とが混合され、乗員が所望する温度に調節された空調風が各吹出口27a、28a、29aから車室内に送風される。
【0139】
−作用−
本参考例では、エバポレータ19出口とコンプレッサ11入口の間に廃熱熱交換器としてのエバポレータ出口熱交換器31を配設し、燃料電池スタック30aから放出される熱で冷媒を加熱することで、コンプレッサ吐出圧を速やかに上昇させ、サブコンデンサ17から放出される熱によって送風空気を暖めるとともに、コンプレッサ11出口とサブコンデンサ17入口の間に廃熱熱交換器としてのコンプレッサ出口熱交換器32を配設し、燃料電池スタック30aから放出される熱で冷媒を加熱することで、冷媒の温度を速やかに上昇させ、サブコンデンサ17から放出される熱によって送風空気を暖める構成となっている。
【0140】
これにより、冷凍サイクル10を循環する冷媒によって車室内空気流路20を流れる空気が加熱されるので、燃料電池30を起動した直後の燃料電池スタック30aが十分に暖まっていない状態でも、速やかに且つ急速な除湿暖房運転を開始することができ、暖房運転開始後も、外気導入および内気循環を問わず、さらに燃料電池30の運転状態に関わらず、極めて良好な急速除湿暖房性能を発揮することができる。
【0141】
つまり、除湿のために車室内空気流路に低温外気を導入した場合、従来は送風空気の温度が急激に下がるため、安定した暖房性能を確保するのが困難であったが、本参考例は、エバポレータ出口熱交換器31を介して、スタック冷却水で冷媒を暖めて、エバポレータ19での過度の圧力低下を防止するとともに、高温高圧状態の冷媒をコンプレッサ出口熱交換器32でさらに加熱することでサブコンデンサ17での冷媒の放熱量を増大させることが可能なため、安定した暖房性能を確保しながら車室内の除湿を行うことができる。
【0142】
また、内気循環を行った場合、送風空気によってエバポレータ19が過度に冷やされることはないため、冷媒はエバポレータ19で送風空気から熱を奪い、送風空気が除湿される。なお、スタック冷却水で冷媒を加熱することでコンプレッサ吐出圧が速やかに上昇するので、サブコンデンサ17の放熱量が高い状態で安定し、十分な暖房性能を確保することができるため、従来から行われていた煩雑な外気と内気の送風量制御が不要になる。
【0143】
さらに、外気と内気のどちらを導入しても十分な除湿性能と暖房性能を併せ持つため、乗員が外気導入と、内気循環とを自由に選択することが可能になる。
【0144】
加えて、コンプレッサ出口熱交換器32およびエバポレータ出口熱交換器31を通過する冷媒の温度と圧力、およびスタック冷却水の温度を検知し、コンプレッサ出口熱交換器32およびエバポレータ出口熱交換器31を通過するスタック冷却水の流量を変化させる第1、第2の熱交換制御手段31a、32aを設けることで、コンプレッサ出口熱交換器32およびエバポレータ出口熱交換器31で冷媒に伝えられる熱量を制御することができる。
【0145】
これにより、コンプレッサ出口熱交換器32およびエバポレータ出口熱交換器31で受熱した冷媒の圧力を所定値以下に保つことができるため、冷媒が冷凍サイクルに配設される各機器を通過する際の圧力を各機器の所定値以下に保つことができる。
【0146】
また、冷媒を昇温するためにコンプレッサ11で冷媒を過度に圧縮する必要がなくなるので、各機器の耐圧性能を低減することが可能になり、冷凍サイクルの低コスト化、および耐用年数の延長化を行うことができる。
【0147】
さらに、燃料電池の触媒温度が十分適当な温度域になり、冷凍サイクルが暖房時であれば、燃料電池の廃熱を低圧冷媒で回収できるとともに、コンプレッサ駆動力を軽減することができる。
【0148】
さらにまた、コンプレッサ出口熱交換器32およびエバポレータ出口熱交換器31で受熱した冷媒の圧力を一定に保つことができることにより、送風空気が放熱用車室内熱交換器から授受する熱量が安定するため、車室内に送風される送風空気の温度制御を簡素化することができる。
【0149】
加えて、燃料電池30を起動した直後で燃料電池スタック30aが十分に暖まっておらず、スタック冷却水がコンプレッサ11で圧縮された冷媒の温度よりも低い場合には、コンプレッサ出口熱交換器32にスタック冷却水を循環させることにより燃料電池スタック31aを加熱することが可能である。
【0150】
これにより、速やかに燃料電池30を定格発電状態に移行させることができるので、燃料電池30の発電起動性を改善することができる。
【0151】
図5は、本発明に係る車両用空調装置1の第2実施形態の構成を示すシステム構成図である。
【0152】
本実施形態と第3参考例との相違点は、廃熱熱交換器としてのエバポレータ出口熱交換器31と熱の授受が可能な位置に、加熱器としての電気ヒータ33を設けた点である。
【0153】
つまり、電気ヒータ33が発生した熱をエバポレータ出口熱交換器31を介して冷媒に伝えられるように、電気ヒータ33が配設されている。
【0154】
なお、構成が同一の箇所に関する説明は省略する。
【0155】
−冷房運転−
冷房運転中の冷凍サイクル10は、切替弁12によって第1の冷媒ライン41が選択されている。
【0156】
コンプレッサ11で圧縮された高温高圧状態の冷媒は、切替弁12を通じてメインコンデンサ14に送られ外気に熱を放出する。メインコンデンサ14で熱を放出して低温高圧状態の冷媒は、逆止弁15と合流部16を通じてコンプレッサ出口熱交換器32に送入される。
【0157】
冷房運転時には、燃料電池スタック30aの廃熱で冷媒を加熱する必要がないので、コンプレッサ出口熱交換器32には、スタック冷却水を循環させない。
【0158】
これにより、コンプレッサ出口熱交換器32で熱の授受は行われないまま、冷媒はサブコンデンサ17を通じて膨張弁18に送入されて断熱膨張する。
【0159】
断熱膨張して低温低圧状態の冷媒はエバポレータ19に送入され、送風空気から熱を奪い、送風空気を冷却・除湿する。
【0160】
冷房運転時には、コンプレッサ出口熱交換器32と同様に、燃料電池スタック30aの廃熱で冷媒を加熱する必要がないので、エバポレータ出口熱交換器31には、スタック冷却水を循環させないとともに、電気ヒータ33をOFFの状態にする。
【0161】
これにより、エバポレータ19を通過した冷媒は、エバポレータ出口熱交換器31で熱の授受が行われないままコンプレッサ11に送入される。
【0162】
車室内空気流路20では、乗員の要求に応じて、外気、および内気が車室内空気流路20にブロアファン24よって取入れられ、エバポレータ19で冷却・除湿される。
【0163】
エバポレータ19で冷却・除湿された送風空気は、エアミックスドア25で加熱路25bとバイパス路25aに分配され、サブコンデンサ17で加熱された一部の送風空気とバイパス路25aを通過した残りの送風空気とが混合され、乗員が所望する温度に調節された空調風が各吹出口27a、28a、29aから車室内に送風される。
【0164】
−暖房運転−
暖房運転中の冷凍サイクル10は、切替弁12によって第2の冷媒ライン42が選択されている。
【0165】
コンプレッサ11で圧縮された高温高圧状態の冷媒は、切替弁12を通じてメインコンデンサ14をバイパスし、逆止弁13と合流部16を通じてコンプレッサ出口熱交換器32に送入される。
【0166】
暖房運転時には、燃料電池スタック30aの廃熱で高温高圧状態の冷媒をさらに加熱するために、コンプレッサ出口熱交換器32にスタック冷却水を循環させる。
【0167】
ここで第1の熱交換制御手段31aは、コンプレッサ出口熱交換器32の冷媒出口における冷媒の温度と圧力、およびコンプレッサ出口熱交換器32の冷却水入口におけるスタック冷却水の温度を検知し、コンプレッサ出口熱交換器32を循環するスタック冷却水の流量を制御する。
【0168】
これにより、メインコンデンサ14をバイパスして高温高圧状態の冷媒は、コンプレッサ出口熱交換器32でさらに加熱され、所定の温度に加熱され、サブコンデンサ17に送入される。
【0169】
サブコンデンサ17に送入された冷媒は、送風空気に熱を放出することで送風空気を加熱する。
【0170】
サブコンデンサ17で熱を放出し低温高圧状態の冷媒は、膨張弁18に送入されて断熱膨張する。
【0171】
断熱膨張して低温低圧状態の冷媒はエバポレータ19に送入され、送風空気から熱を奪い、送風空気を冷却・除湿する。
【0172】
暖房運転時には、コンプレッサ出口熱交換器32と同様に、燃料電池スタック30aの廃熱で低温低圧状態の冷媒を加熱するために、エバポレータ出口熱交換器31にスタック冷却水を循環させる。
【0173】
ここで第2の熱交換制御手段32aは、エバポレータ出口熱交換器31の冷媒出口における冷媒の温度と圧力、およびエバポレータ出口熱交換器31の冷却水入口におけるスタック冷却水の温度を検知し、エバポレータ出口熱交換器31を循環するスタック冷却水の流量を制御する。
【0174】
これにより、エバポレータ19を通過した冷媒は、エバポレータ出口熱交換器31で受熱し、所定の温度に加熱され、コンプレッサ11に送入される。
【0175】
また、燃料電池を起動した直後の燃料電池スタック30aが十分に暖まっていない状態で、スタック冷却水温度が冷媒を加熱するまでに至っていない場合には、電気ヒータ33をONにしてエバポレータ出口熱交換器31を通過する冷媒を加熱し、暖房運転を開始する。
【0176】
車室内空気流路20では、冷房運転時と同様に、乗員の要求に応じて、外気、および内気が車室内空気流路20にブロアファン24よって取入れられ、エバポレータ19で冷却・除湿される。
【0177】
エバポレータ19で冷却・除湿された送風空気は、エアミックスドア25で加熱路25bとバイパス路25aに分配され、サブコンデンサ17で加熱された一部の送風空気とバイパス路25aを通過した残りの送風空気とが混合され、乗員が所望する温度に調節された空調風が各吹出口27a、28a、29aから車室内に送風される。
【0178】
−作用−
本実施形態では、エバポレータ19出口とコンプレッサ11入口の間に廃熱熱交換器としてのエバポレータ出口熱交換器31を配設し、燃料電池スタック30aから放出される熱で冷媒を加熱することで、コンプレッサ吐出圧を速やかに上昇させ、サブコンデンサ17から放出される熱によって送風空気を暖めるとともに、コンプレッサ11出口とサブコンデンサ17入口の間に廃熱熱交換器としてのコンプレッサ出口熱交換器32を配設し、燃料電池スタック30aから放出される熱で冷媒を加熱することで、冷媒の温度を速やかに上昇させ、サブコンデンサ17から放出される熱によって送風空気を暖める構成となっている。
【0179】
また、電気ヒータ33によって空調風から熱を奪った冷媒を加熱することで、より速やかに空調風の吹出し温度を上昇させることができる。
【0180】
これにより、冷凍サイクル10を循環する冷媒によって車室内空気流路20を流れる空気が加熱されるので、燃料電池30を起動した直後の燃料電池スタック30aが十分に暖まっていない状態でも、速やかに且つ急速な除湿暖房運転を開始することができ、暖房運転開始後も、外気導入および内気循環を問わず、さらに燃料電池30の運転状態に関わらず、極めて良好な急速除湿暖房性能を発揮することができる。
【0181】
また、コンプレッサ出口熱交換器32およびエバポレータ出口熱交換器31を通過する冷媒の温度と圧力、およびスタック冷却水の温度を検知し、コンプレッサ出口熱交換器32およびエバポレータ出口熱交換器31を通過するスタック冷却水の流量を変化させる第1、第2の熱交換制御手段31a、32aを設けることで、コンプレッサ出口熱交換器32およびエバポレータ出口熱交換器31で冷媒に伝えられる熱量を制御することができる。
【0182】
これにより、コンプレッサ出口熱交換器32およびエバポレータ出口熱交換器31で受熱した冷媒の圧力を一定に保つことができるため、冷媒が冷凍サイクルに配設される各機器を通過する際の圧力を各機器の所定値以下に保つことができる。
【0183】
したがって、各機器の耐圧性能を低減することが可能になり、冷凍サイクルの低コスト化、および耐用年数の延長化を行うことができる。
【0184】
また、コンプレッサ出口熱交換器32およびエバポレータ出口熱交換器31で受熱した冷媒の圧力を一定に保つことができることにより、送風空気が放熱用車室内熱交換器から授受する熱量が安定するため、車室内に送風される送風空気の温度制御を簡素化することができる。
【0185】
加えて、燃料電池30を起動した直後の燃料電池スタック30aが十分に暖まっていない状態で、スタック冷却水温度が冷媒を加熱するまでに至っていない場合には、電気ヒータ33をONにしてエバポレータ出口熱交換器31を通過する冷媒を加熱するとともに、エバポレータ出口熱交換器31を通過するスタック冷却水を加熱し、循環させることで、燃料電池スタック30aを加熱し、発電状態を速やかに安定させることができる。
【0186】
図6は、本発明に係る車両用空調装置1の第3実施形態の構成を示すシステム構成図である。
【0187】
本実施形態と第2実施形態との相違点は、第2実施形態では、廃熱熱交換器としてのコンプレッサ出口熱交換器32を合流部16出口とサブコンデンサ17の間に設けていたが、本実施形態では、コンプレッサ11出口と切替弁12の間にコンプレッサ出口熱交換器32を設けている点である。
【0188】
なお、構成が同一の箇所に関する説明は省略する。
【0189】
−冷房運転−
冷房運転中の冷凍サイクル10は、切替弁12によって第1の冷媒ライン41が選択されている。
【0190】
コンプレッサ11で圧縮された高温高圧状態の冷媒は、切替弁12を通じてメインコンデンサ14に送られ外気に熱を放出する。メインコンデンサ14で熱を放出して低温高圧状態の冷媒は、逆止弁15と合流部16を通じてコンプレッサ出口熱交換器32に送入される。
【0191】
冷房運転時には、燃料電池スタック30aの廃熱で冷媒を加熱する必要がないので、コンプレッサ出口熱交換器32には、スタック冷却水を循環させない。
【0192】
これにより、コンプレッサ出口熱交換器32で熱の授受は行われないまま、冷媒はサブコンデンサ17を通じて膨張弁18に送入されて断熱膨張する。
【0193】
断熱膨張して低温低圧状態の冷媒はエバポレータ19に送入され、送風空気から熱を奪い、送風空気を冷却・除湿する。
【0194】
冷房運転時には、コンプレッサ出口熱交換器32と同様に、燃料電池スタック30aの廃熱で冷媒を加熱する必要がないので、コンプレッサ出口熱交換器32とエバポレータ出口熱交換器31には、スタック冷却水を循環させない。
【0195】
これにより、エバポレータ19を通過した冷媒は、エバポレータ出口熱交換器31で熱の授受は行われないまま、コンプレッサ11に送入される。
【0196】
車室内空気流路20では、乗員の要求に応じて、外気、および内気が車室内空気流路20にブロアファン24よって取入れられ、エバポレータ19で冷却・除湿される。
【0197】
エバポレータ19で冷却・除湿された送風空気は、エアミックスドア25で加熱路25bとバイパス路25aに分配され、サブコンデンサ17で加熱された一部の送風空気とバイパス路25aを通過した残りの送風空気とが混合され、乗員が所望する温度に調節された空調風が各吹出口27a、28a、29aから車室内に送風される。
【0198】
−暖房運転−
暖房運転中の冷凍サイクル10は、切替弁12によって第2の冷媒ライン42が選択されている。
【0199】
コンプレッサ11で圧縮された高温高圧状態の冷媒は、コンプレッサ出口熱交換器32に送入される。
【0200】
暖房運転時には、燃料電池スタック30aの廃熱で高温高圧状態の冷媒をさらに加熱するために、コンプレッサ出口熱交換器32にスタック冷却水を循環させる。
【0201】
ここで第1の熱交換制御手段31aは、コンプレッサ出口熱交換器32の冷媒出口における冷媒の温度と圧力、およびコンプレッサ出口熱交換器32の冷却水入口におけるスタック冷却水の温度を検知し、コンプレッサ出口熱交換器32を循環するスタック冷却水の流量を制御する。
【0202】
これにより、メインコンデンサ14をバイパスして高温高圧状態の冷媒は、コンプレッサ出口熱交換器32でさらに加熱され、所定の温度に加熱され、切替弁12を通じてメインコンデンサ14をバイパスし、逆止弁13と合流部16を通じてサブコンデンサ17に送入される。
【0203】
サブコンデンサ17に送入された冷媒は、送風空気に熱を放出することで送風空気を加熱する。
【0204】
サブコンデンサ17で熱を放出し低温高圧状態の冷媒は、膨張弁18に送入されて断熱膨張する。
【0205】
断熱膨張して低温低圧状態の冷媒はエバポレータ19に送入され、送風空気から熱を奪い、送風空気を冷却・除湿する。
【0206】
暖房運転時には、コンプレッサ出口熱交換器32と同様に、燃料電池スタック30aの廃熱で低温低圧状態の冷媒を加熱するために、エバポレータ出口熱交換器31にスタック冷却水を循環させる。
【0207】
ここで第2の熱交換制御手段32aは、エバポレータ出口熱交換器31の冷媒出口における冷媒の温度と圧力、およびエバポレータ出口熱交換器31の冷却水入口におけるスタック冷却水の温度を検知し、エバポレータ出口熱交換器31を循環するスタック冷却水の流量を制御する。
【0208】
また、燃料電池を起動した直後の燃料電池スタック30aが十分に暖まっていない状態で、スタック冷却水温度が冷媒を加熱するまでに至っていない場合には、電気ヒータ33をONにしてエバポレータ出口熱交換器31を介して冷媒を加熱し、暖房運転を開始する。
【0209】
これにより、エバポレータ19を通過した冷媒は、エバポレータ出口熱交換器31で受熱し、所定の温度に加熱され、コンプレッサ11に送入される。
【0210】
車室内空気流路20では、冷房運転時と同様に、乗員の要求に応じて、外気、および内気が車室内空気流路20にブロアファン24よって取入れられ、エバポレータ19で冷却・除湿される。
【0211】
エバポレータ19で冷却・除湿された送風空気は、エアミックスドア25で加熱路25bとバイパス路25aに分配され、サブコンデンサ17で加熱された一部の送風空気とバイパス路25aを通過した残りの送風空気とが混合され、乗員が所望する温度に調節された空調風が各吹出口27a、28a、29aから車室内に送風される。
【0212】
−作用−
本実施形態では、エバポレータ19出口とコンプレッサ11入口の間に廃熱熱交換器としてのエバポレータ出口熱交換器31を配設し、燃料電池スタック30aから放出される熱で冷媒を加熱することで、コンプレッサ吐出圧を速やかに上昇させ、サブコンデンサ17から放出される熱によって送風空気を暖めるとともに、コンプレッサ11出口とサブコンデンサ17入口の間に廃熱熱交換器としてのコンプレッサ出口熱交換器32を配設し、燃料電池スタック30aから放出される熱で冷媒を加熱することで、冷媒の温度を速やかに上昇させ、サブコンデンサ17から放出される熱によって送風空気を暖める構成となっている。
【0213】
また、電気ヒータ33によって空調風から熱を奪った冷媒を加熱することで、より速やかに空調風の吹出し温度を上昇させることができる。
【0214】
これにより、冷凍サイクル10を循環する冷媒によって車室内空気流路20を流れる空気が加熱されるので、燃料電池30を起動した直後の燃料電池スタック30aが十分に暖まっていない状態でも、速やかに且つ急速な除湿暖房運転を開始することができ、暖房運転開始後も、外気導入および内気循環を問わず、さらに燃料電池30の運転状態に関わらず、極めて良好な急速除湿暖房性能を発揮することができる。
【0215】
また、コンプレッサ出口熱交換器32およびエバポレータ出口熱交換器31を通過する冷媒の温度と圧力、およびスタック冷却水の温度を検知し、コンプレッサ出口熱交換器32およびエバポレータ出口熱交換器31を通過するスタック冷却水の流量を変化させる第1、第2の熱交換制御手段31a、32aを設けることで、コンプレッサ出口熱交換器32およびエバポレータ出口熱交換器31で冷媒に伝えられる熱量を制御することができる。
【0216】
これにより、コンプレッサ出口熱交換器32およびエバポレータ出口熱交換器31で受熱した冷媒の圧力を一定に保つことができるため、冷媒が冷凍サイクルに配設される各機器を通過する際の圧力を各機器の所定値以下に保つことができる。
【0217】
したがって、各機器の耐圧性能を低減することが可能になり、冷凍サイクルの低コスト化、および耐用年数の延長化を行うことができる。
【0218】
また、コンプレッサ出口熱交換器32およびエバポレータ出口熱交換器31で受熱した冷媒の圧力を一定に保つことができることにより、送風空気が放熱用車室内熱交換器から授受する熱量が安定するため、車室内に送風される送風空気の温度制御を簡素化することができる。
【0219】
加えて、燃料電池30を起動した直後の燃料電池スタック30aが十分に暖まっていない状態で、スタック冷却水温度が冷媒を加熱するまでに至っていない場合には、電気ヒータ33をONにして冷媒を加熱するだけでなく、スタック冷却水を加熱しつつ、循環させることで、燃料電池スタック30aを加熱し、発電状態を速やかに安定させることができる。
【0220】
図7は、図5に示される第2実施形態の車両用空調装置1の制御の概要を示す制御フローチャートである。
【0221】
まず、ステップ(以下、ステップをSと略す)10において、各種センサから外気温、室内温度、設定温度、運転モードなどのセンサ出力データを検知し、初期設定を行う。
【0222】
次にS12で、燃料電池スタック30aのスタック温度TSが下限定格発電温度TS1以上かどうかを判定する。ここで、下限定格発電温度とは、燃料電池の種類によって異なるが、固体高分子型燃料電池の場合、例えば約72℃である。
【0223】
スタック温度TSが下限定格発電温度TS1よりも低い場合には、S40でコンプレッサ出口熱交換器32を作動することで、第2の熱交換制御手段32aでコンプレッサ出口熱交換器32を通過するスタック冷却水の流量を調整しつつ、高温高圧冷媒でスタック冷却水を加熱し、燃料電池スタック30aを加熱する。これによりスタック温度TSが急速に上昇し、発電起動性を改善する。
【0224】
さらに、S42でエバポレータ出口熱交換器31を作動し、さらにS44で電気ヒータ33を作動することで、第1の熱交換制御手段31aでエバポレータ出口熱交換器31を通過するスタック冷却水の流量を調整しつつ、電気ヒータ33でスタック冷却水を介して、燃料電池スタック30aを加熱し、S16に移行する。これにより、燃料電池スタック30aの加熱時間をさらに短縮することができる。
【0225】
また、スタック温度TSが下限定格発電温度TS1以上の場合には、S14でコンプレッサ出口熱交換器を停止する。
【0226】
次にS16で、暖房運転か、冷房運転かを判定し、暖房運転の場合には、S18に移行し、メインコンデンサ14をバイパスするように切替弁12を切替える。
【0227】
S20では、空調風の吹出し温度TAが設定温度TH以上かどうかを判定する。ここで、空調風の吹出し温度の所定値としては、外気温、乗員の設定室温、実際の室温によって変化するが、例えば40℃程度である。
【0228】
空調風の吹出し温度TAが設定温度TH以下の場合には、S22で電気ヒータ33を作動することで、第1の熱交換制御手段31aでエバポレータ出口熱交換器31を通過するスタック冷却水の流量を調整しつつ、エバポレータ出口熱交換器31を介して低圧冷媒を加熱し、S24に移行する。これにより、加熱された低圧冷媒はコンプレッサ11で圧縮されてより高温の高圧冷媒になり、サブコンデンサ17で空調風に伝える熱量が増大して、空調風の温度を上昇させる。
【0229】
また、空調風の吹出し温度TAが設定温度THよりも高い場合には、S60で、エバポレータ出口熱交換器31を停止し、低温低圧冷媒の加熱を停止する。
【0230】
S24では、スタック温度TSが上限定格発電温度TS2以上かどうかを判定する。ここで、上限定格発電温度TS2とは、燃料電池の種類によって異なるが、固体高分子型燃料電池の場合、例えば約76℃である。
【0231】
スタック温度TSが上限定格発電温度TS2以上の場合には、S26で、エバポレータ出口熱交換器31を作動し、さらにS28で電気ヒータ33を作動することで、第1の熱交換制御手段31aでエバポレータ出口熱交換器31を通過するスタック冷却水の流量を調整しつつ、エバポレータ出口熱交換器31を介して低圧冷媒を加熱し、S10に移行する。これにより、低温低圧冷媒に燃料電池スタック30aの廃熱を伝えることができるとともに、コンプレッサの所要動力を軽減することができるので、車両全体の効率を向上させることができる。
【0232】
また、スタック温度TSが上限定格発電温度TS2よりも低い場合には、S70でエバポレータ出口熱交換器31を停止し、さらにS72で電気ヒータ33を停止して、S10に移行する。これは、スタック温度TSが上限定格発電温度TS2よりも低い場合には、燃料電池スタック30aが低温低圧冷媒によって過冷却され、スタック温度TSが下限定格発電温度TS1よりも低下することを防止するためである。
【0233】
S16で、冷房運転と判定された場合には、S50でメインコンデンサ14に冷媒が流通するように切替弁12を切替え、S52でエバポレータ出口熱交換器31を停止し、電気ヒータ33を停止して、S10に移行する。
【0234】
なお、本制御方法は、第2、第3実施形態の一制御方法であって、制御方法を限定するものではない。
【0235】
たとえば、本制御方法では、燃料電池を起動した直後でスタック温度TSが下限定格発電温度TS1に達していなくても空調風の温度調節を開始しているが、スタック温度TSが下限定格発電温度TS1に達するまで空調風の温度調節を開始しないこともできる。
【0236】
また、本制御方法では、第2の熱交換制御手段32aと第1の熱交換制御手段31aに関する制御方法について触れていないが、S10で入力されたデータを元にして、コンプレッサ出口熱交換器32、およびエバポレータ出口熱交換器31を作動させた際に、各熱交換器31、32を流通するスタック冷却水の流量を制御して、スタック冷却水と冷媒との間で授受される熱量を制御する。
【図面の簡単な説明】
【図1】 本発明に係る車両用空調装置の第1参考例の構成を示すシステム構成図である。
【図2】 本発明に係る車両用空調装置の第2参考例の構成を示すシステム構成図である。
【図3】 本発明に係る車両用空調装置の第1実施形態の構成を示すシステム構成図である。
【図4】 本発明に係る車両用空調装置の第3参考例の構成を示すシステム構成図である。
【図5】 本発明に係る車両用空調装置の第2実施形態の構成を示すシステム構成図である。
【図6】 本発明に係る車両用空調装置の第3実施形態の構成を示すシステム構成図である。
【図7】 本発明に係る車両用空調装置の第2実施形態の制御の概要を示す制御フローチャートである。
【符号の説明】
1 車両用空調装置
10 冷凍サイクル
11 コンプレッサ
12 切替え手段
14 車室外熱交換器
17 放熱用車室内熱交換器
18 膨張手段
19 吸熱用車室内熱交換器
20 車室内空気流路
30 燃料電池
31、32 廃熱熱交換器
31a、32a 熱交換制御手段
33 加熱器
41 第1の冷媒ライン
42 第2の冷媒ライン

Claims (7)

  1. 燃料電池(30)を駆動電力源とする車両に配設された冷凍サイクル(10)に、
    送入された冷媒を圧縮・吐出するコンプレッサ(11)と、
    該冷媒の熱を外気に放出する車室外熱交換器(14)と、
    該車室外熱交換器(14)で放熱した冷媒を膨張させる膨張手段(18)と、 内外気が選択的に導入される車室内空気流路(20)中に配設され、前記膨張手段(18)によって膨張された冷媒に該車室内空気流路(20)を流れる空気の熱が吸熱される吸熱用車室内熱交換器(19)とを備え、
    前記燃料電池(30)内を循環するスタック冷却水と該冷凍サイクル(10)内を循環する冷媒との間で熱の授受が行われる廃熱熱交換器(31、32)と、 車室内空気流路(20)中に配設され、前記コンプレッサ(11)で圧縮された冷媒の熱によって該車室内空気流路(20)中に流れる空気を加熱する放熱用車室内熱交換器(17)と、
    前記コンプレッサ(11)出口から前記車室外熱交換器(14)を通じて前記膨張手段(18)に連通される第1の冷媒ライン(41)と、
    前記車室外熱交換器(14)を迂回し、前記コンプレッサ(11)出口から該放熱用車室内熱交換器(17)を通じて前記膨張手段(18)に連通される第2の冷媒ライン(42)と、
    第1の冷媒ライン(41)と第2の冷媒ライン(42)を選択的に切替える切替え手段(12)と、
    前記スタック冷却水を介して前記廃熱熱交換器(31、32)と熱の授受が可能な位置に加熱器(33)とを備え
    該加熱器(33)によって該スタック冷却水を加熱しつつ循環させて、燃料電池スタックを加熱することを特徴とする車両用空調装置。
  2. 請求項1に記載の車両用空調装置において、
    廃熱熱交換器(31、32)で授受される熱量を制御する熱交換制御手段(31a、32a)を設けたことを特徴とする車両用空調装置。
  3. 請求項1、または請求項2に記載の車両用空調装置において、
    前記吸熱用車室内熱交換器(19)冷媒出口と前記コンプレッサ(11)入口との間に前記廃熱熱交換器(31)が設けられたことを特徴とする車両用空調装置。
  4. 請求項1〜3のうちいずれか1項に記載の車両用空調装置において、
    前記コンプレッサ(11)出口と前記車室内熱交換器(17)冷媒入口との間に前記廃熱熱交換器(32)が設けられたことを特徴とする車両用空調装置。
  5. 請求項1〜4のうちいずれか1項に記載の車両用空調装置において、
    前記加熱器(33)の熱源が、前記燃料電池に供給される水素を酸化反応させることで発生する反応熱であることを特徴とする車両用空調装置。
  6. 請求項1〜4のうちいずれか1項に記載の車両用空調装置において、
    前記加熱器(33)の熱源が、前記燃料電池から排出される水素を酸化反応させることで発生する反応熱であることを特徴とする車両用空調装置。
  7. 請求項1〜4のうちいずれか1項に記載の車両用空調装置において、
    前記加熱器(33)が、前記燃料電池の電力を利用した電気ヒータであることを特徴とする車両用空調装置。
JP2002092187A 2002-03-28 2002-03-28 車両用空調装置 Expired - Fee Related JP3996419B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002092187A JP3996419B2 (ja) 2002-03-28 2002-03-28 車両用空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092187A JP3996419B2 (ja) 2002-03-28 2002-03-28 車両用空調装置

Publications (2)

Publication Number Publication Date
JP2003285632A JP2003285632A (ja) 2003-10-07
JP3996419B2 true JP3996419B2 (ja) 2007-10-24

Family

ID=29237085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092187A Expired - Fee Related JP3996419B2 (ja) 2002-03-28 2002-03-28 車両用空調装置

Country Status (1)

Country Link
JP (1) JP3996419B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100802571B1 (ko) * 2004-12-13 2008-02-13 엘지전자 주식회사 연료전지의 폐열을 이용한 냉난방 장치
JP5346828B2 (ja) * 2009-02-02 2013-11-20 中部電力株式会社 空調システム
JP5831108B2 (ja) * 2011-09-30 2015-12-09 ダイキン工業株式会社 自動車用温調システム
JP6925288B2 (ja) 2018-01-30 2021-08-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
DE102018205555A1 (de) * 2018-04-12 2019-10-17 Audi Ag Verfahren zum Anheben einer Temperatur eines Fahrzeuginnenraums und Fahrzeug zur Durchführung des Verfahrens

Also Published As

Publication number Publication date
JP2003285632A (ja) 2003-10-07

Similar Documents

Publication Publication Date Title
JP7024413B2 (ja) 熱管理システム
JP5860361B2 (ja) 電動車両用熱管理システム
JP6997558B2 (ja) 車両用空気調和装置
JP5860360B2 (ja) 電動車両用熱管理システム
JP5488237B2 (ja) 車両用空調装置
JP2005263200A (ja) 車両用空調装置
US20120017637A1 (en) Air conditioning device for vehicle
JP2009291008A (ja) 電気駆動自動車の熱管理システム
JP6900750B2 (ja) 燃料電池システム
JP2008006894A (ja) 車両用空調装置
JP2014037182A (ja) 電動車両用熱管理システム
JP2006321269A (ja) 車両用熱源分配システム
JP2014037179A (ja) 電動車両用熱管理システム
JP5096956B2 (ja) 車両用空気調和システム
JP3996419B2 (ja) 車両用空調装置
US20230364969A1 (en) Thermal management system
WO2020184146A1 (ja) 車両用空気調和装置
JP2005233535A (ja) 空調装置
JP7119698B2 (ja) 車両用空調装置
JP2009051475A (ja) 車両用空調装置
JP2005178524A (ja) 燃料電池の加熱機能を有するヒートポンプ装置
JP2003335129A (ja) 車両用空調装置
JP2002225545A (ja) 車両用空調装置
JP2003285619A (ja) 車両用空調装置
JP2003291623A (ja) 車両用空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees