JP3994885B2 - Mems素子とその製造方法、回折型mems素子 - Google Patents

Mems素子とその製造方法、回折型mems素子 Download PDF

Info

Publication number
JP3994885B2
JP3994885B2 JP2003038696A JP2003038696A JP3994885B2 JP 3994885 B2 JP3994885 B2 JP 3994885B2 JP 2003038696 A JP2003038696 A JP 2003038696A JP 2003038696 A JP2003038696 A JP 2003038696A JP 3994885 B2 JP3994885 B2 JP 3994885B2
Authority
JP
Japan
Prior art keywords
side electrode
light irradiation
substrate
mems element
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003038696A
Other languages
English (en)
Other versions
JP2004261884A (ja
Inventor
康治 難波田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003038696A priority Critical patent/JP3994885B2/ja
Priority to TW093102611A priority patent/TWI242794B/zh
Priority to KR1020057014339A priority patent/KR20050100654A/ko
Priority to US10/544,733 priority patent/US20060171628A1/en
Priority to PCT/JP2004/001302 priority patent/WO2004071942A1/ja
Priority to EP04708917A priority patent/EP1602624A4/en
Publication of JP2004261884A publication Critical patent/JP2004261884A/ja
Application granted granted Critical
Publication of JP3994885B2 publication Critical patent/JP3994885B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0072For controlling internal stress or strain in moving or flexible elements, e.g. stress compensating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0808Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/045Optical switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0109Bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/05Type of movement
    • B81B2203/053Translation according to an axis perpendicular to the substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、MEMS素子とその製造方法、回折型MEMS素子に関する。
【0002】
【従来の技術】
微細技術の進展に伴い、いわゆるマイクロマシン(MEMS:Micro Electro Mechanical Systems、超小型電気的・機械的複合体)素子、及びMEMS素子を組み込んだ小型機器が、注目されている。
MEMS素子は、シリコン基板、ガラス基板等の基板上に微細構造体として形成され、機械的駆動力を出力する駆動体と、駆動体を制御する半導体集積回路等とを電気的に、更に機械的に結合させた素子である。MEMS素子の基本的な特徴は、機械的構造として構成されている駆動体が素子の一部に組み込まれていることであって、駆動体の駆動は、電極間の静電力、即ちクローン引力等を応用して電気的に行われる。
【0003】
従来、光の反射や回折を利用し、光スイッチ、光変調素子等に適用される光学MEMS素子が開発されている。 図11は、光学MEMS素子の代表例を示す。この光学MEMS素子1は、例えばシリコン基板2上に表面が絶縁膜4で覆われた基板側電極3を形成し、この基板側電極3と空間5を挟んで対向するように駆動側電極6を含むビーム8を支持して構成される。ビーム8は、絶縁膜、例えばシリコン窒化(SiN)膜7と光反射膜を兼ねる駆動側電極6の積層薄膜で形成され、同じ積層薄膜で形成された支柱9により両端部が支持される。このビーム8は、いわゆる両持ち梁構造に形成される。この光学MEMS素子1では、基板側電極3と駆動側電極6間に印加される電圧(電気信号)により、両電極3及び6間に静電力が発生し、実線及び破線で示すようにビーム8が基板側電極3に対して、静電力で近接・離間するように駆動(振動)する。
【0004】
また、反射光を利用する場合の光学MEMS素子は、ビームの駆動位置に応じて、ビーム表面に入射された光の反射方向が異なるのを利用し、一方向の反射光を検出してスイッチ機能を持たせた光スイッチとして適用される。また、光学MEMS素子は、光強度を変調させる光変調素子として適用できる。光の反射を利用するときは、ビームを振動させて単位時間当たりの一方向の反射光量で光強度を変調する。この光変調素子は、いわゆる時間変調である。光の回折を利用して光強度を変調することができる。光の回折によって駆動側電極で反射する光の強度(回折強度)を変調する光変調素子は、いわゆる空間変調である。
【0005】
一方、光変調素子等に適用される光学MEMS素子として、回折型MEMS素子、いわゆるGLV(Grating Light Valve)素子が提案されている(特許文献1参照)。
【0006】
GLV素子は、基本的には基板上に共通の基板側電極を形成し、この基板側電極と空間を挟んで対向するように、支柱を介して絶縁膜とその表面を被覆する反射膜を兼ねる駆動側電極からなる複数のリボン状のビームを形成して構成される。GLV素子では、複数のビームのうちの1本置きのビームが基板側電極に対して静電力で接近・離間する可動ビームとなり、その他のビームが固定ビームとなる。そして、6本のビームが1本置きに沈み込んで回折格子を形成する。
【0007】
【特許文献1】
特表2001−518198号
【0008】
【発明が解決しようとする課題】
ところで、このようなMEMS素子は、半導体プロセスを用いて作製することができる。半導体プロセスを用いてビーム構造で形成したMEMS素子は、ビームの形状がMEMS素子の特性を決めるための重要な要素となる。しかしながら、図12に示すように、しばしばビーム8に両支柱9を結ぶ方向と直交する方向(幅方向)に関して変形(反り)が発生する。
【0009】
これは次のような理由による。MEMS素子では、ビームの形状を作製するために半導体プロセスを用いた薄膜を使用するが、複数種類の材質の薄膜を積層して、図示の例ではシリコン窒化(SiN)膜7とAl駆動側電極6の2層膜を用いてビームを作製すると、基板2よりビーム8を切り離すと材質間、即ちSiN膜7とAl膜6間の膜応力の違いによりビーム8の幅方向が歪み変形する。ビーム8の歪みは、MEMS素子の特性、特に反射効率、回折効率に悪影響を及ぼすことが多く、この歪みの低減が課題となっていた。
【0010】
また、この歪みを解決する技術として、応力を打ち消すような材質の膜をビーム8に追加するものがあるが、半導体プロセスでは、使用できる材質は限られている上、材質の違う膜を追加したとき、膜厚の増加などによりMEMS素子の特性が低下するなどの問題があった。
【0011】
本発明は、上述の点に鑑み、ビームの歪み変形を低減し、特性向上を図ったMEMS素子及びその製造方法、並び回折型MEMS素子を提供するものである。
【0012】
【課題を解決するための手段】
本発明に係るMEMS素子は、基板側電極と、この基板側電極との間で静電力により駆動するビームを備えている。ビームは、駆動側電極を含む複数の薄膜で形成されると共に、長手方向の固定端が支持部にて支持され、ビーム内に、薄膜の応力歪みによるビーム変形を阻止する変形阻止手段が設けられる。変形阻止手段は、ビームの光照射領域の近傍で該光照射領域を挟んで両側に設けられると共に、ビームの長手方向と直交する短辺方向のビーム内において、短辺方向に細長い形状でかつ光照射側から見て凹状となるように反対面側に突出した突出部で形成される。
【0013】
本発明のMEMS素子においては、ビーム内に変形阻止手段である突出部を設けることで、ビームの強度が上がり、ビームの変形である反りが生じにくくなる。突出部が光照射領域の近傍で該光照射領域を挟んで両側に設けられるので、光照射領域の反射面の平坦性が確保される。突出部がビームの長手方向と直交する短辺方向のビーム内において、短辺方向に細長い形状で形成されるので、ビームの張力が維持される。突出部が光照射側から見て凹状となるように反対面側に突出して形成されるので、反射膜を兼ねるビームの駆動側電極の平坦性が確保される。
【0014】
本発明に係る回折型MEMS素子は、共通の基板側電極と、共通の基板側電極に対向して互いに独立に並列配置され、この基板側電極との間で静電力により駆動する複数のビームとを備えている。各ビームは、駆動側電極を含む複数の薄膜で形成されると共に、長手方向の両固定端が支持部にて支持され、各ビーム内に、薄膜の応力歪みによるビーム変形を阻止する変形阻止手段が設けられる。変形阻止手段は、ビームの光照射領域の近傍で該光照射領域を挟んで両側に設けられると共に、ビームの長手方向と直交する短辺方向のビーム内において、短辺方向に細長い形状でかつ光照射側から見て凹状となるように反対面側に突出した突出部で形成される。
【0015】
本発明の回折型MEMS素子においては、並列配置される各ビーム内に変形阻止手段である突出部を設けることで、各ビームの強度が上がり、ビームの変形である反りが生じにくくなる。突出部が光照射領域の近傍で該光照射領域を挟んで両側に設けられるので、光照射領域の反射面の平坦性が確保される。突出部がビームの長手方向と直交する短辺方向のビーム内において、短辺方向に細長い形状で形成されるので、ビームの張力が維持される。突出部が光照射側から見て凹状となるように反対面側に突出して形成されるので、反射膜を兼ねるビームの駆動側電極の平坦性が確保される。
【0016】
本発明に係るMEMS素子の製造方法は、基板側電極が形成された基板上に犠牲層を形成する工程と、支柱を形成すべき犠牲層の位置に前記基板に達する開孔を形成する工程と、犠牲層の表面において、後で形成されるビームの光照射領域の近傍で該光照射領域を挟んで両側に対応する位置に、ビームの長手方向と直交する短辺方向のビーム内で短辺方向に細長い凹状溝を選択的に形成する工程と、開孔内と凹状溝とを含んで犠牲層表面に、駆動側電極を含む複数の薄膜によるビームを形成する工程と、犠牲層を除去して、支柱、及び光照射領域を挟んで両側にビームの短辺方向に細長い形状でかつ光照射側から見て凹状となるように反対面側に突出した突出部による変形阻止手段を一体に有するビームを形成する工程とを有することを特徴とする。
【0017】
本発明のMEMS素子の製造方法においては、犠牲層の表面の変形阻止手段を形成すべき部分を選択的に除去し、除去部分を含んで複数の薄膜による変形阻止手段となる突出部を有するビームを形成することにより、突出部を一体に有したビームが形成される。従って、反りにくいビームを備えたMEMS素子を容易且つ精度良く製造することがでる。
【0018】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
【0019】
図1は、本発明に係るMEMS素子の一実施の形態を示す。
本実施の形態に係るMEMS素子21は、基板22上に基板側電極23を形成し、この基板側電極23上に保護膜を兼ねる絶縁膜24を形成し、両端が支柱25〔25A,25B〕で支持されるように空間26を挟んで基板側電極23と対向するビーム27を形成して構成される。ビーム27は、駆動側電極29を含む材質の異なる複数の薄膜で形成される。本例では、絶縁薄膜、例えばシリコン窒化膜28とその上の金属薄膜による駆動側電極29とによる2層膜構造で長方形をなすリボン状のビーム27が形成される。駆動側電極29は、入射する光を反射する反射膜を兼ねる。支柱25は、本例ではビーム27と同じ絶縁薄膜28及び金属薄膜29による2層膜で形成される。
【0020】
そして、本実施の形態においては、特に、ビーム27の一部にビーム27を構成する薄膜の応力に起因した歪みによる変形、つまり反りを阻止する変形阻止手段31が設けられる。この変形阻止手段31は、ビーム27の一部を押し出すように突出させた突出部32で形成することができる。突出部32は、原理的には絶縁薄膜28側、或いは駆動側電極29側に突出させてもよいが、絶縁薄膜28側に突出させる方が好ましい。即ち、ビーム27の光照射側から見て凹状となるように反対面側(つまり絶縁薄膜28側)の突出する突出部32とする。理由は、後述(製造工程で説明)するように反射膜を兼ねる駆動側電極29の平坦性を確保するためである。
【0021】
変形阻止手段31となる突出部32は、図2A〜Cに示すように、特に光照射領域33の反射面の平坦性を確保するために、光照射領域33の近傍に設けられる。また、突出部32は、光照射領域33を挟んで複数設けるようになす。本例では光照射領域33を挟んで2つの突出部32A,32Bが設けられる。さらに、突出部32は、ビーム27の両支柱25〔25A,25B〕に支持された両固定端を結ぶ方向と直交する方向、即ち本例ではリボン状の長手方向と直交する短辺方向に細長い形状に形成される。突出部32は、前述で明らかなようにビーム27を短辺方向に横断させずにビーム27内に止まるように形成される。これはビーム27の張力を維持するためである。
【0022】
本実施の形態のMEMS素子21では、前述と同様に基板側電極23と駆動側電極29間に所要の電圧(電気信号)を印加することにより、両電極23及び29間に静電力が発生し、オン・オフ制御でビーム27が基板側電極23に対して近接・離間するように駆動(振動)される。MEMS素子21は、このビーム27の変位によってビーム27に入射した光の反射光、回折光、或いは反射方向等が変調するのを利用して、光変調素子、光スイッチ等に適用される。
【0023】
図3は、図1及び図2に示す本実施の形態のMEMS素子21におけるビーム27の具体的な寸法の一例を示す。ビーム27は、長手方向の全長Lが50μm程度、幅方向の長さWが5μm程度の長方形であり、長手方向の両端から夫々距離S1 ,S2 が20μm程度の位置に2つの変形阻止手段31である突出部32が設けられている。この突出部32は、ビーム27の長手方向に平行した長さtが2μm程度、幅方向に平行した幅dが4.5μm程度の細長い四角形状とされている。2層膜構造のビーム27では、そのシリコン窒化膜28の膜厚f1 が100nm程度、駆動側電極29となる例ではAl膜の膜厚f2 が100nm程度となっている。
【0024】
図4は本実施の形態に係るMEMS素子のビーム27(図3参照)の変形状態を示し、図5は比較のために従来に係るMEMS素子のビーム8(図11及び図12参照)の変形状態を示す。ビーム27及び8の寸法形状は、いずれも図3の寸法形状とした。図4及び図5のシミュレータのよる計算結果は、いずれも図3のDーD線上のビーム断面におけるものである。
【0025】
図5に示す従来例の計算結果を見ると、位置1μmから4μm間の中間領域で大きく変位し、18.5nm程落ち込んでいる、即ち、ビーム8が幅方向の中央付近で歪み変形していることがわかる。いわゆる歪みは18.5nmである。一方、図4に示す本実施の計算結果を見ると、位置0.5μmから4.5μm間の中間領域で変位し、11.5nm程度落ち込んでいるが(いわゆる歪みは11.5nmである)、上述した図5の従来例に比べると変位の落ち込みが38%低減していることがわかる。
【0026】
次に、図6〜図7を用いて、上述の本実施の形態に係るMEMS素子21の製造方法を説明する。なお、図6A2 は図6A1 のE−E線上の断面図であり、以後の各図も同様である。
先ず、図6A1 ,A2 に示すように、例えば、シリコン(Si)やガリウム砒素(GaAs)などの半導体基板上に絶縁膜を形成した基板、石英基板やガラス基板のような絶縁性基板等の基板、本例ではシリコン基板上に絶縁膜基板22上に所要の導電膜、本例では多結晶シリコン膜からなる基板側電極23を形成し、基板側電極23を被覆するように絶縁膜24、例えばシリコン酸化(SiO2 )膜を形成する。その後、全面上に犠牲層35、本例では非結晶シリコン膜を堆積する。
【0027】
次に、図6B1 ,B2 に示すように、犠牲層35上面にレジストマスク(図示せず)を形成し、レジストマスクを介して犠牲層35の支柱を形成すべき位置に対応する部分を選択的にエッチング除去して、基板22側の絶縁膜24に達するような開孔36を形成する。
【0028】
次に、図6C1 、C2 に示すように、再度犠牲層35上面にレジストマスク(図示せず)を形成し、レジストマスクを介して犠牲層35表面の変形阻止手段を形成すべき位置に対応した部分を選択的にエッチング除去して2つの凹状溝37を形成する。
【0029】
次に、図7D1 ,D2 に示すように、開孔36内及び凹状溝37内を含んで犠牲層35上面全面に絶縁膜、本例ではシリコン窒化(SiN)膜28を堆積する。後述するように、開孔36内に埋め込まれたシリコン窒化膜28は支柱に対応し、凹状溝37内に埋め込まれたシリコン窒化膜28は変形阻止手段に対応する。
【0030】
次に、図7E1 ,E2 に示すように、シリコン窒化膜28の全面上に駆動側電極となる金属薄膜(反射膜兼用)、本例ではアルミニウム(Al)を主成分とした金属薄膜(以下、便宜的にAl膜という)29′を蒸着する。Alを主成分とする金属薄膜としては、例えばAl−Si,Al−Cu,Al−Si−Cu,Al−Hf,Al−Zr等を用いることができる。次いで、Al膜29′及びシリコン窒化膜28をビーム及び支柱に対応するパターンになるように選択的にエッチング除去する。これにより、シリコン窒化膜28とAl膜による駆動側電極29とから成る2層膜構造のビーム27、及びビーム27の両端を支持する1対の支柱25[ 25A,25B] を形成する。
【0031】
次に、図7F1 、F2 に示すように、犠牲層35をエッチング除去する、これにより、基板側電極23と空間26を挟んで対向するビーム27が支柱25〔25A,25B〕により支持され、且つビーム27に之と一体の変形阻止手段31となる2つの突出部32が形成されてなる目的のMEMS素子21を得る。
【0032】
本実施の形態の製造方法では、突出部32の形成に際して図6C1 、C2 の工程で、犠牲層35の表面の一部を選択エッチングして凹状溝37を形成し、ビーム27の基板側の裏面に突出する突出部32を形成するようにしている。通常、エッチングされた面は、CVD(化学気相成長)法等で堆積した表面より平坦性が悪くなる。従って、本方法により犠牲層35表面に堆積されたシリコン窒化膜28及び駆動側電極29となるAl膜の表面の平坦性が良好となり、平坦性の良い反射面を有するビーム27を形成することができる。
本実施の形態の製造方法によれば、半導体プロセスを用いて変形(反り)しにくいビーム27を備えたMEMS素子21を容易且つ精度良く製造することができる。
【0033】
上述した本実施の形態に係るMEMS素子21によれば、ビーム27に変形阻止手段31となる突出部32を設けることにより、ビーム27の強度が上がり、ビーム変形を低減、即ちビーム27を反りにくくすることができる。これによりMEMS素子の光学特性を改善、即ち向上することができる。有限要素法を使ったシミュレーションにより、ビーム27の反りが40%以上低減することを確認した。例えば歪みが15nmから6nmに低減することを確認した。
突出部32がビーム27の光照射領域33の近傍に設けられるので、光照射領域33でのビーム平坦性をより良くし、且つ入射光が突出部32により邪魔されることがなく、より特性の改善を図ることができる。特に、突出部32を光照射領域33を挟んで2つの突出部32を設けるときは、さらにビーム27の光照射領域33での反りを低減することができる。
【0034】
更に、突出部32としては、ビーム27の長手方向と直交する方向に細長い形状で形成することにより、ビーム幅方向における強度を上げることができ、反りを低減できる。上例の両持ち梁構造のビーム27の場合は、両端が固定されているので、長手方向の反りは殆ど無視できる。突出部32がビーム32の幅を横断させず、ビーム32内に形成したことにより、ビーム27の張力を維持することができる。
【0035】
本発明は、片持ち梁構造のビームを有するMEMS素子にも適用できる。図8は、その代表例の実施の形態を示す。
本実施の形態に係るMEMS素子39は、基板22上に基板側電極23を形成し、この基板側電極23上に保護膜を兼ねる絶縁膜24を形成し、一端が支柱25で支持されるように空間26を挟んで基板側電極23と対向するビーム27を形成して構成される。上例と同様にビーム27は、駆動側電極29を含む材質の異なる複数の薄膜、本例ではシリコン窒化膜28とその上の金属薄膜による駆動側電極29とによる2層膜構造で形成される。駆動側電極29は、入射する光を反射する反射膜を兼ねる。支柱25は、ビーム27と同じ絶縁薄膜28及び金属薄膜29による2層膜で形成される。そして、ビーム27の一部に光照射領域を挟んで2つの変形阻止手段31となる突出部32が設けられる。この突出部32は、ビーム27の固定端と該固定端に対向した遊端とを結ぶ方向と直交する方向に細長い形状で形成される。その他の構成は図1と同様であるので、重複説明を省略する。
本実施の形態のMEMS素子39においても、上述と同様にビーム27の幅方向の強度が上がり、ビーム幅方向の反りを低減することができ、光学特性を向上することができる。
【0036】
上例では、ビーム27の膜構成をシリコン窒化膜28と駆動側電極29との2層膜構造としたが、その他、2層膜以上の積層膜のビームにも本発明は適用できる。
【0037】
図9及び図10は、上述した図1のMEMS素子を回折光を利用する回折型MEMS素子であるGLV素子に適用した実施の形態を示す。
本実施の形態に係るGLV素子41は、基板42上に表面が絶縁膜44で被覆された共通の基板側電極43を形成し、この基板側電極43と空間46を挟んで対向するように支柱45〔45A,45B〕を介して絶縁薄膜、本例ではシリコン窒化(SiN)膜48と金属薄膜による駆動側電極49からなる2層膜構造の複数、本例では6本のリボン状のビーム27〔271 、272 、273 、274 、275 、276 〕を形成して構成される。そして、本実施の形態では、特に各ビーム27〔271 〜276 〕に図1で示したと同様の変形阻止手段31となる突出部32が形成される。この突出部32の構成は、図1で説明したと同様であるので、重複説明を省略する。
【0038】
このGLV素子41では、複数のビーム27のうち、1本置きのビーム271 、273 、275 が基板側電極43に対して静電力で近接・離間する可動ビームとなり、その他のビーム272 、274 、276 が固定ビームとなる。図9では、1本置きのビーム271 、273 、275 が基板側電極43に引き寄せられた状態を示している。このとき、6本のビーム27が1本置きに沈み込んで回折格子を形成する。
【0039】
GLV素子41は、可動ビーム271 ,273 ,275 の表面で反射する光の位相と、固定ビーム272 ,274 ,276 の表面で反射する位相との差が0又はλ/4になるようにデジタル的に制御すること、或いは0〜λ/4の間でアナログ的に制御することが可能である。例えば、6本のビーム27[ 271 〜276 ] が同一平面を形成していれば、ビーム27表面における反射光は、0次光である。一方、図9に示すようにビーム27が1本置きに沈み込んでいれば、回折により±1次光が発生する。GLV素子41は、この±1次光を加算して使用し、光の回折によって駆動側電極6で反射する光の強度(回折強度)を変調する光変調素子として適用される。
【0040】
本実施の形態のGLV素子41においても、前述と同様に各ビーム27に突出部32が設けられるので、ビーム27の強度が上がり、ビーム27の張力を維持したままビーム27の変形である反りを低減し、GLV素子41の光学特性をより向上することができる。
【0041】
【発明の効果】
本発明のMEMS素子によれば、ビームの変形である反りが低減でき、特性を向上することができる。有限要素法を使ったシミュレーションにより、ビームの反りが40%以上低減できることが確認されている。
【0042】
本発明の回折型MEMS素子によれば、各ビームの張力を維持したまま、各ビームの変形である反りを低減することができ、光学特性を向上することができる。
【0043】
変形阻止手段である突出部をビームの光照射領域の近傍に設け、光照射領域でのビーム平坦性をより良くするので、入射光が突出部により邪魔されることがなく、より特性の改善を図ることがきる。
突出部を光照射領域を挟んで両側に設けるので、さらにビームの光照射領域での反りを低減することができる。
変形阻止手段である突出部としては、両持ち梁構造のビームの場合、ビームの両固定端を結ぶ方向と直交する方向に細長い形状で形成することにより、ビーム幅方向における強度を上げることができ、反りを低減できる。両端が固定されているので、長手方向の反りは殆ど無視できる。変形阻止手段である突出部としては、片持ち梁構造のビームの場合、ビームの固定端と之に対向する遊端を結ぶ方向と直交する方向に細長い形状で形成することにより、ビーム幅方向における強度を上げることができ、反りを低減できる。
変形阻止手段である突出部をビームの光照射領域側から見て凹状となるように反対面側に突出して形成することにより、ビームの張力を維持したまま、阻止を低減することができる。
【0044】
本発明のMEMS素子の製造方法によれば、上述のMEMS素子、回折型MEMS素子を容易に且つ精度良く製造することができる。
【図面の簡単な説明】
【図1】A 本発明に係るMEMS素子の一実施の形態を示す構成図である。
【図2】A 本発明に係るMEMS素子の一実施の形態を示すビームの上面図である。
B 図2AのA−A線上の断面図である。
C 図2AのB−B線上の断面図である。
【図3】A 本発明に係るMEMS素子の一実施の形態を示すビームの寸法図である。
B 図3AのD−D線上の断面図である。
【図4】本発明に係るビームのシミュレーション結果に基づく断面構造図である。
【図5】従来例に係るビームのシミュレーション結果に基づく断面構造図である。
【図6】A1 〜C1 本発明に係るMEMS素子の一実施の形態を示す製造工程図(その1)である。
2 〜C2 図6A1 〜C1 のE−E線上の断面図である。
【図7】D1 〜F1 本発明に係るMEMS素子の一実施の形態を示す製造工程図(その2)である。
2 〜F2 図7D2 〜F2 のE−E線上の断面図である。
【図8】本発明に係るMEMS素子の他の実施の形態(片持ち梁構造)を示す断面図である。
【図9】本発明に係る回折型MEMS素子であるGLV素子の実施の形態を示す構成図である。
【図10】図9の回折型MEMS素子を示す断面図である。
【図11】従来の光学MEMS素子を示す断面図である。
【図12】A 従来のMEMS素子を示す上面図である。
B 図12AのC−C線上の断面図である。
【符号の説明】
1・・光学MEMS素子、2・・シリコン基板、3・・基板側電極、4・・絶縁膜、5・・空間、6・・駆動側電極、7・・シリコン窒化(SiN)膜、8・・ビーム、9・・支柱、21・・MEMS素子、22・・基板、23・・基板側電極、24・・絶縁膜、25・・支柱、26・・空間、27・・ビーム、28・・シリコン窒化膜、29・・駆動側電極、31・・変形阻止手段、32・・突出部、33・・光照射領域、35・・犠牲層、36・・開孔、37・・凹状溝、39・・MEMS素子、41・・GLV素子、42・・基板、43・・基板側電極、44・・絶縁膜、45・・支柱、48・・シリコン窒化(SiN)膜、49・・駆動側電極

Claims (5)

  1. 基板側電極と、該基板側電極との間で静電力により駆動するビームを備え、
    前記ビームは、駆動側電極を含む複数の薄膜で形成されると共に、長手方向の固定端が支持部にて支持され、
    前記ビーム内に、前記薄膜の応力歪みによるビーム変形を阻止する変形阻止手段が設けられ、
    前記変形阻止手段は、前記ビームの光照射領域の近傍で該光照射領域を挟んで両側に設けられると共に、前記ビームの長手方向と直交する短辺方向のビーム内において、短辺方向に細長い形状でかつ光照射側から見て凹状となるように反対面側に突出した突出部で形成されている
    ことを特徴とするMEMS素子。
  2. 前記ビームは長手方向の相対向する両固定端が支柱にて支持されている
    ことを特徴とする請求項1記載のMEMS素子。
  3. 前記ビームは長手方向の一方の固定端が支柱にて支持されている
    ことを特徴とする請求項1記載のMEMS素子。
  4. 共通の基板側電極と、
    前記共通の基板側電極に対向して互いに独立に並列配置され、該基板側電極との間で静電力により駆動する複数のビームとを備え、
    前記各ビームは、駆動側電極を含む複数の薄膜で形成されると共に、長手方向の両固定端が支持部にて支持され、
    前記各ビーム内に、前記薄膜の応力歪みによるビーム変形を阻止する変形阻止手段が設けられ、
    前記変形阻止手段は、前記ビームの光照射領域の近傍で該光照射領域を挟んで両側に設けられると共に、前記ビームの長手方向と直交する短辺方向のビーム内において、短辺方向に細長い形状でかつ光照射側から見て凹状となるように反対面側に突出した突出部で形成されている
    ことを特徴とする回折型MEMS素子。
  5. 基板側電極が形成された基板上に犠牲層を形成する工程と、
    支柱を形成すべき前記犠牲層の位置に前記基板に達する開孔を形成する工程と、
    前記犠牲層の表面において、後で形成されるビームの光照射領域の近傍で該光照射領域を挟んで両側に対応する位置に、前記ビームの長手方向と直交する短辺方向のビーム内で短辺方向に細長い凹状溝を選択的に形成する工程と、
    前記開孔内と前記凹状溝とを含んで前記犠牲層表面に、駆動側電極を含む複数の薄膜によるビームを形成する工程と、
    前記犠牲層を除去して、前記支柱、及び光照射領域を挟んで両側にビームの短辺方向に細長い形状でかつ光照射側から見て凹状となるように反対面側に突出した突出部による変形阻止手段を一体に有するビームを形成する工程とを有する
    ことを特徴とするMEMS素子の製造方法。
JP2003038696A 2003-02-17 2003-02-17 Mems素子とその製造方法、回折型mems素子 Expired - Fee Related JP3994885B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003038696A JP3994885B2 (ja) 2003-02-17 2003-02-17 Mems素子とその製造方法、回折型mems素子
TW093102611A TWI242794B (en) 2003-02-17 2004-02-05 MEMS element and method of producing the same, and diffraction type MEMS element
KR1020057014339A KR20050100654A (ko) 2003-02-17 2004-02-06 엠이엠에스 소자와 그 제조 방법, 회절형 엠이엠에스 소자
US10/544,733 US20060171628A1 (en) 2003-02-17 2004-02-06 Mems element and method of producing the same, and diffraction type mems element
PCT/JP2004/001302 WO2004071942A1 (ja) 2003-02-17 2004-02-06 Mems素子とその製造方法、回折型mems素子
EP04708917A EP1602624A4 (en) 2003-02-17 2004-02-06 MEMS ELEMENT AND MANUFACTURING METHOD AND DIFFERENTIAL MEMS ELEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038696A JP3994885B2 (ja) 2003-02-17 2003-02-17 Mems素子とその製造方法、回折型mems素子

Publications (2)

Publication Number Publication Date
JP2004261884A JP2004261884A (ja) 2004-09-24
JP3994885B2 true JP3994885B2 (ja) 2007-10-24

Family

ID=32866401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038696A Expired - Fee Related JP3994885B2 (ja) 2003-02-17 2003-02-17 Mems素子とその製造方法、回折型mems素子

Country Status (6)

Country Link
US (1) US20060171628A1 (ja)
EP (1) EP1602624A4 (ja)
JP (1) JP3994885B2 (ja)
KR (1) KR20050100654A (ja)
TW (1) TWI242794B (ja)
WO (1) WO2004071942A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100661347B1 (ko) * 2004-10-27 2006-12-27 삼성전자주식회사 미소 박막 구조물 및 이를 이용한 mems 스위치 그리고그것들을 제조하기 위한 방법
US7384799B2 (en) * 2005-01-26 2008-06-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method to avoid amorphous-si damage during wet stripping processes in the manufacture of MEMS devices
JP2006269127A (ja) * 2005-03-22 2006-10-05 Toshiba Corp マイクロマシンスイッチ及び電子機器
KR100744543B1 (ko) * 2005-12-08 2007-08-01 한국전자통신연구원 미세전자기계적 구조 스위치 및 그 제조방법
US7527998B2 (en) 2006-06-30 2009-05-05 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
KR100819101B1 (ko) * 2006-10-26 2008-04-02 삼성전자주식회사 메모리 소자 및 그의 제조방법
JP2010534865A (ja) * 2007-07-25 2010-11-11 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Mems表示装置及び該mems表示装置の製造方法
US8445978B2 (en) * 2008-11-26 2013-05-21 Freescale Semiconductor, Inc. Electromechanical transducer device and method of forming a electromechanical transducer device
WO2010061363A2 (en) * 2008-11-26 2010-06-03 Freescale Semiconductor, Inc. Electromechanical transducer device and method of forming a electromechanical transducer device
CN102378732B (zh) * 2009-03-31 2016-02-03 西门子公司 带有梁形元件的可振动的微机械系统
CN102686508B (zh) 2010-01-04 2014-04-16 上海丽恒光微电子科技有限公司 三波长衍射调制器及调制方法
US8547626B2 (en) * 2010-03-25 2013-10-01 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of shaping the same
CN102834761A (zh) 2010-04-09 2012-12-19 高通Mems科技公司 机电装置的机械层及其形成方法
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US9809445B2 (en) * 2011-08-26 2017-11-07 Qualcomm Incorporated Electromechanical system structures with ribs having gaps
JP2013205798A (ja) * 2012-03-29 2013-10-07 Furukawa Electric Co Ltd:The Mems素子およびその製造方法ならびに光スイッチおよび波長選択光スイッチ
JP2014184536A (ja) * 2013-03-25 2014-10-02 Toshiba Corp 電気部品およびその製造方法
JP2014212409A (ja) * 2013-04-18 2014-11-13 セイコーエプソン株式会社 Mems振動子、電子機器、及び移動体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284158A (en) * 1975-12-30 1977-07-13 Kawasaki Steel Co Method of and apparatus for continuously forming horizontally stiffened rib and vertically stiffened rib on metal strip material
WO2001014842A1 (fr) * 1999-08-20 2001-03-01 Hitachi, Ltd. Detecteur de pression semi-conducteur et dispositif de detection de pression
JP2002207182A (ja) * 2001-01-10 2002-07-26 Sony Corp 光学多層構造体およびその製造方法、光スイッチング素子、並びに画像表示装置
US6947195B2 (en) * 2001-01-18 2005-09-20 Ricoh Company, Ltd. Optical modulator, optical modulator manufacturing method, light information processing apparatus including optical modulator, image formation apparatus including optical modulator, and image projection and display apparatus including optical modulator
JP2002214550A (ja) * 2001-01-18 2002-07-31 Ricoh Co Ltd 光変調装置及びその光変調装置の製造方法並びにその光変調装置を具備する光情報処理装置及びその光変調装置を具備する画像形成装置及びその光変調装置を具備する画像投影表示装置
JP4042551B2 (ja) * 2002-12-02 2008-02-06 株式会社ニコン マイクロアクチュエータ装置及び光スイッチシステム

Also Published As

Publication number Publication date
JP2004261884A (ja) 2004-09-24
EP1602624A1 (en) 2005-12-07
TW200426893A (en) 2004-12-01
EP1602624A4 (en) 2006-12-27
KR20050100654A (ko) 2005-10-19
TWI242794B (en) 2005-11-01
US20060171628A1 (en) 2006-08-03
WO2004071942A1 (ja) 2004-08-26

Similar Documents

Publication Publication Date Title
JP3994885B2 (ja) Mems素子とその製造方法、回折型mems素子
US7476561B2 (en) Method of making microminiature moving device
US20070035838A1 (en) High contrast grating light valve
US6663788B2 (en) Method for manufacturing a mechanical conformal grating device
JP5091156B2 (ja) マイクロメカニカル素子及びマイクロメカニカル素子の製造方法
US6473221B2 (en) Galvano-mirror and method of making the same
US8686816B2 (en) MEMS element and method of manufacturing the same
JP2005279831A (ja) Mems素子、光学mems素子、回折型光学mems素子、並びにレーザディスプレイ
TW200414661A (en) Piezoelectric switch for tunable electronic components
US6667823B2 (en) Monolithic in-plane shutter switch
JP4361458B2 (ja) オープンホールを基盤とする回折光変調器
JP2008194813A (ja) 可動素子およびその製造方法
JP2004141995A (ja) マイクロマシンおよびその製造方法
JP2004102227A (ja) マイクロミラーアクチュエーター
JP4556421B2 (ja) 光制御素子の製造方法
JP4558745B2 (ja) 光学部品およびそれらの製造方法
JP2004245973A (ja) 光学mems素子とその製造方法、回折型mems素子
JP3825388B2 (ja) 光スイッチ装置
JP3869438B2 (ja) Mems素子、その製造方法及び光ディバイス
JP4107860B2 (ja) 光学効率とコントラストが改良された電気機械コンフォーマル格子デバイスのリニアアレイ
US7903337B1 (en) High contrast grating light valve
JP2006133412A (ja) 空間光変調素子
JP4349548B2 (ja) 光変調装置の製造方法
WO2022153697A1 (ja) Memsスイッチおよびmemsスイッチの製造方法
KR20100020810A (ko) 광변조 소자 및 그 제조방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees