JP2004245973A - 光学mems素子とその製造方法、回折型mems素子 - Google Patents

光学mems素子とその製造方法、回折型mems素子 Download PDF

Info

Publication number
JP2004245973A
JP2004245973A JP2003034263A JP2003034263A JP2004245973A JP 2004245973 A JP2004245973 A JP 2004245973A JP 2003034263 A JP2003034263 A JP 2003034263A JP 2003034263 A JP2003034263 A JP 2003034263A JP 2004245973 A JP2004245973 A JP 2004245973A
Authority
JP
Japan
Prior art keywords
side electrode
substrate
support
optical mems
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003034263A
Other languages
English (en)
Inventor
Koji Nanbada
康治 難波田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003034263A priority Critical patent/JP2004245973A/ja
Publication of JP2004245973A publication Critical patent/JP2004245973A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】光学MEMS素子を動作させたときに、傾斜したビームを安定して得られるようにする。
【解決手段】基板側電極23と、この基板側電極23との間に働く静電力により駆動する駆動側電極28を有してなるビーム29とを備え、ビーム29の一方の側が第1の支柱25に支持され、ビーム29の他方の側に対向して第1の支柱25より低い第2の支柱26が設けられ、ビーム29の他方の側が第2の支柱26に当接して、ビーム29が傾斜されるように構成される。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、光学MEMS素子とその製造方法、回折型光学MEMS素子に関する。
【0002】
【従来の技術】
微細技術の進展に伴い、いわゆるマイクロマシン(MEMS:Micro Electro Mechanical Systems、超小型電気的・機械的複合体)素子、及びMEMS素子を組み込んだ小型機器が、注目されている。
MEMS素子は、シリコン基板、ガラス基板等の基板上に微細構造体として形成され、機械的駆動力を出力する駆動体と、駆動体を制御する半導体集積回路等とを電気的に、更に機械的に結合させた素子である。MEMS素子の基本的な特徴は、機械的構造として構成されている駆動体が素子の一部に組み込まれていることであって、駆動体の駆動は、電極間の静電力、即ちクーロン引力等を応用して電気的に行われる。
【0003】
従来、光の反射や回折を利用し、光スイッチ、光変調素子等に適用される光学MEMS素子が開発されている。例えば光変調素子等に適用される光学MEMS素子として、特許文献1で示されるような回折型MEMS素子、いわゆるGLV(Grating Light Valve)素子が提案されている。
【0004】
図13は、GLV素子の概略構成を示す。このGLV素子1は、基板2上に共通の基板側電極3を形成し、この基板側電極3と空間4を挟んで対向するように、支柱6を介して絶縁膜7とその表面を被覆する反射膜を兼ねる駆動側電極8からなる複数、本例では6本のリボン上のビーム9〔9、9、9、9、9、9〕を形成して構成される。このGLV1は、いわゆる両持ち梁構造である。GLV1は、1本置きの3本のビーム9、9、9が基板側電極3に対して静電力で近接・離間する可動ビームであり、その他のビーム9、9、9が固定ビームとなる。図13は、1本置きのビーム9、9、9が基板側電極3に引き寄せられた状態を示している。このとき、6本のビーム9が1本置きに沈み込んで回折格子を形成する。
【0005】
GLV素子1は、可動ビーム9、9、9の表面で反射する光の位相と、固定ビーム9、9、9の表面で反射する位相との差が0又はλ/4になるようにデジタル的に制御すること、或いは0〜λ/4の間でアナログ的に制御することが可能である。例えば、光がGLV素子1に対して垂直に入射した場合を考える。6本のビーム9〔9〜9〕が同一平面を形成していれば、図14Aに示すように、光はそのまま垂直に反射する。このときのビーム9表面における反射光の波面Wは、破線で示すようになっている。この反射光は0次光である。一方、ビーム9が1本置きにさがっていれば、図14Bに示すように、垂直に反射する0次光の他に、回折により±1次光が発生する。±1次光の波面W、W−1は、実線で示すようになっている。GLVでは、この±1次光を加算して使用する。光の回折によって駆動側電極8で反射する光の強度(回折強度)を変調する光変調素子は、いわゆる空間変調である。
【0006】
図15は1つのビーム9を模式的に示し、図16A,BはGLV素子1のオン・オフ動作を模式的に示した要部の構成である。動作は6本のビームのうちの隣合う2本のビーム9について示している。オフ時は図16Aに示すように、全ビーム9に0Vが印加され、全ビーム9は変位されず同一平面にある。オン時は図16Bに示すように、1つ置きの可動ビーム9に例えば15Vが印加され、その他の固定ビーム9に0Vが印加され、15Vが印加された可動ビーム9が例えばλ/4だけ基板側電極に引かれて降下し、回折格子が形成される。
【0007】
また、反射光を利用する場合の光学MEMS素子は、例えば、図17に示すようにビーム9を片持ち梁構造にして構成され、あるいは図18に示すようにビーム9を両持ち梁構造に構成される。この光学MEMS素子11、12は、ビーム9の動作位置(実線位置、破線位置)に応じて、ビーム9表面に入射された光の反射方向が異なるのを利用し、一方向の反射光を検出してスイッチ機能を持たせた光スイッチとして適用できる。
また、光学MEMS素子11、12は、光強度を変調させる光変調素子として適用できる。光の反射を利用するときは、ビーム9を振動させて単位時間当たりの一方向の反射光量で光強度を変調する。この光変調素子は、いわゆる時間変調である。
【0008】
【特許文献1】
特表2001ー518198号公報
【0009】
【発明が解決しようとする課題】
ところで、ビーム部分での光の反射や回折を用いる光学MEMS素子においては、ビームの形状がその素子の光学特性を決める重要な要素となる。光学MEMS素子においては、ビームを基板側電極を含む下部構造に対し傾斜させて構成することにより、素子の光学特性を向上させることができる場合がある。例えば、回折型光学MEMS素子では、ビームを傾斜させることにより、1次光の回折効率を向上させることができる。
しかしながら、光学MEMS素子は半導体プロセスを用いて作成されるため、下部構造に対して傾斜させたビームを形成することが困難であった。
【0010】
本発明は、上述の点に鑑み、傾斜させたビームの形成を可能にし、光学特性の優れた光学MEMS素子とその製造方法、回折型光学MEMS素子を提供するものである。
【0011】
【課題を解決するための手段】
本発明に係る光学MEMS素子は、基板側電極と、この基板側電極との間に働く静電力により駆動する駆動側電極を有してなるビームとを備え、ビームの一方の側が第1の支柱に支持され、ビームの他方の側に対向して第1の支柱より低い第2の支柱が設けられ、動作時に、ビームの他方の側が第2の支柱に当接して、ビームが傾斜される構成とする。
【0012】
本発明の光学MEMS素子においては、ビームを支持した第1の支柱と、第1の支柱より短い第2の支柱を有するので、動作時に、基板側電極と駆動側電極間に所要の電圧差を与えると、静電引力によりビームの他方の側(いわゆる遊端側)が基板側電極側に引かれて第2の支柱に当接し、ビームが傾斜する。さらに電圧差を大きくすると、ビームは第2の支柱に当接した状態、つまり傾斜した状態で中央部がさらに基板側電極側に降下する。ビームは第2の支柱により規制されるので、傾斜量が安定し、所望の角度で安定してビームを傾斜させることができる。
【0013】
本発明に係る光学MEMS素子は、基板側電極と、この基板側電極との間に働く静電力により駆動する駆動側電極を有して支柱に支持されてなるビームを備え、ビームが、絶縁膜とこの絶縁膜上の駆動側電極との積層膜で形成され、駆動側電極が中央の幅広部と両端に延長する幅狭部とを有し、ビームが傾斜された構成とする。
【0014】
本発明の光学MEMS素子においては、ビームの駆動側電極が中央の幅広部と両端に延長する幅狭部とにより非対称に形成される。これにより動作時に、基板側電極と駆動側電極間に所要の電圧差を与えると、静電引力により両端にまで延長した幅狭部側が中央の幅広部側よりも静電引力を大きく受け、ビームが傾斜する。幅広部は主として光反射に寄与する。さらに電圧差を大きくすると、ビームは傾斜した状態でさらに基板側電極側に引かれ降下する。幅狭部の幅の制御と、印加電圧の制御で、ビームの傾斜角、降下量が制御される。
【0015】
本発明に係る回折型光学MEMS素子は、共通の基板側電極と、共通の基板側電極に対向して相互に独立に並列配置され、この基板側電極との間に働くで静電力により駆動する複数のビームとを備え、各ビームの一方の側が第1の支柱に支持され、各ビームの他方の側に対向して第1の支柱より低い第2の支柱が設けられ、動作時に、少なくとも1つ置きのビームの他方の側が第2の支柱に当接して、ビームが傾斜される構成とする。
【0016】
本発明の回折型光学MEMS素子においては、ビームを支持した第1の支柱と、第1の支柱より短い第2の支柱を有するので、動作時に、基板側電極と駆動側電極間に所要の電圧差を与えると、静電引力によりビームの他方の側(いわゆる遊端側)が基板側電極側に引かれて第2の支柱に当接し、ビームが傾斜する。さらに1本置きの駆動ビームの電圧差を大きくすると、ビームは第2の支柱に当接した状態、つまり傾斜した状態で中央部がさらに基板側電極側に降下する。ビームを傾斜させることにより、1次回折光の回折効率が向上し、且つ1次回折光に含まれるノイズが減少する。ビームは第2の支柱により規制されるので、傾斜量が安定し、所望の角度で安定してビームを傾斜させることができる。
【0017】
本発明に係る回折型光学MEMS素子は、共通の基板側電極と、相互に独立に並列配置され、この基板側電極との間に働く静電力により駆動する駆動側電極を有して支柱に支持されてなる複数のビームを備え、各ビームが、絶縁膜とこの絶縁膜上の駆動側電極との積層膜で形成され、駆動側電極が中央の幅広部と両端に延長する幅狭部とを有し、ビームが傾斜された構成とする。
【0018】
本発明に回折型光学MEMS素子においては、ビームの駆動側電極が中央の幅広部と両端に延長する幅狭部とにより非対称に形成される。これにより動作時に、基板側電極と駆動側電極間に所要の電圧差を与えると、静電引力により両端にまで延長した幅狭部側が中央の幅広部側よりも静電引力を大きく受け、ビームが傾斜する。幅広部は主として光反射に寄与する。さらに電圧差を大きくすると、ビームは傾斜した状態でさらに基板側電極側に引かれ降下する。幅狭部の幅の制御と、印加電圧の制御で、ビームの傾斜角、降下量が制御される。ビームを傾斜させることにより、1次回折光の回折効率が向上し、且つ1次回折光に含まれるノイズが減少する。
【0019】
本発明に係る光学MEMS素子の製造方法は、基板側電極が形成された基板上に犠牲層を形成する工程と、犠牲層に第1及び第2の支柱を形成すべき位置に基板に達する第1及び第2の開孔を形成し、第1の開孔内に第1の支柱を形成し、第2の開孔内の第1の支柱より低い第2の支柱を形成する工程と、第2の支柱が形成されない第2の開孔内の上部を犠牲層で埋める工程と、第1の支柱の上面及び犠牲層上面に駆動側電極を有するビームを形成する工程と、犠牲層を除去する工程を有する。
【0020】
本発明の光学MEMS素子の製造方法においては、犠牲層に形成した第1の開孔内に第1の支柱を形成し、第2の開孔内に第1の支柱より低くなるように第2の支柱を形成した後、第2の開孔の上部を犠牲層で埋め、ビームを形成した後に犠牲層を除去することにより、ビームの一方の側が第1の支柱に支持され、ビームの他方の側に対向して第1の支柱より低い第2の支柱が設けられ、ビームが傾斜可能とさた光学MEMS素子を製造することができる。
【0021】
本発明に係る光学MEMS素子の製造方法は、基板側電極が形成された基板上に犠牲層を形成する工程と、犠牲層に支柱を形成すべき位置に基板に達する開孔を形成し、前記開孔内に支柱を形成する工程と、支柱の上面及び犠牲層上面に、絶縁膜及び該絶縁膜上の駆動側電極を有し、駆動側電極を中央の幅広部と両端に延長する幅狭部を有する形状にしたビームを形成する工程と、犠牲層を除去する工程を有する。
【0022】
本発明の光学MEMS素子の製造方法においては、ビームのパターニングの際に、駆動側電極を中央の幅広部と両端に延長する幅狭部とからなる非対称にパターニングすることにより、ビームが両端側に支柱で支持され、ビームの駆動側電極が非対称に形成され、ビームが傾斜可能とされた光学MEMS素子を製造することができる。
【0023】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
【0024】
図1及び図2は、本発明に係る光学MEMS素子を、例えば光変調素子等に用いられる回折型の光学MEMS素子であるGLV素子に適用した一実施の形態を示す。
本実施の形態に係るGLV素子21は、基板22上に共通の基板側電極23を形成し、この基板側電極23と空間24を挟んで対向するように、後に詳述する第1の支柱である主支柱25と第2の支柱である補助支柱26を介して配置された、絶縁膜27とその表面を被覆する反射膜を兼ねる駆動側電極28とからなる複数、本例では6本のリボン状のビーム29〔29、29、29、29、29、29〕を形成して成る。基板側電極23上には、絶縁膜31を被着形成することができる。このGLV素子21は、前述と同様に1本置きの3本のビーム29、29 、29 が基板側電極23に対して静電力で近接・離間する可動ビームとなり、その他のビーム29、29 、29 が固定ビームとなる。
本実施の形態では、特に、図2及び図3に示すように、各ビーム29〔29〜29〕をその一方向の両端で且つ一側に偏った位置で、ビーム29と一体に形成された2つの主支柱25により実質的に支持され、この2つの主支柱25に対応して他側に偏った位置に主支柱25より高さの短い2つの補助支柱26を形成して構成される。図示の例は、6本のビーム29の配列方向と直交する方向(ビーム長手方向)の両端位置において、各ビーム29の配列方向(ビーム幅方向)の両端に主支柱25と補助支柱26が形成される。そして、少なくとも1本置きの可動ビーム29 、29 、29 を静電力で基板側電極23側に降下した(沈み込ませた)時、好ましくは6本の全ビーム29〜29を静電力で基板側電極23側に降下した(沈み込ませた)時に、ビーム29の遊端が補助支柱26に当接してビーム29が傾斜するようになす。各ビーム29は、GLV21を作成した状態では、補助支柱26から離れて水平に配置される。
【0025】
次に、本実施の形態のGLV素子21の動作例を説明する。
図3は、動作の1例である。オフ時には、基板側電極23と、6本のビーム29〜29の各基板側電極23との間に同じ所要電圧を印加する。例えば基板側電極23に0Vを印加し、駆動側電極27に+5Vを印加して、各ビーム29 〜29を補助支柱26に当接させて同じ状態で傾斜させる(図3A,B参照)。オン時には、1本置きの可動ビーム29、29、29の駆動側電極27にオフ時よりも大きな電圧を印加する。例えば基板側電極には0Vを印加し、1本置きの可動ビーム29、29、29には+20Vを印加してビーム29、29、29を傾斜した状態で入射光の波長λの1/4だけ降下させる。他の1本置きの固定ビーム29、29、29強度を有する回折光が生じる。ビーム29を傾斜させて作られる回折格子は、ブレーズ格子と呼ばれるものである。
オフ時のビーム29で反射した光は0次光となる。オン時のビーム29で反射した回折光は、ビーム29が傾斜した状態であるので図4に示すように、例えば、入射光の強度を1,0としたとき、+1次回折光の回折強度が略0となり、−1次回折光の回折強度が0.7となり、実質的に−1次回折光のみが得られる。ここでは、光学系が±1次回折光が同じ回折強度で発生するGLV素子に比べて、光学系が−1次回折光のみの1つで済む。また、コントラストが2倍になる。コントラストは、コントラスト=回折光/ノイズ光で表され、ノイズ光が1/2(−1次回折光に対するノイズ光のみ)の減少し、コントラストが2倍に向上することになる。
【0026】
図5は、動作の他の例である。この場合、ビーム29の傾斜量hがλ/4になるように支柱25,26の長さの差を設定する必要がある(図5C参照)。オフ時には、基板側電極23と、6本のビーム29〜29の基板側電極23との間に電圧差を与えない。例えば基板側電極23及び駆動側電極27に0Vを印加し、各ビーム29〜29を補助支柱26に当接させない水平状態にする。(図5A参照)。オン時には、1本置きの可動ビーム29、29、29の駆動側電極27に所要の電圧を印加する。例えば基板側電極には0Vを印加し、1本置きの可動ビーム29、29、29に例えば+15Vを印加して可動ビーム29、29、29を補助支柱26に当接し傾斜した状態で入射光の波長λの1/4だけ降下させる。他の1本置きの固定ビーム29、29、29はオフ時と同じ0Vが印加される。これにより、最大の回折強度を有する回折光が生じる。この動作は、前述の図3の動作よりも特性は落ちる。
【0027】
次に、図6を用いて、上述の本実施の形態に係るGLV素子21の製造方法を説明する。なお、同図は1本のビームに対応した部分を示す。
先ず、図6Aに示すように、例えば半導体基板上に絶縁膜を形成した基板、ガラスのような絶縁性基板等の基板、本例ではシリコン基板上に絶縁膜を形成した基板22上に基板側電極23を形成し、基板側電極23を被覆するように絶縁膜31、例えばSiO2 膜を形成する。その後、全面上に犠牲層32、本例では非晶質シリコン膜を堆積する。
【0028】
次に、図6Bに示すように、犠牲層32上面にレジストマスク(図示せず)を形成し、レジストマスクを介して犠牲層32の主支柱及び補助支柱を形成すべき位置に対応する部分を選択的にエッチング除去して、基板22の絶縁膜31に達するような第1の開孔33及び第2の開孔34を形成する。
次に、図6Cに示すように、第1及び第2の開孔33及び34内及び犠牲層32上面を含む全面に絶縁膜、本例ではシリコン窒化膜36を堆積する。後述するように、第1の開孔33内に埋め込まれたシリコン窒化膜36は主支柱に対応し、第2の開孔34内に埋め込まれたシリコン窒化膜36は補助支柱に対応する
【0029】
次に、図6Dに示すように、例えば化学・機械研磨(CMP)法により犠牲層32上面のシリコン窒化膜36を研磨して除去する。
次に、図6Eに示すように、レジストマスク35を介して第2の開孔34内に埋め込まれたシリコン窒化膜36の表面を所定の深さまで、選択的にエッチング除去し、第1の開孔33内に形成されたシリコン窒化膜36による主支柱25より所望の長さだけ短いシリコン窒化膜36による補助支柱26を形成する。
【0030】
次に、図6Fに示すように、再度、第2の開孔34内のシリコン窒化膜36が一部除去された上部空間37(図6E参照)を埋め込むように上面に、例えば非晶質シリコン膜による犠牲層32を堆積する。
次に、図6Gに示すように、犠牲層32の上面を主支柱25の上面が露出するように、例えば化学・機械研磨(CMP)法で研磨して除去する。このとき補助支柱25の上面は犠牲層32が存在する。
【0031】
次に、図6Hに示すように、主支柱25の上面に接合するように犠牲層32の上面全面にビームの一部を構成する絶縁膜、本例ではシリコン窒化膜27を例えばCVD(化学気相成長)法で堆積し、さらにその上に反射膜を兼ねる駆動側電極28となる導電膜、本例ではAl膜38を蒸着する。次いで、Al膜38及びシリコン窒化膜27を各ビームに対応するパターンになるように選択的にエッチング除去する。これにより、シリコン窒化膜27とAl膜による駆動側電極28とから成るビーム29を形成する。
【0032】
次に、犠牲層32のみを選択的に除去して、図6Iに示すように、基板側電極23上の絶縁膜31と空間24を挟んで対向し、主支柱25に支持され且つ補助支柱26と所定距離だけ離れた6本のビーム29〔29〜29〕が形成された目的のGLV素子21を得る。
【0033】
本実施の形態に係るGLV素子21によれば、動作時に静電力を用いてビーム29を傾斜させることにより、1次回折光の回折効率が上昇し、より光学特性の優れた光学MEMS素子を提供することができる。
静電力を用いてビーム29を傾斜させることにより、1次回折光に含まれるノイズが減少し、より光学特性の優れたGLV素子を提供することができる。
ビーム29と一体の主支柱25と、主支柱25より短い補助支柱26とを設け、ビーム29の他側を補助支柱26に当接させて傾斜させるので、より安定したビーム29の傾斜量が得られる。これにより、回折効率やノイズ低減の特性が向上し、より光学特性に優れたGLV素子を提供することができる。
【0034】
本実施の形態に係るGLV素子の製造方法によれば、ビーム29を支持する主支柱25及び補助支柱26を有しビーム29の傾斜を安定させて、より光学特性の向上を可能にしたGLV素子21を容易且つ精度良く製造することができる。
【0035】
図7は、本発明に係る光学MEMS素子を、回折型の光学MEMS素子であるGLV素子に適用した他の実施の形態を示す。
本実施の形態に係るGLV素子41は、駆動側電極48の形状を両主支柱46〔46A,46B〕を結ぶ方向と直交する方向に関して非対称にし、静電力を非対称にしてビーム49〔49〜49〕の傾斜を可能にした構成としている。即ち、本実施の形態のGLV素子41においては、絶縁膜(例えばシリコン窒化膜)47とその表面の一部を被覆する反射膜を兼ねる駆動側電極48とによりビーム49を形成し、ビーム49をその長手方向の両端の2か所で支柱46〔46A,46B〕により支持して構成する。ビーム49の駆動側電極48は、中央の幅広部48aと、ビーム49の長手方向に沿う一側に在って幅広部48aに連続してビーム49の両端にまで延長する延長部48bとを有して形成される。中央の幅広部48aは入射する光の反射に寄与する。駆動側電極48の形状、特に延長部48bが主支柱46にかかるか、かからないは問わない。後述するように、延長部48bの幅Wは、ビーム49の傾き角、及びビーム49の降下変位(沈み込み)量に影響する。
その他の構成は、前述の図1及び図2で説明したと同様であるので、対応する部分には同一符号を付して重複説明を省略する。
【0036】
本実施の形態のGLV素子41の製造方法は、前述の図6A〜6Iの製造工程を利用できる。即ち、図6Aの犠牲層32を形成し、図6Bの工程では犠牲層322つの支柱46A,46Bに対応する位置にのみ開孔を形成する。図6C及び図6Dの工程では2つの開孔内にシリコン窒化膜36による支柱46〔46A,46B〕を形成する。図6E〜図6Gの工程は省略する。図6Hの工程に飛んで絶縁膜27及びAl膜48を積層し、Al膜38及び絶縁膜27をパターニングしてビーム49を形成する。このAl膜38のパターニングの際に、中央の幅広部48aと両端にまで延長する幅狭部48bとが残るように選択的にエッチング除去する。最後に、図6Iの工程で犠牲層32を除去してGLV素子41を製造する。これにより、GLV素子41を容易に且つ精度良く製造することができる。
【0037】
次に、本実施の形態のGLV素子41の動作を説明する。
図8は、動作の1例である。図8Aは動作前のビーム49の状態を示す。ビーム49は水平の状態にある。オフ時には、図8Bに示すように、基板側電極23と、6本のビーム49〔49〜49〕の各駆動側電極48との間に所要電圧を印加する。例えば基板側電極23に0Vを印加し、駆動側電極48に+10Vを印加する。ビーム49は、駆動側電極48の幅広部48aを有する側の領域51より、駆動側電極48の延長部48bを有する側の領域52の方が、静電力を強く受けることになり、傾斜する。6本のビーム49〔49〜49〕は全てて同じ傾斜角で傾斜する。このとき、ビーム49の面に入射した入射光は0次光で反射する。
オン時には、図8Cに示すように、1本置きの可動ビーム49〔49、49、49〕の駆動側電極48にオフ時よりも大きな電圧、例えば+20Vが印加される。これにより、可動ビーム49、49、49は傾斜した状態で中央が入射光の波長λの1/4だけ降下する。他の1本置きの固定ビーム49、49、49は、オフ時と同じ状態である。これにより、最大の回折強度を有する回折光が生じる。この場合も前述したと同様に、ブレーズ格子が形成されるため、回折光は例えば実質的に−1次回折光のみが得られる。
図9A,Bは、ビーム49が傾斜した状態を示す。
【0038】
動作の他の例を示す。オフ時には、図8Aの状態となるように基板側電極23と、6本のビーム49〔49〜49〕の駆動側電極48との間に電圧差を与えない。例えば基板側電極23及び駆動側電極27に0Vを印加し、各ビーム49〜49を水平状態にする。オン時には、1本置きの可動ビーム49、49、49の駆動側電極48に所要の電圧を印加し、例えば基板側電極には0Vを印加し、1本置きのビーム49、49、49に例えば+15Vを印加して可動ビーム49、49、49を傾斜させ入射光の波長λの1/4だけ降下させる。他の1本置きの固定ビーム49、49、49はオフ時と同じ0Vが印加される。これにより、最大の回折強度を有する回折光が生じる。この場合前述の図8B,Cの動作よりも特性は落ちる。
【0039】
本実施の形態に係るGLV素子41によれば、ビーム49の駆動側電極48の形状を非対称にすることにより、ビーム49を2本の支柱46〔46A,46B〕で支持した構成でも、静電力を用いてビーム49を傾斜することができる。従って、1次回折光の回折効率が上昇し、1次回折光に含まれるノイズを減少することができ、より光学特性に優れたGLV素子を提供することができる。
【0040】
ここで、ビーム49の駆動側電極48における延長部48bの幅Wが小さいときは、ビーム48の傾斜角が大きくなり、降下(沈み込み)量が小さくなる。逆に、幅Wが大きいと、ビーム48の傾斜角が小さくなり、降下(沈み込み)量が大きくなる。
【0041】
本発明の他の実施の形態としては、図7のビーム構造において、2種類の駆動側電極48の形状を有するビーム49を交互に配列してGLV素子を構成する。即ち、本実施の形態では、例えば1つ置きの可動ビーム49、49、49における駆動側電極48の幅狭部48bの幅Wを大きくし、他の1つ置きの固定ビーム49、49、49における幅狭部48bの幅Wを小さくした構成とする。
図10は、その動作の一例である。図10Aは動作前のビーム49の状態を示す。ビーム49は水平の状態にある。オフ時には、図10Bに示すように、基板側電極23に0V印加し、固定ビーム49、49、49に可動ビーム49、49、49より小さい電圧を印加して6本のビーム49〔49〜49〕を同じ傾斜角で一様に傾斜させる。例えば、固定ビーム49、49、49に+10Vを、可動ビーム49、49、49に+15Vを印加する。オン時に、図10Cに示すように、可動ビーム49、49、49に対して傾斜角の変化が最小になるように電圧を印加する。例えば駆動側ビームに+35Vを印加して、駆動側ビームを駆動する。
【0042】
本実施の形態に係るGLV素子によれば、2種類の異なる形状の駆動側電極48を有するビーム49を交互に配置し、夫々の印加電圧を制御することにより、各ビーム49の傾きを同じにしてオン・オフ動作させることができる。そして、本実施の形態においても、前述と同様に1次回折光の回折効率が上昇し且つ1次回折光に含まれるノイズを減少することができ、より光学特性に優れたGLV素子を提供することができる。
【0043】
なお、6本のビーム49〔49〜49〕の駆動側電極48の幅狭部49bの幅Wを同じにした構成の場合は、ビーム49〔49〜49〕に同じで電圧を印加したオフ時、各ビーム49〜49の傾斜角が同じになるが、オン時に可動ビーム49、49、49の印加電圧を上げるとλ/4降下するも可動ビームと固定ビームの傾きが多少異なる。
この実施の形態においても、ビームの傾きが多少異なるも、基本的には上述と同様に、1次回折光の回折効率が上昇し且つ1次回折光に含まれるノイズを減少することができ、より光学特性に優れたGLV素子を提供することができる。
【0044】
図11は本発明の他の実施の形態を示す。本実施の形態では、ビーム49において、駆動側電極48の幅広部48aを幅狭部48bから電気的に分離し実質的に反射膜のみの機能とし、幅狭部49bを実質的な駆動側電極として機能させるように構成する。その他の構成は図7と同様であるので詳細説明を省略する。
本実施の形態においても、図8の実施の形態と同様の作用を行い、同様の効果を奏する。
【0045】
本発明のさらに他の実施の形態としては、可動ビーム49、49、49を図7の駆動側電極を有するビームを用い。固定ビーム49、49、49を図11の広幅部49aを実質的な駆動側電極となる幅狭部48bから電気的に分離したビームを用いるように構成する。その他の構成は図7と同様であるので詳細説明を省略する。
本実施の形態においても、図8の実施の形態と同様の作用を行い、同様の効果を奏する。
【0046】
図12は、図1におけるGLV素子21の主支柱25と補助支柱26の配置例を示す。
図12Aは、前述したビーム29の両端を支持した2本の主支柱25に対して2本の補助支柱26を配置して構成である。
図12Bは、ビーム29の両端を支持した2本の主支柱25に対して、中央端に1本の補助支柱25を配置した構成である。この構成はビーム29に対して一定の傾きを安定して与えることができる。
本実施の形態の他の例としては、固定ビームを図12Bの3本の支柱25,26配列のビーム29で構成し、可動ビームを図12Aの4本の支柱25、26配列のビームで構成することができる。
【0047】
上述の各実施の形態では、回折光を利用する回折型光学MEMS素子、即ちGLV素子及びその製造方法に適用した場合であるが、本発明は、その他、反射光を利用する光学MEMS素子及びその製造方向に適用することができる。この場合も静電力によるビームの傾斜角を安定にしすることがき、より光学特性に優れた光変調素子、光スイッチ等を提供することができる。また、このようなMEMS素子を容易に且つ精度良く製造することができる。
【0048】
【発明の効果】
本発明に係る光学MEMS素子によれば、ビームと一体の第1の支柱と、第1の支柱より短い第2の支柱を有し、静電力を用いてビームを傾斜させることにより、反射光を利用する場合には、反射光の角度が安定し光学特性を向上することができる。回折光を利用する場合には、1次回折光の回折効率が向上し、また、1次回折光に含まれるノイズが減少し、より光学特性を向上することができる。第1の支柱と再2の支柱との組み合わせにより、より安定したビームの傾斜量が得られ、より光学特性の優れた光学MEMS素子を提供することができる。
【0049】
本発明に係る光学MEMS素子によれば、ビームの駆動側電極を中央の幅広部と両端に延長する幅狭部とを有する非対称形状に形成し、静電力を用いてビームを傾斜させることにより、反射光を利用する場合は、反射光の角度が安定し光学特性を向上することができる。回折光を利用する場合は、1次回折光の回折効率が向上し、また、1次回折光に含まれるノイズが減少し、より光学特性を向上することができる。
幅広部を出力として光反射に寄与させ、場は狭部を静電力に寄与させることができる。そして、幅狭部の幅及び印加電圧を制御することにより、ビームの傾斜量及び降下を制御することができ、光学特性に優れた光学MEMS素子を提供することができる。
ビームの中央の幅広部を駆動側電極の幅狭部と分離するときは、幅広部が反射膜のみの機能となり、幅狭部が実質的な駆動側電極として機能する。
【0050】
本発明に係る回折型光学MEMS素子によれば、ビームと一体の第1の支柱と、第1の支柱より短い第2の支柱を有し、静電力を用いてビームを傾斜させることにより、1次回折光の回折効率が向上し、また、1次回折光に含まれるノイズが減少し、より光学特性を向上することができる。第1の支柱と再2の支柱との組み合わせにより、より安定したビームの傾斜量が得られ、より光学特性の優れた光学MEMS素子を提供することができる。
この回折型光学MEMS素子ではオフ状態及びオン状態のいずれも全ビームを傾斜させた状態で動作させることができる。また、オフ状態では全ビームを傾斜させず、オン状態時に1つ置きの可動ビームを傾斜させて動作させることができる。
【0051】
本発明に係る回折型光学MEMS素子によれば、ビームの駆動側電極を中央の幅広部と両端に延長する幅狭部とを有する非対称形状に形成し、静電力を用いてビームを傾斜させることにより、1次回折光の回折効率が向上し、また、1次回折光に含まれるノイズが減少し、より光学特性を向上することができる。
幅広部を出力として光反射に寄与させ、場は狭部を静電力に寄与させることができる。そして、幅狭部の幅及び印加電圧を制御することにより、ビームの傾斜量及び降下を制御することができ、光学特性に優れた光学MEMS素子を提供することができる。
駆動側電極の形状が異なる2つのビームを交互に配列させるときは、印加電圧を制御してオン・オフ時に、固定ビーム及び可動ビームの傾きを同じ程度にして動作させることができる。
1つ置きの可動ビームの中央の幅広部を駆動側電極の幅狭部より電気的に分離するときは、幅広部を反射膜のみに機能させることができる。
【0052】
本発明に係る光学MEMS素子の製造方法によれば、ビームの一方の側が第1の支柱に支持され、ビームの他方の側に対向して第1の支柱より低い第2の支柱が設けられ、ビームが傾斜可能とさた光学MEMS素子を、容易に且つ精度良く製造することができる。
また、本発明に係る光学MEMS素子の製造方法によれば、ビームが両端側に支柱で支持され、ビームの駆動側電極が非対称に形成され、ビームが傾斜可能とされた光学MEMS素子を、容易に且つ精度よく製造することができる。
【図面の簡単な説明】
【図1】本発明に係る回折型光学MEMS素子の一実施の形態を示す構成図である。
【図2】A 図1の要部の平面図である。B 図2のAーA線上の断面図である。
【図3】A〜D 図1の回折型光学MEMS素子の動作の一例を示す説明図である。
【図4】ブレーズ回折格子による回折強度の説明図である。
【図5】A〜B 図1の回折型光学MEMS素子の動作の他の例を示す説明図である。C ビーム構造の説明図である。
【図6】A〜I 図1の回折型光学MEMS素子の製造方法の一実施の形態を示す製造工程図である。
【図7】A 本発明に係る回折型光学MEMS素子の他の実施の形態を示すビームの構成図である。B 図7AのEーE線上の断面図である。C 図7AのFーF線上の断面図である。
【図8】A〜C 図7の回折型光学MEMS素子の動作の一例を示す説明図である。
【図9】A 図7の回折型光学MEMS素子のビームが傾斜した状態を示す一方向から見た側面図である。B 図7の回折型光学MEMS素子のビームが傾斜した状態を示す他方向から見た側面図である。
【図10】A〜C 本発明に係る回折型光学MEMS素子の他の実施の形態の動作を示す説明図である。
【図11】A 本発明に係る回折型光学MEMS素子の他の実施の形態を示すビームの平面図である。B 図11AのGーG線上の断面図である。
【図12】A,B 本発明に係る回折型光学MEMS素子の一実施の形態に支柱の配置例を示す平面図である。
【図13】A 従来の回折型光学MEMS素子であるGLV素子の例を示す構成図である。B 図13Aの1つのビームに対応した断面図である。
【図14】A,B GLV素子の動作を説明する説明図である。
【図15】従来の1つのビームを模式的に示した模式図である。
【図16】A,B 従来のGLV素子のオン・オフ動作を模式的に示した説明図である。
【図17】従来の説明に供する光学MEMS素子の代表的な一例である。
【図18】従来の説明に供する光学MEMS素子の代表的な他の例である。
【符号の説明】
21、・・・回折型光学MEMS素子であるGLV素子、23・・・基板側電極、24・・・空間、25、26・・・支柱、27・・・絶縁膜、28・・・駆動側電極、29〔29〜29〕・・・ビーム、31・・・絶縁膜、32・・・犠牲層、36・・・シリコン窒化膜、38・・・Al膜、41・・・回折型光学MEMS素子であるGLV素子、46〔46A,46B〕・・・支柱、47・・・絶縁膜、48・・・駆動側電極、48a・・・幅広部、48b・・・幅狭部、49〔49〜49〕・・・ビーム

Claims (10)

  1. 基板側電極と、該基板側電極との間に働く静電力により駆動する駆動側電極を有してなるビームとを備え、
    前記ビームの一方の側が第1の支柱に支持され、前記ビームの他方の側に対向して前記第1の支柱より低い第2の支柱が設けられ、
    前記ビームの他方の側が前記第2の支柱に当接して、前記ビームが傾斜される
    ことを特徴とする光学MEMS素子。
  2. 基板側電極と、該基板側電極との間に働く静電力により駆動する駆動側電極を有して支柱に支持されてなるビームを備え、
    前記ビームは、絶縁膜と該絶縁膜上の駆動側電極との積層膜で形成され、
    前記駆動側電極が中央の幅広部と両端に延長する幅狭部とを有し、
    前記ビームが傾斜されて成る
    ことを特徴とする光学MEMS素子。
  3. 前記ビームの中央の幅広部が、駆動側電極の幅狭部と分離して反射膜として形成されて成る
    ことを特徴とする請求項2記載の光学MEMS素子。
  4. 共通の基板側電極と、
    前記共通の基板側電極に対向して相互に独立に並列配置され、該基板側電極との間に働くで静電力により駆動する複数のビームとを備え、
    前記各ビームの一方の側が第1の支柱に支持され、前記各ビームの他方の側に対向して前記第1の支柱より低い第2の支柱が設けられ、
    前記ビームの他方の側が前記第2の支柱に当接して、前記ビームが傾斜される
    ことを特徴とする回折型光学MEMS素子。
  5. オン状態時に、前記1つ置きの駆動側のビームのみが前記第2の支柱に当接して傾斜されて成る
    ことを特徴とする請求項4記載の回折型光学MEMS素子。
  6. 共通の基板側電極と、
    相互に独立に並列配置され、該基板側電極との間に働く静電力により駆動する駆動側電極を有して支柱に支持されてなる複数のビームを備え、
    前記各ビームは、絶縁膜と該絶縁膜上の駆動側電極との積層膜で形成され、
    前記駆動側電極が中央の幅広部と両端に延長する幅狭部とを有し、
    前記ビームが傾斜されて成る
    ことを特徴とする回折型光学MEMS素子。
  7. 前記駆動側電極の形状が異なる2つのビームを交互に配列されて成る
    ことを特徴とする請求項6記載の回折型光学MEMS素子。
  8. 前記複数のビームのうち、1つ置きのビームの前記中央の幅広部が駆動側電極の幅狭部と分離して反射膜として形成されて成る
    ことを特徴とする請求項6記載の回折型光学MEMS素子。
  9. 基板側電極が形成された基板上に犠牲層を形成する工程と、
    前記犠牲層に第1及び第2の支柱を形成すべき位置に前記基板に達する第1及び第2の開孔を形成し、前記第1の開孔内に第1の支柱を形成し、第2の開孔内の第1の支柱より低い第2の支柱を形成する工程と、
    前記第2の支柱が形成されない前記第2の開孔内の上部を犠牲層で埋める工程と、
    前記第1の支柱の上面及び犠牲層上面に、絶縁膜及び該絶縁膜上の駆動側電極を有するビームを形成する工程と、
    前記犠牲層を除去する工程を有する
    ことを特徴とする光学MEMS素子の製造方法。
  10. 基板側電極が形成された基板上に犠牲層を形成する工程と、
    前記犠牲層に支柱を形成すべき位置に前記基板に達する開孔を形成し、前記開孔内に支柱を形成する工程と、
    前記支柱の上面及び犠牲層上面に、絶縁膜及び該絶縁膜上の駆動側電極を有し、前記駆動側電極を中央の幅広部と両端に延長する幅狭部を有する形状にしたビームを形成する工程と、
    前記犠牲層を除去する工程を有する
    ことを特徴とする光学MEMS素子の製造方法。
JP2003034263A 2003-02-12 2003-02-12 光学mems素子とその製造方法、回折型mems素子 Pending JP2004245973A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034263A JP2004245973A (ja) 2003-02-12 2003-02-12 光学mems素子とその製造方法、回折型mems素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034263A JP2004245973A (ja) 2003-02-12 2003-02-12 光学mems素子とその製造方法、回折型mems素子

Publications (1)

Publication Number Publication Date
JP2004245973A true JP2004245973A (ja) 2004-09-02

Family

ID=33020006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034263A Pending JP2004245973A (ja) 2003-02-12 2003-02-12 光学mems素子とその製造方法、回折型mems素子

Country Status (1)

Country Link
JP (1) JP2004245973A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068842A (ja) * 2004-08-31 2006-03-16 Sony Corp 微小電気機械素子、光学微小電気機械素子、光変調素子及びそれらの製造方法、並びにレーザディスプレイ
JP2007143376A (ja) * 2005-11-22 2007-06-07 Sony Corp 静電駆動素子とこれを用いたプロジェクター
JP2008132577A (ja) * 2006-11-29 2008-06-12 Sony Corp 電気機械素子、電子機器及びプロジェクター
WO2018086300A1 (zh) * 2016-11-14 2018-05-17 上海新微技术研发中心有限公司 在基体的表面形成斜面的方法
JP2020519864A (ja) * 2017-05-11 2020-07-02 ネオリティクス, インコーポレイテッドNeolitics, Inc. 自動ドリフト制御機能および高ダイナミックレンジを具備する補償光学アナライザ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068842A (ja) * 2004-08-31 2006-03-16 Sony Corp 微小電気機械素子、光学微小電気機械素子、光変調素子及びそれらの製造方法、並びにレーザディスプレイ
JP4649914B2 (ja) * 2004-08-31 2011-03-16 ソニー株式会社 微小電気機械素子、光学微小電気機械素子、光変調素子及びそれらの製造方法、並びにレーザディスプレイ
JP2007143376A (ja) * 2005-11-22 2007-06-07 Sony Corp 静電駆動素子とこれを用いたプロジェクター
JP2008132577A (ja) * 2006-11-29 2008-06-12 Sony Corp 電気機械素子、電子機器及びプロジェクター
WO2018086300A1 (zh) * 2016-11-14 2018-05-17 上海新微技术研发中心有限公司 在基体的表面形成斜面的方法
CN108069388A (zh) * 2016-11-14 2018-05-25 上海新微技术研发中心有限公司 在基体的表面形成斜面的方法
CN108069388B (zh) * 2016-11-14 2019-11-12 上海新微技术研发中心有限公司 在基体的表面形成斜面的方法
JP2020519864A (ja) * 2017-05-11 2020-07-02 ネオリティクス, インコーポレイテッドNeolitics, Inc. 自動ドリフト制御機能および高ダイナミックレンジを具備する補償光学アナライザ
JP7394319B2 (ja) 2017-05-11 2023-12-08 ネオリティクス,インコーポレイテッド 自動ドリフト制御機能および高ダイナミックレンジを具備する補償光学アナライザ

Similar Documents

Publication Publication Date Title
EP1591824B1 (en) Microactuator
US6663788B2 (en) Method for manufacturing a mechanical conformal grating device
JP4581453B2 (ja) Mems素子、光学mems素子、回折型光学mems素子、並びにレーザディスプレイ
US6713367B2 (en) Self-aligned vertical combdrive actuator and method of fabrication
JP2003200394A (ja) 静電駆動型mems素子とその製造方法、光学mems素子、光変調素子、glvデバイス、及びレーザディスプレイ
US20060171628A1 (en) Mems element and method of producing the same, and diffraction type mems element
US20210072532A1 (en) Spatial Light Modulators for Phased-Array Applications
JP2004245973A (ja) 光学mems素子とその製造方法、回折型mems素子
JP4361458B2 (ja) オープンホールを基盤とする回折光変調器
US20080043309A1 (en) Micro-device and electrode forming method for the same
US6947197B2 (en) Micromirror actuator
KR100431581B1 (ko) 미소거울 구동기
JP4400865B2 (ja) 光偏向装置
JP2004141995A (ja) マイクロマシンおよびその製造方法
JP2005091576A (ja) 光学制御素子、光学制御素子アレイ及び光学制御素子の製造方法
JP2006340531A (ja) アクチュエータ
KR100486495B1 (ko) 광모듈레이터 및 그 제조방법
KR100425686B1 (ko) 광 모듈레이터 및 그 제조방법
JP4958041B2 (ja) 回折格子、光変調器及び表示装置
JP2004102150A (ja) 光学mems素子、その作製方法、glvデバイス、及びレーザディスプレイ
JP2006133412A (ja) 空間光変調素子
KR100404195B1 (ko) 마이크로 미러 및 그 제조방법
JP2005118944A (ja) マイクロマシン
JP2006068843A (ja) 微小電気機械素子、光学微小電気機械素子、光変調素子、並びにレーザディスプレイ
JP2004109446A (ja) 光スイッチング素子の製造方法、および光スイッチング素子