JP3992877B2 - Manufacturing method of resin-encapsulated semiconductor device - Google Patents

Manufacturing method of resin-encapsulated semiconductor device Download PDF

Info

Publication number
JP3992877B2
JP3992877B2 JP13670599A JP13670599A JP3992877B2 JP 3992877 B2 JP3992877 B2 JP 3992877B2 JP 13670599 A JP13670599 A JP 13670599A JP 13670599 A JP13670599 A JP 13670599A JP 3992877 B2 JP3992877 B2 JP 3992877B2
Authority
JP
Japan
Prior art keywords
resin
semiconductor element
semiconductor device
thin film
circuit member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13670599A
Other languages
Japanese (ja)
Other versions
JP2000332146A (en
Inventor
将人 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP13670599A priority Critical patent/JP3992877B2/en
Publication of JP2000332146A publication Critical patent/JP2000332146A/en
Application granted granted Critical
Publication of JP3992877B2 publication Critical patent/JP3992877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

【0001】
【発明の属する技術分野】
本発明は半導体素子を搭載した樹脂封止型の半導体装置とそれに用いられる回路部材およびそれらの製造方法に関する。
【0002】
【従来の技術】
近年、半導体装置は、高集積化や小型化技術の進歩、電気機器の高性能化と軽薄短小化の傾向(時流)から、LSIのASICに代表されるように、ますます高集積化、高機能化になってきている。
【0003】
これに伴い、リードフレームを用いた封止型の半導体装置においても、その開発のトレンドが、SOJ(Small Outline J−Leaded Package)やQFP(Quad Flat Package)のような表面実装型のパッケージを経て、TSOP(Thin Small OutlinePackage)の開発による薄型化を主軸としたパッケージの小型化へ、さらにはパッケージ内部の3次元化によるチップ収納効率向上を目的としたLOC(Lead On Chip)の構造へと進展してきた。
【0004】
しかし、樹脂封止型の半導体装置パッケージには、高集積化、高機能化とともに、更に一層の多ピン化、薄型化、小型化が求められており、上記従来のパッケージにおいても半導体素子外周部分のリードの引き回しがあるため、パッケージの小型化に限界が見えてきた。
【0005】
【発明が解決しようとする課題】
このため、近年、エリアアレー状に配設された半田ボールにより回路基板に実装可能なBGA(Ball Grid Array)タイプの樹脂封止型半導体装置が開発されている。
【0006】
しかし、このようなBGAタイプの樹脂封止型半導体装置は、半田ボールを用いることにより、回路基板への実装時の信頼性に優れるものの、半田ボール搭載工程において高価な搭載装置およびマスクが必要であり、さらに、半田ボール自体のコストが高く、半導体装置の製造コスト低減に支障を来していた。
【0007】
本発明は、上記のような事情に鑑みてなされたものであり、半導体素子の占有率が高く小型化が可能で、回路基板への実装密度を向上させることができ、さらに、多ピン化への対応が可能でありながら半田ボールを搭載する必要のない樹脂封止型の半導体装置と、この半導体装置に用いられる回路部材、および、これら回路部材と半導体装置の製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の樹脂封止型半導体装置の製造方法は、金属製の平板状の基部と、該基部の一方の面の半導体素子搭載用領域の外側に所定のパターンで配設された複数の金属製の柱状凸部と、該柱状凸部の上端面に設けられた導電性の薄膜と、を備える回路部材の半導体素子搭載用領域に半導体素子の回路形成面と反対面側を電気的に絶縁して固着することにより搭載する半導体素子搭載工程と、回路部材の導電性の薄膜と半導体素子の端子とをボンディングワイヤで電気的に接続するワイヤボンディング工程と、前記薄膜、半導体素子およびボンディングワイヤを樹脂材料で封止する封止工程と、前記回路部材の基部および柱状凸部を溶解除去するエッチング工程と、前記柱状凸部が溶解除去され前記薄膜が露出した状態で形成された凹部に導電性材料を充填して、前記薄膜からなる内部端子と前記導電性材料からなる柱状の外部端子とが一体化してなる端子部を形成する充填工程と、を備えるような構成とした。
【0014】
また、本発明の樹脂封止型半導体装置の製造方法は、前記充填工程において導電性材料として半田ペーストを使用し、前記凹部に充填した半田ペーストを固化するために加熱するリフロー工程を有するような構成とした。
【0015】
また、本発明の樹脂封止型半導体装置の製造方法は、回路部材として、半導体素子搭載領域と該領域に対応した複数の薄膜からなる組み合わせを複数組備える回路部材を使用し、前記充填工程の後に、各半導体素子ごとに分離する分離工程を備えるような構成とした。
【0016】
さらに、本発明の樹脂封止型半導体装置の製造方法は、前記分離工程が金型を用いた打ち抜き工程であるような構成、あるいは、ダイサーを用いたダイシング工程であるような構成とした。
【0017】
このような本発明では、外部に露出している外部端子の先端側を用いて、樹脂封止型半導体装置を回路基板に実装することができ、この際の半導体装置の高さは、従来の半田ボールを用いた実装に比べて低いものとなる。また、回路部材の半導体素子搭載用領域は基板をハーフエッチングして形成されているので、端子部が配設された空間の略中央に半導体素子を配設することができ、これにより半導体素子の端子と内部端子とを電気的に接続するボンディングワイヤの長さが短いものとなる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0019】
回路部材
図1は本発明の回路部材の一実施形態を示す平面図、図2は図1に示される回路部材のA−A線における縦断面図である。図1および図2において、本発明の回路部材1は、平板状の基部2と、この基部2の一方の面の半導体素子搭載用領域3の外側に所定のパターンで配設された複数の柱状凸部4と、この柱状凸部4の上端面4aに設けられた導電性の薄膜5とを備えている。
【0020】
基部2と柱状凸部4は共に金属製であり、柱状凸部4は基部2に一体的に形成されている。基部2の厚みは、使用する材料に応じて適宜設定することができ、例えば、50〜150μm程度とするこができる。また、柱状凸部4の形状は、図示例では横断面形状が長方形の角柱であるが、これに限定されるものではない。このような柱状凸部4の高さは、作製する樹脂封止型半導体装置の外部端子の高さに対応させて設定することができ、例えば、50〜150μmの範囲で設定する。そして、複数の柱状凸部4に両側を囲まれるように、長方形状の半導体素子搭載用領域3(図1に鎖線で囲んで示した領域)が設けられている。
【0021】
このような基部2と柱状凸部4を構成する金属材料としては、導電性の薄膜5を形成する後述の材料よりもエッチングが容易な材料を選定することができ、例えば、42合金(Ni42%のFe合金)、銅、銅合金等を挙げることができる。
【0022】
導電性の薄膜5は、樹脂封止型半導体装置の内部端子となるものであり、Ag、Pt、Au等の貴金属単独からなる薄膜、あるいは、これらの貴金属の組み合わせからなる積層薄膜、さらには、上記の貴金属とNi等の金属との積層薄膜(最外層は貴金属層とする)である。このような薄膜5の厚みは0.5〜10μmの範囲で設定することができる。
【0023】
このような回路部材1では、半導体素子搭載用領域3に半導体素子が搭載された場合、この半導体素子は柱状凸部4が配設された空間の略中央に位置することになる。
【0024】
本発明の回路部材1は、図3に示されるように、基部2の半導体素子搭載用領域3の少なくとも一部に電気絶縁性の接着部材6を設けたものであってもよい。接着部材6は特に制限はなく、電気絶縁性のベースフィルムの両面に接着剤層を備えたもの、例えば、ユーピレックス(宇部興産(株)製の電気絶縁性のベースフィルム)の両面にRXF((株)巴川製紙所製の接着剤)層を備えたUXIW((株)巴川製紙所製)のような両面接着テープを使用することができる。
【0025】
本発明の回路部材は、上述のような回路部材が複数連設されたもの、すなわち、半導体素子搭載領域3と、この領域3に対応した複数の薄膜5からなる組み合わせを複数組備える回路部材であってもよい。図4は、このような回路部材を示す断面図である。図4に示される回路部材1′は、図1および図2に示される回路部材1が、柱状凸部4の配列方向と直角方向(図の左右方向)に5個連設されたものである。すなわち、この回路部材1′は、平板状の基部2と、この基部2の一方の面に所定のピッチPで設定された5つの半導体素子搭載用領域3と、各半導体素子搭載用領域3に対応して外側に所定のパターンで配設された複数の柱状凸部4と、この柱状凸部4の上端面4aに設けられた導電性の薄膜5とを備えている。さらに、基部2の端部には外枠部材7が上端面7aに導電性薄膜5を備えた状態で形成されている。
尚、上述の回路部材1および回路部材1′における端子数、端子配列等は例示であり、本発明の回路部材がこれに限定されないことは勿論である。
【0026】
樹脂封止型半導体装置
図5は図1および図2に示される本発明の回路部材を使用した本発明の樹脂封止型半導体装置の一実施形態を示す平面図、図6は図5に示される樹脂封止型半導体装置のB−B線における縦断面図である。尚、樹脂封止型半導体装置の構成を理解しやすくするために、図5では封止部材を省略し、その輪郭を仮想線(2点鎖線)で示している。
【0027】
図5および図6において、本発明の樹脂封止型半導体装置11は、所定の間隔で2列に配列された複数の端子部12と、端子部12が配列された空間の略中央に位置する半導体素子15と、半導体素子15の端子15aと端子部12とを接続するボンディングワイヤ17と、これらの端子部12とボンディングワイヤ17および半導体素子15とを封止する封止部材18とを備えている。
【0028】
端子部12は、薄膜状の内部端子13と柱状の外部端子14とを一体的に有するものであり、各端子部12は内部端子13面を同一方向に向けて略一平面上に位置するように電気的に独立して配設されている。内部端子13は、Ag、Pt、Au等の貴金属単独からなる薄膜、あるいは、これらの貴金属の組み合わせからなる積層薄膜、さらには、上記の貴金属とNi等の金属との積層薄膜(最外層は貴金属層とする)であり、厚みは0.5〜10μm程度である。また、外部端子14は、封止部材18中に位置する埋没部14aと、樹脂封止型半導体装置11の裏面に突出するように露出する先端部14bとからなる。図示例では、埋没部14aは横断面形状が長方形の角柱であり、先端部14bは長屋根ドーム状に突出している。この先端部14bの突出量は50〜150μm程度とすることが好ましい。このような外部端子14は、半田、銅ペースト等の導電性金属材料により形成され、特に半田が好ましい。
【0029】
半導体素子15は、上記の複数の端子部12が配設された空間の略中央に、回路形成面側が内部端子13面と同一方向を向くように電気的に独立して配置されている。そして、各端子部12の内部端子13と半導体素子15の端子15aとがボンディングワイヤ17により電気的に接続されている。図示例では、半導体素子15の回路形成面と反対面側に電気絶縁性の樹脂層16が配設されており、この樹脂層16が樹脂封止型半導体装置11の裏面に露出している。
封止部材18は、樹脂封止型半導体装置に使用されている公知の樹脂材料を用いて形成することができる。
【0030】
このような樹脂封止型半導体装置11では、外部端子14の先端部14bが外部に露出しているので、BGA(Ball Grid Array)タイプの半導体装置となっている。そして、この外部端子14の先端部14bを用いて回路基板に実装した際の半導体装置11の高さは、従来の半田ボールを用いた実装に比べて低いものとなる。これは、先端部14bの突出量(50〜150μm程度)は、半田ボールの直径(300〜750μm程度)よりも小さいことによる。また、端子部12が配設された空間の略中央に半導体素子15が配設されているので、内部端子13と半導体素子15の端子15aとが近接しており、このため内部端子13と端子15aとを電気的に接続するボンディングワイヤ17の長さが短いものとなる。
尚、上述の樹脂封止型半導体装置11における端子数、端子配列等は例示であり、本発明の樹脂封止型半導体装置がこれに限定されないことは勿論である。
【0031】
回路部材の製造方法
次に、本発明の回路部材の製造方法について説明する。
【0032】
図7は、図4に示される本発明の回路部材1′を例とした本発明の回路部材の製造方法の一実施形態を示す工程図である。各工程は、上記の図4に対応する回路部材の縦断面図で示してある。
【0033】
図7において、まず、パターン形成工程として、金属製の基板21の表面に耐めっき性をもつ感光性レジストを塗布、乾燥してレジスト層22を形成し、基板21の裏面に耐めっき性をもつフィルム23を固着する(図7(A))。次に、レジスト層22を所望のフォトマスクを介して露光した後、現像してレジストパターン22′を形成する(図7(B))。基板21としては、次の薄膜形成工程で形成する薄膜よりもエッチングが容易な材料を選定することができ、例えば、42合金(Ni41%のFe合金)、銅、銅合金等の金属基板(厚み100〜250μm)を使用することができる。この基板21は、両面を脱脂等を行い洗浄処理を施したものを使用することが好ましい。また、耐めっき性をもつ感光性レジストとしては、例えば、旭化成(株)製DFR サンフォートAQ等を挙げることができ、耐めっき性をもつフィルム23としては、例えば、日東電工(株)製リバアルファ(熱剥離フィルム)等のフィルムを挙げることができる。
【0034】
次いで、薄膜形成工程において、上記のレジストパターン22′とフィルム23をマスクとして、基板21の露出面に導電性の薄膜5を形成する(図7(C))。この薄膜5は、通常、電気めっきにより形成され、Ag、Pt、Au等の貴金属単独からなる薄膜、あるいは、これらの貴金属の組み合わせからなる積層薄膜、さらには、上記の貴金属とNi等の金属との積層薄膜(最外層は貴金属層とする)である。このような薄膜5の厚みは0.5〜10μmの範囲で設定することができる。
【0035】
次に、エッチング工程において、上記のレジストパターン22′を剥離除去することにより露出した基板21を、薄膜5と耐めっき性をもつフィルム23をマスクとして腐蝕液でエッチングを行う(図7(D))。腐蝕液は、基板21の材質に応じて塩化第二鉄水溶液や過硫酸アンモニウム等を使用し、例えば、基板21の両面からスプレーエッチングにて行うことができる。このエッチング工程におけるエッチング量は、回路部材1′の柱状凸部4の高さを決定するものであり、基板21の厚さ方向で貫通しないエッチング量とされ、いわゆるハーフエッチングが行われる。
次いで、耐めっき性をもつフィルム23を剥離することにより、図4に示されるような回路部材1′が得られる。
【0036】
樹脂封止型半導体装置の製造方法
次に、本発明の樹脂封止型半導体装置の製造方法について説明する。
図8は、図5および図6に示される本発明の樹脂封止型半導体装置を図4に示される本発明の回路部材1′を用いて製造する方法の一実施形態を示す工程図である。各工程は、上記の図4に対応する縦断面図で示してある。
【0037】
図8において、まず、回路部材1′の各半導体素子搭載領域3に、電気絶縁性の接着部材6(例えば、電気絶縁性のベースフィルムの両面に接着剤層を備えたテープ等)を介して半導体素子15を搭載する(図8(A)半導体素子搭載工程)。
【0038】
次に、搭載した半導体素子15の端子15aと回路部材1′の導電性の薄膜5とを、ボンディングワイヤ17で電気的に接続する(図8(B)ワイヤボンディング工程)。
【0039】
次いで、回路部材1′の薄膜5と半導体素子15およびボンディングワイヤ17とを樹脂材料18により封止する(図8(C)封止工程)。
【0040】
次に、上記の樹脂材料18で覆われていない回路部材1′の裏面側から基部2と柱状凸部4を腐蝕液により溶解除去する(図8(D)エッチング工程)。このエッチング工程によって柱状凸部4が溶解除去されて出現した凹部内には、薄膜5が露出している。
【0041】
上記のエッチング工程で出現した凹部内に導電材料を充填して、柱状の外部端子14を形成する(図8(E)充填工程)。導電材料の充填は、例えば、導電材料として半田ペーストを使用し、スクリーン印刷法により行うことができる。この場合、凹部に充填した半田ペーストを固化するために加熱するリフロー工程を付加することができる。このようにして形成された外部端子14は、柱状であり、樹脂材料(封止部材)18中に位置する埋没部14aと、外部に突出するように露出する先端部14bをもち、埋没部14aの先端は、回路部材1′の薄膜5と一体となっており、この薄膜5が内部端子13となる。これにより、薄膜状の内部端子13と柱状の外部端子14とを一体的に有する端子部12が形成される。
【0042】
図1および図2に示されるような回路部材1(半導体素子搭載領域3と、この領域3に対応した複数の薄膜5からなる組み合わせを1組備えたもの)を使用した場合、上記の充填工程により外部端子14を形成した段階で、図5および図6に示される本発明の樹脂封止型半導体装置11が得られる。
【0043】
一方、上述したような回路部材1′(半導体素子搭載領域3と、この領域3に対応した複数の薄膜5からなる組み合わせを複数組備える回路部材)を使用する場合、次に、各半導体素子ごとに分離することにより、図5および図6に示される本発明の樹脂封止型半導体装置11が得られる。このような分離工程では、各半導体素子に対応した領域の境界(図8(E)に矢印で示される部位)で個々の半導体装置に分離し、また、外枠部材7を除去する。この分離工程は、金型を用いた打ち抜き、あるいは、ダイサーを用いたダイシングにより行うことができる。
【0044】
【実施例】
次に、具体的な実施例を挙げて本発明を更に詳細に説明する。
【0045】
(回路部材の作製)
金属製の基板として厚み0.125mmの銅合金板(古河電気工業(株)製EFTEC64T−1/2H)を準備し、脱脂処理、洗浄処理を行った。次に、この銅合金板の表面側に、耐めっき性のある紫外線硬化型レジストフィルム(旭化成(株)製 サンフォートAQ 厚み25μm)を貼り付け、銅合金板の裏面側に、耐めっき性のある樹脂フィルム(日東電工(株)製 リバアルファ)を貼り付けた。次に、表面側のレジストフィルムを所定のフォトマスクを介して露光した後、現像してレジストパターンを形成した。(以上、パターン形成工程)
【0046】
次いで、銅合金板の表面のレジストパターンと裏面の樹脂フィルムをマスクとして、銅合金板の露出面に1μmのPdめっき層、5μmのNiめっき層、1μmのPdめっき層の3層構造からなる導電性の薄膜を形成した。(以上、薄膜形成工程)
【0047】
次に、表面側のレジストパターンを剥離除去し、上記の薄膜と耐めっき性をもつ樹脂フィルムをマスクとして銅合金板のエッチングを行った。このエッチングは腐蝕液として過硫酸アンモニウムを使用し、エッチング量は導電性の薄膜の間に露出している銅合金板のエッチング深さが100μmとなるハーフエッチングとした。(以上、エッチング工程)
【0048】
次いで、ホットプレート上で加熱(150℃、1分間)して裏面側の樹脂フィルムを剥離し、図4に示されるような回路部材を得た。この回路部材は、高さ100μmの複数の柱状凸部と、この柱状凸部の上端面に設けられた厚み7μmの導電性薄膜を備えたものである。
【0049】
(半導体装置の作製)
上述のように作製した回路部材の半導体素子搭載領域に、電気絶縁性のダイアタッチフィルム(日本ゴアテックス(株)製アブソーボンド)を介して半導体素子(厚み約0.25mm)の回路形成面の反対側を固着して半導体素子を搭載した。(以上、半導体素子搭載工程)
【0050】
次いで、回路部材の導電性薄膜と、搭載した半導体素子(厚み0.25mm)の端子とを金ワイヤー(田中電子工業(株)製 FA−30)により結線した。この場合、回路部材の薄膜と半導体素子の端子との段差は185μmであった。(以上、ワイヤボンディング工程)
【0051】
次に、回路部材の導電性薄膜と半導体素子と金ワイヤーを樹脂材料(日東電工(株)製MP−7400)で封止した。(以上、封止工程)
【0052】
その後、樹脂材料で覆われていない回路部材の裏面側から過硫酸アンモニウムを使用して回路部材のエッチングを行った。このエッチングは、回路部材の柱状凸部が溶解除去されて導電性薄膜が露出するまでとした。(以上、エッチング工程)
【0053】
次いで、エッチング工程で形成した凹部内に半田ペーストをスクリーン印刷法で充填し、加熱(230℃、2分間)によるリフロー工程で固化して外部端子を形成した。この外部端子は、上記の樹脂材料からなる封止部材中に埋没して導電性薄膜(内部端子)と一体化する柱状の埋没部(高さ100μm)と、外部に約50μm突出する先端部をもつものであった。(以上、充填工程)
【0054】
次に、ダイサーで所望の位置で断裁して個々の半導体装置を得た。
このようにして作製した個々の樹脂封止型半導体装置は、外部端子数が16ピンであり、その外形寸法は5mm四方、厚みが0.5mmであり、非常に小型で薄いものであった。
【0055】
この樹脂封止型半導体装置を、半田ボールを使用しないで回路基板に実装し、温度サイクル試験(−45℃から+125℃までの温度変化を60分サイクルで繰り返す)を実施した結果、500サイクル経過しても何ら問題は生じなかった。
【0056】
【発明の効果】
以上詳述したように、本発明によれば半導体素子の占有率が高くなり小型化が可能となって回路基板への実装密度を向上させることができ、この回路基板の実装は樹脂封止型半導体装置の外部に露出している外部端子の先端側を用いて行うことができるので、従来の半田ボールを用いたBGA(Ball Grid Array)タイプの半導体装置と同様の実装作業性が得られるとともに、半田ボールを使用する場合に比べて実装された半導体装置の高さを低くすることができる。また、半田ボールの搭載装置や搭載用マスクおよび半田ボールが不要となるので、製造コストの低減が可能である。さらに、半導体素子の端子と内部端子とを電気的に接続するボンディングワイヤの長さが従来の半導体装置に比べて短いものとなる。そして、本発明の回路部材を使用することにより、上記のような効果を奏する樹脂封止型半導体装置を容易に作製することができ、このような本発明の回路部材および半導体装置は、本発明の製造方法により簡便に製造することができる。
【図面の簡単な説明】
【図1】本発明の回路部材の一実施形態を示す平面図である。
【図2】図1に示される回路部材のA−A線における縦断面図である。
【図3】本発明の回路部材の他の実施形態を示す縦断面図である。
【図4】本発明の回路部材の他の実施形態を示す縦断面図である。
【図5】図1に示される本発明の回路部材を使用した本発明の樹脂封止型半導体装置の一実施形態を示す平面図である。
【図6】図5に示される樹脂封止型半導体装置のB−B線における縦断面図である。
【図7】本発明の回路部材の製造方法の一実施形態を示す工程図である。
【図8】本発明の樹脂封止型半導体装置の製造方法の一実施形態を示す工程図である。
【符号の説明】
1,1´…回路部材
2…基部
3…半導体素子搭載領域
4…柱状凸部
5…導電性の薄膜
6…電気絶縁性の接着部材
11…樹脂封止型半導体装置
12…端子部
13…内部端子
14…外部端子
15…半導体素子
17…ボンディングワイヤ
18…封止部材
21…金属製基板
22′…レジストパターン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin-encapsulated semiconductor device on which a semiconductor element is mounted, a circuit member used therefor, and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, semiconductor devices are becoming increasingly integrated and highly integrated, as represented by LSI ASICs, due to the progress of high integration and miniaturization technologies, and the trend of high-performance and light and thin electronic devices (current). It is becoming functional.
[0003]
As a result, even in a sealed semiconductor device using a lead frame, the development trend has progressed through surface-mounted packages such as SOJ (Small Outline J-Leaded Package) and QFP (Quad Flat Package). , TSOP (Thin Small Outline Package) has been developed to reduce the size of the package with a focus on thinning, and further to the LOC (Lead On Chip) structure for the purpose of improving chip storage efficiency by making the package three-dimensional. I have done it.
[0004]
However, resin-encapsulated semiconductor device packages are required to have higher integration, higher functionality, and even higher pin counts, thickness reductions, and downsizing. Because of the lead routing, there has been a limit in reducing the size of the package.
[0005]
[Problems to be solved by the invention]
Therefore, in recent years, a BGA (Ball Grid Array) type resin-encapsulated semiconductor device that can be mounted on a circuit board by solder balls arranged in an area array has been developed.
[0006]
However, although such a BGA type resin-encapsulated semiconductor device is excellent in reliability when mounted on a circuit board by using solder balls, an expensive mounting device and mask are required in the solder ball mounting process. In addition, the cost of the solder ball itself is high, which hinders the reduction of the manufacturing cost of the semiconductor device.
[0007]
The present invention has been made in view of the circumstances as described above, has a high occupation ratio of semiconductor elements, can be miniaturized, can improve the mounting density on a circuit board, and further increase the number of pins. It is an object to provide a resin-encapsulated semiconductor device that does not require mounting solder balls, a circuit member used in the semiconductor device, and a method of manufacturing the circuit member and the semiconductor device And
[0013]
[Means for Solving the Problems]
A method for manufacturing a resin-encapsulated semiconductor device according to the present invention includes a metal flat base and a plurality of metal bases arranged in a predetermined pattern outside a semiconductor element mounting region on one surface of the base. And electrically insulating the surface opposite to the circuit formation surface of the semiconductor element in the semiconductor element mounting region of the circuit member comprising the columnar protrusion and a conductive thin film provided on the upper end surface of the columnar protrusion. A semiconductor element mounting process to be mounted by fixing, a wire bonding process of electrically connecting a conductive thin film of a circuit member and a terminal of the semiconductor element with a bonding wire, and the thin film, the semiconductor element and the bonding wire are made of resin A sealing process for sealing with a material, an etching process for dissolving and removing the base and columnar protrusions of the circuit member, and a recess formed by dissolving and removing the columnar protrusions and exposing the thin film. Fee by filling and a filling step of the internal terminal consisting of the thin film and the external terminals of the columnar made of the conductive material to form a terminal portion made integral, the configuration comprises a.
[0014]
In addition, the method for manufacturing a resin-encapsulated semiconductor device of the present invention includes a reflow process in which a solder paste is used as a conductive material in the filling process and heated to solidify the solder paste filled in the recess. The configuration.
[0015]
In the method for manufacturing a resin-encapsulated semiconductor device of the present invention, a circuit member including a plurality of combinations of a semiconductor element mounting region and a plurality of thin films corresponding to the region is used as a circuit member. Later, the semiconductor device was configured to include a separation step for separating each semiconductor element.
[0016]
Furthermore, the manufacturing method of the resin-encapsulated semiconductor device of the present invention is configured such that the separation step is a punching step using a mold or a dicing step using a dicer.
[0017]
In the present invention, the resin-encapsulated semiconductor device can be mounted on the circuit board using the front end side of the external terminal exposed to the outside, and the height of the semiconductor device at this time is Compared to mounting using solder balls, it is lower. In addition, since the semiconductor element mounting region of the circuit member is formed by half-etching the substrate, the semiconductor element can be disposed in the approximate center of the space where the terminal portion is disposed. The length of the bonding wire that electrically connects the terminal and the internal terminal is short.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
Circuit member FIG. 1 is a plan view showing an embodiment of a circuit member of the present invention, and FIG. 2 is a longitudinal sectional view taken along line AA of the circuit member shown in FIG. 1 and 2, the circuit member 1 according to the present invention includes a flat base portion 2 and a plurality of columnar shapes arranged in a predetermined pattern outside the semiconductor element mounting region 3 on one surface of the base portion 2. The convex part 4 and the electroconductive thin film 5 provided in the upper end surface 4a of this columnar convex part 4 are provided.
[0020]
The base part 2 and the columnar convex part 4 are both made of metal, and the columnar convex part 4 is formed integrally with the base part 2. The thickness of the base 2 can be appropriately set according to the material to be used, and can be, for example, about 50 to 150 μm. In addition, the shape of the columnar protrusion 4 is a rectangular column having a rectangular cross section in the illustrated example, but is not limited thereto. The height of such columnar convex portions 4 can be set according to the height of the external terminal of the resin-encapsulated semiconductor device to be manufactured, and is set in the range of 50 to 150 μm, for example. A rectangular semiconductor element mounting region 3 (region surrounded by a chain line in FIG. 1) is provided so as to be surrounded on both sides by the plurality of columnar convex portions 4.
[0021]
As a metal material that constitutes the base 2 and the columnar protrusion 4, a material that can be etched more easily than a material that will be described later for forming the conductive thin film 5 can be selected. For example, 42 alloy (Ni 42%) Fe alloy), copper, copper alloy and the like.
[0022]
The conductive thin film 5 serves as an internal terminal of the resin-encapsulated semiconductor device, and is a thin film made of a single noble metal such as Ag, Pt, or Au, or a laminated thin film made of a combination of these noble metals, It is a laminated thin film of the above-mentioned noble metal and a metal such as Ni (the outermost layer is a noble metal layer). The thickness of such a thin film 5 can be set in the range of 0.5 to 10 μm.
[0023]
In such a circuit member 1, when a semiconductor element is mounted in the semiconductor element mounting region 3, the semiconductor element is positioned at approximately the center of the space in which the columnar protrusions 4 are disposed.
[0024]
As shown in FIG. 3, the circuit member 1 of the present invention may be one in which an electrically insulating adhesive member 6 is provided in at least a part of the semiconductor element mounting region 3 of the base 2. The adhesive member 6 is not particularly limited, and an adhesive member having adhesive layers on both sides of an electrically insulating base film, for example, RXF (((Electrically insulating base film manufactured by Ube Industries, Ltd.)) is provided on both surfaces. A double-sided adhesive tape such as UXIW (manufactured by Yodogawa Paper Co., Ltd.) having a layer (adhesive manufactured by Yodogawa Paper Co., Ltd.) can be used.
[0025]
The circuit member of the present invention is a circuit member provided with a plurality of circuit members as described above, that is, a circuit member having a plurality of combinations of a semiconductor element mounting region 3 and a plurality of thin films 5 corresponding to the region 3. There may be. FIG. 4 is a cross-sectional view showing such a circuit member. The circuit member 1 ′ shown in FIG. 4 is obtained by connecting five circuit members 1 shown in FIGS. 1 and 2 in a direction perpendicular to the arrangement direction of the columnar convex portions 4 (left and right direction in the figure). . That is, the circuit member 1 ′ includes a flat base portion 2, five semiconductor element mounting regions 3 set at a predetermined pitch P on one surface of the base portion 2, and each semiconductor element mounting region 3. Correspondingly, a plurality of columnar protrusions 4 arranged in a predetermined pattern on the outside and a conductive thin film 5 provided on the upper end surface 4a of the columnar protrusion 4 are provided. Further, an outer frame member 7 is formed at the end portion of the base portion 2 with the conductive thin film 5 on the upper end surface 7a.
In addition, the number of terminals, the terminal arrangement, and the like in the circuit member 1 and the circuit member 1 ′ described above are examples, and the circuit member of the present invention is not limited to this.
[0026]
Resin-encapsulated semiconductor device FIG. 5 is a plan view showing an embodiment of the resin-encapsulated semiconductor device of the present invention using the circuit member of the present invention shown in FIGS. 1 and 2, and FIG. It is a longitudinal cross-sectional view in the BB line of the resin-encapsulated semiconductor device shown by FIG. In order to easily understand the configuration of the resin-encapsulated semiconductor device, the sealing member is omitted in FIG. 5 and the outline thereof is indicated by a virtual line (two-dot chain line).
[0027]
5 and 6, the resin-encapsulated semiconductor device 11 of the present invention is located at a substantially center of a plurality of terminal portions 12 arranged in two rows at predetermined intervals and a space in which the terminal portions 12 are arranged. The semiconductor element 15 includes a bonding wire 17 that connects the terminal 15 a and the terminal portion 12 of the semiconductor element 15, and a sealing member 18 that seals the terminal portion 12, the bonding wire 17, and the semiconductor element 15. Yes.
[0028]
The terminal portion 12 integrally has a thin film-like internal terminal 13 and a columnar external terminal 14, and each terminal portion 12 is positioned substantially on a single plane with the surface of the internal terminal 13 facing the same direction. Are electrically independent of each other. The internal terminal 13 is a thin film made of a single noble metal such as Ag, Pt, or Au, a laminated thin film made of a combination of these noble metals, or a laminated thin film of the above precious metal and a metal such as Ni (the outermost layer is a precious metal). The thickness is about 0.5 to 10 μm. The external terminal 14 includes an embedded portion 14 a located in the sealing member 18 and a tip portion 14 b exposed so as to protrude from the back surface of the resin-encapsulated semiconductor device 11. In the illustrated example, the buried portion 14a is a rectangular column having a rectangular cross section, and the tip portion 14b projects in a long roof dome shape. The protruding amount of the tip 14b is preferably about 50 to 150 μm. Such external terminals 14 are formed of a conductive metal material such as solder or copper paste, and solder is particularly preferable.
[0029]
The semiconductor element 15 is electrically and independently disposed substantially at the center of the space in which the plurality of terminal portions 12 are disposed such that the circuit forming surface side faces the same direction as the surface of the internal terminal 13. The internal terminal 13 of each terminal portion 12 and the terminal 15 a of the semiconductor element 15 are electrically connected by a bonding wire 17. In the illustrated example, an electrically insulating resin layer 16 is disposed on the side opposite to the circuit formation surface of the semiconductor element 15, and this resin layer 16 is exposed on the back surface of the resin-encapsulated semiconductor device 11.
The sealing member 18 can be formed using a known resin material used in a resin-sealed semiconductor device.
[0030]
Such a resin-encapsulated semiconductor device 11 is a BGA (Ball Grid Array) type semiconductor device because the tip end portion 14b of the external terminal 14 is exposed to the outside. The height of the semiconductor device 11 when mounted on the circuit board using the tip portion 14b of the external terminal 14 is lower than that of mounting using conventional solder balls. This is because the protruding amount (about 50 to 150 μm) of the tip end portion 14 b is smaller than the diameter of the solder ball (about 300 to 750 μm). In addition, since the semiconductor element 15 is disposed in the approximate center of the space in which the terminal portion 12 is disposed, the internal terminal 13 and the terminal 15a of the semiconductor element 15 are close to each other. The length of the bonding wire 17 that electrically connects 15a is short.
In addition, the number of terminals, the terminal arrangement, and the like in the above-described resin-encapsulated semiconductor device 11 are examples, and the resin-encapsulated semiconductor device of the present invention is of course not limited thereto.
[0031]
Circuit member manufacturing method Next, a circuit member manufacturing method of the present invention will be described.
[0032]
FIG. 7 is a process diagram showing an embodiment of a method for producing a circuit member of the present invention, taking the circuit member 1 ′ of the present invention shown in FIG. 4 as an example. Each step is shown in a longitudinal sectional view of the circuit member corresponding to FIG.
[0033]
In FIG. 7, first, as a pattern forming step, a photosensitive resist having plating resistance is applied to the surface of the metal substrate 21 and dried to form a resist layer 22, and the back surface of the substrate 21 has plating resistance. The film 23 is fixed (FIG. 7A). Next, the resist layer 22 is exposed through a desired photomask and then developed to form a resist pattern 22 '(FIG. 7B). As the substrate 21, a material that can be etched more easily than the thin film formed in the next thin film forming process can be selected. For example, a metal substrate (thickness 42 alloy (Ni 41% Fe alloy), copper, copper alloy, etc.) 100-250 μm) can be used. It is preferable to use this substrate 21 that has been degreased on both sides and subjected to a cleaning treatment. Examples of the photosensitive resist having plating resistance include DFR Sunfort AQ manufactured by Asahi Kasei Corporation. Examples of the film 23 having plating resistance include Ribata manufactured by Nitto Denko Corporation. Examples thereof include films such as alpha (thermal release film).
[0034]
Next, in the thin film forming step, the conductive thin film 5 is formed on the exposed surface of the substrate 21 using the resist pattern 22 'and the film 23 as a mask (FIG. 7C). The thin film 5 is usually formed by electroplating, and is a thin film made of a single noble metal such as Ag, Pt, or Au, or a laminated thin film made of a combination of these noble metals, and the noble metal and a metal such as Ni. The laminated thin film (the outermost layer is a noble metal layer). The thickness of such a thin film 5 can be set in the range of 0.5 to 10 μm.
[0035]
Next, in the etching process, the substrate 21 exposed by peeling and removing the resist pattern 22 'is etched with a corrosive solution using the thin film 5 and the film 23 having plating resistance as a mask (FIG. 7D). ). The corrosive solution may be ferric chloride aqueous solution, ammonium persulfate, or the like depending on the material of the substrate 21, and can be performed by spray etching from both surfaces of the substrate 21, for example. The etching amount in this etching step determines the height of the columnar protrusions 4 of the circuit member 1 ′ and is an etching amount that does not penetrate in the thickness direction of the substrate 21, so-called half etching is performed.
Next, by peeling off the film 23 having plating resistance, a circuit member 1 ′ as shown in FIG. 4 is obtained.
[0036]
Manufacturing method of resin-encapsulated semiconductor device Next, a manufacturing method of the resin-encapsulated semiconductor device of the present invention will be described.
FIG. 8 is a process diagram showing an embodiment of a method for manufacturing the resin-encapsulated semiconductor device of the present invention shown in FIGS. 5 and 6 using the circuit member 1 ′ of the present invention shown in FIG. . Each step is shown in a longitudinal sectional view corresponding to FIG.
[0037]
In FIG. 8, first, an electrically insulating adhesive member 6 (for example, a tape having an adhesive layer on both surfaces of an electrically insulating base film) is placed on each semiconductor element mounting region 3 of the circuit member 1 ′. The semiconductor element 15 is mounted (FIG. 8 (A) semiconductor element mounting step).
[0038]
Next, the terminal 15a of the mounted semiconductor element 15 and the conductive thin film 5 of the circuit member 1 ′ are electrically connected by the bonding wire 17 (FIG. 8B, wire bonding step).
[0039]
Next, the thin film 5 of the circuit member 1 ′, the semiconductor element 15, and the bonding wire 17 are sealed with the resin material 18 (FIG. 8C) sealing process.
[0040]
Next, the base 2 and the columnar protrusions 4 are dissolved and removed from the back surface side of the circuit member 1 ′ not covered with the resin material 18 with an etching solution (FIG. 8D etching process). The thin film 5 is exposed in the concave portion that appears after the columnar convex portion 4 is dissolved and removed by this etching process.
[0041]
The columnar external terminals 14 are formed by filling the recesses appearing in the etching process with a conductive material (FIG. 8E filling process). The conductive material can be filled, for example, by using a solder paste as the conductive material and screen printing. In this case, a reflow process of heating in order to solidify the solder paste filled in the recesses can be added. The external terminal 14 formed in this way is columnar, and has an embedded part 14a located in the resin material (sealing member) 18 and a tip part 14b exposed so as to protrude to the outside, and the embedded part 14a. Is integrated with the thin film 5 of the circuit member 1 ′, and this thin film 5 becomes the internal terminal 13. Thereby, the terminal part 12 which has the thin film-shaped internal terminal 13 and the columnar external terminal 14 integrally is formed.
[0042]
When the circuit member 1 as shown in FIGS. 1 and 2 (a semiconductor element mounting region 3 and a combination of a plurality of thin films 5 corresponding to the region 3) is used, the above filling process is performed. Thus, at the stage where the external terminals 14 are formed, the resin-encapsulated semiconductor device 11 of the present invention shown in FIGS. 5 and 6 is obtained.
[0043]
On the other hand, when using the circuit member 1 ′ (a circuit member having a plurality of combinations of the semiconductor element mounting region 3 and a plurality of thin films 5 corresponding to the region 3) as described above, By separation into the above, the resin-encapsulated semiconductor device 11 of the present invention shown in FIGS. 5 and 6 is obtained. In such a separation step, the individual semiconductor devices are separated at the boundaries of the regions corresponding to the respective semiconductor elements (portions indicated by arrows in FIG. 8E), and the outer frame member 7 is removed. This separation step can be performed by punching using a mold or dicing using a dicer.
[0044]
【Example】
Next, the present invention will be described in more detail with specific examples.
[0045]
(Production of circuit members)
A copper alloy plate (EFTEC64T-1 / 2H manufactured by Furukawa Electric Co., Ltd.) having a thickness of 0.125 mm was prepared as a metal substrate, and degreased and washed. Next, an ultraviolet-curing resist film having a plating resistance (Sunfort AQ thickness 25 μm, manufactured by Asahi Kasei Co., Ltd.) is attached to the surface side of the copper alloy plate, and the plating resistance is applied to the back side of the copper alloy plate. A certain resin film (Nitto Denko Co., Ltd. Riva Alpha) was attached. Next, after exposing the resist film of the surface side through a predetermined photomask, it developed and formed the resist pattern. (End of pattern formation process)
[0046]
Next, using the resist pattern on the front surface of the copper alloy plate and the resin film on the back surface as a mask, a conductive structure comprising a three-layer structure of a 1 μm Pd plating layer, a 5 μm Ni plating layer, and a 1 μm Pd plating layer on the exposed surface of the copper alloy plate. A thin film was formed. (Thin film formation process)
[0047]
Next, the resist pattern on the surface side was peeled and removed, and the copper alloy plate was etched using the thin film and a resin film having plating resistance as a mask. In this etching, ammonium persulfate was used as a corrosive solution, and the etching amount was half etching in which the etching depth of the copper alloy plate exposed between the conductive thin films was 100 μm. (End of etching process)
[0048]
Subsequently, it heated on a hot plate (150 degreeC, 1 minute), the resin film of the back side was peeled, and the circuit member as shown in FIG. 4 was obtained. This circuit member includes a plurality of columnar convex portions having a height of 100 μm and a conductive thin film having a thickness of 7 μm provided on the upper end surface of the columnar convex portions.
[0049]
(Fabrication of semiconductor devices)
Opposite to the circuit formation surface of the semiconductor element (thickness of about 0.25 mm) through the electrically insulating die attach film (Nippon Gore-Tex Co., Ltd. Absorb Bond) on the semiconductor element mounting region of the circuit member produced as described above. The semiconductor element was mounted with the sides fixed. (End of semiconductor element mounting process)
[0050]
Next, the conductive thin film of the circuit member and the terminal of the mounted semiconductor element (thickness 0.25 mm) were connected by a gold wire (FA-30 manufactured by Tanaka Electronics Co., Ltd.). In this case, the step between the thin film of the circuit member and the terminal of the semiconductor element was 185 μm. (End of wire bonding process)
[0051]
Next, the conductive thin film of the circuit member, the semiconductor element, and the gold wire were sealed with a resin material (MP-7400 manufactured by Nitto Denko Corporation). (End of sealing process)
[0052]
Then, the circuit member was etched using ammonium persulfate from the back side of the circuit member not covered with the resin material. This etching was performed until the columnar convex portions of the circuit member were dissolved and removed to expose the conductive thin film. (End of etching process)
[0053]
Next, a solder paste was filled in the recess formed in the etching process by a screen printing method, and solidified in a reflow process by heating (230 ° C., 2 minutes) to form an external terminal. This external terminal has a columnar embedded portion (height 100 μm) that is embedded in the sealing member made of the resin material and integrated with the conductive thin film (internal terminal), and a tip portion that protrudes about 50 μm to the outside. It had. (End of filling process)
[0054]
Next, each semiconductor device was obtained by cutting at a desired position with a dicer.
Each of the resin-encapsulated semiconductor devices thus fabricated had 16 external terminals, an outer dimension of 5 mm square and a thickness of 0.5 mm, and was extremely small and thin.
[0055]
As a result of mounting this resin-encapsulated semiconductor device on a circuit board without using a solder ball and performing a temperature cycle test (a temperature change from −45 ° C. to + 125 ° C. is repeated in a 60-minute cycle), 500 cycles have elapsed. But there was no problem.
[0056]
【The invention's effect】
As described above in detail, according to the present invention, the occupancy ratio of the semiconductor element is increased, the size can be reduced, and the mounting density on the circuit board can be improved. Since it can be performed using the front end side of the external terminal exposed to the outside of the semiconductor device, the mounting workability similar to that of a conventional BGA (Ball Grid Array) type semiconductor device using solder balls can be obtained. The height of the mounted semiconductor device can be reduced as compared with the case where solder balls are used. Further, since a solder ball mounting device, a mounting mask, and a solder ball are not required, the manufacturing cost can be reduced. Further, the length of the bonding wire for electrically connecting the terminal of the semiconductor element and the internal terminal is shorter than that of the conventional semiconductor device. Then, by using the circuit member of the present invention, a resin-encapsulated semiconductor device having the above-described effects can be easily manufactured. Such a circuit member and semiconductor device of the present invention are provided by the present invention. It can manufacture simply with this manufacturing method.
[Brief description of the drawings]
FIG. 1 is a plan view showing an embodiment of a circuit member of the present invention.
2 is a longitudinal sectional view taken along line AA of the circuit member shown in FIG. 1. FIG.
FIG. 3 is a longitudinal sectional view showing another embodiment of the circuit member of the present invention.
FIG. 4 is a longitudinal sectional view showing another embodiment of the circuit member of the present invention.
5 is a plan view showing an embodiment of the resin-encapsulated semiconductor device of the present invention using the circuit member of the present invention shown in FIG. 1. FIG.
6 is a longitudinal sectional view taken along line BB of the resin-encapsulated semiconductor device shown in FIG.
FIG. 7 is a process diagram showing an embodiment of a method for producing a circuit member of the present invention.
FIG. 8 is a process diagram showing an embodiment of a method for producing a resin-encapsulated semiconductor device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,1 '... Circuit member 2 ... Base part 3 ... Semiconductor element mounting area 4 ... Columnar convex part 5 ... Conductive thin film 6 ... Electrical insulating adhesive member 11 ... Resin sealing type semiconductor device 12 ... Terminal part 13 ... Inside Terminal 14 ... External terminal 15 ... Semiconductor element 17 ... Bonding wire 18 ... Sealing member 21 ... Metal substrate 22 '... Resist pattern

Claims (5)

金属製の平板状の基部と、該基部の一方の面の半導体素子搭載用領域の外側に所定のパターンで配設された複数の金属製の柱状凸部と、該柱状凸部の上端面に設けられた導電性の薄膜と、を備える回路部材の半導体素子搭載用領域に半導体素子の回路形成面と反対面側を電気的に絶縁して固着することにより搭載する半導体素子搭載工程と、
回路部材の導電性の薄膜と半導体素子の端子とをボンディングワイヤで電気的に接続するワイヤボンディング工程と、
前記薄膜、半導体素子およびボンディングワイヤを樹脂材料で封止する封止工程と、
前記回路部材の基部および柱状凸部を溶解除去するエッチング工程と、
前記柱状凸部が溶解除去され前記薄膜が露出した状態で形成された凹部に導電性材料を充填して、前記薄膜からなる内部端子と前記導電性材料からなる柱状の外部端子とが一体化してなる端子部を形成する充填工程と、を備えることを特徴とする樹脂封止型半導体装置の製造方法。
A metal plate-shaped base, a plurality of metal columnar protrusions arranged in a predetermined pattern outside the semiconductor element mounting region on one surface of the base, and an upper end surface of the columnar protrusion A semiconductor element mounting step for mounting by electrically insulating and fixing the surface opposite to the circuit forming surface of the semiconductor element in a semiconductor element mounting region of a circuit member comprising a conductive thin film provided ;
A wire bonding step of electrically connecting the conductive thin film of the circuit member and the terminal of the semiconductor element with a bonding wire;
A sealing step of sealing the thin film, semiconductor element and bonding wire with a resin material;
An etching step of dissolving and removing the base and columnar protrusions of the circuit member;
The concave portion formed in a state where the columnar convex portion is dissolved and removed and the thin film is exposed is filled with a conductive material, and the internal terminal made of the thin film and the columnar external terminal made of the conductive material are integrated. And a filling step for forming a terminal portion. A method for manufacturing a resin-encapsulated semiconductor device.
前記充填工程は、導電性材料として半田ペーストを使用し、前記凹部に充填した半田ペーストを固化するために加熱するリフロー工程を有することを特徴とする請求項1に記載の樹脂封止型半導体装置の製造方法。2. The resin-encapsulated semiconductor device according to claim 1 , wherein the filling step includes a reflow step in which a solder paste is used as a conductive material and heated to solidify the solder paste filled in the concave portion. Manufacturing method. 回路部材として、半導体素子搭載領域と該領域に対応した複数の薄膜からなる組み合わせを複数組備える回路部材を使用し、前記充填工程の後に、各半導体素子ごとに分離する分離工程を備えることを特徴とする請求項1または請求項2に記載の樹脂封止型半導体装置の製造方法。A circuit member comprising a combination of a plurality of thin film elements corresponding to a semiconductor element mounting region and a plurality of thin films corresponding to the region is used as the circuit member, and the semiconductor device includes a separation step of separating each semiconductor element after the filling step. A method for manufacturing a resin-encapsulated semiconductor device according to claim 1 or 2 . 前記分離工程は、金型を用いた打ち抜き工程であることを特徴とする請求項3に記載の樹脂封止型半導体装置の製造方法。4. The method for manufacturing a resin-encapsulated semiconductor device according to claim 3 , wherein the separation step is a punching step using a mold. 前記分離工程は、ダイサーを用いたダイシング工程であることを特徴とする請求項3に記載の樹脂封止型半導体装置の製造方法。The method of manufacturing a resin-encapsulated semiconductor device according to claim 3 , wherein the separation step is a dicing step using a dicer.
JP13670599A 1999-05-18 1999-05-18 Manufacturing method of resin-encapsulated semiconductor device Expired - Lifetime JP3992877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13670599A JP3992877B2 (en) 1999-05-18 1999-05-18 Manufacturing method of resin-encapsulated semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13670599A JP3992877B2 (en) 1999-05-18 1999-05-18 Manufacturing method of resin-encapsulated semiconductor device

Publications (2)

Publication Number Publication Date
JP2000332146A JP2000332146A (en) 2000-11-30
JP3992877B2 true JP3992877B2 (en) 2007-10-17

Family

ID=15181567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13670599A Expired - Lifetime JP3992877B2 (en) 1999-05-18 1999-05-18 Manufacturing method of resin-encapsulated semiconductor device

Country Status (1)

Country Link
JP (1) JP3992877B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100405948B1 (en) * 2001-03-16 2003-11-14 황길남 Semiconductor chip package and manufacturing method thereof
JP4902627B2 (en) * 2008-12-04 2012-03-21 大日本印刷株式会社 Semiconductor device
JP6380805B2 (en) * 2015-04-07 2018-08-29 大口マテリアル株式会社 Semiconductor element mounting substrate, semiconductor device and manufacturing method thereof
JP6927634B2 (en) * 2017-09-20 2021-09-01 大口マテリアル株式会社 Substrate for mounting semiconductor elements and its manufacturing method

Also Published As

Publication number Publication date
JP2000332146A (en) 2000-11-30

Similar Documents

Publication Publication Date Title
JP3780122B2 (en) Manufacturing method of semiconductor device
KR100297464B1 (en) A resin sealed semiconductor device, a circuit member usedthereto and a method for fabricating a resin sealedsemiconductor device
JP3947292B2 (en) Manufacturing method of resin-encapsulated semiconductor device
US6762118B2 (en) Package having array of metal pegs linked by printed circuit lines
JP3947750B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2002289739A (en) Resin sealed type semiconductor device, and circuit member for semiconductor device and its manufacturing method
JP4091050B2 (en) Manufacturing method of semiconductor device
JPH08125066A (en) Resin-sealed semiconductor device and lead frame used for it, and manufacture of resin-sealed semiconductor device
JP2005317998A5 (en)
JP4984253B2 (en) Manufacturing method of semiconductor device and manufacturing method of substrate for semiconductor device
JP3983930B2 (en) Circuit member manufacturing method
JP2000091488A (en) Resin-sealed semiconductor device and circuit member used therein
JPH09307043A (en) Lead frame member and manufacture thereof, and semiconductor device using lead frame member
JP3992877B2 (en) Manufacturing method of resin-encapsulated semiconductor device
JP3529915B2 (en) Lead frame member and method of manufacturing the same
JP5522551B2 (en) Circuit member manufacturing method
KR100629887B1 (en) Metal chip scale semiconductor package and manufacturing method thereof
JP5500130B2 (en) Resin-sealed semiconductor device and circuit member for semiconductor device
JP3678883B2 (en) Manufacturing method of resin-encapsulated semiconductor device
JP4137981B2 (en) Manufacturing method of semiconductor device
JP3884552B2 (en) Semiconductor device, circuit member used therefor, and method for manufacturing semiconductor device
JPH09116045A (en) Resin-sealed semiconductor device of bga type using lead frame and its manufacture
JP3699573B2 (en) Semiconductor device, circuit member used therefor, and manufacturing method thereof
JP5521301B2 (en) Lead frame type substrate, manufacturing method thereof, and semiconductor device
JP5609911B2 (en) Resin-sealed semiconductor device and circuit member for semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

EXPY Cancellation because of completion of term