JP3992432B2 - 平版投影装置用の照射源 - Google Patents

平版投影装置用の照射源 Download PDF

Info

Publication number
JP3992432B2
JP3992432B2 JP2000404229A JP2000404229A JP3992432B2 JP 3992432 B2 JP3992432 B2 JP 3992432B2 JP 2000404229 A JP2000404229 A JP 2000404229A JP 2000404229 A JP2000404229 A JP 2000404229A JP 3992432 B2 JP3992432 B2 JP 3992432B2
Authority
JP
Japan
Prior art keywords
irradiation source
plasma
radiation
source
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000404229A
Other languages
English (en)
Other versions
JP2001311799A5 (ja
JP2001311799A (ja
Inventor
ヘンリク、フィードロウィクズ
フレデリク、ビユケルク
コルネラ、デ ブルイユン コルネリス
アンドルゼユ、バルトニク
ニコラエビッチ、コシェレブ コンスタンチン
イエブゲニエビッチ、バニネ バディム
Original Assignee
エーエスエムエル ネザーランズ ビー.ブイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーエスエムエル ネザーランズ ビー.ブイ. filed Critical エーエスエムエル ネザーランズ ビー.ブイ.
Publication of JP2001311799A publication Critical patent/JP2001311799A/ja
Publication of JP2001311799A5 publication Critical patent/JP2001311799A5/ja
Application granted granted Critical
Publication of JP3992432B2 publication Critical patent/JP3992432B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources

Description

【0001】
【発明の属する技術分野】
本発明は照射源、特に平板投影装置用の照射源として使用しうるEUV放射線を放射する放電プラズマ源であって、
遠紫外線を発生させるように構成配置された照射源と、
前記遠紫外線を受取り、該遠紫外線の投影ビームを供給するように構成配置された照射系と、
所望のパターンに従い投影ビームをパターン化するように構成配置されたパターン化手段と、
基板を保持するように構成された基板テーブルと、
パターン化されたビームを前記基板の目標部分上に像形成するように構成配置された投影系とを含むことを特徴とする照射源に関する。
【0002】
【従来の技術】
「パターン化手段」という用語は基板の目標部分に形成すべきパターンに対応するパターン化された断面を到来照射ビームに付与するために使用しうる手段を称するものとして広義に解釈すべきであり、「光弁」という用語もこのような主旨で使用されている。一般に、前記パターンは例えば集積回路あるいはその他の素子(以下参照)のような目標部分において形成されつつある素子における特定の機能層に対応する。そのようなパターン化手段の例としては以下のものを含む。
− マスクを保持するマスクテーブルである。マスクの概念は平板印刷おいては周知であり、バイナリ、交番移相および減衰移相のようなマスク型式並びに各種のハイブリッドマスク型式を含む。照射ビームにそのようなマスクを位置させることによってマスクのパターンに従って(透過マスクの場合は)透過度を、(反射マスクの場合は)マスクに衝突する放射線の反射度を選択しうるようにする。マスクテーブルはマスクが到来照射ビームの所望の位置に確実に位置しうるようにし、かつ希望に応じてマスクがビームに対して確実に移動可能にする。
− プログラム化可能なミラーアレイである。そのような素子の例は粘弾性制御層と反射層とを有するマトリックスアドレス指定可能な面である。そのような装置の背景にある基本概念は、(例えば)反射面のアドレスされた領域が入射光線を拡散光線として反射し、一方アドレスされていない領域が入射光線を非拡散光線として反射することである。適当なフィルタを使用して、前記非拡散光線は反射ビームから濾過され、拡散された光線のみを残し、このようにして、ビームはマトリックスアドレス可能な面のアドレス指定パターンに従ってパターン化される。必要なマトリックスアドレス指定は適当な電子手段を使用して実行可能である。そのようなミラーアレイに関するより多くの情報は、例えば、参考のため本明細書に組み込んだ米国特許第5,296,891号および同第5,523,193号から収集可能である。
− プログラム化可能なLCDアレイである。そのような構成の一例が参考のために本明細書に組み込んだ米国特許第5,229,872号に提供されている。説明を簡単にするために、本説明の残りにおいて、ある個所では特にマスクテーブルとマスクを含む例を述べるが、そのような場合においても説明された一般原理では上述したような広義のパターン化手段を扱う。
【0003】
説明を簡単にするために、以下述べる投影系は「レンズ」として指示する。しかしながら、この用語は、屈折光学装置、反射光学装置、および例えば反射屈折光学系を含む各種型式の投影系を包含するというように広義に解釈すべきである。更に、平板印刷装置は2個以上のマスクテーブルおよび(または)2個以上の基板テーブルを有する型式のものでよい。
【0004】
平板投影装置は例えば集積回路(ICs)の製造において使用可能である。そのような場合、マスク(焦点板)はICの個々の層に対応する回路パターンを含み、このパターンは放射線感応材料(レジスト)の層でコーテイングした基板(シリコンウェーファー)上の目標領域(1個以上のダイを含む)上に像形成可能である。一般に、単一のウェーファーが一時に一回マスクを介して順次照射される隣接する目標領域の全体網を包含している。平板投影装置の一型式において、各目標領域はマスクパターン全体を一回の操作で目標領域上に露出することによって照射される。そのような装置は通常ウェーファーステッパと称されている。ステップアンドスキャン装置と通常称される代替的な装置においては、各目標領域は所定の基準方向(「走査」方向)において投影ビームでマスクパターンを徐々に走査することによって照射され、一方同期的に前記方向に対して平行に、あるいは反平行的に基板を走査する。一般に投影系は倍率M(一般に<1)であるので、基板テーブルが走査される速度Vはマスクテーブルが走査される速度のM倍の係数である。平板装置に関するより更に多くの情報は国際特許出願第WO97/33205号から収集可能である。
【0005】
一般に、この型式の装置は単一のマスク(第1の対物)テーブルと単一の基板(第2の対物)テーブルとを含んでいた。しかしながら、少なくとも2個の独立して運動可能な基板テーブルが存在する機械が市販されつつある。例えば、国際特許出願第WO98/28665号および同第WO98/40791号に記載の多段装置を参照されたい。そのような多段装置の背景にある基本作動原理は第1の基板テーブルがそのテーブルに位置した第1の基板を露出しうるように投影系の下方に位置している間に、第2の基板テーブルが装填位置まで進行し、露出された基板を排出し、新しい基板を取り上げ、この新しい基板に対して若干の初期計測段階を実行し、次にこの新しい基板を第1の基板の露出が完了するや直ちに投影系の下方の露出位置まで転送するように待機し、このようにしてサイクルが繰返される。こうして機械の処理能力を顕著に増大させることが出来る。
【0006】
平板装置において、基板上に像形成可能な特徴のサイズは投影放射線の波長によって制限される。高密度の素子を備えた、従ってより速い作動速度の集積回路を製造するためには、より小さい特徴を像形成できることが望ましい。最新の平板投影装置は水銀ランプあるいはエキシマレーザによって発生する紫外線を使用しているが、約13nmのより短い波長の放射線を使用することが提案されてきた。そのような放射線は遠紫外線(EYV)あるいは軟X線と称され、可能な供給源としては、例えばレーザにより発生したプラズマ源、放電プラズマ源、あるいは電子ストレイジリングからのシンクロトロン放射を含む。シンクロトロン放射を利用した平板投影装置の概略設計は応用光学32巻24号の6920―6929頁(1993)でのジェイエムマーフィによる「投影X線平板のためのシンクロトロン照射源およびコンデンサ」(” Synchrotron radiation sources and condensers for projection x−ray lithography” JB Murphyet al, Applied Optics Vol. 32 No. 24 pp 6920−6929(1993)に記載されている。放電プラズマ源を使用した装置はProcSPIE3997136―156頁、2000のダブリュー・パトロ、アイ・フォーメンコフ、アール・オリバー、バークスによる「リチウム蒸気中での濃密プラズマ焦点を使用したEUV(13.5nm)光源の開発」(W. Partlo, I. Fomenkov, R. Oliver, D. Birx,” Development of an EUV (13.5nm) Light Source Employing a Dense Plasma Focus in Lithium Vapor”、ProcSPIE3997、861―866頁、2000のエム/。ダブリューマックゴーチによる「Z−ピンチ遠紫外線源のパワースケーリング」(M. W.Mc Geoch,” Power Scaling of a Z−pinch Extreme Ultraviolet Source”, ProcSPIE 3997 ,pp− 861−866, 2000),ProcSPIE3676,pp272―275,1999のダブリュー・テイ・シルフバスト、エム・クロスナ、ジー・シムカベーグ、エイチ・ベンダ、ジー・クービアック、エヌ・フォルナシアーリによる「EUV平板印刷用の13.5および11.4nmにおける高パワープラズマ放電源」(W. T. Silfvast,M. Klosner, G. Shimkaveg, H. Bender, G. Kubiak, N. Fornaciari,” High−power plasma discharge source at 13.5 and 11.4 nm for EUV lithography”)に記載されている。
【0007】
放電プラズマ源において、部分的にイオン化された低密度の比較的冷たいプラズマが放電によって形成され、次に更に強くイオン化され極めて高温に達しEUV放射を行なうように圧縮される。例えばRFパワー源による予備イオンが採用されて放電を開始させ、良好に画成されたプラズマシートを形成してもよい。例えばプラズマ集束、Zピンチおよび毛管源のような装置の形状寸法は変動しうるが、これらの型式の各々において放電の電流によって発生する磁界が圧縮を推進する。十分に圧縮可能で、所望の周波数帯において十分大量の放射線を放射しうるプラズマを形成するのに適当な磁気流体特性を有するガスが少ないので、放電プラズマ源の効率と強度とを最適化することが必須である。
【0008】
【発明が解決しようとする課題】
本発明の目的は平板投影装置に使用しうる改良されたプラズマ源を提供することである。
【0009】
【課題を解決するための手段】
本発明によれば、遠紫外線電磁照射用のプラズマ照射源であって、
高電位差源に接続され、第1のプラズマ状態と対応の磁界に誘導される電流によって第1のプラズマ状態をピンチ容積内へ圧縮させるように構成配置された電極と、
高温のプラズマ状態にされて遠紫外線電磁放射線を放射する作業流体の供給源と、
前記第1のプラズマ状態を前記ピンチ容積内へ圧縮することによって前記高温プラズマ状態にされるように前記ピンチ容積内へ前記作業流体を放出するように構成配置された一次噴射ノズルとを含む遠紫外線電磁照射用プラズマ照射源が提供される。
【0010】
EUV放射線は主として、圧縮放電によって高温の放射線放射状態まで昇温された作業(一次)流体によって放射されるので、作業流体は放電を形成するのに好ましい特性の必要性によって制限されることなく所望の波長でEUV放射線を放射する上での効率に選択することができる。作業流体は、例えばリチウム蒸気、クリプトン、キセノン、水およびクライオジェニックリキッド(極低温液体)でよい。同時に、電導性で効果的な圧縮媒体を発生させる上で効果的な磁気―流体力学特性に基づき、かつEUV光学特性、特に対象とする波長における透過性に基づいて選択された駆動流体を放電の形成を助勢するために電極の間の空間に供給できる。従って、プラズマ発生要件と放射要件とは相互作用を断たれ、各要素用の物質の広い範囲の選択を可能にし、かつ供給源の効果、および効率を改良しうる。
【0011】
供給源の放電(「ショット」)毎に新しい作業流体を提供することは、また各サイクルで初期状態をより迅速に到達させることによって供給源の可能な繰返し速度を増加させる。作業流体を新しく供給することはまた従来技術の供給源では時間のかかったピンチ容積から汚染をフラッシュのに役立つ。更に、作業流体は、例えばクラスタ噴射あるいは液体噴射のようなより濃密な形態で供給しうるので各放電に対してより大量の作業流体を供給可能である。
【0012】
放出軸線上の作業流体の濃度は放出れる流体が放出軸線上で最高の濃度を有するように一次噴射を適当に配することによって増加させることができる。超音波噴射は鋭いピークの濃度プロフィルを備えた噴射を提供するので特に好ましい。
【0013】
本発明の好適実施例において、照射源は更に
二次流体用供給源と、
前記作業流体の噴出線に平行に、かつそれから離隔して前記二次流体を放出するように構成配置された二次噴射ノズルとを含んでもよい。
【0014】
一次噴射ノズルの他に二次噴射ノズルを設けることにより、一次ガスの発散度は二次噴射ノズルからの二次ガスの流出よって減少してもよい。その場合一次ガスの十分な濃度が噴射ノズルの出口からより離れた距離に存在するので、ノズルの出口からより離れた距離をおいてプラズマを形成することが可能である。このことは、破片の生成とそれに関わる問題とを阻止する。更に、照射源は、二次ガスの流出が照射系の光学要素と一方では照射源の電極や絶縁体のような部材と、他方では形成される高温のプラズマとの間の例えば遮蔽体として機能するように位置してもよい。そのような遮蔽体は破片の粒子が照射源の部品あるいは光学要素に向って逃げるのを大いに阻止する。粒子は遮蔽用二次ガスを通過せず、あるいは減速しかつ中立化され、そして堆積あるいはその他の原因による損傷作用を生じるのを阻止される。また、放射された放射線の再吸収性が減少し、輝度が増加した照射源はピンチ容積の側部においてXUV照射透明容積を提供することによって得ることができる。
【0015】
特に好ましい実施例において、二次噴射ノズルは一次噴射ノズルを囲む。そのような場合、二次ノズルは形状が環状でよく、一次ノズルを囲むように配置された複数のノズルから構成しうる。そのような形態は一次ガスの放散を更に良好に制御し、平行で、あるいはノズルから一定距離にわたり収束する一次ガスの流出を得ることができる。一次ガスと、そこで形成された高温のプラズマとを囲む二次ガスも更に、プラズマからのプラズマ粒子の逃げを阻止し、ピンチ容積の周りにXUV照射透明容積を提供する。最適形態においては、一次および二次噴射ノズルは共軸である。
【0016】
二次ノズルは初期放電形成を助勢する初期量の二次ガスを提供し、次にガスの供給を停止してもよいことが注目される。代替的に、二次ガスは前述の機能を実行するために連続的に、あるいはパルス状で供給可能である。
【0017】
二次ガスはヘリウム、ネオン、アルゴン、クリプトン、メタン、シラン、および水素、あるいは一般にいずれかのEUV透明ガスからなる群から選択された少なくとも一つのガスから構成しうる。水素はEUV照射に関しては優れた吸収特性を有するので好ましい二次ガスである。このように、水素は大きな流速(流出における局部的濃度が高い)で使用可能で、放散制御やプラズマの遮蔽のために一次ガスを極めて効率的に閉じ込めることが出来る。
【0018】
本発明はまた、マスクのマスクパターンを基板上に像形成する平板照射装置であって、
遠紫外線を発生させるように構成配置された照射源と、
前記遠紫外線を受取り、該遠紫外線の投影ビームを供給するように構成配置された照射系と、
所望のパターンにより放射線の投影ビームをパターン化するように構成配置されたパターン化手段と、
基板を保持するように構成された基板テーブルと、
パターン化されたビームを基板の目標部分上に像形成するように構成配置された投影系とを含む装置において、
前記照射源が前述したようなものであることを特徴とする平板投影装置を提供する。
【0019】
本発明は更に
遠紫外線を発生させるように構成配置された照射源と、
前記遠紫外線を受取り、該遠紫外線の投影ビームを供給するように構成配置された照射系と、
所望のパターンに従って放射線の投影ビームをパターン化するように構成配置されているパターン化手段と、
基板を保持するように構成された基板テーブルと、
前記パターン化されたビームを前記基板の目標部分上に像形成するように構成配置された投影系とを含む平板印刷装置を使用した素子を製造する方法であって、
前記照射源を使用して放射線の投影ビームを提供する段階と、
放射線に感応する材料の層によって少なくとも部分的に被覆された基板を前記基板テーブルに提供する段階と、
所望のパターンによる断面に投影ビームをパターン化する段階と、
前記基板の前記目標部分上にパターン化したビームを像形成する段階とを含む方法において、
前記照射源として前述した照射源を使用することを特徴とする平板印刷装置を使用した素子を製造する方法を提供する。
【0020】
本発明による平板投影装置を使用した製造方法において、マスクのパターンが放射線に感応する材料(レジスト)の層によって少なくとも部分的に被覆されている基板上に像形成される。この像形成段階に先立って、基板は例えば下塗り、レジストコーテイング、および軟質ベーキングのような各種の手順を経由しうる。露出の後、基板は、例えば露出後ベーキング(PEB)、現像、硬質ベーキングおよび像形成された特徴の測定/検査のような他の処置を受けてよい。この多くの処置は、例えばICのような素子の個々の層をパターン化する基準として使用される。そのようなパターン化された層は、次にエッチング、イオン移植(ドーピング)、金属化、酸化、化学的―機械的研磨等のような、全て個々の層を仕上げる目的の各種の工程を受けてよい。数枚の層が必要である場合、全体の処置、あるいはその変形は新しい各層に対して繰り返す必要がある。最終的に、素子のアレイが基板(ウェーファー)上に位置する。次に、これらの素子は例えばダイシングあるいはソーイングのような技術によって相互から分離され、次に個々の素子はキャリヤに装着されるか、あるいはピンに接続するなどが可能である。そのような工程に関する詳細情報は1997、ISBN0―07―067250―4のマグローヒル出版社のピータファンザント著の本「マイクロチップファブリケーション:半導体処理の実用ガイド」の第3版(“ Microchip Fabrication: A Practical Guide to Semiconductor Processing”, Third Edition, by Peter van Zant, McGraw Hill Publishing Co.,1997,ISBN0−07−067350−4)から取得しうる。
【0021】
本文ではICsの製造において本発明の装置の使用を特に参照してよいが、そのような装置はまたその他の用途も可能であることを明確に理解すべきである。例えば、前記装置は集積した光学系、磁気ドメインメモリ用案内および検出パターン、液晶デイスプレイパネル、薄膜磁気ヘッド等の製造においても採用可能である。当該技術分野の専門家は、そのような代替的適用に関連して、本文における「レチクル」、「ウェーファー」、あるいは「ダイ」というような用語の使用は、より一般的な用語、「マスク」、「基板」、および「目標部分」あるいは「露出領域」に置き換えられるとみなすべきことを認識しよう。
【0022】
各種の図面において、同じ部材は同じ参照番号で指示する。
【0023】
【発明の実施の形態】
実施例1
図1は本発明の第1の実施例によるプラズマ焦点放電源210を示す。プラズマ焦点放電源210は間に環状空間を置いて細長い陽極212を囲む全体的に筒形の陰極211を含む。電圧源214は放電電流Iが陽極から陰極まで流れ始めるように環状空間においてガスをイオン化させるのに十分な高電圧を陽極と陰極との間に掛ける。放電電流Iは陽極と陰極との間の環状空間において円形の磁界Bを発生させる。放電電流のイオンは矢印216で指示するように陽極212に沿って磁界Bと相互作用することによって駆動される。陽極212は陰極211よりも短く、プラズマが陽極212の端をおおって駆動され、かつピンチ容積218内に極めて高温のプラズマを形成するように収束するように中空の先端を有する。
【0024】
本発明によると、各放電の間に陽極212と陰極211との間の環状空間を充填する駆動ガスにプラズマが形成される。駆動ガスは磁気―流体力学的特性に従って選択されて導電性媒体を効果的に形成し、電流を陽極から陰極まで案内し、発生した磁界によって誘導され、軸線の周り、かつその上に囲われた容積を含む。所望の波長のEUV照射を提供するために、例えばガス、蒸気、クラスタあるいは液体のような作業(一次)物質が囲われた容積内へ提供され、収束するプラズマによって加熱されEUV放射線を放射する。作業物質は例えば約9から16nm,好ましくは11あるいは13nmの所望の波長でのEUV放射線の放出中の効率に対して選択され、リチウム,キセノンあるいは水でよい。
【0025】
作業物質は適当にパルス化された源214から得られる放電電圧に対して適当に調時された、例えばクラスタ噴射あるいは小滴状噴射のような噴射として収束プラズマのピンチ容積218の領域内へ放出されることが好ましい。作業物質は陽極212の孔213を介して供給源215から供給されて陽極212の中空の先端に噴射217を形成することができる。前記供給源215は作業物質の容器並びに噴射を制御するのに必要なポンプ、弁等を含む。
【0026】
例 2
以下述べることを除いて本発明の第1の実施例と同じでよい本発明の第2の実施例は所謂Z―ピンチプラズマ照射源を含む。
【0027】
Z−ピンチプラズマ放電源220が図2に示されている。それは絶縁壁を有する筒形の室223の両端に設けられた環状の陰極221と環状の陽極222とを含む。ある量の駆動(二次)ガスが筒形の室223の外壁の近くの環状の開口を通して供給源225から噴射され、事前にイオン化される。次に、電圧源224が陽極222と陰極221との間でに電圧を掛け、筒形の放電を前記室223の絶縁壁で開始させ、該室223は方位磁界を発生させる。前記磁界は放電を高温高圧で細い軸線方向の糸状、すなわちピンチ容積229に縮小させる。セラミックプラグ226が、投影ビームPBを形成する遠紫外線が通って放射される開口を画成する。
【0028】
本発明によってEUVの放射を向上させるために、作業物質は適当な時間に供給源227から室223内のピンチ容積領域内へ噴射されてプラズマ放電により同伴され、かつ圧縮される。第1の実施例と同様に、駆動ガスは高温のプラズマを発生させる効果について選択でき、作業物質は所望の波長のEUV放射線を放出する効率について選択できる。
【0029】
実施例3
以下述べることを除いて第1の実施例と同じでよい第3の実施例は毛細放電プラズマ源を含む。図3は小さい室233の端板を形成する陰極231と陽極232とを有する毛細放電源230を示す。陽極232は、陰極231と室233の側壁とに面する陽極232の側部を覆う絶縁体235に形成された細い毛管236と整合した小さい中央貫通孔を有する。放電は毛管236に形成され、先の実施例と同様に毛管の軸線をピンチ容積に縮め高温を有する強くイオン化された高密度のプラズマを形成する。放射開口は開口プレート237によって画成されている。
【0030】
本発明によれば、作業(一次)物質は供給源238から毛管236内へ噴射される。前述の実施例と同様に、駆動ガスは高温のプラズマを発生する効果について選択でき、作業物質は所望の波長のEUV放射線を放出する効率について選択できる。
【0031】
第3の実施例において、また第1と第2の実施例においても、駆動ガスは供給源の各放電(ショット)で室内へ噴射可能である。作業ガスおよび駆動ガスは第7と第8の実施例において説明するように、例えば2部分の環状ノズルによって噴射可能である。このことは、噴出された作業流体の噴射の放散を低減し、供給源の効率を増大させるピンチ容積の周りの遮蔽ガスを提供する。一次噴射ノズルは該噴射ノズルからの噴出の軸線に沿った作業ガスの鋭いピークの密度分布を有する超音波噴射を提供することが好ましい。
【0032】
実施例4
図4は前述した第1の実施例の変形である本発明による、照射源の第4の実施例を示す。図は電気絶縁体130によって分離された状態に保たれ、コンデンサバンク140に接続された陽極110および陰極120の形態を示す。照射源の中央部分は中心軸線の周りで筒形に対称である。図4は、更に環状の陰極開口121と中心軸線Aの周りの環状の陰極空洞122を示す。
【0033】
駆動ガスあるいは蒸気は前記空洞内に低圧を提供するように入口125を介して該空洞122に供給される。本実施例において、アルゴン(Ar)が駆動ガスとして採用されるが、基本的に、例えばヘリウム(He),ネオン(Ne),および水素(H2)のようないずれかのガスが適当である。水素は、EUV範囲で低い放射線吸収性を示すので特に好ましい。空洞122内の駆動ガスは陽極と陰極との間に放電を開始するための電子源として使用される。
【0034】
陰極空洞122は中心軸線の周りの領域にある陽極―陰極間隙に作業ガスあるいは蒸気を噴出する(一次)作業ガスあるいは蒸気の供給源160を囲む。作業ガスあるいは蒸気はプラズマとしてのスペクトル放射特性について選択される。本実施例は約13.5nmで極めて強力な放射ラインがあるためリチウム(Li)を使用する。電磁放射スペクトルのXUV(およびEUV)領域において広い放射スペクトルを有するキセノン(Xe)も使用してよい。図示したリチウム源160は固形リチウムを入れた容器162の下方にヒータ161を含む。気化したリチウムが超音波(ラバル)ノズル163を介して陽極―陰極間隙に到達するが、その他の型式のノズルを使用してもよい。
【0035】
トリガ電極150が陰極の空洞122に挿入されている。電極150は以下説明する放電を開始するために電圧パルスを電極に掛ける適当な電気回路(図8に示さず)に接続される。最初は、照射源は自動トリガに近接している。トリガ電極150に掛けられた電圧パルスは陰極の空洞122内の電界の乱れをしょうじさせ、これは中空の陰極を起動させ、破壊チャネル形成させ、その後陰極120と陽極110との間に放電を生じさせる。
【0036】
初期放電は低い初期圧(p<0.5Torr)および高電圧(V<10KV)条件において起こることがあり、そのため電子の平均自由軌道は陽極―陰極間隙と比較して大きく、かくてタウンセンド(Townsend)イオン化が無効となる。これらの状態はガスあるいは蒸気密度比E/Nに亘って大きな電界強度によって特徴付けられる。この段階は固定の電位差を有する可成り均等に離隔された等電位線を示す。
【0037】
イオン化成長は、可成り低いE/Nにおいて作動する中空の陰極内の事象によって最初は支配され、その結果電子用の小さい平均自由軌道を生じる。中空の陰極120からの、そして該空洞122内の駆動ガスあるいは蒸気から得られる電子は陽極―陰極間隙内へ噴射され、仮想陽極が継続中のイオン化によって作られ、該仮想陽極は陽極110から中空の陰極120に向って伝播し、陰極の近傍まで完全な陽極電位を導く。陰極120の中空の空洞122内の電界は今では顕著に向上する。
【0038】
次の局面において、イオン化は継続し、中空の陰極内に高イオン密度を有する領域を陰極の開口121の直ぐ後ろに急速に発生させる。最後に、この領域から陽極―陰極間隙内へ電子126の強力なビームを噴射することは、最終の破壊チャネルを形成する。この形態は均一な予備イオン化と放電容積における破壊とを提供する。
【0039】
作業ガスあるいは蒸気が供給源160から噴出され、放電が開始すると、作業ガスあるいは蒸気の部分的にイオン化された低密度で比較的冷たいプラズマが開口121の上方の陽極―陰極間隙に形成される。電流が陰極120から陽極110までプラズマ内に流れ、その電流は照射源の周りに、磁界強度Hを有する方位磁界を生じさせる。方位電磁界は陰極開口121の上方にある部分的にイオン化されたプラズマを中心軸線Aに向って圧縮させる。
【0040】
プラズマの動的圧縮が行われる理由は、方位磁界の圧力は熱プラズマの圧力よりはるかに高いからでありH2/8π>>nkT、ここでnはプラズマ粒子の密度を表わし、kはボルツマン定数を表わし、Tはプラズマの絶対温度を表わす。陽極110および陰極120に接続されたコンデンサバンク140に貯えられた電気エネルギはプラズマ圧縮の全時間の間運動爆縮のエネルギに最も効率的に変換される。高度な空間安定性を備えた均一に充填されたピンチ容積が形成される。
【0041】
プラズマ圧縮、すなわち中心軸線A上でのピンチ容積におけるプラズマのよどみの最終段階において、プラズマの運動エネルギがプラズマの熱エネルギに変換され、最終的にXUV範囲において極めて大きく寄与する電磁放射線に変換される。
【0042】
崩壊したプラズマからの放射線は陽極110の開口111を通って真空室170内へ進み、該真空室はその壁にある開口171を介して排気されている。プラズマおよび破片の粒子もまた開口111を介して逃げることがある。XUV照射パルスが何ら放出されない場合これらの粒子を遮断し粒子が投影系PLまでのXUV放射線の照射軌道にあるどの光学要素に到達しないようにするフライホイール180が存在している。
【0043】
実施例5
図5は第4の実施例の変形であり、中心軸線Aにおけるプラズマの崩壊から陰極120の開口領域を更に遮蔽する本発明の第5の実施例を示す。陽極110と陰極120の双方は「帽子状」構造を有する。環状の陰極の空洞122と開口121とは前記帽子の底側に位置している。開口121での放電によって形成された、部分的にイオン化された低密度で比較的冷たいプラズマが上方に、かつ中心軸線Aに向かって「角を曲がった」ところで圧縮される。更に、陽極110と陰極120との位置は交換されている。陰極120は本構造体の外部に位置し、XUV放射線を真空室170まで通す開口123を含む。
【0044】
しかしながら、作業ガスあるいは蒸気、また本実施例におけるリチウム蒸気の密度は放電およびプラズマを形成するには陰極120の環状開口121において低すぎることがある。第6の実施例において、照射源は駆動ガスに放電を起こす駆動ガスあるいは蒸気、本実施例においてはArの十分高い圧力を環状の開口121の領域における陽極―陰極間隙内に提供するように構成されている。その結果得られる駆動ガスのプラズマは中心軸線Aに向って圧縮を開始し、ある個所において作業ガスあるいは蒸気の十分高い圧力と出会い作業ガスあるいは蒸気のプラズマを形成し、該プラズマは次に中心軸線Aにおけるピンチ容積内へよどみができるまで更に圧縮される。駆動ガスあるいは蒸気のプラズマは作業ガスあるいは蒸気の十分高い圧力に到達するように最初からでも「角を曲がら」なければならないことがある。
【0045】
実施例6
本発明の第6の実施例による照射源が図6および図7に概略図示され、それぞれ一次および二次噴射ノズル10および20並びに一次および二次噴射ノズルへの一次および二次ガスの供給源11、21を含む。本実施例において、双方の噴射ノズルはパルス化された噴射ノズルであって、双方の供給ライン11、21は一次および二次ガスのパルスをそれぞれの噴射ノズルに供給するある瞬間に開放する弁を含む。
【0046】
図6は一次および二次ガス用の噴射ノズル源の長手方向断面を示す。図7はノズル源の正面図を示す。一次および二次噴射ノズルは共軸に配置され、二次噴射ノズル20は一次噴射ノズル10を囲んでいる。一次噴射ノズル10は円形出口13を有し、二次ノズル20は環状の出口23を有する。プランジャ12および22は一次および二次ガスの供給源11および21にそれぞれ配設され、供給源のテーパ付きの端部に当接することによってそれぞれの供給源を閉鎖するように独立に作動可能である。このようにして、一次および二次ガスのパルス化した流出を提供するようにそれぞれの供給源を開閉する弁が得られる。しかしながら、パルス化したノズルはその他の各種の形態でも得ることができる。プランジャ12、22は図示していない手段によって作動する。更に、連続したノズルの使用も可能である。
【0047】
ノズル源から一次ガスが放出され、二次ガスが放出されない場合、噴射ノズルの出口13からの一次ガスの流出15は強く放散する。二次ガス25のパルスを放出することは、また一次ガス15の放散のより少ない、あるいは平行あるいは収束した流出を生じる。照射源に最適な一次ガスの流出は数個のパラメータのうちの一つ以上を変更することによって達成可能である。これらのパラメータの一つは一次噴射ノズルへの一次ガスの供給速度に対する二次噴射ノズル20への二次ガスの供給速度である。別のパラメータは一次ガスのパルスのタイミングに対する二次ガスのパルスのタイミングである。二次ガスのパルスに対して一次ガスの適当に遅れたパルスは、二次ガスが一次ガスおよび二次ガスが同じ流量で非遅延パルスと比較して一次ガスよりも軽いガスである場合、より小さい放散のビームを提供すると思われる。その他の関連のパラメータはノズル供給源におけるガスの背圧と噴射の幾何学的形状である。最適なパラメータは使用されるガスあるいは液体および一次および二次噴射ノズルの特定の幾何学的形状いかんで決まる。
【0048】
照射源の第6の実施例の一次ガスは、純粋の状態で、あるいはその他の(不活性)ガスとの混合物として供給してよいクリプトンあるいはキセノンからなる。例えば、キセノンのプラズマは遠紫外線の大きい部分を放出することが示されている。代替実施例においては、水滴あるいはキャリヤガス中の例えば液状キセノンのようなクライオジェニックリキッド(極低温液体)を一次液体として使用してよい。二次ガスはヘリウム、ネオン、アルゴン、クリプトン、メタン、シランおよび水素からなる群から選択してよい。
【0049】
好適実施例において、二次ガスは、殆ど遠紫外線を吸収しないという理由で水素である。水素は遠紫外線に関して好ましい吸収特性を有するので、二次ノズルからの極めて大量の水素の流出が採用でき、その結果流出での局部的な濃度が極めて高くなる。より軽い二次ガスは、衝突時の小さい慣性移転により、より重い二次ガスに対して一次ガスとしてのキセノンの閉じ込めが悪くなるものと思われる。本発明により照射源で採用しうる水素のはるかに大量の流出とより高い圧力とは、許容しうる可成り大きい局部的な圧力により、他の二次ガスに対して水素の小さい質量を過剰に補償する。
【0050】
前述の噴射ノズルでは、一次噴射ノズル10からの作業(一次)ガスの放散の小さい、局限され、あるいはほぼ平行な流出が得られ、プラズマとノズルの相互作用による噴射ノズルからの破片を生じないノズル供給源からのある距離に位置するのが好ましいピンチ容積の可成り局限された領域に、排出された作業ガスを受け取ることができる。環状の二次噴射ノズルからの二次流体の連続した放出は、ピンチ容積での圧縮された高温のプラズマの周りにガスシールドを提供し、高温のプラズマから放出される高速の粒子を遮断し、あるいは遅らせ、かつ中立化する。供給源の部品および恐らくは平板投影装置の照明装置に含まれる光学要素もそのような高速の粒子による損傷あるいはこれらの粒子の堆積から保護される。更に、二次ガスのフラッシュガスシールドも適当な二次流体が選択された場合発生したXUV放射線に対して非常に透明である環境をピンチ容積の周りに提供する。例えば電極から腐蝕した重い(金属)粒子あるいはピンチ容積における高温のプラズマの周りに存在することがある一次キセノン(作業)ガスは発生したXUV放射線を大量に吸収する。
【0051】
図8は本発明の第6の実施例による照射源の変形において使用されるノズル供給源の正面図を概略図示する。前記変形は、二次ノズルが一次ノズルの一方の側に位置している点で第6の実施例の基本配置と相違している。図はそれぞれ一次および二次噴射ノズルの出口13および23を示す。一次ノズルからの流出の放散は、本実施例については、用途によって都合のよいこの一方の側のみにおいて制御してよい。二次噴射ノズルが一次噴射ノズルを部分的に囲む実施例、あるいは、例えば一次噴射ノズルの出口の両側あるいはその四方に二次噴射ノズルの出口を有する実施例も考えられる。
【0052】
平板印刷装置
図9は本発明による照射源を使用しうる平板投影装置1を概略図示している。本装置は、
● EUV放射線の投影ビームPBを供給する照射系LA,IIと、
● マスクMA(例えば、レチクル)を保持する第1の対象物(マスク)ホルダを備え、マスクを物品PLに対して正確に位置決めする第1の位置決め手段PMに接続された第1の対象物テーブル(マスクテーブル)MTと、
● 基板W(例えばレジストをコーテイングしたシリコンウェーファー)を保持する第2の対象物(基板)ホルダを備え、基板を物品PLに対して正確に位置決めする第2の位置決め手段PWに接続された第2の対象物テーブル(基板テーブル)WTと、
● マスクMAの照射された部分を基板Wの目標部分C(ダイ)上に像形成する投影系(「レンズ」)PL(例えば、屈折、反射屈折、あるいは反射投影系)と
を含む。
【0053】
本明細書で述べるように、本装置は反射型式である(すなわち、反射マスクを有する)。しかしながら、一般に、それは例えば透過型式であってもよい。
【0054】
前記投影系は前述した照射源のいずれかであってよく、遠紫外線(EUV)放射線のビームを生じる照射源LAを含む。このビームは照明系(「レンズ」)に含まれる種々の光学要素に沿って通され、得られるビームPBが投影系の入口瞳孔およびマスクにおいて所望の形状と光度分布を有する照明を生ぜしめるように集められる。
【0055】
その後ビームPBはマスクテーブルMT上のマスクホルダに保持されたマスクMAに当る。マスクMAによって選択的に反射されて、ビームPBはレンズPLを通過し、該レンズはビームPBを基板Wの目標領域C上に集める。干渉移動測定手段IFと位置決め手段PWの助けによって、基板テーブルWTは、例えば種々の目標領域CをビームPBの軌道に位置決めするように正確に移動できる。同様に、位置決め手段PMおよび干渉移動測定手段IFはビームPBの軌道に対してマスクMAを正確に位置決めするのに使用できる。一般に、対象物テーブルMT,WTの運動は、図9に明確に示していないが長いストロークのモジュール(コース位置決め)および短いストロークのモジュール(微細位置決め)の助けによって実現される。
【0056】
前述した装置は2種類のモードで使用可能である。
1.ステップモードにおいて、マスクテーブルMTは基本的に静止状態に保持され、マスク像全体は一回の動作(すなわち、単一の「フラッシュ」)で目標領域C上に投影される。次に、基板テーブルWTは異なる目標領域CがビームPBによって照射しうるようにXおよび(または)Y方向に移動される。
2.走査モードにおいて、所定の目標領域Cが単一の「フラッシュ」で露出されないことを除いて、本質的に同じシナリオが適用される。その代わりに、マスクテーブルMTは速度vで所定の方向(所謂「走査方向」、例えばY方向)に運動可能であり、かくして投影ビームPBはマスクの像の上を走査するようにされ、同時に基板テーブルWTは速度V=Mvで同じ方向あるいは反対方向に同時に動かされ、ここでMはレンズPLの倍率(典型的にはM=1/4または1/5)である。このように、相対的に大きな目標領域Cは分解度に関して妥協する必要なく露出可能である。
【図面の簡単な説明】
【図1】図1は第1の実施例による照射源を形成するプラズマ焦束源を示す。
【図2】図2は本発明の第2の実施例による照射源を形成するZ−ピンチプラズマ源を示す。
【図3】図3は本発明の第3の実施例による照射源を形成する毛管放電プラズマ源を示す。
【図4】図4は本発明の第4の実施例による照射源を示す。
【図5】図5は本発明の第5の実施例による照射源を示す。
【図6】図6は本発明の第6の実施例によるパルス化された噴射ノズル源の長手方向断面を示す。
【図7】図7は図6に示すノズル源の正面図である。
【図8】図8は本発明の第6の実施例の変形によるノズル源の正面図である。
【図9】図9は本発明による照射源が使用可能である平板投影装置を示す。

Claims (19)

  1. 遠紫外線電磁放射線用のプラズマ照射源において、
    高電位源に接続され、第1のプラズマ状態が該第1のプラズマ状態と対応の電磁界に誘導された電流によってピンチ容積に圧縮されうるように構成配置された電極と、
    高温のプラズマ状態にされて遠紫外電磁放射線を放射する作業流体の供給源と、
    前記第1のプラズマ状態を前記ピンチ容積内へ圧縮することによって前記高温のプラズマ状態にされるように前記作業流体を前記ピンチ容積内に排出するように構成配置された一次噴射ノズルと、
    二次流体の供給源と、
    前記作業流体の排出線に対して平行で、かつそこから離隔して前記二次流体を排出するように構成配置されている二次噴射ノズルとを含むことを特徴とする、
    遠紫外線電磁放射線用のプラズマ照射源。
  2. 前記作業流体が液体であることを特徴とする、
    請求項1に記載の照射源。
  3. 前記一次噴射ノズルがクラスタ噴射あるいは小滴状噴射として前記作業流体を噴射することを特徴とする、
    請求項2に記載の照射源。
  4. 前記作業流体がリチウム蒸気、クリプトン、キセノン、水およびクライオジェニックリキッドからなる群から選択されることを特徴とする、
    請求項1から3までのいずれか1項に記載の照射源。
  5. 前記照射源がプラズマ集束源であることを特徴とする、
    請求項1から4までのいずれか1項に記載の照射源。
  6. 前記照射源がZピンチプラズマ源であることを特徴とする、
    請求項1から4までのいずれか1項に記載の照射源。
  7. 前記照射源が毛管放電プラズマ源であることを特徴とする、
    請求項1から4までのいずれか1項に記載の照射源。
  8. 前記電極が陽極と陰極であって、該陽極と該陰極との間で駆動流体を排出することによってプラズマを形成するように構成配置された陽極と陰極とを含み、前記陰極が開口を有する中空の空洞を含み、前記開口が照射源の中心軸線の周りで概ね環状の形状を有することを特徴とする、
    請求項5に記載の照射源。
  9. 前記空洞が照射源の中心軸線の周りに概ね環状の形状を有することを特徴とする、
    請求項8に記載の照射源。
  10. 前記作業流体が前記陽極と陰極との間で前記中心軸線の周りの領域に供給されることを特徴とする、
    請求項8または9に記載の照射源。
  11. 前記作業流体が前記中心軸線に沿って供給されることを特徴とする、
    請求項10に記載の照射源。
  12. 前記二次噴射ノズルが前記一次噴射ノズルを囲んでいることを特徴とする、
    請求項1から11までのいずれか1項に記載の照射源。
  13. 前記一次および二次噴射ノズルが共軸であることを特徴とする、
    請求項12に記載の照射源。
  14. 前記二次流体がヘリウム、ネオン、アルゴン、クリプトン、メタン、シランおよび水素からなる群から選択された少なくとも1種類のガスからなることを特徴とする、
    請求項1から13までのいずれか1項に記載の照射源。
  15. 前記一次噴射ノズルが、前記作業流体のパルスを噴射することを特徴とする、
    請求項1から14までのいずれか1項に記載の照射源。
  16. 前記一次噴射ノズルが超音波噴射ノズルであることを特徴とする、
    請求項1から15までのいずれか1項に記載の照射源。
  17. 前記遠紫外線が9から16nmの範囲の波長を有する放射線からなることを特徴とする、
    請求項1から16までのいずれか1項に記載の照射源。
  18. マスクのマスクパターンを基板上に像形成する平板投影装置において、
    遠紫外線を発生させるように構成配置された照射源と、
    前記遠紫外線を受取り、前記遠紫外線の投影ビームを供給するように構成配置された照明系と、
    所望のパターンに従って放射線の投影ビームをパターン化するように構成配置されたパターン化手段と、
    基板を保持するように構成された基板テーブルと、
    パターン化されたビームを基板の目標部分上に像形成するように構成配置された投影系とを含み、
    照射源が請求項1から17までのいずれか1項に記載のものであることを特徴とする、
    平板投影装置。
  19. 遠紫外線を発生させるように構成配置された照射源と、
    前記遠紫外線を受取り、該遠紫外線の投影ビームを供給するように構成配置された照明系と、
    前記放射線の投影ビームを所望のパターンにパターン化するように構成配置されたパターン化手段と、
    基板を保持するように構成された基板テーブルと、
    パターン化されたビームを前記基板の目標部分上に像形成するように構成配置された投影系とを含む平板印刷装置を使用した素子の製造方法において、
    前記照射源を使用して放射線の投影ビームを提供する段階と、放射線感応材料の層によって少なくとも部分的に被覆された基板を前記基板テーブルに提供する段階と、
    所望のパターンに従って投影ビームの断面をパターン化する段階と、
    パターン化したビームを前記基板の前記目標部分上に像形成する段階とを含み、
    前記照射源として請求項1から18までのいずれか1項に記載の照射源を使用することを特徴とする平板装置を使用した、
    素子の製造方法。
JP2000404229A 1999-12-17 2000-12-14 平版投影装置用の照射源 Expired - Lifetime JP3992432B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US466217 1999-12-17
US09/466,217 US6469310B1 (en) 1999-12-17 1999-12-17 Radiation source for extreme ultraviolet radiation, e.g. for use in lithographic projection apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007155698A Division JP4195071B2 (ja) 1999-12-17 2007-06-12 平版投影装置用の照射源

Publications (3)

Publication Number Publication Date
JP2001311799A JP2001311799A (ja) 2001-11-09
JP2001311799A5 JP2001311799A5 (ja) 2007-07-26
JP3992432B2 true JP3992432B2 (ja) 2007-10-17

Family

ID=23850950

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2000404229A Expired - Lifetime JP3992432B2 (ja) 1999-12-17 2000-12-14 平版投影装置用の照射源
JP2007155698A Expired - Lifetime JP4195071B2 (ja) 1999-12-17 2007-06-12 平版投影装置用の照射源

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007155698A Expired - Lifetime JP4195071B2 (ja) 1999-12-17 2007-06-12 平版投影装置用の照射源

Country Status (2)

Country Link
US (1) US6469310B1 (ja)
JP (2) JP3992432B2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661018B1 (en) * 2000-04-25 2003-12-09 Northrop Grumman Corporation Shroud nozzle for gas jet control in an extreme ultraviolet light source
US6972421B2 (en) * 2000-06-09 2005-12-06 Cymer, Inc. Extreme ultraviolet light source
US6711233B2 (en) * 2000-07-28 2004-03-23 Jettec Ab Method and apparatus for generating X-ray or EUV radiation
US6912267B2 (en) * 2002-11-06 2005-06-28 University Of Central Florida Research Foundation Erosion reduction for EUV laser produced plasma target sources
US6770895B2 (en) * 2002-11-21 2004-08-03 Asml Holding N.V. Method and apparatus for isolating light source gas from main chamber gas in a lithography tool
DE10256663B3 (de) * 2002-12-04 2005-10-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gasentladungslampe für EUV-Strahlung
DE10306668B4 (de) * 2003-02-13 2009-12-10 Xtreme Technologies Gmbh Anordnung zur Erzeugung von intensiver kurzwelliger Strahlung auf Basis eines Plasmas
WO2006015125A2 (en) * 2004-07-28 2006-02-09 BOARD OF REGENTS OF THE UNIVERSITY & COMMUNITY COLLEGE SYSTEM OF NEVADA on Behalf OF THE UNIVERSITY OF NEVADA Electrode-less discharge extreme ultraviolet light source
JP5004473B2 (ja) * 2006-01-16 2012-08-22 学校法人日本大学 プラズマ発生装置
US7696492B2 (en) * 2006-12-13 2010-04-13 Asml Netherlands B.V. Radiation system and lithographic apparatus
US7838853B2 (en) * 2006-12-14 2010-11-23 Asml Netherlands B.V. Plasma radiation source, method of forming plasma radiation, apparatus for projecting a pattern from a patterning device onto a substrate and device manufacturing method
US8901521B2 (en) 2007-08-23 2014-12-02 Asml Netherlands B.V. Module and method for producing extreme ultraviolet radiation
US7763871B2 (en) * 2008-04-02 2010-07-27 Asml Netherlands B.V. Radiation source
EP2236014A1 (en) * 2007-12-27 2010-10-06 ASML Netherlands B.V. Extreme ultraviolet radiation source and method for producing extreme ultraviolet radiation
JP2011054376A (ja) * 2009-09-01 2011-03-17 Ihi Corp Lpp方式のeuv光源とその発生方法
US8648536B2 (en) 2009-09-01 2014-02-11 Ihi Corporation Plasma light source
JP5212917B2 (ja) * 2009-09-01 2013-06-19 株式会社Ihi プラズマ光源
JP5212918B2 (ja) * 2009-09-01 2013-06-19 株式会社Ihi プラズマ光源
KR20140036538A (ko) * 2012-09-17 2014-03-26 삼성전자주식회사 극자외선 생성 장치, 이를 포함하는 노광 장치 및 이러한 노광 장치를 사용해서 제조된 전자 디바이스
KR102115543B1 (ko) * 2013-04-26 2020-05-26 삼성전자주식회사 극자외선 광원 장치
US9585236B2 (en) 2013-05-03 2017-02-28 Media Lario Srl Sn vapor EUV LLP source system for EUV lithography

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494043A (en) 1981-07-02 1985-01-15 Physics International Company Imploding plasma device
JPS60175351A (ja) 1984-02-14 1985-09-09 Nippon Telegr & Teleph Corp <Ntt> X線発生装置およびx線露光法
EP0201034B1 (en) 1985-04-30 1993-09-01 Nippon Telegraph and Telephone Corporation X-ray source
US4663567A (en) 1985-10-28 1987-05-05 Physics International Company Generation of stable linear plasmas
US5577092A (en) 1995-01-25 1996-11-19 Kublak; Glenn D. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources
WO1997032241A1 (en) * 1996-02-15 1997-09-04 Philips Electronics N.V. Method of determining the radiation dose in a lithographic apparatus, and test mask and apparatus for performing the method
SE510133C2 (sv) * 1996-04-25 1999-04-19 Jettec Ab Laser-plasma röntgenkälla utnyttjande vätskor som strålmål
US6031241A (en) 1997-03-11 2000-02-29 University Of Central Florida Capillary discharge extreme ultraviolet lamp source for EUV microlithography and other related applications
US5763930A (en) 1997-05-12 1998-06-09 Cymer, Inc. Plasma focus high energy photon source
US6075838A (en) * 1998-03-18 2000-06-13 Plex Llc Z-pinch soft x-ray source using diluent gas
US6105885A (en) 1998-04-03 2000-08-22 Advanced Energy Systems, Inc. Fluid nozzle system and method in an emitted energy system for photolithography
US6065203A (en) 1998-04-03 2000-05-23 Advanced Energy Systems, Inc. Method of manufacturing very small diameter deep passages

Also Published As

Publication number Publication date
JP2001311799A (ja) 2001-11-09
JP4195071B2 (ja) 2008-12-10
US6469310B1 (en) 2002-10-22
JP2007329484A (ja) 2007-12-20

Similar Documents

Publication Publication Date Title
JP4195071B2 (ja) 平版投影装置用の照射源
KR100588113B1 (ko) 리소그래피 투영장치용 방사원
TWI255394B (en) Lithographic apparatus with debris suppression means and device manufacturing method
US6452199B1 (en) Plasma focus high energy photon source with blast shield
JP4580959B2 (ja) 放射源、リソグラフィ投影装置及びデバイス製造方法
US5763930A (en) Plasma focus high energy photon source
EP1047288B1 (en) Plasma focus high energy photon source
US6064072A (en) Plasma focus high energy photon source
USRE41362E1 (en) Radiation source, lithographic apparatus, device manufacturing method, and device manufactured thereby
KR100777414B1 (ko) 방사선 발생 장치, 리소그래피 장치, 디바이스 제조방법 및그에 의해 제조되는 디바이스
TW201142538A (en) Radiation source, lithographic apparatus and device manufacturing method
JP4429302B2 (ja) 電磁放射線源、リソグラフィ装置、デバイス製造方法、および該製造方法によって製造されたデバイス
US10871647B2 (en) Apparatus and method for prevention of contamination on collector of extreme ultraviolet light source

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060811

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060904

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A524 Written submission of copy of amendment under section 19 (pct)

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20070612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3992432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term