JP3941176B2 - 無人車の走行制御方法及び走行制御装置 - Google Patents

無人車の走行制御方法及び走行制御装置 Download PDF

Info

Publication number
JP3941176B2
JP3941176B2 JP22517897A JP22517897A JP3941176B2 JP 3941176 B2 JP3941176 B2 JP 3941176B2 JP 22517897 A JP22517897 A JP 22517897A JP 22517897 A JP22517897 A JP 22517897A JP 3941176 B2 JP3941176 B2 JP 3941176B2
Authority
JP
Japan
Prior art keywords
angle
steering
set angle
wheel
unmanned vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22517897A
Other languages
English (en)
Other versions
JPH1165661A (ja
Inventor
良和 山添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP22517897A priority Critical patent/JP3941176B2/ja
Publication of JPH1165661A publication Critical patent/JPH1165661A/ja
Application granted granted Critical
Publication of JP3941176B2 publication Critical patent/JP3941176B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は操舵輪と駆動輪とが独立に装備されるとともに、走行路に敷設された誘導線に沿って走行する無人車の走行制御方法及び走行制御装置に関するものである。
【0002】
【従来の技術】
従来、図6(a)に示すように、無人車50として操舵輪51が前側に、駆動輪52が後側にそれぞれ設けられたものがある。無人車50の走行路には誘導線53が敷設されている。無人車50は前側に装備された一対のピックアップコイル54によって誘導線53の位置を検出し、図示しない制御装置により無人車50が誘導線53に沿って走行するように操舵輪51が操舵される。制御装置はピックアップコイル54の出力信号からピックアップコイル54の誘導線53からのずれ量(変位量)を演算し、変位量に対応して操舵輪51の操舵角θ(操舵輪51の進行方向と、駆動輪52の回転軸と直交する方向との成す角度)を制御する。そして、変位量が大きいほど操舵輪51の操舵角θが大きくなるように制御される。
【0003】
【発明が解決しようとする課題】
ところが、無人車50をコースに投入するときに、両ピックアップコイル54が誘導線53を挟むように位置せず、図6(b)に示すように、両ピックアップコイル54が誘導線53の一方の側に片寄った状態となる場合がある。この状態で無人車50の走行を開始すると、ピックアップコイル54の変位量が大きいため制御装置は操舵輪51の操舵角θが大きくなるように制御するため、操舵輪51のスリップが発生し易くなる。そして、スリップが発生すると無人車50は操舵輪51の操舵方向に進めなくなって前記変位量がより大きくなり、操舵輪51はさらに操舵角θが大きくなる方向に操舵される。操舵輪51の操舵角θが大きい程操舵輪51は回動し難くなってスリップが継続され、図6(c)に示すように、無人車50はコースアウトして走行不能となる。
【0004】
また、無人車50をコースに投入するときに限らず、通常走行状態において、路面の一部が何らかの原因でスリップし易い状態となって、駆動輪51の一方がスリップした場合も、無人車50の走行状態が図6(b)に示す状態となる場合があり、この場合も同様な不都合が生じる。
【0005】
本発明は前記の問題点に鑑みてなされたものであって、その目的は摩擦抵抗が小さな路面を無人車が走行するとき、操舵輪がスリップして無人車が操舵方向に進めなくなってコースアウトするのを防止することができる無人車の走行制御方法及び走行制御装置を提供することにある。
【0006】
【課題を解決するための手段】
前記の目的を達成するため、請求項1に記載の発明では、操舵輪と駆動輪とが独立に装備されるとともに、走行路に敷設された誘導線の位置を誘導線検出手段で検出して誘導線に沿って走行する無人車の走行制御方法において、操舵輪がスリップしていると推定する基準角度を第1の設定角とするとともに、前記第1の設定角より小さな角度であって操舵輪のスリップを阻止可能な操舵角を第2の設定角とし、異なる路面の状況に対応した複数組みの第1の設定角及び第2の設定角の値のうち路面の状況に対応した第1の設定角及び第2の設定角を用いて、前記操舵輪の操舵角が前記第1の設定角を超えるまでは操舵輪の操舵角を前記誘導線検出手段の誘導線からの変位量が所定の値となるように制御する誘導走行モードで走行し、前記操舵輪の操舵角が第1の設定角を超えたときに該操舵輪の操舵角を前記第2の設定角に変更してその第2の設定角に保持する復帰モードで走行し、前記誘導線検出手段の前記誘導線からの変位量が前記操舵輪の操舵角を前記第2の設定角より小さな角度に変更すべき値に達したときに前記誘導走行モードに移行するようにした。
【0007】
請求項2に記載の発明では、操舵輪と駆動輪とが独立に装備されるとともに、走行路に敷設された誘導線の位置を誘導線検出手段で検出して誘導線に沿って走行する無人車の走行制御方法において、操舵輪がスリップしていると推定する基準角度を第1の設定角とするとともに、前記第1の設定角より小さな角度であって操舵輪のスリップを阻止可能な操舵角を第2の設定角とし、異なる路面の状況に対応した複数組みの第1の設定角及び第2の設定角の値の中から路面の状況に対応した第1の設定角及び第2の設定角を用いて、前記操舵輪の操舵角が前記第1の設定角を超えるまでは操舵輪の操舵角を前記誘導線検出手段の誘導線からの変位量が所定の値となるように制御する誘導走行モードで走行し、前記操舵輪の操舵角が第1の設定角を超えたときに該操舵輪の操舵角を前記第2の設定角に変更してその第2の設定角に保持する復帰モードで走行し、前記誘導線検出手段を構成する一対の検出部の中央位置が前記誘導線を横切ると、前記誘導走行モードに移行するようにした。
【0008】
請求項3に記載の発明では、操舵輪と駆動輪とが独立に装備されるとともに、走行路に敷設された誘導線に沿って走行する無人車において、誘導線からの距離に対応した検出信号を出力する一対の検出部を備えた誘導線検出手段と、前記操舵輪の操舵角を制御するステアリングモータと、前記操舵輪の操舵角を検出する操舵角検出手段と、前記誘導線検出手段の出力信号に基づいて前記誘導線検出手段の誘導線からの変位量を演算する演算手段と、操舵輪がスリップしていると推定する基準角度を第1の設定角とするとともに前記第1の設定角より小さな角度であって操舵輪のスリップを阻止可能な操舵角を第2の設定角として、異なる路面の状況に対応した複数組みの第1の設定角及び第2の設定角の値を記憶した記憶手段と、前記複数組み第1の設定角及び第2の設定角の値のうち路面の状況に対応した第1の設定角及び第2の設定角を用いて、前記変位量が所定の値となるように前記変位量に対応して前記操舵角を変更するように前記ステアリングモータを制御する誘導走行モードと、前記操舵輪の操舵角を前記第2の設定角に変更してその第2の設定角に保持するように前記ステアリングモータを制御する復帰モードとの二つの制御モードのいずれかで前記ステアリングモータを制御する制御手段と、前記制御手段の制御モードを切り替える切替手段とを備えた。
【0009】
請求項4に記載の発明では、請求項3に記載の発明において、前記操舵輪は無人車の前側に装備されている。
従って、請求項1に記載の発明では、操舵輪と駆動輪とが独立に装備された無人車は、走行路に敷設された誘導線の位置を誘導線検出手段で検出して誘導線に沿って走行する。無人車は誘導走行モード及び復帰モードの2種類のモードのいずれかで走行制御される。操舵輪がスリップしていると推定する基準角度を第1の設定角とするとともに、前記第1の設定角より小さな角度であって操舵輪のスリップを阻止可能な操舵角を第2の設定角とし、異なる路面の状況に対応した複数組みの第1の設定角及び第2の設定角の値の中から路面の状況に対応した第1の設定角及び第2の設定角が用いられ、無人車は操舵輪の操舵角が第1の設定角を超えるまでは、操舵輪の操舵角を前記誘導線検出手段の誘導線からの変位量が所定の値となるように制御する誘導走行モードで制御される。操舵輪の操舵角が第1の設定角を超えたときには、操舵輪の操舵角を前記第2の設定角に変更してその第2の設定角に保持するように制御する復帰モードで制御される。そして、復帰モードで走行中に、前記変位量が前記操舵輪の操舵角を前記第2の設定角より小さな角度に変更すべき値に達したときに、前記誘導走行モードに移行して、再び誘導走行モードで制御される。
【0010】
請求項2に記載の発明では、無人車は請求項1に記載の発明と同様に誘導走行モード及び復帰モードの2種類のモードのいずれかで走行制御される。そして、復帰モードから誘導走行モードに制御モードを変更する際の基準が、請求項1に記載の発明と異なっている。即ちこの実施の形態では、復帰モードで走行中に前記誘導線検出手段を構成する一対の検出部の中央位置が前記誘導線を横切ると、前記誘導走行モードに移行して、再び誘導走行モードで制御される。
【0011】
請求項3に記載の発明では、操舵輪と駆動輪とが独立に装備された無人車は、走行路に敷設された誘導線の位置を誘導線検出手段で検出して誘導線に沿って走行する。誘導線検出手段は誘導線からの距離に対応した検出信号を出力する。前記誘導線検出手段の出力信号に基づいて前記誘導線検出手段の誘導線からの変位量が演算手段により演算される。切替手段により制御手段の制御モードが、誘導走行モードと復帰モードとの間で切り替えられる。誘導走行モードでは、前記変位量が所定の値となるように前記変位量に対応して前記操舵角を変更するように前記ステアリングモータが制御される。記憶手段は、操舵輪がスリップしていると推定する基準角度を第1の設定角とするとともに前記第1の設定角より小さな角度であって操舵輪のスリップを阻止可能な操舵角を第2の設定角として、異なる路面の状況に対応した複数組みの第1の設定角と第2の設定角の値を記憶している。制御手段は前記複数組み第1の設定角及び第2の設定角の値のうち路面の状況に対応した第1の設定角及び第2の設定角を用いて、操舵輪の操舵角が第1の設定角を超えるまでは誘導走行モードで制御を行い、誘導走行モードで走行中に操舵輪の操舵角が第1の設定角を超えると、復帰モードに移行する。復帰モードでは、操舵輪の操舵角を第2の設定角に保持するように前記ステアリングモータが制御される。復帰モードで走行中に前記変位量が所定の値に達すると、前記誘導走行モードに移行されて、再び誘導走行モードで制御される。
【0012】
前記所定の値としては、前記操舵輪の操舵角を前記第2の設定角より小さな角度に変更すべき値に達したときの値や、前記一対の検出部の中央位置が前記誘導線を横切るときの値等がある。
【0013】
請求項4に記載の発明では、操舵輪は無人車の前側に装備されている。従って、操舵角が同じであっても操舵輪が後側に装備された場合に比較して無人車は操舵角の大きな状態でスリップし易くなるが、スリップしても無人車のコースアウトが防止される。
【0014】
【発明の実施の形態】
以下、本発明を具体化した一実施の形態を図1〜図5に従って説明する。
図2に示すように、無人車1には車体(機台)の前側に操舵輪2が、後側に駆動輪3がそれぞれ設けられている。操舵輪2は機台の中央に1個設けられ、駆動輪3は左右両側に1個ずつ設けられている。操舵輪2は機台に対して鉛直方向に延びる支軸を介して回動可能に支持されたブラケット(いずれも図示せず)に装備されている。ブラケットは、ステアリングモータ4により図示しない動力伝達機構を介してブラケットとともに回動されて操舵される。操舵輪2の操舵角θは操舵角検出手段としてのポテンショメータ5により検出される。また、駆動輪3は1個のモータ6により歯車列及び差動装置7を介して駆動可能に構成されている。操舵角θとは図2及び図4(b)等に示すように、操舵輪2の進行方向に沿った直線L1と、駆動輪3の回転軸と直交する方向に沿った直線L2との成す角度を意味する。この実施の形態では操舵角θは直線L2から図2及び図4(b)において反時計回り方向を正(プラス)とし、時計回り方向を負(マイナス)とする。
【0015】
無人車1には走行路に敷設された誘導線8(図4,5に図示)の位置を検出する誘導線検出手段を構成する一対の検出部としてのピックアップコイル9が配設されている。ピックアップコイル9は操舵輪2を挟むように配設されている。ピックアップコイル9は誘導線8に流れる電流によって誘導線8の周囲に生じる磁界の作用により、誘導線8からの距離に対応した検出信号を出力する。そして、両ピックアップコイル9の出力の差が差動アンプで増幅されて出力される。ピックアップコイル9及び差動アンプにより誘導線検出手段が構成されている。
【0016】
ステアリングモータ4は制御装置としての走行コントローラ10により制御され、操舵輪2を所定の操舵角θとなるように制御する。モータ6は走行コントローラ10により制御され所定の速度で無人車1が走行するように制御される。また、無人車1には走行路に設けられたマークプレートを検出するマークプレートセンサ(いずれも図示せず)が装備され、無人車1はマークプレートの情報に基づいて速度制御及び停止制御が行われる。
【0017】
図3に示すように、走行コントローラ10を構成するマイクロコンピュータ11は、演算手段、制御手段及び切替手段としての中央処理装置(CPU)12と、記憶手段としてのプログラムメモリ13と、作業用メモリ14とを備えている。プログラムメモリ13は読み出し専用のメモリ(ROM)よりなり、種々の制御プログラム及び制御に必要なデータが記憶されている。制御プログラムの一つとして、ステアリングモータ4を制御するための図1に示す走行制御プログラムが記憶されている。制御に必要なデータとして、プログラムメモリ13に第1の設定角α及び第2の設定角βが記憶されている。第1の設定角αは操舵輪2がスリップしていると推定する基準角度で、第2の設定角βは操舵輪2のスリップを阻止可能な操舵角度である。両設定角α,βは走行路面の状況及び無人車1の状態により適正な値が異なり、予め走行試験を行って両設定角α,βを求め、その値が走行路面の状況とともにプログラムメモリ13にデータベースとして記憶されている。走行路面の種類としては、冷凍庫内の床面、コーティングが施されたコンクリート面、コーティングが施されたコンクリート面に水が撒かれた状態、水が撒かれたアスファルト面等がある。また、作業用メモリ14は、読出し及び書替可能なメモリ(RAM)よりなり、CPU12の演算処理結果等を一時記憶する。
【0018】
CPU12はプログラムメモリ13に記憶された制御プログラムに基づいて動作する。CPU12は入力インタフェース15及びA/D変換器(図示せず)を介してポテンショメータ5に接続され、入力インタフェース15、A/D変換器(図示せず)及び差動アンプ16を介してピックアップコイル9に接続されている。CPU12は差動アンプ16の出力信号に基づいてピックアップコイル9の誘導線8からの変位量を演算する。CPU12は入力装置17に接続されている。また、CPU12は出力インタフェース18及び駆動回路(図示せず)を介してステアリングモータ4及びモータ6に接続されている。
【0019】
CPU12は誘導線検出手段の出力信号に基づいてピックアップコイル9の誘導線8からの変位量を演算する。CPU12は誘導走行モード及び復帰モードの二つの制御モードのいずれかでステアリングモータ4を制御する。誘導走行モードではCPU12は、前記変位量が所定の値となるように、この実施の形態では変位量が0、即ち両ピックアップコイル9の中央に誘導線8が位置するように、ステアリングモータ4を制御する。また、誘導走行モードではCPU12は、前記変位量の大きさに対応して操舵角θを変更するように、即ち変位量が大きいほど操舵角θが大きくなるようにステアリングモータ4を制御する。
【0020】
CPU12は誘導走行モードで走行中、操舵輪2の操舵角θが第1の設定角αを超えるまでは誘導走行モードを継続し、操舵輪2の操舵角θが第1の設定角αを超えると、復帰モードで制御を行う。復帰モードではCPU12は、操舵輪2の操舵角を第1の設定角αより小さな第2の設定角βに変更して、操舵角を第2の設定角βに保持するようにステアリングモータ4を制御する。また、CPU12は復帰モードで走行中、前記変位量が所定の値に達すると、制御モードを誘導走行モードに変更する。この実施の形態では両ピックアップコイル9の中央位置が誘導線8を横切ったときに制御モードを誘導走行モードに変更するようになっている。
【0021】
次に前記のように構成された走行コントローラ10によるステアリング制御について、図1のフローチャートに従って説明する。無人車1の運転開始に先だって、無人車1が走行する路面の状況に対応した第1の設定角α及び第2の設定角βが入力装置17により選択されて作業用メモリ14に記憶される。
【0022】
無人車1の走行スイッチ(図示せず)がオンされると、CPU12は図1のフローチャートに従ってステアリング制御を実行する。ステップS1でCPU12は誘導走行モードでステアリングモータ4を制御する。即ち、CPU12は差動アンプ16の出力信号に基づいてピックアップコイル9の誘導線8からの変位量を演算し、変位量が0となるように、即ち図4(a)に示すようにピックアップコイル9の中央に誘導線8が位置する状態で無人車1が走行するように制御する。また、誘導走行モードではCPU12は変位量に対応した操舵角θとなるようにステアリングモータ4に制御指令を出力する。そして、ステアリングモータ4が作動されて操舵輪2が制御される。
【0023】
CPU12はステップS2でポテンショメータ5の出力信号に基づいて操舵角θを演算し、ステップS3で操舵角θが第1の設定角αのプラスの値を超えているか否か、即ち、操舵角θ>αか否かを判断する。操舵角θ>αが成立しなければCPU12はステップS4に進み、操舵角θが第1の設定角αのマイナスの値より小さいか否か、即ち、操舵角θ<−αか否かを判断する。操舵角θ<−αが成立しなければCPU12はステップS1に戻る。
【0024】
ステップS3で操舵角θ>αが成立すればCPU12はステップS5に進む。そして、制御モードが復帰モードに変更されて、CPU12は操舵輪2の操舵角θを第2の設定角βに保持するようにステアリングモータ4を制御する。CPU12はステップS6でピックアップコイル9の誘導線8からの変位量を演算する。このときCPU12は演算手段として機能する。そして、CPU12はステップS7で両ピックアップコイル9の中央位置が誘導線8を横切ったか否かを判断する。CPU12は復帰モードに変更された後、両ピックアップコイル9の中央位置が誘導線8を横切るまで、操舵角θを第2の設定角βに保持するようにステアリングモータ4を制御する。そして、両ピックアップコイル9の中央位置が誘導線8を横切ると、CPU12はステップS1に戻る。即ち、誘導走行モードに復帰する。
【0025】
また、ステップS4で操舵角θ<−αが成立すればCPU12はステップS8に進む。そして、制御モードが復帰モードに変更されて、CPU12は操舵輪2の操舵角θを−βに、即ち操舵角をマイナス側において第2の設定角βに保持するように、ステアリングモータ4を制御する。CPU12はステップS9でピックアップコイル9の誘導線8からの変位量を演算する。このときCPU12は演算手段として機能する。そして、CPU12はステップS10で両ピックアップコイル9の中央位置が誘導線8を横切ったか否かを判断する。CPU12は復帰モードに変更された後、両ピックアップコイル9の中央位置が誘導線8を横切るまで、操舵角θを−βに保持するようにステアリングモータ4を制御する。そして、両ピックアップコイル9の中央位置が誘導線8を横切ると、CPU12はステップS1に戻る。即ち、誘導走行モードに復帰する。従って、CPU12はステップS3,S4,S7,S10において切替手段として機能する。
【0026】
例えば、無人車1を路面の摩擦抵抗が小さなコースに投入するときに、両ピックアップコイル9が誘導線8を挟むように位置せず、図4(b)に示すように、両ピックアップコイル9が誘導線8の一方の側に片寄った状態となり、その状態から無人車1が走行を開始した場合を想定する。この状態ではピックアップコイル9の変位量が大きいため、走行コントローラ10は操舵輪2の操舵角θが大きくなるように制御する。その結果、操舵輪2のスリップが発生し、スリップが発生すると無人車1は操舵輪2の操舵方向に進めなくなって前記変位量がより大きくなる。そして、操舵輪2はさらに操舵角θが大きくなる方向に操舵される。操舵輪2の操舵角θが大きい程操舵輪2は回動し難くなってスリップが継続され、図4(c)に示すように、無人車1はコースアウトして走行不能となる。
【0027】
しかし、この実施の形態では図5(a)に示すように、操舵輪2の操舵角θが第1の設定値αを超えると、図5(b)に示すように、操舵輪2の操舵角θが第2の設定角βに保持されるように変更される。その結果、操舵輪2のスリップが解消されて、無人車1は両ピックアップコイル9の中央位置が誘導線8に近づくように走行する。そして、図5(c)に示すように、両ピックアップコイル9の中央位置が誘導線8を横切ると、再び誘導走行モードに復帰する。
【0028】
また、図4(a)に示す通常走行状態において、路面の一部が何らかの原因でスリップし易い状態となって、無人車1の走行状態が図4(b)に示す状態となった場合、あるいは無人車1がカーブに差し掛かった状態でスリップが発生して、無人車1の走行状態が図4(b)に示す状態となった場合も同様にして、無人車1のコースアウトが回避される。
【0029】
この実施の形態では以下の効果を有する。
(イ) 操舵輪2の操舵角θが第1の設定角αを超えると、操舵角θが自動的に操舵輪2がスリップし難い第2の設定角βに変更されて、その値に保持される。即ち、誘導走行モードから復帰モードへ自動的に切り替えられる。その結果、操舵輪2のスリップ発生時に操舵角θが大きな状態に保持されたまま無人車1がコースアウトすることを防止できる。
【0030】
(ロ) 復帰モードから誘導走行モードへの移行(切替)が、一対のピックアップコイル9の中央位置が誘導線8を横切るときを基準に行われる。従って、復帰モードから誘導走行モードへの切替時期が路面の状況や無人車1の走行状態と無関係に決定されるため、復帰モードから誘導走行モードへの切替の制御が容易になる。
【0031】
(ハ) 操舵輪2が無人車1の前側に装備されているため、操舵輪2が後側に装備された場合に比較して無人車1の操舵制御が容易となる。操舵輪2が無人車1の前側に装備されているため、操舵角θが同じであっても、操舵輪2が後側に装備された場合に比較して無人車1は操舵角θの大きな状態でスリップし易くなる。しかし、前記のように操舵輪2がスリップしても無人車1のコースアウトを防止できる。
【0032】
(ニ) 誘導走行モードと復帰モードとの切替の基準となる第1の設定角α及び復帰モードにおける第2の設定角βの値が、種々の路面の状況に対応して予めプログラムメモリ13に記憶されている。従って、無人車1が走行する路面の状況に対応した最適な第1の設定角α及び第2の設定角βで制御を行うことができ、無人車1のコースアウトをより確実に防止できる。また、使用環境に応じて専用の無人車1を準備せずに、同じ無人車1を種々の使用環境(路面状況)に対応した適正な状態で使用できる。
【0033】
(ホ) 操舵輪2がスリップしたとき、無人車1は誘導線8から離れる方向に進み、操舵輪2の操舵角θの絶対値が増加するという無人車1の特性に基づいて、スリップが発生しているか否かを判断するため、スリップの発生の有無を判断する構成が簡単になる。また、操舵角θを検出するための操舵角検出手段(ポテンショメータ5)は無人車1に元々装備されているため、新たな装置を設けることなく、制御プログラムを変更するだけで、実施できる。
【0034】
なお、実施の形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 復帰モードから誘導走行モードへの切替時期は両ピックアップコイル9の中央位置が誘導線8を横切った後に限らず、無人車1が復帰モードで走行中に前記変位量が所定の値に達したときでよい。例えば、ピックアップコイル(誘導線検出手段)9の誘導線8からの変位量が操舵輪2の操舵角θを第2の設定角βより小さな角度に変更すべき値に達したときに、誘導走行モードに移行するようにしてもよい。この場合は、両ピックアップコイル9の中央位置が誘導線8を横切った後、誘導走行モードへ切り替えた場合に比較して、誘導走行モードへの復帰後における操舵輪2の操舵角θの変更量が少なくなる。
【0035】
○ 第1の設定角α及び第2の設定角βを路面の状態に応じて予め複数記憶手段に記憶させておき、無人車の使用状況に応じて第1の設定角及び第2の設定角を選択して使用する構成とする代わりに、無人車1の使用環境(路面状況)に対応した1組みの設定角α,βのみをプログラムメモリ13に記憶させてもよい。この場合、所定の使用環境において無人車1のスリップによるコースアウトを防止できる。
【0036】
○ 第1の設定角α及び第2の設定角βを路面の状態に応じて予めプログラムメモリ13に記憶させておく代わりに、無人車1の運転に先だって入力装置17で適正な第1の設定角α及び第2の設定角βを入力する構成としてもよい。この場合、第1の設定角α及び第2の設定角βを作業用メモリ14に記憶させる代わりに、バックアップ電源を備えた不揮発性メモリに記憶させる方がよい。
【0037】
○ 第1の設定角α及び第2の設定角βを同じ路面状況であっても荷を積載した状態と荷無し状態とで異なる値としてもよい。スリップの発生し易さは無人車1の荷の積載状況によっても変化する場合が多く、荷の積載状況によって第1の設定角α及び第2の設定角βを変更することにより、より適正なステアリング制御が可能となる。
【0038】
○ 操舵輪2を前輪ではなく、後輪にした無人車1に適用してもよい。
○ 操舵輪2が1輪ではなく、2輪の無人車に適用してもよい。
○ 両駆動輪3を1個のモータ6で駆動する構成に代えて、各駆動輪3をそれぞれ独立駆動する構成としてもよい。
【0039】
前記各実施の形態から把握できる技術的思想(発明)について、以下にその効果とともに記載する。
(1) 記無人車は操舵輪が1輪で駆動輪が2輪の3輪車である。この場合、操舵輪の操舵機構が操舵輪が2輪の場合に比較して簡単になる。
【0040】
(2) 記第1の設定角及び第2の設定角として、異なる路面の状況に対応した複数組みの値が記憶された記憶手段を設け、前記制御手段は路面の状況に対応した両設定値を用いて制御を行う無人車の走行制御装置。この場合、無人車が走行する路面の状況に対応した最適な第1の設定角及び第2の設定角で制御を行うことができ、無人車のコースアウトをより確実に防止できる。また、使用環境に応じて専用の無人車を準備せずに、同じ無人車を種々の使用環境(路面状況)に対応した適正な状態で使用できる。
【0041】
(3) 操舵輪と駆動輪とが独立して装備されるとともに、走行路に敷設された誘導線の位置を誘導線検出手段で検出して誘導線に沿って走行する無人車の走行制御方法において、前記操舵輪のスリップが発生しない状態では操舵輪の操舵角を前記誘導線検出手段の誘導線からの変位量が所定の値となるように制御する誘導走行モードで走行し、操舵輪のスリップが発生した場合、操舵輪の操舵角を所定の設定角に変更してその設定角に保持する復帰モードで走行し、前記誘導線検出手段の前記誘導線からの変位量が所定の値に達したときに前記誘導走行モードに移行する無人車の走行制御方法。この場合、スリップ発生時に操舵角が大きな値に保持されたまま無人車がコースアウトすることを防止できる。
【0042】
なお、本明細書でいう「誘導線」とは無人車の走行を案内するために走行路に沿って延設されたものであって、所定の電流を流すことによりその周囲に磁界を発生する電線に限らず、電流を流さない単なる金属線をも含む。また、「誘導線検出手段」とは電線の周囲に生じる磁界の強さにより電線からの距離を検出するピックアップコイルに限らずアンテナをも含み、さらに検出手段自身が磁界を発生してその磁界が金属線から受ける影響により金属線との距離を検出可能なものも含む。
【0043】
【発明の効果】
以上詳述したように請求項1〜請求項4に記載の発明によれば、摩擦抵抗が小さな路面を無人車が走行するとき、操舵輪がスリップして無人車が操舵方向に進めなくなってコースアウトするのを防止することができる。
【0044】
請求項2に記載の発明では、復帰モードから誘導走行モードへの移行(切替)が、一対の検出部の中央位置が誘導線を横切るときを基準に行われる。従って、復帰モードから誘導走行モードへの切替時期が路面の状況や無人車の走行状態と無関係に決定されるため、復帰モードから誘導走行モードへの切替の制御が容易になる。
【0045】
請求項3に記載の発明の走行制御装置は、請求項1及び請求項2に記載の発明の方法を実施することができる。
請求項4に記載の発明では、操舵輪が無人車の前側に装備されているため、操舵輪が後側に装備された場合に比較して無人車の操舵制御が容易になる。
【図面の簡単な説明】
【図1】 ステアリング制御の手順を示すフローチャート。
【図2】 無人車の模式平面図。
【図3】 走行コントローラのブロック図。
【図4】 作用を示す模式平面図。
【図5】 作用を示す模式平面図。
【図6】 従来装置の作用を示す模式平面図。
【符号の説明】
1…無人車、2…操舵輪、3…駆動輪、4…ステアリングモータ、5…操舵角検出手段としてのポテンショメータ、8…誘導線、9…誘導線検出手段を構成するピックアップコイル、10…制御装置としての走行コントローラ、12…演算手段,切替手段及び制御手段としてのCPU、α…第1の設定角、β…第2の設定角。

Claims (4)

  1. 操舵輪と駆動輪とが独立して装備されるとともに、走行路に敷設された誘導線の位置を誘導線検出手段で検出して誘導線に沿って走行する無人車の走行制御方法において、
    操舵輪がスリップしていると推定する基準角度を第1の設定角とするとともに、前記第1の設定角より小さな角度であって操舵輪のスリップを阻止可能な操舵角を第2の設定角とし、
    異なる路面の状況に対応した複数組みの第1の設定角及び第2の設定角の値の中から路面の状況に対応した第1の設定角及び第2の設定角を用いて、前記操舵輪の操舵角が前記第1の設定角を超えるまでは操舵輪の操舵角を前記誘導線検出手段の誘導線からの変位量が所定の値となるように制御する誘導走行モードで走行し、前記操舵輪の操舵角が第1の設定角を超えたときに該操舵輪の操舵角を前記第2の設定角に変更してその第2の設定角に保持する復帰モードで走行し、前記誘導線検出手段の前記誘導線からの変位量が前記操舵輪の操舵角を前記第2の設定角より小さな角度に変更すべき値に達したときに前記誘導走行モードに移行する無人車の走行制御方法。
  2. 操舵輪と駆動輪とが独立して装備されるとともに、走行路に敷設された誘導線の位置を誘導線検出手段で検出して誘導線に沿って走行する無人車の走行制御方法において、
    操舵輪がスリップしていると推定する基準角度を第1の設定角とするとともに、前記第1の設定角より小さな角度であって操舵輪のスリップを阻止可能な操舵角を第2の設定角とし、
    異なる路面の状況に対応した複数組みの第1の設定角及び第2の設定角の値の中から路面の状況に対応した第1の設定角及び第2の設定角を用いて、前記操舵輪の操舵角が前記第1の設定角を超えるまでは操舵輪の操舵角を前記誘導線検出手段の誘導線からの変位量が所定の値となるように制御する誘導走行モードで走行し、前記操舵輪の操舵角が第1の設定角を超えたときに該操舵輪の操舵角を前記第2の設定角に変更してその第2の設定角に保持する復帰モードで走行し、前記誘導線検出手段を構成する一対の検出部の中央位置が前記誘導線を横切ると、前記誘導走行モードに移行する無人車の走行制御方法。
  3. 操舵輪と駆動輪とが独立して装備されるとともに、走行路に敷設された誘導線に沿って走行する無人車において、
    誘導線からの距離に対応した検出信号を出力する一対の検出部を備えた誘導線検出手段と、
    前記操舵輪の操舵角を制御するステアリングモータと、
    前記操舵輪の操舵角を検出する操舵角検出手段と、
    前記誘導線検出手段の出力信号に基づいて前記誘導線検出手段の誘導線からの変位量を演算する演算手段と、
    操舵輪がスリップしていると推定する基準角度を第1の設定角とするとともに前記第1の設定角より小さな角度であって操舵輪のスリップを阻止可能な操舵角を第2の設定角として、異なる路面の状況に対応した複数組みの第1の設定角及び第2の設定角の値を記憶した記憶手段と、
    前記複数組み第1の設定角及び第2の設定角の値のうち路面の状況に対応した第1の設定角及び第2の設定角を用いて、前記変位量が所定の値となるように前記変位量に対応して前記操舵角を変更するように前記ステアリングモータを制御する誘導走行モードと、前記操舵輪の操舵角を前記第2の設定角に変更してその第2の設定角に保持するように前記ステアリングモータを制御する復帰モードとの二つの制御モードのいずれかで前記ステアリングモータを制御する制御手段と、
    前記制御手段の制御モードを切り替える切替手段と
    を備えた無人車の走行制御装置。
  4. 前記操舵輪は無人車の前側に装備されている請求項3に記載の無人車の走行制御装置。
JP22517897A 1997-08-21 1997-08-21 無人車の走行制御方法及び走行制御装置 Expired - Fee Related JP3941176B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22517897A JP3941176B2 (ja) 1997-08-21 1997-08-21 無人車の走行制御方法及び走行制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22517897A JP3941176B2 (ja) 1997-08-21 1997-08-21 無人車の走行制御方法及び走行制御装置

Publications (2)

Publication Number Publication Date
JPH1165661A JPH1165661A (ja) 1999-03-09
JP3941176B2 true JP3941176B2 (ja) 2007-07-04

Family

ID=16825190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22517897A Expired - Fee Related JP3941176B2 (ja) 1997-08-21 1997-08-21 無人車の走行制御方法及び走行制御装置

Country Status (1)

Country Link
JP (1) JP3941176B2 (ja)

Also Published As

Publication number Publication date
JPH1165661A (ja) 1999-03-09

Similar Documents

Publication Publication Date Title
JPH1178936A (ja) 車両の自動操舵装置
JP2002120743A (ja) 電動パワーステアリング装置
JP3941176B2 (ja) 無人車の走行制御方法及び走行制御装置
JP3422235B2 (ja) 電動式パワーステアリング装置
JP3841206B2 (ja) 無人搬送車
JPS6233614B2 (ja)
JPH11278292A (ja) 電動式パワーステアリングの制御装置
JPH09271105A (ja) 車両の制御方法およびその装置
JP4360138B2 (ja) 無人車の走行制御方法及び無人車
JP3777571B2 (ja) 荷役車両の走行制御装置及び制御方法
JPH05333928A (ja) 無人搬送車の後進走行制御方法
JP2580081Y2 (ja) 無人車の操舵制御装置
JP2002373023A (ja) 自動誘導式荷役車両
JP3804142B2 (ja) 無人車の操舵制御方法
JP4168895B2 (ja) 移動体用走行制御装置及び移動体
JPH11161335A (ja) 無人搬送車の制御方式
JPH0222721Y2 (ja)
JP3904426B2 (ja) 電気式パワーステアリングの制御装置
JP2001056710A (ja) 無人搬送車の制御方法
JP3121425B2 (ja) 無人走行車の操舵制御装置
JP2005071128A (ja) 無人搬送車およびこの無人搬送車の走行制御方法
JP4159435B2 (ja) オートガイダンス式車両
JP3384644B2 (ja) 電気式車両の速度制御装置
JP3198056B2 (ja) 荷役車両
JP2674203B2 (ja) 無人車の走行制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

LAPS Cancellation because of no payment of annual fees