JP3922129B2 - D級増幅器 - Google Patents

D級増幅器 Download PDF

Info

Publication number
JP3922129B2
JP3922129B2 JP2002226628A JP2002226628A JP3922129B2 JP 3922129 B2 JP3922129 B2 JP 3922129B2 JP 2002226628 A JP2002226628 A JP 2002226628A JP 2002226628 A JP2002226628 A JP 2002226628A JP 3922129 B2 JP3922129 B2 JP 3922129B2
Authority
JP
Japan
Prior art keywords
signal
power supply
output
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002226628A
Other languages
English (en)
Other versions
JP2004072276A (ja
Inventor
泰臣 田中
正夫 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2002226628A priority Critical patent/JP3922129B2/ja
Priority to US10/632,248 priority patent/US6937091B2/en
Publication of JP2004072276A publication Critical patent/JP2004072276A/ja
Application granted granted Critical
Publication of JP3922129B2 publication Critical patent/JP3922129B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2171Class D power amplifiers; Switching amplifiers with field-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Electronic Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、音楽信号などのアナログ信号をパルス信号に変換して電力増幅するD級増幅器(デジタルアンプ)に関し、特に出力用のパワーMOSトランジスタを駆動制御するための回路技術に関する。
【0002】
【従来の技術】
従来、音楽信号などのアナログ信号を入力信号とし、これをパルス信号に変換して電力増幅するD級増幅器が知られており、その出力端子には、ローパスフィルタを介してスピーカの入力端子が接続される。このD級増幅器によれば、入力信号の振幅(情報成分)がパルス幅に反映されて電力増幅されたパルス信号が出力される。そして、このパルス信号がローパスフィルタを通過することにより、電力増幅されたアナログ量の音楽信号が抽出され、この音楽信号がスピーカを駆動する。D級増幅器は、シリコンチップ上に形成することができるため、小型かつ安価に実現することができ、低消費電力が要求される携帯端末やパソコンなどに多用されている。
【0003】
図7に、D級増幅器900の構成と、その適用例を示す。
同図において、信号源SIGは、接地電位(0V)を振幅の中点とするアナログ量の音楽信号VINの発生源であり、この音楽信号に含まれる直流成分をカットするための入力コンデンサ(図示省略)を介してD級増幅器900の入力端子TIに接続される。D級増幅器900は、いわゆるPWM増幅器(PWM;Pulse Width Modulation)であって、入力段901、変調回路902、駆動回路903、n型のパワーMOSトランジスタ904,905からなる。
【0004】
入力段901は、音楽信号VINの中点を移動させて、電源VDD(例えば10V)で動作する変調回路902の入力特性に適合する信号に音楽信号VINを変換するものである。変調回路902は、入力段901から出力された音楽信号をPWMによりパルス信号に変換するものであり、音楽信号の情報成分がパルス幅に反映されて(音楽信号が)パルス信号に変調される。駆動回路903は、変調回路902により変調されたパルス信号に基づき、出力用のパワーMOSトランジスタ904,905を相補的に駆動制御するものである。
【0005】
パワーMOSトランジスタ904は、正電源VPP+(例えば+50V)と出力端子TOとの間に電流経路が接続され、ハイレベルを出力するためのものである。また、パワーMOSトランジスタ905は、負電源VPP−(例えば−50V)と出力端子TOとの間に電流経路が接続され、ローレベルを出力するためのものである。出力端子TOは、インダクタLとコンデンサCとからなるローパスフィルタを介してスピーカSPKの入力端子に接続される。
【0006】
このD級増幅器900によれば、信号源SIGから入力された音楽信号VINが、入力段901および変調回路902を経てパルス信号に変換される。このとき、変調回路902は、音楽信号VINに応じてキャリア信号をパルス幅変調する。駆動回路903は、変調されたパルス信号に基づきパワーMOSトランジスタ904,905を相補的に導通制御し、出力端子TOに電力増幅されたパルス信号を出力する。この電力増幅されたパルス信号は、インダクタLおよびコンデンサCからなるローパスフィルタによりキャリア周波数成分が除去され、電力増幅されたアナログ量の音楽信号となってスピーカSPKに供給される。
【0007】
【発明が解決しようとする課題】
ところで、上述の変調回路902は、単一の電源VDD(例えば10V)で作動するように構成されたものであるから、その出力信号であるパルス信号のロウレベルは接地電位(0V)となり、ハイレベルは電源VDDが供給する電圧(10V)となる。従って、そのような信号レベルを有するパルス信号をそのまま用いたのでは、MOSトランジスタの特性上、正電源VPP+(+50V)にドレインが接続されたパワーMOSトランジスタ904を十分にオン状態に制御することはできず、また負電源VPP−(−50V)にソースが接続されたパワーMOSトランジスタ905をオフ状態に制御することができない。そこで、駆動回路903には、変調回路902で変調されたパルス信号に基づき上述のパワーMOSトランジスタ904,905を制御するための機能が必要とされる。
【0008】
以下、駆動回路903について説明する。正電源VPP+から負電源VPP−まで変化する信号を出力するパワーMOSトランジスタの導通状態を制御するためには、正電源VPP+および負電源VPP−に見合った大振幅のパルス信号を駆動回路903からパワーMOSトランジスタ904,905のゲートに供給するものとすればよいが、その場合、高耐圧トランジスタを用いて駆動回路903を構成しなければならず、コストの上昇を招く。そのため、パワーMOSトランジスタ904とパワーMOSトランジスタ905とをそれぞれ駆動する回路の電源系を分離(アイソレート)することにより、各回路に印加される実効的な電源電圧を緩和する手法を用いて駆動回路903が構成されている。
【0009】
図7に示す例では、パワーMOSトランジスタ904,905の双方がn型であるため、駆動回路903は、パワーMOSトランジスタ904のソース電圧、即ち出力端子TOに現れる出力信号の電圧を基準とした電源系と、パワーMOSトランジスタ905のソース電圧、即ち負電源VPP−が供給する電圧を基準とした電源系とに分離される。そして、パワーMOSトランジスタ904を駆動する回路の電源系は、出力端子TOに現れる出力信号の電圧変化に追従して変動する。ところが、このように駆動回路903の電源系を出力端子TOに現れる出力信号に追従させると、前段側の変調回路902が出力するパルス信号の信号レベルに対し駆動回路903の入力閾値が変動することになり、変調回路902から駆動回路903に信号を正しく伝送できなくなるという不都合を生じる。
【0010】
このような不都合を解消するための第1の従来技術として、ブートストラップ回路技術を用いることにより、変調回路902が出力するパルス信号を駆動回路903側に適合した信号レベルに昇圧するものがある。
また、第2の従来技術として、絶縁トランスを用いることにより、変調回路902が出力するパルス信号を駆動回路903側に適合した信号レベルに電圧変換するものがある。
さらに、第3の従来技術として、フォトカプラを用いることにより、変調回路902の出力信号を光信号に変換して駆動回路903側に伝送するものがある。
【0011】
しかしながら、上述の第1の従来技術によれば、変調回路から出力される信号のレベルを変換するためにブートストラップ回路を用いているので、信号の周波数が高くなると動作が不安定になるという問題がある。
また、上述の第2、第3の従来技術によれば、絶縁トランスやフォトカプラなどの電子部品が比較的高価なためにコストが上昇する。しかも、これら電子部品を実装するためのスペースを確保しなければならず、装置が大型化する。
また、図7に示す従来構成では、変調回路902が10V系の電源VDDで動作するものとしたが、仮に、入力段901、変調回路902、駆動回路903の全てのブロックが高電圧系の正電源VPP+,負電源VPP−で動作するものとすれば、上述のように信号レベルを変換する必要はなく、回路構成を簡略化することができる。しかしこの場合、全ブロックに対して高耐圧プロセスの製造技術を使用することになるため、仮に各ブロックを別々にIC化する場合であっても、個々のICの製造コストが上昇することになる。
【0012】
この発明は、上記事情に鑑みてなされたもので、特殊な回路技術や電子部品を用いることなく出力用のパワーMOSトランジスタを駆動制御することができ、しかも高耐圧プロセスの使用を必要最小限に抑えることができるD級増幅器を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記課題を解決するため、この発明は以下の構成を有する。
即ち、請求項1に記載された発明は、正電源と出力端子との間に電流経路が接続された第1の出力用トランジスタと、負電源と前記出力端子との間に電流経路が接続された第2の出力用トランジスタとを有し、入力端子を介して外部から入力された信号に含まれる情報成分をパルス幅に反映させて該信号をパルス信号に変調し、該パルス信号に基づき前記第1および第2の出力用トランジスタを相補的に導通させるように構成されたD級増幅器において、前記パルス信号の同相信号および逆相信号からなる第1の相補信号を生成する信号生成回路(例えば後述する相補信号生成回路301に相当する構成要素)と、前記第1の相補信号を、前記負電源を基準とした電圧成分を有する第2の相補信号に変換する信号変換回路(例えば後述する信号変換回路302に相当する構成要素)と、前記第2の相補信号に応答して前記負電源に向かう電流成分を有する第3の相補信号を出力する電流駆動回路(例えば後述する電流駆動回路303に相当する構成要素)と、前記第3の相補信号に応答して前記第1の出力用トランジスタを駆動する第1の駆動回路(例えば後述する駆動回路304に相当する構成要素)と、前記第2の相補信号に応答して前記第2の出力用トランジスタを駆動する第2の駆動回路(例えば後述する駆動回路305に相当する構成要素)と、を備え、前記信号変換回路が、グランド電位にベースが共通にバイアスされ、第1および第2の抵抗を介して前記第1の相補信号が現れる前記信号生成回路の出力部にエミッタがそれぞれ接続された第1および第2のバイポーラトランジスタと、前記第1および第2のバイポーラトランジスタのコレクタと前記負電源との間にそれぞれ接続された第3および第4の抵抗と、を備えて構成されたことを特徴とする。
【0015】
また、請求項2に記載された発明は、請求項に記載されたD級増幅器において、前記電流駆動回路が、前記第3および第4の抵抗にエミッタがそれぞれ接続され、前記負電源を基準とした所定電位にベースが共通にバイアスされた第3および第4のバイポーラトランジスタを備えたことを特徴とする。
さらに、請求項3に記載された発明は、請求項に記載されたD級増幅器において、前記第3および第4のバイポーラトランジスタが、前記入力端子を介して外部から入力された信号に応じて交互にオン状態となるように、前記第1ないし第4の抵抗の値を設定したことを特徴とする。
【0016】
この構成によれば、第1の相補信号は負電源を基準とした第2の信号に変換される。これにより、第2の相補信号に応答して第2の駆動回路が作動する。また、電流駆動回路は、第2の相補信号に応答して電流を出力する。第1の駆動回路は、電流駆動回路から出力された電流を受けて作動する。すなわち、この構成によれば、第1および第2の駆動回路は、負電源を基準として生成された信号を入力するため、第1および第2の駆動回路から望んだ入力信号の電位方向が常に一定となる。従って、例えば第1の駆動回路の電源系が出力端子の電位に追従して変化しても、その入力信号に応答して第1および第2の駆動回路により第1および第2の出力用トランジスタを駆動制御することが可能になる。
また、第1の相補信号をなす同相信号または逆相信号の何れかがハイレベルになると、第1および第2の抵抗の何れかを介して第1および第2のバイポーラトランジスタのエミッタ電圧が上昇し、これら第1および第2のバイポーラトランジスタの一方がオン状態となり、他方がオフ状態となる。いま、第1のトランジスタがオン状態になったものとすると、この第1のトランジスタと第3の抵抗との間の電位が上昇し、第3のバイポーラトランジスタのエミッタ電圧が上昇する。この結果、第3のバイポーラトランジスタがオフ状態となる。これに対し、オフ状態にある第2のバイポーラトランジスタと第4の抵抗との間の電位は低下し、第4のバイポーラトランジスタがオン状態となる。このため、第4のバイポーラトランジスタが電流を駆動する。
【0017】
【発明の実施の形態】
以下、図面を参照して、この発明の実施の形態を説明する。
図1に、この実施の形態に係るD級増幅器DAMPの構成を示す。同図において、信号源SIGは、接地電位(0V)を振幅の中点とした振幅を有する音楽信号(アナログ量)の発生源である。信号原SIGの信号は入力コンデンサCINを介して音楽信号VINとしてD級増幅器DAMPの入力端子TIに与えられる。D級増幅器DAMPは、いわゆるPWM増幅器であって、入力段100、変調回路200、駆動制御回路300、n型のパワーMOSトランジスタ401,402(出力用トランジスタ)から構成される。
【0018】
入力段100は、入力抵抗R1と帰還抵抗R2(=R1)とオペアンプOPとから構成される。入力抵抗R1の一端はオペアンプOPの反転入力部(−)に接続され、その他端は入力端子TIに接続される。帰還抵抗R2は、オペアンプOPの反転入力部と出力部との間に接続される。オペアンプOPの非反転入力部(+)には、基準電圧VREFが印加される。基準電圧VREFは、例えば標準の電源VDDが供給する電圧を抵抗分割して発生され、電源VDDの2分の1に設定される。この実施の形態では、電源VDDの電圧を「+10V」とし、この技術分野において標準的な電源電圧とする。変調回路200は、前段の入力段100から出力された音楽信号をPWMによりパルス信号(PWM信号)に変換するものである。駆動制御回路300は、出力用のパワーMOSトランジスタ401,402を相補的に駆動制御するものである。この駆動制御回路300の詳細については後述する。
【0019】
パワーMOSトランジスタ401は、出力端子TOにハイレベルを出力するためのものであって、ドレインおよびソースが正電源VPP+(高電源)および出力端子TOにそれぞれ接続される。一方のパワーMOSトランジスタ402は、出力端子TOにローレベルを出力するためのものであって、ドレインおよびソースが出力端子TOおよび負電源VPP−(低電源)にそれぞれ接続される。この実施の形態1では、正電源VPP+の電圧を「+50V」とし、負電源VPP−の電圧を「−50V」とする。出力端子TOには、インダクタLおよびコンデンサCからなるローパスフィルタを介してスピーカSPKの一方の入力端子が接続され、このスピーカSPKの他方の入力端子は接地される。インダクタLおよびコンデンサCからなるローパスフィルタの定数は、出力端子TOを介してD級増幅器DAMPから出力されるパルス信号からキャリア周波数成分を除去し、かつ音楽信号成分を通過させるように設定される。
上述のように、このD級増幅器DAMPは、標準の電源VDD、正電源VPP+、負電源VPP−の3電源で動作するものとなっている。
【0020】
次に、駆動制御回路300の構成を詳細に説明する。図2に、駆動制御回路300の構成を示す。なお、図2において、図1に示す構成要素と共通する要素には同一符号を付し、また、説明の便宜上、出力用のパワーMOSトランジスタ401,402を併記する。
駆動制御回路300の初段には相補信号生成回路301が設けられる。この相補信号生成回路301は、上述の変調回路200から出力されたPWM信号の同相信号S1と逆相信号S2からなる相補信号(第1の相補信号)を生成するものであり、図3に示すように、バッファB11,B12および負論理入力型のバッファ(反転バッファ)B13から構成される。具体的には、バッファB11の入力部は、変調回路200から出力されたPWM信号が与えられる端子Q11に接続され、その出力部はバッファB12,B13の入力部に共通に接続され、これらバッファB12,B13の出力部は端子Q12,Q13にそれぞれ接続される。バッファB11,B12,B13は電源VDDとグランド電位が供給されて作動し、バッファB12,B13からPWM信号の同相信号S1と逆相信号S2とが端子Q12,Q13を介してそれぞれ出力される。これら同相信号S1および逆相信号S2は、グランド電位(0V)から電源VDD(10V)の振幅を有し、信号変換回路302に供給される。
【0021】
上述の相補信号生成回路301の後段には信号変換回路302が接続される。この信号変換回路302は、同相信号S1および逆相信号S2からなる相補信号を、負電源VPP−を基準とした電圧成分を有する相補信号S3,S4および相補信号S5,S6(第2の相補信号)に変換するものであり、抵抗R3021〜R3026およびpnp型バイポーラトランジスタT3021,T3022から構成される。ここで、pnp型バイポーラトランジスタT3021のエミッタは抵抗R3021を介して相補信号生成回路301の一方の出力部である端子Q12に接続され、pnp型バイポーラトランジスタT3022のエミッタは抵抗R3022を介して相補信号生成回路301の他方の出力部である端子Q13に接続され、これらpnp型バイポーラトランジスタT3021,T3022のベースはグランド電位に共通にバイアスされる。また、一方のpnp型バイポーラトランジスタT3021のコレクタと負電源VPP−との間には抵抗R3023および抵抗R3025がこの順に直列接続され、他方のpnp型バイポーラトランジスタT3022のコレクタと負電源VPP−との間には抵抗R3024および抵抗R3026がこの順に直列接続される。
【0022】
また、pnp型バイポーラトランジスタT3021のコレクタと抵抗R3023との接続ノードND1は抵抗R3004を介して駆動回路305の入力部をなす端子Q33に接続され、pnp型バイポーラトランジスタT3022のコレクタと抵抗R3024との接続ノードND2は抵抗R3003を介して同じく駆動回路305の入力部をなす端子Q31に接続される。駆動回路305の端子Q31と端子Q32との間には抵抗R3005が接続され、端子Q32と端子Q33との間には抵抗R3006が接続される。これら抵抗R3005と抵抗R3006との間の接続ノード(符号なし)は端子Q32を介して所定電圧VR2にバイアスされる。
【0023】
上述の信号変換回路302の後段には、電流駆動回路303が接続される。この電流駆動回路303は、信号S5および信号S6からなる相補信号に応答して負電源VPP−に向かう電流成分(I9,I10)を有する信号H3および信号H4からなる相補信号(第3の相補信号)を出力するものであり、npn型バイポーラトランジスタT3031,T3032から構成される。ここで、一方のnpn型バイポーラトランジスタT3031のエミッタは、信号変換回路302を構成するpnp型バイポーラトランジスタT3021のコレクタと抵抗R3025との間、具体的には抵抗R3023と抵抗R3025との接続ノードND3に接続される。他方のnpn型バイポーラトランジスタT3032のエミッタは、信号変換回路302を構成するpnp型バイポーラトランジスタT3022のコレクタと抵抗R3026との間、具体的には抵抗R3024と抵抗R3026との接続ノードND4に接続され、これらトランジスタのベースは後述する接続ノードND5に現れる所定電位(負電源VPP−を基準とした電位)に共通にバイアスされる。
【0024】
また、npn型バイポーラトランジスタT3031のコレクタは駆動回路304の入力部をなす端子Q21に接続され、npn型バイポーラトランジスタT3032のコレクタは同じく駆動回路304の入力部をなす端子Q23に接続される。駆動回路304の端子Q21と端子Q22との間には抵抗R3001が接続され、端子Q22と端子Q23との間には抵抗R3002が接続される。これら抵抗R3001と抵抗R3002との間の接続ノード(符号なし)は端子Q22を介して所定電圧VR1にバイアスされる。
【0025】
次に、駆動回路304は、信号H3および信号H4からなる相補信号に応答して出力用のパワーMOSトランジスタ401を駆動するいわゆるハイサイドドライバとして機能するものであり、図4に示すように、バイアス回路P11、コンパレータCM1、バッファB14、内部電源P12から構成される。ここで、コンパレータCM1の非反転入力部(+)は端子Q21に接続され、その反転入力部(−)は端子Q23に接続される。このコンパレータCM1の出力部はバッファB14の入力部に接続され、このバッファB14の出力部は端子Q24を介してパワーMOSトランジスタ401のゲートに接続される。端子Q22にはバイアス回路P11が接続され、前述の抵抗R3001と抵抗R3002との間の接続ノードがパワーMOSトランジスタ401のソース電圧VSを基準とした所定電圧VR1にバイアスされている。この実施の形態では、所定電圧VR1を、パワーMOSトランジスタ401のソース電圧VSに電源VDDの2分の1を加えた値(=VS+VDD/2)に設定するものとする。いま、電源VDDは10Vであるから、その半分の5Vをソース電圧VSに加算した電圧が所定電圧VR1となる。
【0026】
図5に、バイアス回路P11の構成例を示す。同図に示すように、バイアス回路P11は、上述のソース電圧VSが現れるノード(即ちパワーMOSトランジスタ401のソース)と正電源VPP+との間に抵抗PRおよびツェナー・ダイオードPDを直列接続し、このツェナー・ダイオードPDと並列に安定化コンデンサPCを接続して構成され、抵抗PRとツェナー・ダイオードPDとの接続点に現れる電圧が所定電圧VR1とされる。この実施の形態1では、ツェナー・ダイオードPDの降伏電圧は電源VDD(10V)の2分の1に相当する5Vに設定されており、これにより、上述の所定電圧VR1としてソース電圧VSに電源VDDの2分の1を加えた値(=VS+VDD/2)を発生するものとなっている。
【0027】
説明を図4に戻す。内部電源P12は、パワーMOSトランジスタ401のソース電圧VSを基準として、電源VDDの電圧(10V)に相当する電圧VD1を発生するものであり、基本的には上述の図5に示すバイアス回路と同様に構成される。ただしこの場合のツェナー・ダイオードPDの降伏電圧は電源VDDの電圧に相当する10Vに設定される。この内部電源P12は、ソース電圧VSを基準として電源VDDに相当する電圧VD1を発生し、上述のコンパレータCM1とバッファB14に電源を供給する。従って、駆動回路304の電源系は、パワーMOSトランジスタ401のソース電圧VSに追従して変化すると共に、コンパレータCM1およびバッファB14に関する限り電源VDDと等価な電源として振る舞う。
【0028】
さらに説明を図3に戻す。駆動回路305は、信号L3および信号L4からなる相補信号に応答して出力用のパワーMOSトランジスタ402を駆動するいわゆるローサイドドライバとして機能するものであり、基本的には上述の駆動回路304と同様に構成される。ただし、この場合のバイアス回路P11は、負電源VPP−を基準として、電源VDDの2分の1に相当する電圧VR2を発生する。また、内部電源P12は、パワーMOSトランジスタ402のソース電圧(即ち負電源VPP−)を基準として電源VDDに相当する電圧VD2を発生し、コンパレータCM1およびバッファB14に電源を供給する。端子Q31,Q32,33,Q34は端子Q21,Q22,Q23,Q24に対応する。各構成要素の接続関係については駆動回路304と同様であり、その説明を省略する。
【0029】
ここで、この実施の形態では、pnp型バイポーラトランジスタT3021がオン状態にある場合、このトランジスタを流れる電流I1を4mAとし、この電流が分流された電流I3および電流I6をそれぞれ3mAおよび1mAとし、抵抗R3025を流れる電流I7が3mAに達したときにnpn型バイポーラトランジスタT3031がオフ状態となり、且つpnp型バイポーラトランジスタT3021がオフ状態にある場合には電流I7が3mAよりも小さな値となるように、抵抗R3021,R3023,R3025、および抵抗R3007,R3008の各値が設定されているものとする。抵抗R3022,R3024,R3026については、上述の抵抗R3021,R3023,R3025と同値に設定される。抵抗R3001〜R3006については、駆動回路304,305に供給すべき相補信号の振幅が適切になるように設定される。
【0030】
次に、この実施の形態の動作を説明する。図6では、変調回路200から出力されたPWM信号は、同相信号S1と位相が同一であるから、同相信号S1の波形を流用して表現している。
図1に示す入力段100は、増幅率「1」の反転増幅器として機能し、基準信号VREFを中点として音楽信号VINの位相を反転させた信号を出力する。これにより、音楽信号VINが、後段側の変調回路200の入力特性に適合する信号に変換される。変調回路200は、前段の入力段100から出力された音楽信号の情報成分をパルス幅に反映させてパルス信号に変調(PWM)し、PWM信号を生成する。駆動制御回路300は、変調回路200で生成されたPWM信号に基づき、出力用のパワーMOSトランジスタ401とパワーMOSトランジスタ402とを相補的に駆動する。これにより、出力端子TOには電力増幅されたパルス信号が出力信号OUTとして現れる。
【0031】
次に、図6を参照しながら図2に示す駆動制御回路300の動作を詳細に説明する。相補信号生成回路301は、図1に示す変調回路200から出力されたPWM信号に応答して、このPWM信号と同じ位相を有する同相信号S1と、逆の位相を有する逆相信号S2を生成する。図6に示す波形図では、初期状態において、変調回路200から出力されたPWM信号はハイレベルにあり、これを入力する相補信号生成回路301は、同相信号S1としてハイレベルを出力し、逆相信号S2としてローレベルを出力する。従って、初期状態において同相信号S1と逆相信号S2との間には、電源VDD(10V)に相当するレベル差が存在し、同相信号S1が逆相信号S2よりも電源VDDに相当する電圧分だけ高くなっている。
【0032】
相補信号生成回路301から出力された同相信号S1と逆相信号S2は、信号変換回路302を構成する抵抗R3021,R3022を介してpnp型バイポーラトランジスタT3021,T3022のエミッタに与えられる。ここで、抵抗R3021を介してハイレベルが与えられると、pnp型バイポーラトランジスタT3021のエミッタからベースに向かって電流が流れ、そのエミッタ電圧がグランド電位にバイアスされたベース電圧よりもベース・エミッタ電圧Vbeだけ高い電圧に達すると、pnp型バイポーラトランジスタT3021がオン状態となる。このときにpnp型バイポーラトランジスタT3021を流れる電流I1は、抵抗R3021の値と端子間電圧とにより決定される一定電流(4mA)となる。この電流I1は、接続ノードND1において、抵抗R3023および抵抗R3025の直列抵抗と、抵抗R3004および抵抗R3006の直列抵抗との比率で電流I3(3mA)と電流I6(1mA)に分流される。電流I3は、抵抗R3023を介して接続ノードND3に向かって流れ、電流I6は、抵抗R3004および抵抗R3006を介して端子Q32に向かって流れる。
【0033】
電流I3は、接続ノードND3において、npn型バイポーラトランジスタT3031から流れ込む電流と共に電流I7として抵抗R3025を介して負電源VPP−に流れ込む。ここで、3mAの電流I3を含む電流I7が抵抗R3025を流れると、接続ノードND3の電圧が上昇し、npn型バイポーラトランジスタT3031のエミッタに対するベースの電圧が、ベース・エミッタ電圧Vbe以下となる。従って、npn型バイポーラトランジスタT3031がオフ状態となり、npn型バイポーラトランジスタT3031は電流I9を流さなくなる。以上のように、pnp型バイポーラトランジスタT3021がオン状態になると、電流I6として1mAの電流が、駆動回路305の端子に接続された抵抗R3006を介して端子Q32に向かって流れ、駆動回路304の端子間に接続された抵抗R3001に電流は流れない(即ち電流I9が0mA)。
【0034】
一方、この時、pnp型バイポーラトランジスタT3022は、逆相信号S2がローレベルであるのでオフ状態となり、このpnp型バイポーラトランジスタT3022は電流を流さなくなる(I2=0mA)。従って、接続ノードND2の電位は低下し、接続ノードND2には、駆動回路305の端子Q32から、抵抗R3005、抵抗R3003、抵抗R3024、抵抗R3026で定まる電流I5が流れ込む。即ち、電流I5が、駆動回路305の端子間に接続された抵抗R3005を介して端子Q32から流れ出す。また、pnp型バイポーラトランジスタT3022がオフ状態であるから、上述の電流I5は、抵抗R3024を介して接続ノードND4に向かって電流I4としてそのまま流れるが、前述したようにこの場合に抵抗R3026を流れる電流I8は3mAよりも小さくなる。この結果、npn型バイポーラトランジスタT3032のエミッタに対するベースの電圧がベース・エミッタ電圧Vbe以上となり、このnpn型バイポーラトランジスタT3032がオン状態となって電流I10を流す。即ち、駆動回路304の端子間に接続された抵抗R3002を介して端子Q22から電流I10が流れ出す。
【0035】
上述のように、電流I9は流れずに電流I10が抵抗R3002を介して駆動回路304の端子Q22から流れ出すのであるから、駆動回路304の端子Q21がバイアス電圧VR1に等しくなり、端子Q23がバイアス電圧VR1よりも低くなる結果、信号H3が信号H4よりも信号レベルが大きくなる。駆動回路304のコンパレータCM1は、信号H3と信号H4との大小関係に応じた信号レベルを出力する。いま、信号H3が信号H4よりも信号レベルが大きいので、コンパレータCM1はハイレベルを出力し、これを入力するバッファB14は、パワーMOSトランジスタ401のソースを基準として電源VDDに相当する信号レベルを有する信号H5をそのゲートに出力する。これにより、パワーMOSトランジスタ401はオン状態となる。後述するように、パワーMOSトランジスタ401,402は相補的に導通するように制御されるから、パワーMOSトランジスタ401がオン状態、パワーMOSトランジスタ402がオフ状態となり、出力信号OUTの信号レベル(即ちソース電圧VS)が正電源VPP+の電源電圧にまで上昇する。
【0036】
このとき、駆動回路304の内部回路は、内部電源P12から、ソース電圧VSを基準とした電圧VD1を供給されるので、この駆動回路304の電源系はパワーMOSトランジスタ401のソース電圧VSに追従して上昇する。このため、コンパレータCM1の入力閾値もソース電圧VSと共に上昇するが、バイアス回路P11が発生する電圧VR1もソース電圧VSに追従して上昇するので、信号H3と信号H4の各信号レベルは駆動回路303HをなすコンパレータCM1の入力特性に適合した状態を維持し、パワーMOSトランジスタ401はオン状態に維持される。この状態では、信号H5の信号レベルは正電源VPP+より電圧VD1(=VDD)分だけ高い状態となる。
【0037】
一方、電流I5が抵抗R3005を介して駆動回路305の端子Q32から流れ出し、電流I6が抵抗R3006を介して端子Q32に流れ込むのであるから、駆動回路305の端子Q31に与えられる信号L3がバイアス電圧VR2よりも低くなり、端子Q33に与えられる信号L4がバイアス電圧VR2よりも高くなる。この結果、信号L4が信号L3よりも信号レベルが大きくなる。従って、駆動回路305は、パワーMOSトランジスタ402のソース電圧(VPP−)に等しい信号レベルを有する信号L5をそのゲートに出力する。これにより、パワーMOSトランジス402はオフ状態となる。
以上のように、初期状態ではパワーMOSトランジスタ401がオン状態となり、パワーMOSトランジスタ402がオフ状態となって、出力信号OUTとして正電源VPP+の電圧に相当するハイレベルが出力された状態となっている。
【0038】
このような初期状態から、図6に示す時刻t1においてPWM信号がローレベルに遷移すると、これに応答してpnp型バイポーラトランジスタT3021,T3022がそれぞれオフ状態およびオン状態となる。このため、電流I9が流れ出し、電流I10が流れなくなり、時刻t2において信号H3と信号H4の大小関係が逆転する。そして、これら信号H3と信号H4を入力するコンパレータCM1の出力信号がハイレベル(正電源VPP+より電圧VD1分だけ高い電圧状態)からローレベル(図4におけるソース電圧VSに相当する電圧状態)に変化し、これを入力するバッファB14の出力信号H5もローレベルに変化する。この結果、パワーMOSトランジスタ401のゲート電圧がソース電圧VS(=出力端子TOの電位)と等しくなり、このパワーMOSトランジスタ401がオフ状態となる。
【0039】
また、時刻t1においてPWM信号がローレベルに遷移し、pnp型バイポーラトランジスタT3021,T3022がそれぞれオフ状態およびオン状態になると、これに応答して電流I5および電流I6がそれまでとは逆方向に流れ出し、信号L3と信号L4との大小関係が逆転する。従って、これを入力する駆動回路305から出力される信号L5がハイレベルに変化する。この結果、パワーMOSトランジスタ402のゲート電圧がソース電圧に対して電圧VD2分だけ高くなり、このパワーMOSトランジスタ402がオン状態となる。パワーMOSトランジスタ402がオン状態になると、パワーMOSトランジスタ401のソース電圧VSは出力信号OUTに伴って低下し、これを基準として内部電源P12が発生する電圧VD1も低下する。
【0040】
このとき、バイアス回路P11が発生する電圧VR1もパワーMOSトランジスタ401のソース電圧VSの変化に伴って低下するので、信号H3と信号H4の大小関係が維持されたまま、これら信号レベルが駆動回路304の電源系と共に低下する。従ってコンパレータCM1が出力する信号レベルはローレベル(ソース電圧VS)を維持し、出力信号OUTがローレベル(負電源VPP−)に遷移する過程において、パワーMOSトランジスタ401はオフ状態を維持する。
以上により、初期状態から時刻t1においてPWM信号がローレベルに遷移すると、一方のパワーMOSトランジスタ401がオフ状態となり、他方のパワーMOSトランジスタ402がオン状態となって、出力信号OUTが正電源VPP+から負電源VPP−に遷移し、ローレベルが出力される。
【0041】
続いて、時刻t3においてPWM信号がハイレベルに回復すると、これに応答して時刻t4において信号H3がハイレベルとなり信号H4がローレベルとなる。従って、これら信号H3と信号H4を入力する駆動回路304は信号H5としてハイレベルを出力し、パワーMOSトランジスタ401がオン状態となる。一方のローサイドドライバ側では、信号L3がローレベルになり、信号L4がハイレベルになる。従って、これら信号L3と信号L4を入力する駆動回路305は信号L5としてローレベルを出力し、パワーMOSトランジスタ402はオフ状態となる。
【0042】
ここで、パワーMOSトランジスタ401がオン状態になると、そのソース電圧VS(=出力信号OUT)が上昇し、これを基準として内部電源P12が発生する電圧VD1も上昇する。しかし、バイアス回路P11が発生する電圧VR1もソース電圧VSに追従して上昇し、信号H3と信号Hの大小関係が維持されるので、コンパレータCM1が出力する出力信号の信号レベルはハイレベル(ソース電圧VSに対して電圧VD1分だけ高い電圧状態)を保つ。従って、出力信号OUTがハイレベルに遷移する過程において、パワーMOSトランジスタ401はオン状態を維持する。よって、時刻t3においてPWM信号がハイレベルになると、パワーMOSトランジスタ401がオン状態となり、パワーMOSトランジスタ402がオフ状態となって、出力信号OUTとして正電源VPP+に相当するハイレベルが出力される。
以上により、音楽信号VINに基づき変調されたパルス信号が電力増幅されて出力信号OUTとして出力される。
【0043】
上述した実施の形態によれば、基本的には電流により信号が相補信号生成回路301から駆動回路304,305に伝達され、回路インピーダンスを低く出来るので、仮にこの信号経路と出力端子TOとの間に寄生容量が形成されていたとしても、出力信号OUTが遷移する際に信号経路にノイズが重畳することが少ない。従って、増幅動作を安定化させることが可能になる。
以上、この発明の一実施形態を説明したが、この発明は、上述の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。例えば、上述の実施の形態では、信号変換回路302および電流駆動回路303をバイポーラトランジスタを用いて構成したが、MOSトランジスタを用いて構成してもよい。
【0044】
【発明の効果】
この発明によれば、PWM信号から第1の相補信号を生成し、この第1の相補信号を、負電源を基準とする第2の相補信号に変換し、この第2の相補信号を駆動回路に供給するようにしたので、特殊な回路技術や電子部品を用いることなく出力用のパワーMOSトランジスタを駆動制御することができ、しかも高耐圧プロセスの使用を必要最小限に抑えることができる。
【図面の簡単な説明】
【図1】 この発明の実施形態に係るD級増幅器の構成を示す図である。
【図2】 この実施形態に係る駆動制御回路の構成を示す回路図である。
【図3】 この実施形態に係る信号生成回路の構成を示す回路図である。
【図4】 この実施形態に係る駆動回路の構成を示す回路図である。
【図5】 この実施形態に係るバイアス回路の構成を示す図である。
【図6】 この実施形態に係るD級増幅器の動作を説明するための波形図である。
【図7】 従来技術に係るD級増幅器の構成図である。
【符号の説明】
DAMP:D級増幅器、100:入力段、200:変調回路、300:駆動制御回路、301:相補信号生成回路、302:信号変換回路、303:電流駆動回路、401,402:パワーMOSトランジスタ、R3021〜R3026,R3001〜R3008:抵抗、T3021,T3022:pnp型バイポーラトランジスタ、T3031,T3032:npn型バイポーラトランジスタ、TI:入力端子、TO:出力端子。

Claims (3)

  1. 正電源と出力端子との間に電流経路が接続された第1の出力用トランジスタと、負電源と前記出力端子との間に電流経路が接続された第2の出力用トランジスタとを有し、入力端子を介して外部から入力された信号に含まれる情報成分をパルス幅に反映させて該信号をパルス信号に変調し、該パルス信号に基づき前記第1および第2の出力用トランジスタを相補的に導通させるように構成されたD級増幅器 において、
    前記パルス信号の同相信号および逆相信号からなる第1の相補信号を生成する信号生成回路と、
    前記第1の相補信号を、前記負電源を基準とした電圧成分を有する第2の相補信号に変換する信号変換回路と、
    前記第2の相補信号に応答して前記負電源に向かう電流成分を有する第3の相補信号を出力する電流駆動回路と、
    前記第3の相補信号に応答して前記第1の出力用トランジスタを駆動する第1の駆動回路と、
    前記第2の相補信号に応答して前記第2の出力用トランジスタを駆動する第2の駆動回路と、を備え
    前記信号変換回路が、
    グランド電位にベースが共通にバイアスされ、第1および第2の抵抗を介して前記第1の相補信号が現れる前記信号生成回路の出力部にエミッタがそれぞれ接続された第1および第2のバイポーラトランジスタと、
    前記第1および第2のバイポーラトランジスタのコレクタと前記負電源との間にそれぞれ接続された第3および第4の抵抗と、
    を備えて構成されたことを特徴とするD級増幅器。
  2. 前記電流駆動回路が、
    前記第3および第4の抵抗にエミッタがそれぞれ接続され、前記第1の駆動回路の入力部にコレクタが接続され、前記負電源を基準とした所定電位にベースが共通にバイアスされた第3および第4のバイポーラトランジスタを備えて構成されたことを特徴とする請求項に記載されたD級増幅器。
  3. 前記第3および第4のバイポーラトランジスタが、前記入力端子を介して外部から入力された信号に応じて交互にオン状態となるように、前記第1ないし第4の抵抗の値を設定したことを特徴とする請求項に記載されたD級増幅器。
JP2002226628A 2002-08-02 2002-08-02 D級増幅器 Expired - Fee Related JP3922129B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002226628A JP3922129B2 (ja) 2002-08-02 2002-08-02 D級増幅器
US10/632,248 US6937091B2 (en) 2002-08-02 2003-08-01 Class D amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226628A JP3922129B2 (ja) 2002-08-02 2002-08-02 D級増幅器

Publications (2)

Publication Number Publication Date
JP2004072276A JP2004072276A (ja) 2004-03-04
JP3922129B2 true JP3922129B2 (ja) 2007-05-30

Family

ID=31185081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226628A Expired - Fee Related JP3922129B2 (ja) 2002-08-02 2002-08-02 D級増幅器

Country Status (2)

Country Link
US (1) US6937091B2 (ja)
JP (1) JP3922129B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209468B2 (en) * 2000-12-22 2007-04-24 Terahop Networks, Inc. Forming communication cluster of wireless AD HOC network based on common designation
SE0201859D0 (sv) * 2002-06-17 2002-06-17 Ericsson Telefon Ab L M An arrangement in a pulse amplifier
JP2006050151A (ja) * 2004-08-03 2006-02-16 Pioneer Electronic Corp D級増幅器
JP4820544B2 (ja) * 2004-10-27 2011-11-24 株式会社エヌエフ回路設計ブロック リニア動作の電力増幅回路および電力増幅器
US7423894B2 (en) * 2006-03-03 2008-09-09 Advanced Energy Industries, Inc. Interleaved soft switching bridge power converter
US7463089B1 (en) * 2006-07-28 2008-12-09 National Semiconductor Corporation Class D audio power amplifier for mobile applications
JP2009118447A (ja) * 2007-10-18 2009-05-28 Onkyo Corp スイッチングアンプ
KR101569902B1 (ko) 2008-02-13 2015-11-18 페어차일드코리아반도체 주식회사 컨버터
WO2009128130A1 (ja) * 2008-04-14 2009-10-22 株式会社フライングモール デジタル電力増幅器
US7982525B2 (en) * 2009-02-20 2011-07-19 Conexant Systems, Inc. Systems and methods for driving high power stages using lower voltage processes
US8410839B2 (en) * 2009-02-20 2013-04-02 Conexant Systems, Inc. Systems and methods for driving high power states using lower voltage processes
US8421518B2 (en) 2011-03-09 2013-04-16 Conexant Systems, Inc. High speed level shifters and method of operation
CN107567144B (zh) * 2017-09-26 2023-12-26 上海晶丰明源半导体股份有限公司 调色控制器、调色控制芯片及调光调色led驱动控制电路
US11271566B2 (en) * 2018-12-14 2022-03-08 Integrated Device Technology, Inc. Digital logic compatible inputs in compound semiconductor circuits
JP7411411B2 (ja) * 2019-12-27 2024-01-11 ローランド株式会社 楽音信号の増幅器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838193A (en) * 1996-11-26 1998-11-17 Motorola, Inc. Time-delay compensating wideband class-s modulator and method therefor

Also Published As

Publication number Publication date
US20040021512A1 (en) 2004-02-05
US6937091B2 (en) 2005-08-30
JP2004072276A (ja) 2004-03-04

Similar Documents

Publication Publication Date Title
JP3922129B2 (ja) D級増幅器
US7400191B2 (en) Switching power amplifier
US7463089B1 (en) Class D audio power amplifier for mobile applications
US7339425B2 (en) Class-D audio amplifier with half-swing pulse-width-modulation
KR101606400B1 (ko) 고속 차동 레벨 쉬프터 및 이를 포함하는 부트스트랩 드라이버
US7705672B1 (en) Buck converters as power amplifier
JP2004336643A (ja) 電力増幅回路
US8433078B2 (en) High perceived audio quality class D amplifier
JP3928515B2 (ja) D級増幅器
JP2013546284A (ja) Pwmコンパレータ及びd級増幅器
US7414474B2 (en) Operational amplifier
JP3941549B2 (ja) D級増幅器
US7439801B2 (en) Amplifier circuit with multiple power supplies
JP2006501718A (ja) 電力mosトランジスタのゲート駆動回路
JP5465548B2 (ja) レベルシフト回路
US8030864B2 (en) Motor drive circuit
JP3988555B2 (ja) D級増幅器
JP2000022451A (ja) 信号処理回路装置
JP2002344250A (ja) オーディオ用mos・fet電力増幅回路
JP3124179B2 (ja) パルス幅変調回路
US6184728B1 (en) Output circuit
JP2006229501A (ja) 振幅設定回路
JP5042500B2 (ja) 演算増幅器
JP2003318667A (ja) オペアンプ
JP2002314351A (ja) 電子回路装置及びこれを使用したスィチング回路装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees