JP3912549B2 - 光学装置用光学素子及び光ピックアップ装置 - Google Patents

光学装置用光学素子及び光ピックアップ装置 Download PDF

Info

Publication number
JP3912549B2
JP3912549B2 JP2005030014A JP2005030014A JP3912549B2 JP 3912549 B2 JP3912549 B2 JP 3912549B2 JP 2005030014 A JP2005030014 A JP 2005030014A JP 2005030014 A JP2005030014 A JP 2005030014A JP 3912549 B2 JP3912549 B2 JP 3912549B2
Authority
JP
Japan
Prior art keywords
group
refractive index
repeating unit
light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005030014A
Other languages
English (en)
Other versions
JP2005266780A5 (ja
JP2005266780A (ja
Inventor
達男 太田
隆 野崎
弥生 江黒
健 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2005030014A priority Critical patent/JP3912549B2/ja
Publication of JP2005266780A publication Critical patent/JP2005266780A/ja
Publication of JP2005266780A5 publication Critical patent/JP2005266780A5/ja
Application granted granted Critical
Publication of JP3912549B2 publication Critical patent/JP3912549B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Head (AREA)

Description

本発明は、光学素子及び光ピックアップ装置に関し、特に、短波長の光源からの光束を通過させる光学素子及びそれを用いた光ピックアップ装置に関する。
近年、波長400nm程度の青紫色半導体レーザを用いて、情報の記録/再生を行える高密度光ディスクシステムの研究・開発が急速に進んでいる。一例として、NA0.65、光源波長407nmの仕様で情報記録/再生を行う光ディスクでは、DVD(NA0.6、光源波長650nm、記憶容量4.7GB)と同じ大きさである直径12cmの光ディスクに対して、1面あたり20〜30GBの情報の記録が可能である(特許文献1参照)。
特開2003−303436号公報
ところで、光ピックアップ装置においては、比較的安価であり大量生産を容易に行えるプラスチック製の光学素子が多く用いられているが、青紫色半導体レーザ等から出射される短波長のレーザ光は、一般的な樹脂材の耐久性を低下させることが知られている。これに対し、所定の樹脂材においては、短波長のレーザ光に対する耐久性を有することがわかっている。しかるに、本発明者らが行った試験によれば、青紫色半導体レーザから出射される短波長のレーザ光を、プラスチック製の対物レンズに一定期間照射させたとき、照射された光学素子の光学特性が著しく劣化することが判明した。
本発明は、かかる問題点に鑑みて成されたものであり、短波長のレーザ光を照射しても光学特性の劣化を抑制できる、合成樹脂に反射防止膜を形成した光学素子及びそれを用いた光ピックアップ装置を提供することを目的とする。
請求項1に記載の光学装置用光学素子は、光源から出射した波長λ1(350nm≦λ1≦450nm)を有する光束を出射する光源を備えた光学装置用光学素子であって
脂環式構造を有する重合体を含有する樹脂から構成された基材と、前記基材に形成された反射防止膜とを有し、前記反射防止膜は、前記波長λ1の光に対して第1の屈折率を有する第1の層と、前記波長λ1の光に対して前記第1の屈折率よりも高い第2の屈折率を有する第2の層と、前記波長λ1の光に対して前記第2の屈折率よりも低い第3の屈折率を有する第3の層と、前記波長λ1の光に対して前記第3の屈折率よりも高い第4の屈折率を有する第4の層と、前記波長λ1の光に対して前記第4の屈折率よりも低い第5の屈折率を有する第5の層と、前記波長λ1の光に対して前記第5の屈折率よりも高い第6の屈折率を有する第6の層と、前記第6の屈折率よりも低い第7の屈折率を有する第7の層とを、前記基材に最も近い側から前記第1、第2、第3、第4、第5、第6、第7の層の順番で配置した層構成を含み、且つ
前記第1、第3、第5、第7の層は、酸化シリコンによりそれぞれ形成され、
前記第2、第4の層は、酸化ハフニュームによりそれぞれ形成され、
前記第6の層は、酸化ハフニューム又は酸化ジルコニュームによりそれぞれ形成され、
前記第1の層の材料の厚さdは102.7nm≦d≦140nmの範囲内であることを特徴とする。
本発明者らは、光学特性の劣化した光学素子を調査した結果、反射防止膜を形成した光学素子の表面に微少なくぼみやしわが生じており、それにより光学特性が劣化したことを発見した。更に、本発明者らは鋭意研究の結果、高屈折率層として一般的に用いられる例えば酸化チタンを含む反射防止膜と、所定の樹脂基材が、波長400nm付近のレーザ光を照射されることで化学反応を引き起こし、プラスチック樹脂が酸化劣化して形状変化を引き起こしているのではないかと推論した。
かかる推論に基づき、本発明者らは、所定の樹脂基材との相性を判定することで、反射防止膜の材料を選定し、それにより短波長の光束を照射させた場合でも、光学素子の表面に微少なくぼみやしわを生じさせることを抑制でき、もって長時間にわたって光学特性を維持できる光学特性を提供できることを見出したのである。このような反射防止膜は、前記低屈折率層が、酸化シリコン、フッ化アルミニウム、フッ化イットリウム、フッ化マグネシウム、酸化シリコンと酸化アルミニウムとの混合物、又は、これらの混合物により形成されているともに、前記高屈折率層が、酸化スカンジウム、酸化ニオビウム、酸化ランタン、チタン酸プラセオジウム、チタン酸ランタン、ランタンアルミネート、酸化イットリウム、酸化ハフニューム、酸化ジルコニューム、酸化タンタル、酸化タンタルとチタン混合物、窒化シリコン又はこれらの混合物により形成されているものである。尚、「低屈折率層」とは、波長λ1=405nmの光束を照射させたときに、(第1の)屈折率が1.30〜1.55である層をいい、「高屈折率層」とは、波長λ1=405nmの光束を照射させたときに、(第2の)屈折率が1.70以上である層をいうものとする。又、層を形成する上記物質は、各層の主成分についていうものとし、数%の異物質を含む場合もある。特に、請求項1記載の光学装置用光学素子にあっては、波長λ1の波長光のみならず他の波長光を使用した場合においても反射率を低く抑えた反射防止膜を提供することができる。
請求項2に記載の光学装置用光学素子は、請求項1に記載の発明において、情報記録媒体の情報記録面上で前記波長λ1の光の集光スポットを形成する対物レンズであることを特徴とする。
請求項3に記載の光学装置用光学素子は、請求項1又は2に記載の発明において、前記光学素子は、620nm≦λ2≦670nmを満足する波長λ2及び760nm≦λ3≦800nmを満足する波長λ3の光を情報記録媒体の情報記録面上で集光スポットを形成する対物レンズであることを特徴とする。
請求項に記載の光学素子は、請求項1〜3のいずれかの発明において、前記脂環式構造を有する重合体は、重量平均分子量(Mw)が1,000〜1,000,000である重合体全繰り返し単位中に、下記一般式(1)で表される脂環式構造を有する繰り返し単位(a)と、下記一般式(2)及び/又は下記一般式(3)で表される鎖状構造の繰り返し単位(b)とを、合計含有量が90重量%以上になるように含有し、さらに繰り返し単位(b)の含有量が1重量%以上10重量%未満であることを特徴とする。特に、上記重合体は、上記繰り返し単位(a)の連鎖が関係式A≦0.3×B(但し、A=(脂環式構造を有する繰り返し単位の連鎖の重量平均分子量)、B=(脂環式炭化水素系共重合体の重量平均分子量(Mw))×(脂環式構造を有する繰り返し単位数/脂環式炭化水素系共重合体を構成する全繰り返し単位数))を満たすものであることが好ましい。
Figure 0003912549
Figure 0003912549
Figure 0003912549
式(1)、式(2)及び式(3)中のR1〜R13は、それぞれ独立に、水素原子、鎖状炭化水素基、ハロゲン原子、アルコキシ基、ヒドロキシ基、エーテル基、エステル基、シアノ基、アミド基、イミド基、シリル基、及び極性基(ハロゲン原子、アルコキシ基、ヒドロキシ基、エーテル基、エステル基、シアノ基、アミド基、イミド基、又はシリル基)で置換された鎖状炭化水素基等を表す。その中でも水素原子又は炭素原子数1〜6個の鎖状炭化水素基の場合が、耐熱性、低吸水性に優れるので好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子を挙げることができる。極性基で置換された鎖状炭化水素基としては、例えば炭素原子数1〜20、好ましくは1〜10、より好ましくは1〜6のハロゲン化アルキル基が挙げられる。鎖状炭化水素基としては、例えば炭素原子数1〜20、好ましくは1〜10、より好ましくは1〜6のアルキル基;炭素原子数2〜20、好ましくは2〜10、より好ましくは2〜6のアルケニル基が挙げられる。
一般式(1)中のXは脂環式炭化水素基を表し、それを構成する炭素数は、通常4個〜20個、好ましくは4個〜10個、より好ましくは5個〜7個である。脂環式構造を構成する炭素数をこの範囲にすることで複屈折を低減することができる。また脂環式構造は単環構造に限らず、例えばノルボルナン環やジシクロヘキサン環などの多環構造のものでもよい。
脂環式炭化水素基は、炭素−炭素不飽和結合を有してもよいが、その含有量は、全炭素−炭素結合の10%以下、好ましくは5%以下、より好ましくは3%以下である。脂環式炭化水素基の炭素−炭素不飽和結合をこの範囲とすることで、透明性、耐熱性が向上する。また、脂環式炭化水素基を構成する炭素には、水素原子、炭化水素基、ハロゲン原子、アルコキシ基、ヒドロキシ基、エーテル基、エステル基、シアノ基、アミド基、イミド基、シリル基、及び極性基(ハロゲン原子、アルコキシ基、ヒドロキシ基、エーテル基、エステル基、シアノ基、アミド基、イミド基、又はシリル基)で置換された鎖状炭化水素基等が結合していてもよく、中でも水素原子又は炭素原子数1〜6個の鎖状炭化水素基が耐熱性、低吸水性の点で好ましい。
また、一般式(3)中の……は、主鎖中の炭素−炭素飽和、又は炭素−炭素不飽和結合を示すが、透明性、耐熱性を強く要求される場合、不飽和結合の含有率は、主鎖を構成する全炭素−炭素間結合の、通常10%以下、好ましくは5%以下、より好ましくは3%以下である。
一般式(1)で表される繰り返し単位の中でも、下記一般式(4)で表される繰り返し単位が、耐熱性、低吸水性の点で優れている。
Figure 0003912549
一般式(2)で表される繰り返し単位の中でも、下記一般式(5)で表される繰り返し単位が、耐熱性、低吸水性の点で優れている。
Figure 0003912549
一般式(3)で表される繰り返し単位の中でも、下記一般式(6)で表される繰り返し単位が、耐熱性、低吸水性の点で優れている。
Figure 0003912549
一般式(4)、一般式(5)、及び一般式(6)中の、Ra、Rb、Rc、Rd、Re、Rf、Rg、Rh、Ri、Rj、Rk、Rl、Rm、Rnはそれぞれ独立に水素原子または低級鎖状炭化水素基を示し、水素原子または炭素数1〜6の低級アルキル基が、耐熱性、低吸水性の点で優れている。
一般式(2)及び一般式(3)で表される鎖状構造の繰り返し単位の中では、一般式(3)で表される鎖状構造の繰り返し単位の方が、得られる炭化水素系重合体の強度特性に優れている。
本発明においては、炭化水素共重合体中の、一般式(1)で表される脂環式構造を有する繰り返し単位(a)と、一般式(2)及び/又は一般式(3)で表される鎖状構造の繰り返し単位(b)との合計含有量は、重量基準で、通常90%以上、好ましくは95%以上、より好ましくは97%以上である。合計含有量を上記範囲にすることで、低複屈折性、耐熱性、低吸水性、機械強度が高度にバランスされる。
脂環式構造を有する重合体における鎖状構造の繰り返し単位(b)の含有量は使用目的に応じて適宜選択されるが、通常、重量基準で1%以上10%未満、好ましくは1%以上8%以下、より好ましくは2%以上6%以下の範囲である。繰り返し単位(b)の含有量が上記範囲にあると、低複屈折性、耐熱性、低吸水性が高度にバランスされる。
また、繰り返し単位(a)の連鎖長は、脂環式構造を有する重合体の分子鎖長に対して十分に短く、具体的には、A=(脂環式構造を有する繰り返し単位連鎖の重量平均分子量)、B=(脂環式構造を有する重合体の重量平均分子量(Mw)×(脂環式構造を有する繰り返し単位数/脂環式構造を有する重合体を構成する全繰り返し単位数))としたとき、AがBの30%以下であり、好ましくは20%以下、より好ましくは15%以下、特に好ましくは10%以下の範囲である。Aがこの範囲外では、低複屈折性に劣る。
さらに、繰り返し単位(a)の連鎖長が特定の分布を有しているもの好ましい。具体的には、A=(脂環式構造を有する繰り返し単位連鎖の重量平均分子量)、C=(脂環式構造を有する繰り返し単位連鎖の数平均分子量)としたとき、A/Cが、好ましくは1.3以上、より好ましくは1.3〜8、最も好ましくは1.7〜6の範囲である。A/Cが過度に小さいとブロック程度が増加し、過度に大きいとランダムの程度が増加して、いずれの場合にも低複屈折性に劣る。
本発明の脂環式構造(脂環式炭化水素系共重合体ともいう)を有する重合体の分子量は、ゲル・パーミエーション・クロマトグラフィー(以下、GPC)により測定されるポリスチレン(またはポリイソプレン)換算重量平均分子量(Mw)で、1,000〜1,000,000、好ましくは5,000〜500,000、より好ましくは10,000〜300,000、最も好ましくは50,000〜250,000の範囲である。脂環式構造を有する重合体の重量平均分子量(Mw)が過度に小さいと成形物の強度特性に劣り、逆に過度に大きいと成形物の複屈折が大きくなる。
かかる共重合体の分子量分布は、使用目的に応じて適宜選択できるが、GPCにより測定されるポリスチレン(またはポリイソプレン)換算の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で、通常2.5以下、好ましくは2.3以下、より好ましくは2以下の範囲である。Mw/Mnがこの範囲にあると、機械強度と耐熱性が高度にバランスされる。
共重合体のガラス転移温度(Tg)は、使用目的に応じて適宜選択されればよいが、通常50℃〜250℃、好ましくは70℃〜200℃、より好ましくは90℃〜180℃である。
(脂環式構造を有する重合体の製造方法)
本発明の脂環式構造を有する重合体の製造方法は、(1)芳香族ビニル系化合物と共重合可能なその他のモノマーとを共重合し、主鎖及び芳香環の炭素−炭素不飽和結合を水素化する方法、(2)脂環式ビニル系化合物と共重合可能なその他のモノマーとを共重合し、必要に応じて水素化する方法等が挙げられる。
上記の方法で本発明の脂環式構造を有する重合体を製造する場合には、芳香族ビニル系化合物及び/又は脂環式ビニル系化合物(a’)と共重合可能なその他のモノマー(b’)との共重合体で、共重合体中の化合物(a’)由来の繰り返し単位が、D=(芳香族ビニル系化合物及び/又は脂環式ビニル系化合物由来の繰り返し単位連鎖の重量平均分子量)、E=(炭化水素系共重合体の重量平均分子量(Mw)×(芳香族ビニル系化合物及び/又は脂環式ビニル系化合物由来の繰り返し単位数/炭化水素系共重合体を構成する全繰り返し単位数))、としたとき、DがEの30%以下、好ましくは20%以下、より好ましくは15%以下、最も好ましくは10%以下である連鎖構造を有する共重合体の、主鎖、及び芳香環やシクロアルケン環等の不飽和環の炭素−炭素不飽和結合を水素化する方法により効率的に得ることができる。 Dが上記範囲外では、得られる脂環式構造を有する重合体の低複屈折性が劣る。
本発明では(1)の方法がより効率的に脂環式構造を有する重合体を得ることができるので好ましい。
上記水素化前の共重合体は、さらに、F=(芳香族ビニル系化合物及び/又は脂環式ビニル系化合物由来の繰り返し単位の連鎖の数平均分子量)、としたときの、D/Fが一定の範囲であるのが好ましい。具体的には、D/Fが、好ましくは1.3以上、より好ましくは1.3以上、8以下、最も好ましくは1.7以上、6以下の範囲である。D/Fがこの範囲外では、得られる脂環式構造を有する重合体の低複屈折性が劣る。
上記化合物(a’)由来の繰り返し単位の連鎖の重量平均分子量および数平均分子量は、例えば、文献Macromorecules 1983, 16,1925−1928記載の、芳香族ビニル系共重合体の主鎖中不飽和二重結合をオゾン付加した後還元分解し、取り出した芳香族ビニル連鎖の分子量を測定する方法等により確認できる。
水素化前の共重合体の分子量は、GPCにより測定されるポリスチレン(またはポリイソプレン)換算重量平均分子量(Mw)で、1,000〜1,000,000、好ましくは5,000〜500,000、より好ましくは10,000〜300,000の範囲である。共重合体の重量平均分子量(Mw)が過度に小さいと、それから得られる脂環式構造を有する重合体の成形物の強度特性に劣り、逆に過度に大きいと水素化反応性に劣る。
上記(1)の方法において使用する芳香族ビニル系化合物の具体例としては、例えば、スチレン、α−メチルスチレン、α−エチルスチレン、α−プロピルスチレン、α−イソプロピルスチレン、α−t−ブチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、2,4−ジイソプロピルスチレン、2,4−ジメチルスチレン、4−t−ブチルスチレン、5−t−ブチル−2−メチルスチレン、モノクロロスチレン、ジクロロスチレン、モノフルオロスチレン、4−フェニルスチレン等が挙げられ、スチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン等が好ましい。
上記(2)の方法において使用する脂環式ビニル系化合物の具体例としては、例えば、シクロブチルエチレン、シクロペンチルエチレン、シクロヘキシルエチレン、シクロヘプチルエチレン、シクロオクチルエチレン、ノルボルニルエチレン、ジシクロヘキシルエチレン、α−メチルシクロヘキシルエチレン、α−t−ブチルシクロヘキシルエチレン、シクロペンテニルエチレン、シクロヘキセニルエチレン、シクロヘプテニルエチレン、シクロオクテニルエチレン、シクロデケニルエチレン、ノルボルネニルエチレン、α−メチルシクロヘキセニルエチレン、及びα−t−ブチルシクロヘキセニルエチレン等が挙げられ、これらの中でも、シクロヘキシルエチレン、α−メチルシクロヘキシルエチレンが好ましい。
これらの芳香族ビニル系化合物及び脂環式ビニル系化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
共重合可能なその他のモノマーとしては、格別な限定はないが、鎖状ビニル化合物及び鎖状共役ジエン化合物等が用いられ、鎖状共役ジエンを用いた場合、製造過程における操作性に優れ、また得られる脂環式構造を有する重合体の強度特性に優れる。
鎖状ビニル化合物の具体例としては、例えば、エチレン、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン等の鎖状オレフィンモノマー;1−シアノエチレン(アクリロニトリル)、1−シアノ−1−メチルエチレン(メタアクリロニトリル)、1−シアノ−1−クロロエチレン(α−クロロアクリロニトリル)等のニトリル系モノマー;1−(メトキシカルボニル)−1−メチルエチレン(メタアクリル酸メチルエステル)、1−(エトキシカルボニル)−1−メチルエチレン(メタアクリル酸エチルエステル)、1−(プロポキシカルボニル)−1−メチルエチレン(メタアクリル酸プロピルエステル)、1−(ブトキシカルボニル)−1−メチルエチレン(メタアクリル酸ブチルエステル)、1−メトキシカルボニルエチレン(アクリル酸メチルエステル)、1−エトキシカルボニルエチレン(アクリル酸エチルエステル)、1−プロポキシカルボニルエチレン(アクリル酸プロピルエステル)、1−ブトキシカルボニルエチレン(アクリル酸ブチルエステル)などの(メタ)アクリル酸エステル系モノマー、1−カルボキシエチレン(アクリル酸)、1−カルボキシ−1−メチルエチレン(メタクリル酸)、無水マレイン酸などの不飽和脂肪酸系モノマー等が挙げられ、中でも、鎖状オレフィンモノマーが好ましく、エチレン、プロピレン、1−ブテンが最も好ましい。
鎖状共役ジエンは、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、及び1,3−ヘキサジエン等が挙げられる。これら鎖状ビニル化合物及び鎖状共役ジエンの中でも鎖状共役ジエンが好ましく、ブタジエン、イソプレンが特に好ましい。これらの鎖状ビニル化合物及び鎖状共役ジエンは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
これらの鎖状ビニル系化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
化合物(a’)を重合する方法は、格別制限はないが、一括重合法(バッチ法)、モノマー逐次添加法(モノマー全使用量の内の一部を用いて重合を開始した後、残りのモノマーを逐次添加して重合を進めていく方法)等が挙げられ、特にモノマー逐次添加法を用いると、好ましい連鎖構造を有する炭化水素系共重合体が得られる。水素化前の共重合体は、前述のDの値がより小さい程、及び/又は、D/Fが大きな値を示す程、よりランダムな連鎖構造を有する。共重合体がどの程度のランダム性を有しているかは、芳香族ビニル系化合物の重合速度と共重合可能なその他のモノマーの重合速度との速度比で決まり、この速度比が小さい程、よりランダムな連鎖構造を有していることになる。
前記モノマー逐次添加法によれば、均一に混合された混合モノマーが重合系内に逐次的に添加されるため、バッチ法とは異なり、ポリマーの重合による成長過程においてモノマーの重合選択性をより下げることができるので、得られる共重合体がよりランダムな連鎖構造になる。また、重合系内での重合反応熱の蓄積が小さくてすむので重合温度を低く安定に保つことがでる。
モノマー逐次添加法の場合、まずモノマーの全使用量のうち、通常0.01重量%〜60重量%、好ましくは0.02重量%〜20重量%、より好ましくは0.05重量%〜10重量%のモノマーを初期モノマーとして予め重合反応器内に存在させた状態で開始剤を添加して重合を開始する。初期モノマー量をこのような範囲にすると、重合開始後の初期反応において発生する反応熱除去を容易にすることができ、得られる共重合体をよりランダムな連鎖構造にすることができる。
上記初期モノマーの重合転化率を70%以上、好ましくは80%以上、より好ましくは90%以上になるまで反応を継続すると、得られる共重合体の連鎖構造がよりランダムになる。その後、前記モノマーの残部を継続的に添加するが、添加の速度は重合系内のモノマーの消費速度を考慮して決定される。
通常は、初期モノマーの重合添加率が90%に達するまでの所要時間をT、初期モノマーの全使用モノマーに対する比率(%)をIとしたとき、関係式[(100−I)×T/I]で与えられる時間の0.5〜3倍、好ましくは0.8〜2倍、より好ましくは1〜1.5倍となる範囲内で残部モノマーの添加が終了するように決定される。具体的には通常0.1〜30時間、好ましくは0.5時間〜5時間、より好ましくは1時間〜3時間の範囲となるように、初期モノマー量と残りモノマーの添加速度を決定する。また、モノマー添加終了直後の全モノマー重合転化率は、通常80%以上、好ましくは85%以上、より好ましくは90%以上である。モノマー添加終了直後の全モノマー重合転化率を上記の範囲とすると、得られる共重合体の連鎖構造がよりランダムになる。
重合反応は、ラジカル重合、アニオン重合、カチオン重合等、特別な制約はないが、重合操作、後工程での水素化反応の容易さ、及び最終的に得られる炭化水素系共重合体の機械的強度を考えると、アニオン重合法が好ましい。
ラジカル重合の場合は、開始剤の存在下、通常0℃〜200℃、好ましくは20℃〜150℃で、塊状重合、溶液重合、懸濁重合、乳化重合等の方法を用いることができるが、特に樹脂中への不純物等の混入等を防止する必要のある場合は、塊状重合、懸濁重合が望ましい。ラジカル開始剤としては、過酸化ベンゾイル、過酸化ラウロイル、t−ブチル−パーオキシ−2−エチルヘキサノエート等の有機過酸化物、アゾイソブチロニトリル、4,4−アゾビス−4−シアノペンタン酸、アゾジベンゾイル等のアゾ化合物、過硫酸カリウム、過硫酸アンモニウムに代表される水溶性触媒やレドックス開始剤などが使用可能である。
アニオン重合の場合には、開始剤の存在下、通常0℃〜200℃、好ましくは20℃〜100℃、特に好ましくは20℃〜80℃の温度範囲において、塊状重合、溶液重合、スラリー重合等の方法を用いることができるが、反応熱の除去を考慮すると、溶液重合が好ましい。この場合、重合体及びその水素化物を溶解できる不活性溶媒を用いる。溶液反応で用いる不活性溶媒は、例えばn−ブタン、n−ペンタン、iso−ペンタン、n−ヘキサン、n−ヘプタン、iso−オクタン等の脂肪族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン、デカリン等の脂環式炭化水素類;ベンゼン、トルエン等の芳香族炭化水素類等が挙げられ、中でも脂肪族炭化水素類や脂環式炭化水素類を用いると、水素化反応にも不活性な溶媒としてそのまま使用することができる。これらの溶媒は、それぞれ単独で、或いは2種類以上を組み合わせて使用でき、通常、全使用モノマー100重量部に対して200〜10,000重量部となるような割合で用いられる。
上記アニオン重合の開始剤としては、例えば、n−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム、ヘキシルリチウム、フェニルリチウムなどのモノ有機リチウム、ジリチオメタン、1,4−ジオブタン、1,4−ジリチオー2−エチルシクロヘキサン等の多官能性有機リチウム化合物などが使用可能である。
重合反応においては、また、重合促進剤や、ランダマイザー(或る1成分の連鎖が長くなるのを防止する機能を有する添加剤)などを使用できる。アニオン重合の場合には、例えばルイス塩基化合物をランダマイザーとして使用できる。ルイス塩基化合物の具体例としては、例えば、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジフェニルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルフェニルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン、トリエチルアミン、ピリジン等の第3級アミン化合物;カリウム−t−アミルオキシド、カリウム−t−ブチルオキシド等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物が挙げられる。これらのルイス塩基化合物は、それぞれ単独で、或いは2種類以上を組み合わせて使用できる。
上記のラジカル重合やアニオン重合により得られた重合体は、例えばスチームストリッピング法、直接脱溶媒法、アルコール凝固法等の公知の方法で回収できる。また、重合時に、水素化反応で不活性な溶媒を用いた場合には、重合溶液から重合体を回収せず、そのまま水素添加工程に使用することができる。
不飽和結合の水素化方法
水素化前の共重合体の芳香環やシクロアルケン環などの不飽和環の炭素−炭素二重結合や主鎖の不飽和結合等の水素化反応を行う場合は、反応方法、反応形態に特別な制限はなく、公知の方法にしたがって行えばよいが、水素化率を高くでき、且つ水素化反応と同時に起こる重合体鎖切断反応の少ない水素化方法が好ましく、例えば、有機溶媒中、ニッケル、コバルト、鉄、チタン、ロジウム、パラジウム、白金、ルテニウム、及びレニウムから選ばれる少なくとも1つの金属を含む触媒を用いて行う方法が挙げられる。水素化触媒は、不均一触媒、均一触媒のいずれも使用可能である。
不均一系触媒は、金属または金属化合物のままで、又は適当な担体に担持して用いることができる。担体としては、例えば、活性炭、シリカ、アルミナ、炭化カルシウム、チタニア、マグネシア、ジルコニア、ケイソウ土、炭化珪素等が挙げられ、触媒の担持量は、通常0.01〜80重量%、好ましくは0.05〜60重量%の範囲である。均一系触媒は、ニッケル、コバルト、チタンまたは鉄化合物と有機金属化合物(例えば、有機アルミニウム化合物、有機リチウム化合物)とを組み合わせた触媒、またはロジウム、パラジウム、白金、ルテニウム、レニウム等の有機金属錯体触媒を用いることができる。ニッケル、コバルト、チタンまたは鉄化合物としては、例えば、各種金属のアセチルアセトン塩、ナフテン塩、シクロペンタジエニル化合物、シクロペンタジエニルジクロロ化合物等が用いられる。有機アルミニウム化合物としては、トリエチルアルミニウム、トリイソブチルアルミニウム等のアルキルアルミニウム、ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド等のハロゲン化アルミニウム、ジイソブチルアルミニウムハイドライド等の水素化アルキルアルミニウム等が好適に用いられる。
有機金属錯体触媒の例としては、上記各金属のγ−ジクロロ−π−ベンゼン錯体、ジクロロ−トリス(トリフェニルホスフィン)錯体、ヒドリド−クロロ−トリフェニルホスフィン)錯体等の金属錯体が使用される。これらの水素化触媒は、それぞれ単独で、或いは2種類以上組み合わせて使用することができ、その使用量は、重合体に対して、重量基準にて、通常、0.01〜100部、好ましくは0.05〜50部、より好ましくは0.1〜30部である。
水素化反応は、通常10℃〜250℃であるが、水素化率を高くでき、且つ、水素化反応と同時に起こる重合体鎖切断反応を小さくできるという理由から、好ましくは50℃〜200℃、より好ましくは80℃〜180℃である。また水素圧力は、通常0.1MPa〜30MPaであるが、上記理由に加え、操作性の観点から、好ましくは1MPa〜20MPa、より好ましくは2MPa〜10MPaである。
このようにして得られた、水素化物の水素化率は、1H−NMRによる測定において、主鎖の炭素−炭素不飽和結合、芳香環の炭素−炭素二重結合、不飽和環の炭素−炭素二重結合のいずれも、通常90%以上、好ましくは95%以上、より好ましくは97%以上である。水素化率が低いと、得られる共重合体の低複屈折性、熱安定性等が低下する。
水素化反応終了後に水素化物を回収する方法は特に限定されていない。通常、濾過、遠心分離等の方法により水素化触媒残渣を除去した後、水素化物の溶液から溶媒を直接乾燥により除去する方法、水素化物の溶液を水素化物にとっての貧溶媒中に注ぎ、水素化物を凝固させる方法を用いることができる。
(樹脂組成物)
本発明においては、上記脂環式構造を有する重合体に酸化防止剤を含んでなる樹脂組成物が提供される。
酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などが挙げられ、これらの中でもフェノール系酸化防止剤、特にアルキル置換フェノール系酸化防止剤が好ましい。これらの酸化防止剤を配合することにより、透明性、低吸水性を低下させることなく、成形時の酸化劣化等による成形物の着色や強度低下を防止できる。
フェノール系酸化防止剤としては、従来公知のものが使用でき、例えば、2−t−ブチル−6−(3−t−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、2,4−ジ−t−アミル−6−(1−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)エチル)フェニルアクリレートなどの特開昭63−179953号公報や特開平1−168643号公報に記載されるアクリレート系化合物;オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス(メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニルプロピオネート)メタン[すなわち、ペンタエリスリメチル−テトラキス(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルプロピオネート)]、トリエチレングリコール ビス(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物;6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−2,4−ビスオクチルチオ−1,3,5−トリアジン、4−ビスオクチルチオ−1,3,5−トリアジン、2−オクチルチオ−4,6−ビス−(3,5−ジ−t−ブチル−4−オキシアニリノ)−1,3,5−トリアジンなどのトリアジン基含有フェノール系化合物;などが挙げられる。
リン系酸化防止剤としては、一般の樹脂工業で通常使用される物であれば格別な限定はなく、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、10−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイドなどのモノホスファイト系化合物;4,4’−ブチリデン−ビス(3−メチル−6−t−ブチルフェニル−ジ−トリデシルホスファイト)、4,4’イソプロピリデン−ビス(フェニル−ジ−アルキル(C12〜C15)ホスファイト)などのジホスファイト系化合物などが挙げられる。これらの中でも、モノホスファイト系化合物が好ましく、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイトなどが特に好ましい。
イオウ系酸化防止剤としては、例えば、ジラウリル3,3−チオジプロピオネート、ジミリスチル3,3’−チオジプロピピオネート、ジステアリル 3,3−チオジプロピオネート、ラウリルステアリル3,3−チオジプロピオネート、ペンタエリスリトール−テトラキス−(β−ラウリル−チオ−プロピオネート、3,9−ビス(2−ドデシルチオエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンなどが挙げられる。
これらの酸化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、本発明の目的を損なわれない範囲で適宜選択されるが、脂環式構造を有する重合体100重量部に対して通常0.001〜5重量部、好ましくは0.01〜1重量部である。
また本発明においては、前記脂環式構造を有する重合体と、(1)軟質重合体、(2)アルコール性化合物、(3)有機または無機フィラーからなる群から選ばれる少なくとも1種類の配合剤を含んでなる樹脂組成物が提供される。これらの配合剤を配合することにより、透明性、低吸水性、機械的強度などの諸特性を低下させることなく、長時間の高温高湿度環境下での白濁を防止できる。
これらの中でも、(1)軟質重合体、及び(2)アルコール性化合物が、高温高湿度環境下における白濁防止効果、得られる樹脂組成物の透明性に優れる。
(1)軟質重合体
本発明に用いる軟質重合体は、通常30℃以下のTgを有する重合体であり、Tgが複数存在する場合には、少なくとも最も低いTgが30℃以下であればよい。
これらの軟質重合体の具体例としては、例えば、液状ポリエチレン、ポリプロピレン、ポリ−1−ブテン、エチレン・α−オレフィン共重合体、プロピレン・α−オレフィン共重合体、エチレン・プロピレン・ジエン共重合体(EPDM)、エチレン・プロピレン・スチレン共重合体などのオレフィン系軟質重合体;ポリイソブチレン、イソブチレン・イソプレンゴム、イソブチレン・スチレン共重合体などのイソブチレン系軟質重合体;ポリブタジエン、ポリイソプレン、ブタジエン・スチレンランダム共重合体、イソプレン・スチレンランダム共重合体、アクリロニトリル・ブタジエン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、ブタジエン・スチレン・ブロック共重合体、スチレン・ブタジエン・スチレン・ブロック共重合体、イソプレン・スチレン・ブロック共重合体、スチレン・イソプレン・スチレン・ブロック共重合体などのジエン系軟質重合体;ジメチルポリシロキサン、ジフェニルポリシロキサン、ジヒドロキシポリシロキサン、などのケイ素含有軟質重合体; ポリブチルアクリレート、ポリブチルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリアクリルアミド、ポリアクリロニトリル、ブチルアクリレート・スチレン共重合体などのα,β−不飽和酸からなる軟質重合体; ポリビニルアルコール、ポリ酢酸ビニル、ポリステアリン酸ビニル、酢酸ビニル・スチレン共重合体などの不飽和アルコールおよびアミンまたはそのアシル誘導体またはアセタールからなる軟質重合体; ポリエチレンオキシド、ポリプロピレンオキシド、エピクロルヒドリンゴム、などのエポキシ系軟質軟質重合体;フッ化ビニリデン系ゴム、四フッ化エチレン−プロピレンゴム、などのフッ素系軟質重合体;天然ゴム、ポリペプチド、蛋白質、ポリエステル系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどのその他の軟質重合体などが挙げられる。これらの軟質重合体は、架橋構造を有したものであってもよく、また、変性反応により官能基を導入したものでもよい。
上記軟質重合体の中でもジエン系軟質重合体が好ましく、特に該軟質重合体の炭素−炭素不飽和結合を水素化した水素化物が、ゴム弾性、機械強度、柔軟性、分散性の点で優れる。
(2)アルコール性化合物
また、アルコール性化合物は、分子内に少なくとも1つの非フェノール性水酸基を有する化合物で、好適には、少なくても1つの水酸基と少なくとも1つのエーテル結合又はエステル結合を有する。このような化合物の具体例としては、例えば2価以上の多価アルコール、より好ましくは3価以上の多価アルコール、さらに好ましくは3〜8個の水酸基を有する多価アルコールの水酸基の1つがエーテル化またはエステル化されたアルコール性エーテル化合物やアルコール性エステル化合物が挙げられる。
2価以上の多価アルコールとしては、例えば、ポリエチレングリコール、グリセロール、トリメチロールプロパン、ペンタエリスリトール、ジグリセロール、トリグリセロール、ジペンタエリスリトール、1,6,7−トリヒドロキシ−2,2−ジ(ヒドロキシメチル)−4−オキソヘプタン、ソルビトール、2−メチル−1,6,7−トリヒドロキシ−2−ヒドロキシメチル−4−オキソヘプタン、1,5,6−トリヒドロキシ−3−オキソヘキサンペンタエリスリトール、トリス(2−ヒドロキシエチル)イソシアヌレートなどが挙げられるが、特に3価以上の多価アルコール、さらには3〜8個の水酸基を有する多価アルコールが好ましい。またアルコール性エステル化合物を得る場合には、α、β−ジオールを含むアルコール性エステル化合物が合成可能なグリセロール、ジグリセロール、トリグリセロールなどが好ましい。
このようなアルコール性化合物として、例えば、グリセリンモノステアレート、グリセリンモノラウレート、グリセリンモノベヘネート、ジグリセリンモノステアレート、グリセリンジステアレート、グリセリンジラウレート、ペンタエリスリトールモノステアレート、ペンタエリスリトールモノラウレート、ペンタエリスリトールモノベヘレート、ペンタエリスリトールジステアレート、ペンタエリスリトールジラウレート、ペンタエリスリトールトリステアレート、ジペンタエリスリトールジステアレートなどの多価アルコール性エステル化物;3−(オクチルオキシ)−1,2−プロパンジオール、3−(デシルオキシ)−1,2−プロパンジオール、3−(ラウリルオキシ)−1,2−プロパンジオール、3−(4−ノニルフェニルオキシ)−1,2−プロパンジオール、1,6−ジヒドロオキシ−2,2−ジ(ヒドロキシメチル)−7−(4−ノニルフェニルオキシ)−4−オキソヘプタン、p−ノニルフェニルエーテルとホルムアルデヒドの縮合体とグリシドールの反応により得られるアルコール性エーテル化合物、 p−オクチルフェニルエーテルとホルムアルデヒドの縮合体とグリシドールの反応により得られるアルコール性エーテル化合物、 p−オクチルフェニルエーテルとジシクロペンタジエンの縮合体とグリシドールの反応により得られるアルコール性エーテル化合物などが挙げられる。これらの多価アルコール性化合物は単独でまたは2種以上を組み合わせて使用される。これらの多価アルコール性化合物の分子量は特に限定されないが、通常500〜2000、好ましくは800〜1500のものが、透明性の低下も少ない。
(3)有機または無機フィラー
有機フィラーとしては、通常の有機重合体粒子または架橋有機重合体粒子を用いることができ、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン; ポリ塩化ビニル、ポリ塩化ビニリデンなどのハロゲン含有ビニル重合体;ポリアリレート、ポリメタクリレートなどのα,β‐不飽和酸から誘導された重合体; ポリビニルアルコール、ポリ酢酸ビニルなどの不飽和アルコールから誘導された重合体; ポリエチレンオキシド、またはビスグリシジルエーテルからから誘導された重合体; ポリフェニレンオキシド、 ポリカーボネート、 ポリスルフォンなどの芳香族縮合系重合体; ポリウレタン;ポリアミド;ポリエステル;アルデヒド・フェノール系樹脂;天然高分子化合物 などの粒子または架橋粒子を挙げることができる。
無機フィラーとしては、例えば、フッ化リチウム、硼砂(硼酸ナトリウム含水塩)などの1族元素化合物;炭酸マグネシウム、燐酸マグネシウム、炭酸カルシウム、チタン酸ストロンチウム、炭酸バリウムなどの2族元素化合物; 二酸化チタン(チタニア)、一酸化チタンなどの4族元素化合物;二酸化モリブデン、三酸化モリブデンの6族元素化合物;塩化マンガン、酢酸マンガンなどの7族元素化合物;塩化コバルト、酢酸コバルトなどの8〜10族元素化合物;沃化第一銅などの11族元素化合物;酸化亜鉛、酢酸亜鉛などの12族元素化合物;酸化アルミニウム(アルミナ)、フッ化アルミニウム、アルミノシリケート(珪酸アルミナ、カオリン、カオリナイト)などの13族元素化合物;酸化珪素(シリカ、シリカゲル)、石墨、カーボン、グラファイト、ガラスなどの14族元素化合物;カーナル石、カイナイト、雲母(マイカ、キンウンモ)、バイロース鉱などの天然鉱物の粒子が挙げられる。
上記(1)〜(3)の化合物の配合量は脂環式構造を有する重合体と配合される化合物の組み合わせによって決まるが、一般に、配合量が多すぎれば、組成物のガラス転移温度や透明性が大きく低下し、光学材料として使用するのに不適である。また配合量が少なすぎれば、高温高湿下において成形物の白濁を生じる場合がある。配合量としては、脂環式構造を有する重合体100重量部に対して、通常0.01〜10重量部、好ましくは0.02〜5重量部、特に好ましくは0.05〜2重量部の割合で配合する。配合量が少なすぎる場合には高温高湿度環境下における白濁防止効果が得られず、配合量が多すぎる場合は成形品の耐熱性、透明性が低下する。
その他の配合剤
本発明の樹脂組成物には、必要に応じて、その他の配合剤として、紫外線吸収剤、光安定剤、近赤外線吸収剤、染料や顔料などの着色剤、滑剤、可塑剤、帯電防止剤、蛍光増白剤などを配合することができ、これらは単独で、あるいは2種以上混合して用いることができ、その配合量は本発明の目的を損ねない範囲で適宜選択される。
成形材料
本発明の樹脂組成物は、上記各成分を適宜混合することにより得ることができる。混合方法としては、炭化水素系重合体に各成分が十分に分散される方法であれば特に限定されなず、例えばミキサー、二軸混錬機、ロール、ブラベンダー、押出機などで樹脂を溶融状態で混練する方法、適当な溶剤に溶解して分散させ凝固する方法などが挙げられる。二軸混練機を用いる場合、混錬後に通常は溶融状態で棒状に押し出し、ストランドカッターで適当な長さに切り、ペレット化した成形材料として用いられることが多い。
(光学素子)
本発明の光学素子は、前記脂環式構造を有する重合体または樹脂組成物からなる成形材料を成形して得られる。成形方法としては、格別な制限されるものはないが、低複屈折性、機械強度、寸法精度等の特性に優れた成形物を得る為には溶融成形が好ましい。溶融成形法としては、例えばプレス成形、押し出し成形、射出成形等が挙げられるが、射出成形が成形性、生産性の観点から好ましい。成形条件は使用目的、又は成形方法により適宜選択されるが、例えば射出成形における樹脂温度は、通常150〜400℃、好ましくは200〜350℃、より好ましくは230〜330℃の範囲で適宜選択される。樹脂温度が過度に低いと流動性が悪化し、成形品にヒケやひずみを生じ、樹脂温度が過度に高いと樹脂の熱分解によるシルバーストリークが発生したり、成形物が黄変するなどの成形不良が発生するおそれがある。
請求項に記載の光学素子は、請求項に記載の発明において、前記脂環式構造を有する重合体は、下記式(11)で表される繰り返し単位〔1〕を含有する重合体ブロック〔A〕と、下記式(11)で表される繰り返し単位〔1〕並びに下記式(12)で表される繰り返し単位〔2〕または/および下記式(13)で表される繰り返し単位〔3〕を含有する重合体ブロック〔B〕とを有し、前記ブロック〔A〕中の繰り返し単位〔1〕のモル分率a(モル%)と、前記ブロック〔B〕中の繰り返し単位〔1〕のモル分率b(モル%)との関係がa>bであるブロック共重合体であることを特徴とする。
Figure 0003912549
(式中、R1 は水素原子、または炭素数1〜20のアルキル基を表し、R2−R12はそれぞれ独立に、水素原子、炭素数1〜20のアルキル基、ヒドロキシル基、炭素数1〜20のアルコキシ基、またはハロゲン基である。)
Figure 0003912549
(式中、R13は、水素原子、または炭素数1〜20のアルキル基を表す。)
Figure 0003912549
(式中、R14およびR15はそれぞれ独立に、水素原子、または炭素数1〜20のアルキル基を表す。)
上記式(11)で表される繰り返し単位〔1〕の好ましい構造は、R1 が水素またはメチル基で、R2 −R12がすべて水素のものである。重合体ブロック〔A〕中の繰り返し単位〔1〕の含有量が上記範囲にあると、透明性および機械的強度に優れる。重合体ブロック〔A〕における、前記繰り返し単位〔1〕以外の残部は、鎖状共役ジエンや鎖状ビニル化合物由来の繰り返し単位を水素化したものである。
重合体ブロック〔B〕は、前記繰り返し単位〔1〕ならびに上記式(12)で表される繰り返し単位〔12〕または/および上記式(13)で表される繰り返し単位〔3〕を含有する。重合体ブロック〔B〕中の繰り返し単位〔1〕の含有量は、好ましくは40〜95モル%、より好ましくは50〜90モル%である。繰り返し単位〔1〕の含有量が上記範囲にあると、透明性および機械的強度に優れる。ブロック〔B〕中の繰り返し単位〔2〕のモル分率をm2(モル%)および、繰り返し単位〔3〕のモル分率をm3(モル%)としたときに、2×m2+m3が、好ましくは2モル%以上、より好ましくは5〜60モル%、最も好ましくは10〜50モル%である。
上記式(13)で表される繰り返し単位〔3〕の好ましい構造は、R14が水素で、R15がメチル基またはエチル基のものである。
重合体ブロック〔B〕中の、前記繰り返し単位〔2〕または繰り返し単位〔3〕の含有量が少なすぎると、機械的強度が低下する。したがって、繰り返し単位〔2〕および繰り返し単位〔3〕の含有量が上記範囲にあると、透明性および機械的強度に優れる。重合体ブロック〔B〕は、さらに、下記式(X)で表される繰り返し単位〔X〕を含有していてもよい。繰り返し単位〔X〕の含有量は、本発明のブロック共重合体の特性を損なわない範囲の量であり、好ましくはブロック共重合体全体に対し、30モル%以下、より好ましくは20モル%以下である。
Figure 0003912549

(式中、R25は水素原子、または炭素数1〜20のアルキル基を表し、R26はニトリル基、アルコキシカルボニル基、ホルミル基、ヒドロキシカルボニル基、もしくはハロゲン基を表し、R27は水素原子を表す。または、R26とR27とは相互に結合して、酸無水物基、もしくはイミド基を形成してもよい。)
また、本発明に用いるブロック共重合体は、重合体ブロック〔A〕中の繰り返し単位〔1〕のモル分率をa、重合体ブロック〔B〕中の繰り返し単位〔1〕のモル分率をbとした場合に、a>bの関係がある。これにより、透明性、および機械的強度に優れる。
さらに、本発明に用いるブロック共重合体は、ブロック〔A〕を構成する全繰り返し単位のモル数をma 、ブロック〔B〕を構成する全繰り返し単位のモル数をmb とした場合に、その比(ma :mb )が、好ましくは5:95〜95:5、より好ましくは30:70〜95:5、特に好ましくは40:60〜90:10である。(ma :mb )が上記範囲にある場合に、機械的強度および耐熱性に優れる。
本発明に用いるブロック共重合体の分子量は、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(以下、GPCと記す。)により測定されるポリスチレン(またはポリイソプレン)換算重量平均分子量(以下、Mwと記す。)で、好ましくは10,000〜300,000、より好ましくは15,000〜250,000、特に好ましくは20,000〜200,000の範囲である。ブロック共重合体のMwが上記範囲にあると、機械的強度、耐熱性、成形性のバランスに優れる。
ブロック共重合体の分子量分布は、使用目的に応じて適宜選択できるが、GPCにより測定されるポリスチレン(またはポリイソプレン)換算のMwと数平均分子量(以下、Mnと記す。)との比(Mw/Mn)で、好ましくは5以下、より好ましくは4以下、特に好ましくは3以下の範囲である。Mw/Mnがこの範囲にあると、機械的強度や耐熱性に優れる。
ブロック共重合体のガラス転移温度(以下、Tgと記す。)は、使用目的に応じて適宜選択されればよいが、示差走査型熱量計(以下、DSCと記す。)による、高温側の測定値で、好ましくは70℃〜200℃、より好ましくは80℃〜180℃、特に好ましくは90℃〜160℃である。
本発明に用いる上記ブロック共重合体は、重合体ブロック〔A〕および重合体ブロック〔B〕を有し、(〔A〕−〔B〕)型のジブロック共重合体であっても、(〔A〕−〔B〕−〔A〕)型や(〔B〕−〔A〕−〔B〕)型のトリブロック共重合体であっても、重合体ブロック〔A〕と重合体ブロック〔B〕とが、交互に合計4個以上つながったブロック共重合体であってもよい。また、これらのブロックがラジアル型に結合したブロック共重合体であってもよい。
本発明に用いるブロック共重合体は、以下の方法により得ることができる。その方法としては、芳香族ビニル化合物または/および環に不飽和結合を有する脂環族ビニル化合物を含有するモノマー混合物、および、ビニル系モノマー(芳香族ビニル化合物および脂環族ビニル化合物を除く)を含有するモノマー混合物を重合して、芳香族ビニル化合物または/および脂環族ビニル化合物由来の繰り返し単位を含有する重合体ブロック、および、ビニル系モノマー由来の繰り返し単位を含有する重合体ブロックを有するブロック共重合体を得る。そして該ブロック共重合体の芳香環または/および脂肪族環を水素化する方法や、飽和脂環族ビニル化合物を含有するモノマー混合物、および、ビニル系モノマー(芳香族ビニル化合物および脂環族ビニル化合物を除く)を含有するモノマー混合物を重合して、脂環族ビニル化合物由来の繰り返し単位を含有する重合体ブロック、および、ビニル系モノマー由来の繰り返し単位を含有する重合体ブロックを有するブロック共重合体を得る方法などが挙げられる。中でも、本発明に用いるブロック共重合体としてより好ましいものは、例えば、以下の方法により得ることができる。
(1)第一の方法としては、まず、芳香族ビニル化合物または/および環に不飽和結合を有する脂環族ビニル化合物を50モル%以上含有するモノマー混合物〔a’〕を重合して、芳香族ビニル化合物または/および環に不飽和結合を有する脂環族ビニル化合物由来の繰り返し単位を含有する重合体ブロック〔A’〕を得る。ビニル系モノマー(芳香族ビニル化合物および脂環族ビニル化合物を除く)を2モル%以上含有し、且つ、芳香族ビニル化合物または/および環に不飽和結合を有する脂環族ビニル化合物をモノマー混合物〔a’〕中の割合よりも少ない割合の量で含有するモノマー混合物〔b’〕を重合して、芳香族ビニル化合物または/および前記脂環族ビニル化合物由来の繰り返し単位とビニル系モノマー由来の繰り返し単位を含有する重合体ブロック〔B’〕を得る。これらの工程を少なくとも経て、前記重合体ブロック〔A’〕および重合体ブロック〔B’〕を有するブロック共重合体を得た後、該ブロック共重合体の芳香環または/および脂肪族環を水素化する。
(2)第二の方法としては、まず、飽和脂環族ビニル化合物を50モル%以上含有するモノマー混合物〔a〕を重合して、飽和脂環族ビニル化合物由来の繰り返し単位を含有する重合体ブロック〔A〕を得る。ビニル系モノマー(芳香族ビニル化合物および脂環族ビニル化合物を除く)を2モル%以上含有し、且つ、飽和脂環族ビニル化合物をモノマー混合物〔a〕中の割合よりも少ない割合の量で含有するモノマー混合物〔b〕を重合して、飽和脂環族ビニル化合物由来の繰り返し単位とビニル系モノマー由来の繰り返し単位を含有する重合体ブロック〔B〕を得る。これらの工程を少なくとも経て、前記重合体ブロック〔A〕および重合体ブロック〔B〕を有するブロック共重合体を得る。
上記方法の中で、モノマーの入手容易性、重合収率、重合体ブロック〔B’〕への繰り返し単位〔1〕の導入のし易さ等の観点から、上記(1)の方法がより好ましい。
上記(1)の方法における芳香族ビニル化合物の具体例としては、スチレン、α−メチルスチレン、α−エチルスチレン、α−プロピルスチレン、α−イソプロピルスチレン、α−t−ブチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、2,4−ジイソプロピルスチレン、2,4−ジメチルスチレン、4−t−ブチルスチレン、5−t−ブチル−2−メチルスチレン、モノクロロスチレン、ジクロロスチレン、モノフルオロスチレン、4−フェニルスチレン等や、これらにヒドロキシル基、アルコキシ基などの置換基を有するもの等が挙げられる。中でもスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン等が好ましい。
上記(1)方法における不飽和脂環族ビニル系化合物の具体例としては、シクロヘキセニルエチレン、α−メチルシクロヘキセニルエチレン、およびα−t−ブチルシクロヘキセニルエチレン等や、これらにハロゲン基、アルコキシ基、またはヒドロキシル基等の置換基を有するもの等が挙げられる。
これらの芳香族ビニル化合物および脂環族ビニル系化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることもできるが、本発明においては、モノマー混合物〔a’〕および〔b’〕のいずれにも、芳香族ビニル化合物を用いるのが好ましく、中でも、スチレンまたはα−メチルスチレンを用いるのがより好ましい。
上記方法で使用するビニル系モノマーには、鎖状ビニル化合物および鎖状共役ジエン化合物が含まれる。
鎖状ビニル化合物の具体例としては、エチレン、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン等の鎖状オレフィンモノマー等が挙げられ、中でも、鎖状オレフィンモノマーが好ましく、エチレン、プロピレン、1−ブテンが最も好ましい。
鎖状共役ジエンは、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、および1,3−ヘキサジエン等が挙げられる。これら鎖状ビニル化合物および鎖状共役ジエンの中でも鎖状共役ジエンが好ましく、ブタジエン、イソプレンが特に好ましい。これらの鎖状ビニル化合物および鎖状共役ジエンは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
上記のモノマーを含有するモノマー混合物を重合する場合、ラジカル重合、アニオン重合、カチオン重合等のいずれの方法で重合反応を行ってもよいが、アニオン重合によるのが好ましく、不活性溶媒の存在下にリビングアニオン重合を行うのが最も好ましい。
アニオン重合は、重合開始剤の存在下、通常0℃〜200℃、好ましくは20℃〜100℃、特に好ましくは20℃〜80℃の温度範囲において行う。開始剤としては、例えば、n−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム、ヘキシルリチウム、フェニルリチウムなどのモノ有機リチウム、ジリチオメタン、1,4−ジオブタン、1,4−ジリチオー2−エチルシクロヘキサン等の多官能性有機リチウム化合物などが使用可能である。
使用する不活性溶媒としては、例えば、n−ブタン、n−ペンタン、イソペンタン、n−ヘキサン、n−ヘプタン、イソオクタン等の脂肪族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン、デカリン等の脂環式炭化水素類;ベンゼン、トルエン等の芳香族炭化水素類等が挙げられ、中でも脂肪族炭化水素類や脂環式炭化水素類を用いると、水素化反応にも不活性な溶媒としてそのまま使用することができる。これらの溶媒は、それぞれ単独で、或いは2種類以上を組み合わせて使用でき、通常、全使用モノマー100重量部に対して200〜10,000重量部となるような割合で用いられる。
それぞれの重合体ブロックを重合する際には、各ブロック内で、或る1成分の連鎖が長くなるのを防止するために、重合促進剤やランダマイザーなどを使用することができる。特に重合反応をアニオン重合により行う場合には、ルイス塩基化合物などをランダマイザーとして使用できる。ルイス塩基化合物の具体例としては、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジフェニルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルフェニルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン、トリエチルアミン、ピリジン等の第3級アミン化合物;カリウム−t−アミルオキシド、カリウム−t−ブチルオキシド等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物が挙げられる。これらのルイス塩基化合物は、それぞれ単独で、或いは2種類以上を組み合わせて使用することができる。
リビングアニオン重合によりブロック共重合体を得る方法は、従来公知の、逐次付加重合反応法およびカップリング法などが挙げられるが、本発明においては、逐次付加重合反応法を用いるのが好ましい。
逐次付加重合反応法により、重合体ブロック〔A’〕および重合体ブロック〔B’〕を有する上記ブロック共重合体を得る場合には、重合体ブロック〔A’〕を得る工程と、重合体ブロック〔B’〕を得る工程は、順次連続して行われる。具体的には、不活性溶媒中で、上記リビングアニオン重合触媒存在下、モノマー混合物〔a’〕を重合して重合体ブロック〔A’〕を得、引き続きその反応系にモノマー混合物〔b’〕を添加して重合を続け、重合体ブロック〔A’〕とつながった重合体ブロック〔B’〕を得る。さらに所望に応じて、再びモノマー混合物〔a’〕を添加して重合し、重合体ブロック〔A’〕をつなげてトリブロック体とし、さらには再びモノマー混合物〔b’〕を添加して重合し、重合体ブロック〔B’〕をつなげたテトラブロック体を得る。
得られたブロック共重合体は、例えばスチームストリッピング法、直接脱溶媒法、アルコール凝固法等の公知の方法によって回収する。重合反応において、水素化反応で不活性な溶媒を用いた場合には、重合溶液そのままを水素化反応工程にも使用することができるので、重合溶液からブロック共重合体を回収しなくてもよい。
上記(1)の方法において得られる、重合体ブロック〔A’〕および重合体ブロック〔B’〕を有するブロック共重合体(以下、水素化前ブロック共重合体という。)のうち下記の構造の繰り返し単位を有するものが好ましい。
好ましい水素化前ブロック共重合体を構成する重合体ブロック〔A’〕は、下記式(14)で表される繰り返し単位〔4〕を50モル%以上含有する重合体ブロックである。
Figure 0003912549

(式中、R16は水素原子、または炭素数1〜20のアルキル基を表し、R17−R21は、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、ヒドロキシル基、炭素数1〜20のアルコキシ基またはハロゲン基である。尚、上記〔R17−R21〕は、R17、R18、・・およびR21を表す。)
また、好ましい重合体ブロック〔B’〕は、前記繰り返し単位〔4〕を必ず含み、下記式(15)で表される繰り返し単位〔5〕および下記式(16)で表される繰り返し単位〔6〕のいずれかを少なくとも1つ含む重合体ブロックである。また、重合体ブロック〔A’〕中の繰り返し単位〔4〕のモル分率をa’、ブロック〔B’〕中の繰り返し単位〔4〕のモル分率をb’とした場合、a’>b’である。
Figure 0003912549
(式中、R22は水素原子、または炭素数1〜20のアルキル基を表す。)
Figure 0003912549
(式中、R23は水素原子、または炭素数1〜20のアルキル基を表し、R24は水素原子、炭素数1〜20のアルキル基またはアルケニル基を表す。)
さらに、ブロック〔B’〕中には、下記式(Y)で示される繰り返し単位〔Y〕を含有していてもよい。
Figure 0003912549
(式中、R28は水素原子、または炭素数1〜20のアルキル基を表し、R29はニトリル基、アルコキシカルボニル基、ホルミル基、ヒドロキシカルボニル基、またはハロゲン基を表し、R30は水素原子を表す。または、R29とR30とは相互に結合して、酸無水物基、またはイミド基を形成してもよい。)
さらに、好ましい水素化前ブロック共重合体は、ブロック〔A’〕を構成する全繰り返し単位のモル数をma ’、ブロック〔B’〕を構成する全繰り返し単位のモル数をmb ’とした場合に、その比(ma ’:mb ’)が、5:95〜95:5、より好ましくは30:70〜95:5、特に好ましくは40:60〜90:10である。(ma ’:mb ’)が上記範囲にある場合に、機械的強度や耐熱性に優れる。
好ましい水素化前ブロック共重合体の分子量は、THFを溶媒としてGPCにより測定されるポリスチレン(またはポリイソプレン)換算Mwで、12,000〜400,000、より好ましくは19,000〜350,000、特に好ましくは25,000〜300,000の範囲である。ブロック共重合体のMwが過度に小さいと、機械的強度が低下し、過度に大きいと、水素添加率が低下する。
好ましい水素化前のブロック共重合体の分子量分布は、使用目的に応じて適宜選択できるが、GPCにより測定されるポリスチレン(またはポリイソプレン)換算のMwとMnとの比(Mw/Mn)で、5以下、より好ましくは4以下、特に好ましくは3以下の範囲である。Mw/Mnがこの範囲にあると、水素添加率が向上する。
好ましい水素化前のブロック共重合体のTgは、使用目的に応じて適宜選択されればよいが、DSCによる高温側の測定値で、70℃〜150℃、より好ましくは80℃〜140℃、特に好ましくは90℃〜130℃である。
上記の、水素化前のブロック共重合体の、芳香環やシクロアルケン環などの不飽和環の炭素−炭素不飽和結合、および主鎖や側鎖の不飽和結合等を水素化する方法および反応形態に特別な制限はなく、公知の方法にしたがって行えばよいが、水素化率を高くでき、重合体鎖切断反応の少ない水素化方法が好ましく、例えば、有機溶媒中、ニッケル、コバルト、鉄、チタン、ロジウム、パラジウム、白金、ルテニウム、およびレニウムから選ばれる少なくとも1つの金属を含む触媒を用いて行う方法が挙げられる。水素化触媒は、不均一系触媒、均一系触媒のいずれも使用可能である。
不均一系触媒は、金属または金属化合物のままで、または適当な担体に担持して用いることができる。担体としては、例えば、活性炭、シリカ、アルミナ、炭化カルシウム、チタニア、マグネシア、ジルコニア、ケイソウ土、炭化珪素等が挙げられ、触媒の担持量は、好ましくは0.01〜80重量%、より好ましくは0.05〜60重量%の範囲である。均一系触媒は、ニッケル、コバルト、チタンまたは鉄化合物と有機金属化合物(例えば、有機アルミニウム化合物、有機リチウム化合物)とを組み合わせた触媒、またはロジウム、パラジウム、白金、ルテニウム、レニウム等の有機金属錯体触媒を用いることができる。ニッケル、コバルト、チタンまたは鉄化合物としては、例えば、各種金属のアセチルアセトン塩、ナフテン酸塩、シクロペンタジエニル化合物、シクロペンタジエニルジクロロ化合物等が用いられる。有機アルミニウム化合物としては、トリエチルアルミニウム、トリイソブチルアルミニウム等のアルキルアルミニウム、ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド等のハロゲン化アルミニウム、ジイソブチルアルミニウムハイドライド等の水素化アルキルアルミニウム等が好適に用いられる。
有機金属錯体触媒の例としては、上記各金属のγ−ジクロロ−π−ベンゼン錯体、ジクロロ−トリス(トリフェニルホスフィン)錯体、ヒドリド−クロロ−トリフェニルホスフィン錯体等の金属錯体が使用される。これらの水素化触媒は、それぞれ単独で、或いは2種類以上組み合わせて使用することができ、その使用量は、重合体100重量部に対して、好ましくは0.01〜100重量部、より好ましくは0.05〜50重量部、特に好ましくは0.1〜30重量部である。
水素化反応は、通常10℃〜250℃であるが、水素化率を高くでき、且つ、重合体鎖切断反応を小さくできるという理由から、好ましくは50℃〜200℃、より好ましくは80℃〜180℃である。また水素圧力は、好ましくは0.1MPa〜30MPaであるが、上記理由に加え、操作性の観点から、より好ましくは1MPa〜20MPa、特に好ましくは2MPa〜10MPaである。
このようにして得られた、ブロック共重合体の水素化率は、 1H−NMRによる測定において、主鎖および側鎖の炭素−炭素不飽和結合、芳香環やシクロアルケン環の炭素−炭素不飽和結合のいずれも、好ましくは90%以上、より好ましくは95%以上、特に好ましくは97%以上である。水素化率が低いと、得られる共重合体の低複屈折性、熱安定性等が低下する。
水素化反応終了後、ブロック共重合体は、例えば濾過、遠心分離等の方法により反応溶液から水素化触媒を除去した後、溶媒を直接乾燥により除去する方法、反応溶液を、ブロック共重合体にとっての貧溶媒中に注ぎ、凝固させる方法等によって回収できる。
以上の方法により得られた本発明に係るブロック共重合体には、必要に応じて各種配合剤を配合することができる。ブロック共重合体に配合することができる配合剤は格別限定はないが、酸化防止剤、熱安定剤、耐光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤などの安定剤;滑剤、可塑剤などの樹脂改質剤;染料や顔料などの着色剤;帯電防止剤、難燃剤、フィラーなどが挙げられる。これらの配合剤は、単独で、あるいは2種以上を組み合せて用いることができ、その配合量は本発明の効果を損なわない範囲で適宜選択される。
本発明においては、ブロック共重合体に、上記配合剤の中でも、酸化防止剤、紫外線吸収剤、および耐光安定剤を配合するのが好ましい。酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などが挙げられ、これらの中でもフェノール系酸化防止剤、特にアルキル置換フェノール系酸化防止剤が好ましい。これらの酸化防止剤を配合することにより、透明性、耐熱性等を低下させることなく、成形時の酸化劣化等によるレンズの着色や強度低下を防止できる。これらの酸化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、本発明の目的を損なわない範囲で適宜選択されるが、本発明に係るブロック共重合体100重量部に対して好ましくは0.001〜5重量部、より好ましくは0.01〜1重量部である。
紫外線吸収剤としては、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−ベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノントリヒドレート、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、4−ドデシロキシ−2−ヒドロキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタンなどのベンゾフェノン系紫外線吸収剤;2−(2’−ヒドロキシ−5’−メチル−フェニル)ベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−4−メチル−6−(3,4,5,6−テトラヒドロフタルイミディルメチル)フェノール、2−(2H−ベンゾトリアゾール−2−イル)−4−6−ビス(1−メチル−1−フェニルエチル)フェノール、2−(2’−ヒドロキシ−3’,5’−ジ−第三−ブチル−フェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−第三−ブチル−5’−メチル−フェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−5’−第三オクチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−第三−アミルフェニル)ベンゾトリアゾール、2−〔2’−ヒドロキシ−3’−(3’’,4’’,5’’,6’’−テトラヒドロフタルイミドメチル)−5’−メチルフェニル〕ベンゾトリアゾール、2,2’−メチレンビス〔4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール〕などのベンゾトリアゾール系紫外線吸収剤などが挙げられる。これらの中でも、2−(2’−ヒドロキシ−5’−メチル−フェニル)ベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−4−メチル−6−(3,4,5,6−テトラヒドロフタルイミディルメチル)フェノール、2−(2H−ベンゾトリアゾール−2−イル)−4−6−ビス(1−メチル−1−フェニルエチル)フェノールなどが耐熱性、低揮発性などの観点から好ましい。
耐光安定剤としては、ベンゾフェノン系耐光安定剤、ベンゾトリアゾール系耐光安定剤、ヒンダードアミン系耐光安定剤などが挙げられるが、本発明においては、レンズの透明性、耐着色性等の観点から、ヒンダードアミン系耐光安定剤を用いるのが好ましい。ヒンダードアミン系耐光安定剤(以下、HALSと記す。)の中でも、THFを溶媒として用いたGPCにより測定したポリスチレン換算のMnが1000〜10000であるものが好ましく、2000〜5000であるものがより好ましく、2800〜3800であるものが特に好ましい。Mnが小さすぎると、該HALSをブロック共重合体に加熱溶融混練して配合する際に、揮発のため所定量を配合できなかったり、射出成形等の加熱溶融成形時に発泡やシルバーストリークが生じるなど加工安定性が低下する。また、ランプを点灯させた状態でレンズを長時間使用する場合に、レンズから揮発性成分がガスとなって発生する。逆にMnが大き過ぎると、ブロック共重合体への分散性が低下して、レンズの透明性が低下し、耐光性改良の効果が低減する。したがって、本発明においては、HALSのMnを上記範囲とすることにより加工安定性、低ガス発生性、透明性に優れたレンズが得られる。
このようなHALSの具体例としては、N,N’,N’’,N’’’−テトラキス−〔4,6−ビス− {ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ}−トリアジン−2−イル〕−4,7−ジアザデカン−1,10−ジアミン、ジブチルアミンと1,3,5−トリアジンとN,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンとの重縮合物、ポリ〔{(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}〕、1,6−ヘキサンジアミン−N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル)とモルフォリン−2,4,6−トリクロロ−1,3,5−トリアジンとの重縮合物、ポリ〔(6−モルフォリノ−s−トリアジン−2,4−ジイル)(2,2,6,6,−テトラメチル−4−ピペリジル)イミノ〕−ヘキサメチレン〔(2,2,6,6−テトラメチル−4−ピペリジル)イミノ〕〕などの、ピペリジン環がトリアジン骨格を介して複数結合した高分子量HALS;コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールとの重合物、1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノールと3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンとの混合エステル化物などの、ピペリジン環がエステル結合を介して結合した高分子量HALSなどが挙げられる。
これらの中でも、ジブチルアミンと1,3,5−トリアジンとN,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンとの重縮合物、ポリ〔{(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}〕、コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールとの重合物などのMnが2,000〜5,000のものが好ましい。
本発明に係るブロック共重合体に対する上記紫外線吸収剤およびHALSの配合量は、重合体100重量部に対して、好ましくは0.01〜20重量部、より好ましくは0.02〜15重量部、特に好ましくは0.05〜10重量部である。添加量が少なすぎると耐光性の改良効果が十分に得られず、屋外で長時間使用する場合等に着色が生じる。一方、HALSの配合量が多すぎると、その一部がガスとなって発生したり、ブロック共重合体への分散性が低下して、レンズの透明性が低下する。
また、本発明に係るブロック重合体に、最も低いガラス転移温度が30℃以下である軟質重合体を配合することにより、透明性、耐熱性、機械的強度などの諸特性を低下させることなく、長時間の高温高湿度環境下での白濁を防止できる。
上記軟質重合体の具体例としては、ポリエチレン、ポリプロピレン、エチレン−α−オレフィン共重合体、エチレン−プロピレン−ジエン共重合体(EPDM)などのオレフィン系軟質重合体;ポリイソブチレン、イソブチレン−イソプレンゴム、イソブチレン−スチレン共重合体などのイソブチレン系軟質重合体;ポリブタジエン、ポリイソプレン、ブタジエン−スチレンランダム共重合体、イソプレン−スチレンランダム共重合体、アクリロニトリル−ブタジエン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、ブタジエン−スチレン・ブロック共重合体、スチレン−ブタジエン−スチレン・ブロック共重合体、イソプレン−スチレン・ブロック共重合体、スチレン−イソプレン−スチレン・ブロック共重合体などのジエン系軟質重合体;ジメチルポリシロキサン、ジフェニルポリシロキサンなどのケイ素含有軟質重合体;ポリブチルアクリレート、ポリブチルメタクリレート、ポリヒドロキシエチルメタクリレートなどのアクリル系軟質重合体;ポリエチレンオキシド、ポリプロピレンオキシド、エピクロルヒドリンゴムなどのエポキシ系軟質重合体;フッ化ビニリデン系ゴム、四フッ化エチレン−プロピレンゴムなどのフッ素系軟質重合体;天然ゴム、ポリペプチド、蛋白質、ポリエステル系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどのその他の軟質重合体などが挙げられる。これらの軟質重合体は、架橋構造を有したものであってもよく、また、変性反応により官能基を導入したものでもよい。
上記軟質重合体の中でもジエン系軟質重合体が好ましく、特に該軟質重合体の炭素−炭素不飽和結合を水素化した水素化物が、ゴム弾性、機械的強度、柔軟性、および分散性の点で優れる。軟質重合体の配合量は、化合物の種類に応じて異なるが、一般に、配合量が多すぎれば、ブロック共重合体のガラス転移温度や透明性が大きく低下し、レンズとして使用することができない。また配合量が少なすぎれば、高温高湿下において成形物の白濁を生じる場合がある。配合量は、ブロック共重合体100重量部に対して、好ましくは0.01〜10重量部、より好ましくは0.02〜5重量部、特に好ましくは0.05〜2重量部である。
本発明で用いるブロック共重合体に上記配合剤を配合してブロック共重合体組成物を形成する方法は、例えば、ミキサー、二軸混錬機、ロール、ブラベンダー、押出機などでブロック共重合体を溶融状態にして配合剤と混練する方法、適当な溶剤に溶解して分散させ凝固する方法などが挙げられる。二軸混練機を用いる場合、混錬後に通常は溶融状態でストランド状に押し出し、ペレタイザーにてペレット状にカットして用いられることが多い。
尚、以上の樹脂以外にも、例えば特開2003−73460号公報に記載されているノルボルネン系開環(水素)重合体を含有する樹脂も、本発明の光学素子の材料として用いることができる。
請求項6に記載の光ピックアップ装置は、波長λ1(350nm≦λ1≦450nm)の光を出射する光源とを備え、前記光源から出射された光束が入射する光学素子と、前記光学素子を経た前記光源からの光束を、光情報記録媒体の情報記録面に集光させて情報の記録及び又は再生を行うための光ピックアップ装置であって、
前記光学素子は、脂環式構造を有する重合体を含有する樹脂から構成された基材と、前記基材に形成された反射防止膜とを有し、前記反射防止膜は、前記波長λ1の光に対して第1の屈折率を有する第1の層と、前記波長λ1の光に対して前記第1の屈折率よりも高い第2の屈折率を有する第2の層と、前記波長λ1の光に対して前記第2の屈折率よりも低い第3の屈折率を有する第3の層と、前記波長λ1の光に対して前記第3の屈折率よりも高い第4の屈折率を有する第4の層と、前記波長λ1の光に対して前記第4の屈折率よりも低い第5の屈折率を有する第5の層と、前記波長λ1の光に対して前記第5の屈折率よりも高い第6の屈折率を有する第6の層と、前記第6の屈折率よりも低い第7の屈折率を有する第7の層とを、前記基材に最も近い側から前記第1、第2、第3、第4、第5、第6、第7の層の順番で配置した層構成を含み、且つ
前記第1、第3、第5、第7の層は、酸化シリコンによりそれぞれ形成され、
前記第2、第4の層は、酸化ハフニュームによりそれぞれ形成され、
前記第6の層は、酸化ハフニューム又は酸化ジルコニュームによりそれぞれ形成され、
前記第1の層の材料の厚さdは102.7nm≦d≦140nmの範囲内であることを特徴とする。


請求項に記載の光ピックアップ装置は、請求項に記載の発明において、前記光学素子は、情報記録媒体の情報記録面上に前記波長λ1の光を集光させる対物レンズであることを特徴とする。
請求項に記載の光ピックアップ装置は、請求項6又は7に記載の発明において、前記光ピックアップ装置は、620nm≦λ2≦670nmを満足する波長λ2を出射する光源及び760nm≦λ3≦800nmを満足する波長λ3の光を出射する光源を備え、前記光学素子は前記波長λ1、λ2及びλ3の光が入射するよう配置した事を特徴とする。
請求項に記載の光ピックアップ装置は、請求項6〜8のいずれかに記載の発明において、前記脂環式構造を有する重合体は、重量平均分子量(Mw)が1,000〜1,000,000である重合体全繰り返し単位中に、下記一般式(1)で表される脂環式構造を有する繰り返し単位(a)と、下記一般式(2)及び/又は下記一般式(3)で表される鎖状構造の繰り返し単位(b)とを、合計含有量が90重量%以上になるように含有し、さらに繰り返し単位(b)の含有量が1重量%以上10重量%未満であることを特徴とする。特に、上記重合体は、上記繰り返し単位(a)の連鎖が関係式A≦0.3×B(但し、A=(脂環式構造を有する繰り返し単位の連鎖の重量平均分子量)、B=(脂環式炭化水素系共重合体の重量平均分子量(Mw))×(脂環式構造を有する繰り返し単位数/脂環式炭化水素系共重合体を構成する全繰り返し単位数))を満たすものであることが好ましい。
Figure 0003912549
Figure 0003912549
Figure 0003912549
〔式(1)中、Xは脂環式炭化水素基であり、式(1)、式(2)、及び式(3)中、R1〜R13は、それぞれ独立に水素原子、鎖状炭化水素基、ハロゲン原子、アルコキシ基、ヒドロキシ基、エーテル基、エステル基、シアノ基、アミド基、イミド基、シリル基、及び極性基(ハロゲン原子、アルコキシ基、ヒドロキシ基、エーテル基、エステル基、シアノ基、アミド基、イミド基、又はシリル基)で置換された鎖状炭化水素基である。式(3)中……は炭素−炭素飽和結合、又は不飽和結合である。〕
請求項10に記載の光ピックアップ装置は、請求項に記載の発明において、前記脂環式構造を有する重合体は、下記式(11)で表される繰り返し単位〔1〕を含有する重合体ブロック〔A〕と、下記式(11)で表される繰り返し単位〔1〕並びに下記式(12)で表される繰り返し単位〔2〕または/および下記式(13)で表される繰り返し単位〔3〕を含有する重合体ブロック〔B〕とを有し、前記ブロック〔A〕中の繰り返し単位〔1〕のモル分率a(モル%)と、前記ブロック〔B〕中の繰り返し単位〔1〕のモル分率b(モル%)との関係がa>bであるブロック共重合体であることを特徴とする。
Figure 0003912549
(式中、R1 は水素原子、または炭素数1〜20のアルキル基を表し、R2−R12はそれぞれ独立に、水素原子、炭素数1〜20のアルキル基、ヒドロキシル基、炭素数1〜20のアルコキシ基、またはハロゲン基である。)
Figure 0003912549
(式中、R13は、水素原子、または炭素数1〜20のアルキル基を表す。)
Figure 0003912549
(式中、R14およびR15はそれぞれ独立に、水素原子、または炭素数1〜20のアルキル基を表す。)
本発明によれば、短波長のレーザ光を照射しても光学特性の劣化を抑制できる、合成樹脂に反射防止膜を形成した光学素子及びそれを用いた光ピックアップ装置を提供することができる。
図1は、情報記録媒体(光ディスクともいう)としてのBD(Blu−ray Disc)またはAOD(Advanced Optical Disc)に対して情報の記録/再生を行える光ピックアップ装置の概略断面図である。
光ピックアップ装置PUは、図1に示すように光源となる半導体レーザLDを備えている。半導体レーザLDは、波長400nm程度の光束を射出するGaN系青紫色半導体レーザ或いはSHG青紫色レーザである。この半導体レーザLDから射出された発散光束は、偏光ビームスプリッタBSを透過し、1/4波長板WPを経て円偏光の光束となった後、コリメートレンズCOLで平行光束となる。
この平行光束は、エキスパンダーレンズEXPに入射される。エキスパンダーレンズEXPを経た光束は、光束径を拡大され、絞りSTを経た後、対物レンズOBJによって光ディスクODの保護層DPを介して情報記録面DR上に形成される集光スポットとなる。対物レンズOBJは、その周辺に配置された2軸アクチュエータAC1によってフォーカス方向及びトラッキング方向に駆動される。
対物レンズOBJは、それぞれのレンズ群E1,E2の光学面と一体成形されたフランジ部FL1及びFL2を互いに嵌合することにより一体に組み立てられている。そして、第1レンズ群E1のフランジ部FL1により、光ピックアップ装置PUに精度よく取り付けることができる。情報記録面DRで情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りST、エキスパンダーレンズEXを透過した後、コリメートレンズCOLにより収斂光束となる。この収斂光束は、1/4波長板WPにより直線偏光とされた後、偏光ビームスプリッタBSによって反射され、シリンドリカルレンズCY、凹レンズNLを経ることによって非点収差が与えられ、光検出器PDの受光面上に収束する。そして、光検出器PDの出力信号に基づいて生成されたフォーカスエラー信号やトラッキングエラー信号を用いて光ディスクODに対して情報の記録/再生を行うことができる。
尚、情報記録/再生装置として、上述した光ピックアップ装置PUと、光ディスクODをこの光ピックアップ装置により情報の記録/再生が可能に支持する図示しない光情報記録媒体支持手段とを有して構成されることができる。光情報記録媒体支持手段は、光ディスクODの中心部分を保持して回転操作する回転操作装置によって構成される。
例えば図1に示す光ピックアップ装置に用いる対物レンズOBJのみならず、エキスパンダーレンズEX又はコリメートレンズCOLの光学面に成膜を行う場合、基材の表面に、真空蒸着法、スパッタリング法、CVD法によって反射防止膜を成膜する。真空蒸着法の場合、所定の蒸着材料を加熱する電子銃加熱装置を蒸着源とし、70℃〜130℃となるように、ハロゲンランプ又はシーズヒータ等で基材を加熱しつつ、電子銃加熱装置、蒸着材料、基材保持する真空中に、酸素ガス、不活性ガス(例アルゴンガス又は窒素ガス)水素ガス、CF4ガス等を単独又は混合状態で導入し、0.2〜5E-2Paの真空度に維持しながら、水晶膜厚制御法、光学モニター制御法などによって、基材表面に堆積させる層の厚さを制御しながら成膜を行うことができる。
以下に、膜構成を示す。尚、niはi番目の層の屈折率を示し、diはi番目の層の厚さを示す。
(1)2層構成:樹脂基材/高屈折率材料/低屈折率材科の順序で積層する。
1層目:1.7≦n1、15nm≦d1≦91nm
2層目:1.2≦n2≦1.55、30nm≦d2≦118nm
(2)3層構成:樹脂基材/低屈折率材料/高屈折率材料/低屈折率材料の順序で積層する。
1層目:1.2≦n1≦1.55、10nm≦d1≦130nm
2層目:1.7≦n2、20nm≦d2≦110nm
3層目: 1.2≦n3≦1.55、35nm≦d3≦90nm
(3)3層構成:樹脂基材/中屈折率材料/高屈折率材料/低屈折率材料の順序で積層する。
1層目:1.55≦n1≦1.7、40nm≦d1≦110nm
2層目:1.7≦n2、35nm≦d2≦90nm
3層目:1.2≦n3≦1.55、45nm≦d3≦85nm
(4)4層構成:樹脂基材/高屈折率材料/低屈折率材料/高屈折率材料/低屈折率材料の順序で積層する。
1層目:1.7≦n1、15nm≦d1≦36nm
2層目:1.2≦n2≦1.55、25nm≦d2≦40nm
3層目:1.7≦n3、40nm≦d3≦150nm
4層目:1.2≦n4≦1.55、90nm≦d4≦115nm
(5)5層構成:樹脂基材/低屈折率材料/高屈折率材料/低屈折率材料/高屈折率材料/低屈折率材料の順序で積層する。
1層目:1.2≦n1≦1.55、5nm≦d1≦20nm
2層目:1.7≦n2、15nm≦d2≦35nm
3層目:1.2≦n3≦1.55、25nm≦d3≦45nm
4層目:1.7≦n4、50nm≦d4≦130nm
5層目:1.2≦n5≦1.55、80nm≦d5≦110nm
(6)6層構成:樹脂基材/高屈折率材料/低屈折率材料/高屈折率材料/低屈折率材料/高屈折率材料/低屈折率材料の順序で積層する。
1層目:1.7≦n1、8nm≦d1≦15nm
2層目:1.2≦n2≦1.55、35m≦d2≦55nm
3層目:1.7≦n3、40nm≦d3≦60nm
4層目:1.2≦n4≦1.55、10nm≦d4≦17nm
5層目:1.7≦n5、45nm≦d5≦90nm
6層目:1.2≦n6≦1.55、70nm≦d6≦110nm
(7)7層構成:樹脂基材/低屈折率材料/高屈折率材料/低屈折率材料/高屈折率材料/低屈折率材料/高屈折率材料/低屈折率材料の順序で積層する。
1層目:1.2≦n1≦1.55、80nm≦d1≦140nm
2層目:1.7≦n2、10nm≦d2≦25nm
3層目:1.2≦n3≦1.55、30nm≦d3≦45nm
4層目:1.7≦n4、40nm≦d4≦60nm
5層目:1.2≦n5≦1.55、10nm≦d5≦20nm
6層目:1.7≦n6、6nm≦d6≦70nm
7層目:1.2≦n7≦1.55、60nm≦d7≦100nm
本発明者らは、反射防止膜がどのような仕様であれば光学素子の光学特性が劣化しないかを調べるべく、直径30mm、厚さ3mmのテスト用樹脂基材に、真空蒸着法又はスパッタ法で反射防止膜Mを形成することによって、表1に示すように、実施例38,39,比較例10の試料を作成し、おのおのレーザ光照射試験、光吸収量測定、耐環境性試験を行い評価した。テスト用樹脂基材の樹脂素材としては、以下に詳述する「樹脂1」の他、比較としてアクリル樹脂、ポリカーボネイト樹脂を用いた。
樹脂1
(重合体の製造)
十分に乾燥し窒素置換した、攪拌装置を備えたステンレス鋼製重合器に、脱水シクロヘキサン320部、スチレン60部、およびジブチルエーテル0.38部を仕込み、60℃で攪拌しながらn−ブチルリチウム溶液(15%含有ヘキサン溶液)0.36部を添加して重合反応を開始する。1時間重合反応を行った後、反応溶液中に、スチレン8部とイソプレン12部とからなる混合モノマー20部を添加し、さらに1時間重合反応を行った後、反応溶液にイソプロピルアルコール0.2部を添加して反応を停止させる。このとき得られるブロック共重合体のMwは102,100、Mw/Mnは1.11である。
次いで、上記重合反応溶液400部を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として、シリカ−アルミナ担持型ニッケル触媒(日揮化学工業社製;E22U、ニッケル担持量60%)10部を添加して混合する。反応器内部を水素ガスで置換し、さらに溶液を攪拌しながら水素を供給し、温度を高く160℃に設定し、圧力4.5MPaにて8時間反応することにより、芳香環まで水素化を行う。水素化反応終了後、反応溶液をろ過して水素化触媒を除去した後、シクロヘキサン800部を加えて希釈し、該反応溶液を3500部のイソプロパノール(クラス1000のクリーンルームで、孔径1μmのフィルターにてろ過したもの)中に注いでブロック共重合体を析出させ、ろ過により分離回収し、80℃にて48時間減圧乾燥させる。こうして得られるブロック共重合体は、スチレン由来の繰り返し単位を含有するブロック(以下、Stという)、およびスチレンとイソプレン由来の繰り返し単位を含有するブロック(以下、St/Ipという)とからなる2元ブロック共重合体であり、それぞれのブロックのモル比は、St:St/Ip=69:31(St:Ip=10:21)である。該ブロック共重合体のMwは85,100、Mw/Mnは1.17、主鎖および芳香環の水素化率は99.9%、Tgは126.5℃である。
(樹脂の製造)
以上の重合体の製造により得られるブロック共重合体100部に対し、スチレン−エチレン−ブチレン−スチレン・ブロック共重合体(クラレ社製、セプトン2002)0.1部、および酸化防止剤としてテトラキス−〔メチレン−3−(3’,5’−ジ−第三−ブチル−4’−ヒドロキシフェニル)プロピオネート〕メタン(チバスペシャリティ・ケミカルズ社製、イルガノックス1010)0.1部、およびベンゾトリアゾール系紫外線吸収剤として、2−(2’−ヒドロキシ−5’−メチル−フェニル)ベンゾトリアゾール(チバ・スペシャリティ・ケミカルズ社製、TINUVIN P)を0.1部、さらにHALSとして、ジブチルアミンと1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル)−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンとの重縮合物〔HALS(A)、Mn=3,000〕0.1部をそれぞれ添加し、2軸混練機(東芝機械社製、TEM−35B、スクリュー径37mm、L/D=32、スクリュー回転数150rpm、樹脂温度240℃、フィードレート10kg/時間)で混練し、ストランド状に押し出し、これを水冷してペレタイザーで切断し、ペレット化して樹脂1を得る。
以上のようにして得られる樹脂1の他、アクリル樹脂及びポリカーボネイト樹脂のそれぞれのペレットを、空気を流通させた熱風乾燥器を用いて70℃で2時間乾燥して水分を除去した後、それぞれ射出成形してテスト用樹脂基材を得た。
Figure 0003912549
(レーザ光照射試験1)
図2は、本発明者らが行ったレーザ光照射試験装置の概略を示す図である。図2において、半導体レーザLDより波長λ=405〜415nmのレーザ光を出射し、集光レンズLを用いて集光させながら、基材S上の実施例と比較例の反射防止膜Mに120時間レーザ光を照射して、その表面を顕微鏡により観察した。このとき、基材S上のパワー密度を120mW/mm2、基材Sの加熱温度を85℃、雰囲気の湿度を5%とした。観察した結果、表面にしわ等が殆ど全く観察されず膜の剥がれもなかったものを◎とし、表面にごく微少なしわ等が確認されたが膜の剥がれがなかったものを○とし、表面に微少なしわ等が観察されたが膜の剥がれがなかったものを△とし、しわ等の形状変化やクラックが明瞭に観察され膜の剥がれが生じたものを×として、それぞれ評価を行った。
(レーザ光照射試験2)
レーザ光照射試験1と同じ条件であるが照射時間を250時間とし、その後試料の表面を顕微鏡により観察した。同様に観察した結果、表面にしわ等が殆ど全く観察されず膜の剥がれもなかったものを◎とし、表面にごく微少なしわ等が確認されたが膜の剥がれがなかったものを○とし、表面に微少なしわ等が観察されたが膜の剥がれがなかったものを△とし、しわ等の形状変化やクラックが明瞭に観察され膜の剥がれが生じたものを×として、それぞれ評価を行った。
(光透過率測定)
試料に、波長λ=405nmの光束を入射させ、その透過率Tと反射率R(入射面と出射面の合計反射率)を分光光度計(株式会社日立製作所製、製品名UP−4000)で計測し、光吸収量(%)を、100−T−Rで計算した。その結果、光吸収量が0.1%未満であるものを◎とし、光吸収量が0.1%以上0.5%未満であるものを○とし、光吸収量が0.5%以上2%未満であるものを△とし、光吸収量が2%以上であるものを×として、それぞれ評価を行った。尚、図3に、実施例10,16,28の反射特性を示すグラフを示し、図4に、実施例32,36,39の反射特性を示すグラフを示す。
(対環境性試験)
試料を、高温(60℃)・高湿(90%)の環境下に168時間放置した後、その外観を目視にて観察した。その結果、膜の剥がれ・クラックなど外観の異常が見られないものを◎とし、膜の剥がれはないがごく微少なクラック(スジ状)が見られたものを○とし、膜の剥がれはないが微少なクラックが見られたものを△とし、膜の剥がれや、クラック(亀甲状)が明瞭に見られたものを×として、それぞれ評価を行った。
これらの評価結果に基づき、本発明者らは、短波長のレーザ光を用いる光ピックアップ装置に好適な光学素子の特性を有しているかについて、総合評価を行った。その総合評価において、短波長のレーザ光を用いる光ピックアップ装置に用いた場合、非常に信頼性が高いと判断できるものを◎とし、同様に用いた場合、信頼性が高いと判断できるものを○とし、とりあえず短波長のレーザ光を用いる光ピックアップ装置に使用できると判断されるものを△とした。表12に、以上の評価結果をまとめた。
Figure 0003912549

以上の試験結果より、少なくとも光学素子の反射防止膜のうち、低屈折率層が、酸化シリコン、フッ化アルミニウム、フッ化イットリウム、フッ化マグネシウム、酸化シリコンと酸化アルミニウムとの混合物、又は、これらの混合物により形成されているともに、高屈折率層が、酸化スカンジウム、酸化ニオビウム、酸化ランタン、チタン酸プラセオジウム、チタン酸ランタン、ランタンアルミネート、酸化イットリウム、酸化ハフニューム、酸化ジルコニューム、酸化タンタル、窒化シリコン又はこれらの混合物により形成されている場合、短波長のレーザ光源を有する光ピックアップ装置の光学系に用いた場合でも、長期間にわたって、光学特性の劣化を抑制できることがわかる。
以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。
光ディスクに対して情報の記録/再生を行える光ピックアップ装置の概略断面図である。 図2は、本発明者らが行ったレーザ光照射試験装置の概略を示す図である。 実施例10,16,28の反射特性を示すグラフであり、縦軸に反射率、横軸に波長をとって示す。 実施例32,36,39の反射特性を示すグラフであり、縦軸に反射率、横軸に波長をとって示す。
符号の説明
PU 光ピックアップ装置
LD 半導体レーザ
OD 光ディスク
PD 光検出器
BS ビームスプリッタ
COL コリメートレンズ
OBJ 対物レンズ
CY シリンドリカルレンズ

Claims (10)

  1. 光源から出射した波長λ1(350nm≦λ1≦450nm)を有する光束を出射する光源を備えた光学装置用光学素子であって
    脂環式構造を有する重合体を含有する樹脂から構成された基材と、前記基材に形成された反射防止膜とを有し、前記反射防止膜は、前記波長λ1の光に対して第1の屈折率を有する第1の層と、前記波長λ1の光に対して前記第1の屈折率よりも高い第2の屈折率を有する第2の層と、前記波長λ1の光に対して前記第2の屈折率よりも低い第3の屈折率を有する第3の層と、前記波長λ1の光に対して前記第3の屈折率よりも高い第4の屈折率を有する第4の層と、前記波長λ1の光に対して前記第4の屈折率よりも低い第5の屈折率を有する第5の層と、前記波長λ1の光に対して前記第5の屈折率よりも高い第6の屈折率を有する第6の層と、前記第6の屈折率よりも低い第7の屈折率を有する第7の層とを、前記基材に最も近い側から前記第1、第2、第3、第4、第5、第6、第7の層の順番で配置した層構成を含み、且つ
    前記第1、第3、第5、第7の層は、酸化シリコンによりそれぞれ形成され、
    前記第2、第4の層は、酸化ハフニュームによりそれぞれ形成され、
    前記第6の層は、酸化ハフニューム又は酸化ジルコニュームによりそれぞれ形成され、
    前記第1の層の材料の厚さdは102.7nm≦d≦140nmの範囲内であることを特徴とする光学装置用光学素子。
  2. 前記光学素子は、情報記録媒体の情報記録面上で前記波長λ1の光の集光スポットを形成する対物レンズであることを特徴とする請求項1記載の光学装置用光学素子。
  3. 前記光学素子は、620nm≦λ2≦670nmを満足する波長λ2及び760nm≦λ3≦800nmを満足する波長λ3の光を情報記録媒体の情報記録面上で集光スポットを形成する対物レンズであることを特徴とする請求項1又は2に記載の光学装置用光学素子。
  4. 前記脂環式構造を有する重合体は、重量平均分子量(Mw)が1,000〜1,000,000である重合体全繰り返し単位中に、下記一般式(1)で表される脂環式構造を有する繰り返し単位(a)と、下記一般式(2)及び/又は下記一般式(3)で表される鎖状構造の繰り返し単位(b)とを、合計含有量が90重量%以上になるように含有し、さらに繰り返し単位(b)の含有量が1重量%以上10重量%未満であることを特徴とする請求項1〜3のいずれかに記載の光学装置用光学素子。
    Figure 0003912549

    Figure 0003912549

    Figure 0003912549

    〔式(1)中、Xは脂環式炭化水素基であり、式(1)、式(2)、及び式(3)中、R1〜R13は、それぞれ独立に水素原子、鎖状炭化水素基、ハロゲン原子、アルコキシ基、ヒドロキシ基、エーテル基、エステル基、シアノ基、アミド基、イミド基、シリル基、及び極性基(ハロゲン原子、アルコキシ基、ヒドロキシ基、エーテル基、エステル基、シアノ基、アミド基、イミド基、又はシリル基)で置換された鎖状炭化水素基である。式(3)中……は炭素−炭素飽和結合、又は不飽和結合である。〕
  5. 前記脂環式構造を有する重合体は、下記式(11)で表される繰り返し単位〔1〕を含有する重合体ブロック〔A〕と、下記式(11)で表される繰り返し単位〔1〕並びに下記式(12)で表される繰り返し単位〔2〕または/および下記式(13)で表される繰り返し単位〔3〕を含有する重合体ブロック〔B〕とを有し、前記ブロック〔A〕中の繰り返し単位〔1〕のモル分率a(モル%)と、前記ブロック〔B〕中の繰り返し単位〔1〕のモル分率b(モル%)との関係がa>bであるブロック共重合体であることを特徴とする請求項に記載の光学装置用光学素子。
    Figure 0003912549

    (式中、R1 は水素原子、または炭素数1〜20のアルキル基を表し、R2−R12はそれぞれ独立に、水素原子、炭素数1〜20のアルキル基、ヒドロキシル基、炭素数1〜20のアルコキシ基、またはハロゲン基である。)
    Figure 0003912549

    (式中、R13は、水素原子、または炭素数1〜20のアルキル基を表す。)
    Figure 0003912549

    (式中、R14およびR15はそれぞれ独立に、水素原子、または炭素数1〜20のアルキル基を表す。)
  6. 波長λ1(350nm≦λ1≦450nm)の光を出射する光源と、前記光源から出射された光束が入射する光学素子とを備え、前記光学素子を経た前記光源からの光束を、光情報記録媒体の情報記録面に集光させて情報の記録及び又は再生を行うための光ピックアップ装置であって、
    前記光学素子は、脂環式構造を有する重合体を含有する樹脂から構成された基材と、前記基材に形成された反射防止膜とを有し、前記反射防止膜は、前記波長λ1の光に対して第1の屈折率を有する第1の層と、前記波長λ1の光に対して前記第1の屈折率よりも高い第2の屈折率を有する第2の層と、前記波長λ1の光に対して前記第2の屈折率よりも低い第3の屈折率を有する第3の層と、前記波長λ1の光に対して前記第3の屈折率よりも高い第4の屈折率を有する第4の層と、前記波長λ1の光に対して前記第4の屈折率よりも低い第5の屈折率を有する第5の層と、前記波長λ1の光に対して前記第5の屈折率よりも高い第6の屈折率を有する第6の層と、前記第6の屈折率よりも低い第7の屈折率を有する第7の層とを、前記基材に最も近い側から前記第1、第2、第3、第4、第5、第6、第7の層の順番で配置した層構成を含み、且つ
    前記第1、第3、第5、第7の層は、酸化シリコンによりそれぞれ形成され、
    前記第2、第4の層は、酸化ハフニュームによりそれぞれ形成され、
    前記第6の層は、酸化ハフニューム又は酸化ジルコニュームによりそれぞれ形成され、
    前記第1の層の材料の厚さdは102.7nm≦d≦140nmの範囲内であることを特徴とする光ピックアップ装置。
  7. 前記光学素子は、情報記録媒体の情報記録面上に前記波長λ1の光を集光させる対物レンズであることを特徴とする請求項6記載の光ピックアップ装置。
  8. 前記光ピックアップ装置は、620nm≦λ2≦670nmを満足する波長λ2を出射する光源及び760nm≦λ3≦800nmを満足する波長λ3の光を出射する光源を備え、前記光学素子は前記波長λ1、λ2及びλ3の光が入射するよう配置した事を特徴とする請求項6又は7に記載の光ピックアップ装置。
  9. 前記脂環式構造を有する重合体は、重量平均分子量(Mw)が1,000〜1,000,000である重合体全繰り返し単位中に、下記一般式(1)で表される脂環式構造を有する繰り返し単位(a)と、下記一般式(2)及び/又は下記一般式(3)で表される鎖状構造の繰り返し単位(b)とを、合計含有量が90重量%以上になるように含有し、さらに繰り返し単位(b)の含有量が1重量%以上10重量%未満であることを特徴とする請求項6〜8のいずれかに記載の光ピックアップ装置。
    Figure 0003912549

    Figure 0003912549

    Figure 0003912549

    〔式(1)中、Xは脂環式炭化水素基であり、式(1)、式(2)、及び式(3)中、R1〜R13は、それぞれ独立に水素原子、鎖状炭化水素基、ハロゲン原子、アルコキシ基、ヒドロキシ基、エーテル基、エステル基、シアノ基、アミド基、イミド基、シリル基、及び極性基(ハロゲン原子、アルコキシ基、ヒドロキシ基、エーテル基、エステル基、シアノ基、アミド基、イミド基、又はシリル基)で置換された鎖状炭化水素基である。式(3)中……は炭素−炭素飽和結合、又は不飽和結合である。〕
  10. 前記脂環式構造を有する重合体は、下記式(11)で表される繰り返し単位〔1〕を含有する重合体ブロック〔A〕と、下記式(11)で表される繰り返し単位〔1〕並びに下記式(12)で表される繰り返し単位〔2〕または/および下記式(13)で表される繰り返し単位〔3〕を含有する重合体ブロック〔B〕とを有し、前記ブロック〔A〕中の繰り返し単位〔1〕のモル分率a(モル%)と、前記ブロック〔B〕中の繰り返し単位〔1〕のモル分率b(モル%)との関係がa>bであるブロック共重合体であることを特徴とする請求項に記載の光ピックアップ装置。
    Figure 0003912549

    (式中、R1 は水素原子、または炭素数1〜20のアルキル基を表し、R2−R12はそれぞれ独立に、水素原子、炭素数1〜20のアルキル基、ヒドロキシル基、炭素数1〜20のアルコキシ基、またはハロゲン基である。)
    Figure 0003912549

    (式中、R13は、水素原子、または炭素数1〜20のアルキル基を表す。)
    Figure 0003912549

    (式中、R14およびR15はそれぞれ独立に、水素原子、または炭素数1〜20のアルキル基を表す。)
JP2005030014A 2004-02-16 2005-02-07 光学装置用光学素子及び光ピックアップ装置 Expired - Fee Related JP3912549B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005030014A JP3912549B2 (ja) 2004-02-16 2005-02-07 光学装置用光学素子及び光ピックアップ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004038061 2004-02-16
JP2005030014A JP3912549B2 (ja) 2004-02-16 2005-02-07 光学装置用光学素子及び光ピックアップ装置

Publications (3)

Publication Number Publication Date
JP2005266780A JP2005266780A (ja) 2005-09-29
JP2005266780A5 JP2005266780A5 (ja) 2006-06-29
JP3912549B2 true JP3912549B2 (ja) 2007-05-09

Family

ID=35091325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005030014A Expired - Fee Related JP3912549B2 (ja) 2004-02-16 2005-02-07 光学装置用光学素子及び光ピックアップ装置

Country Status (1)

Country Link
JP (1) JP3912549B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006171332A (ja) * 2004-12-15 2006-06-29 Nippon Electric Glass Co Ltd 反射防止膜
EP1933177A1 (fr) * 2006-12-11 2008-06-18 Alpes Lasers S.A. Amplificateur laser à cascades quantiques équipé d'un revêtement anti-réfléchissant comportant une strate réalisée en fluorure d'yttrium
JP2008152069A (ja) * 2006-12-19 2008-07-03 Nippon Electric Glass Co Ltd 反射防止膜
JP5056271B2 (ja) * 2007-08-28 2012-10-24 コニカミノルタアドバンストレイヤー株式会社 対物レンズ及び光ピックアップ装置
JP2009244583A (ja) * 2008-03-31 2009-10-22 Konica Minolta Opto Inc 光学素子の製造方法、光学素子ユニット及び撮像ユニット
JP5458732B2 (ja) * 2009-08-07 2014-04-02 コニカミノルタ株式会社 光学素子の製造方法及び光学素子
JP5552008B2 (ja) 2009-09-30 2014-07-16 Hoya株式会社 光情報記録再生光学系及び光情報記録再生装置
JP2011096352A (ja) 2009-09-30 2011-05-12 Hoya Corp 光情報記録再生光学系及び光情報記録再生装置
JP2011119011A (ja) * 2009-11-04 2011-06-16 Hoya Corp 光情報記録再生光学系及び光情報記録再生装置
JP2011008280A (ja) * 2010-08-17 2011-01-13 Nippon Electric Glass Co Ltd 反射防止膜
JP2013062010A (ja) * 2011-09-15 2013-04-04 Hitachi Maxell Ltd 光ピックアップ装置に搭載されるレンズ
JP2014037500A (ja) * 2012-08-20 2014-02-27 Bridgestone Corp 共重合体の製造方法

Also Published As

Publication number Publication date
JP2005266780A (ja) 2005-09-29

Similar Documents

Publication Publication Date Title
JP3912549B2 (ja) 光学装置用光学素子及び光ピックアップ装置
US7715302B2 (en) Optical element and optical pickup apparatus
JP3966303B2 (ja) 回折光学素子及びそれを用いた光ピックアップ装置
JP4285430B2 (ja) 対物レンズ及び光ピックアップ装置
JP5145798B2 (ja) 光ピックアップ装置用の光学素子及びその製造方法
JP4224655B2 (ja) 脂環式炭化水素系共重合体
JP2005302088A (ja) 対物レンズ及び光ピックアップ装置
TWI353463B (en) Optical element and manufacturing method of the op
JP2004144951A (ja) プラスチック製光学素子及び光ピックアップ装置
US7682676B2 (en) Optical element and optical pickup device
JP4362713B2 (ja) 光学素子及びその製造方法
JP5440178B2 (ja) 脂環式炭化水素ランダム共重合体、その製造方法、樹脂組成物、及び成形物
JP2005251354A (ja) 光学素子
JP4254726B2 (ja) 光ピックアップ装置用の光学素子及びその製造方法
WO2004095444A1 (ja) 回折光学素子及びそれを用いた光ピックアップ装置
WO2010016376A1 (ja) 光学素子及び光ピックアップ装置
JP2005221987A (ja) 光学素子及び光ピックアップ装置
JP2004325950A (ja) プラスチック製光学素子及び光ピックアップ装置
JP4600131B2 (ja) 対物レンズ及び光ピックアップ装置
JP2005310266A (ja) 対物レンズ及び光ピックアップ装置
JP4487645B2 (ja) プラスチック製光学素子及び光ピックアップ装置
JPWO2006054462A1 (ja) 光学素子及び光ピックアップ装置
JP2006143931A (ja) 光学素子及び光ピックアップ装置
JP4492278B2 (ja) ビーム整形素子、光源装置及び光ピックアップ装置
JP2005222573A (ja) プラスチック製光学素子及び光ピックアップ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060515

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees