JP3910453B2 - 受信装置および伝送路推定方法 - Google Patents

受信装置および伝送路推定方法 Download PDF

Info

Publication number
JP3910453B2
JP3910453B2 JP2002013802A JP2002013802A JP3910453B2 JP 3910453 B2 JP3910453 B2 JP 3910453B2 JP 2002013802 A JP2002013802 A JP 2002013802A JP 2002013802 A JP2002013802 A JP 2002013802A JP 3910453 B2 JP3910453 B2 JP 3910453B2
Authority
JP
Japan
Prior art keywords
frequency characteristic
frequency
time
time response
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002013802A
Other languages
English (en)
Other versions
JP2003218827A (ja
Inventor
健一郎 山崎
文雄 石津
利正 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002013802A priority Critical patent/JP3910453B2/ja
Publication of JP2003218827A publication Critical patent/JP2003218827A/ja
Application granted granted Critical
Publication of JP3910453B2 publication Critical patent/JP3910453B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば、TV放送信号や通信信号等の親局,基地局,中継局などから送信された信号を受信する受信装置に関するものであり、特に、周波数応答からFFT(Fast Fourier Transform:高速フーリエ変換)やIFFT(Inverse FFT:逆高速フーリエ変換)を用いて時間応答を求める際に生じるsinc関数の畳み込みの影響を除去し、より正しい時間応答を求める受信装置および伝送路推定方法に関するものである。
【0002】
【従来の技術】
以下、従来の伝送路推定方法について説明する。一般的に、無線装置が、予め挿入されているパイロット信号を用いて周波数特性を求め、その結果に基づいてIFFT処理によって時間応答を求める場合、FFTサイズと信号帯域幅が異なると、周波数軸上で信号帯域幅の矩形窓が乗算されたことと等しくなる。そのため、時間軸上では、本来の時間応答に、信号帯域幅に相当する矩形窓のsinc関数が畳み込まれる。この場合、この畳み込みにより、本来の時間応答では存在しないタイミングに、信号が存在することになってしまう。
【0003】
これに対して、特開2000−341242号公報には、しきい値を設定し、そのしきい値以下のレベルのタイミングにおける時間応答を強制的に0とし、sinc関数の影響を除去する例が開示されている。
【0004】
ここで、上記公報について簡単に説明する。図34は、地上波ディジタル放送における中継機の構成を示す図であり、図35は、中継機内の周波数帯域拡張回路の構成を示す図である。図34において、101は周波数帯域拡張回路であり、図35において、111は絶対値算出回路であり、112は最大値検出回路であり、113はしきい値規定回路であり、114は比較器であり、115はゲート回路である。
【0005】
上記地上波ディジタル放送における中継機では、送信アンテナから受信アンテナへの回り込み干渉信号の伝送路を推定することにより、干渉信号のレプリカを生成し、受信信号からレプリカを減算して干渉信号の影響を抑圧する。このとき、逆フーリエ変換回路が、周波数特性に対して逆フーリエ変換を行い、その結果として時間応答を求め、周波数帯域拡張回路101が、その場合に生じるsinc関数の畳み込みの影響を除去し、除去後の時間応答を係数更新回路に送出している。
【0006】
つぎに、図35を用いて周波数帯域拡張回路101について説明する。逆フーリエ変換回路出力の信号は、ゲート回路と同時に周波数帯域拡張回路101内の絶対値算出回路111へ送られ、ここで観測区間内の時間応答の絶対値が求められる。
【0007】
最大値検出回路112では、観測区間内の絶対値の最大値を求め、しきい値規定回路113では、その最大値に基づいてしきい値を決定する。比較器114では、絶対値算出回路111の出力信号と上記しきい値とを比較し、しきい値以下のタイミングの信号を強制的に0とする。これによりsinc関数の影響を除去できる。
【0008】
【発明が解決しようとする課題】
しかしながら、上記、特開2000−341242号公報記載の従来の伝送路推定方法においては、フィードバック回路において誤差を更新していくことによりsinc関数の影響を除去する方式を採用している。そのため、これをフィードフォワード回路に適用した場合、本来存在するべき信号のレベルが小さいとその信号が除去されてしまい、特性が劣化する、という問題があった。
【0009】
本発明は、上記に鑑みてなされたものであって、フィードフォワード回路に対応でき、さらに、sinc関数の畳み込みの影響がある場合であっても、より正確に伝送路推定を行うことができる受信装置および伝送路推定方法を得ることを目的とする。
【0010】
【課題を解決するための手段】
上述した課題を解決し、目的を達成するために、本発明にかかる受信装置にあっては、受信信号に含まれる既知シンボルを用いて周波数特性を算出する周波数特性算出手段(後述する実施の形態のFFT部1、パイロット信号抽出部2、パイロット信号発生部3、伝送路推定部4に相当)と、前記周波数特性を時間応答に変換する周波数/時間変換手段(IFFT部6に相当)と、前記時間応答から1つ前の時間応答を減算し、当該減算結果の最大振幅値に応じて決定したしきい値を用いて波形整形を行い、波形整形後の時間応答の周波数特性と前記周波数特性算出手段による周波数特性との差分を、前記波形整形後の時間応答の周波数特性に加算することにより、信号帯域内の周波数特性を更新する更新手段(波形整形部7、判定部8、FFT部9、周波数特性更新部10に相当)と、を備え、前記周波数/時間変換手段は、前記周波数特性算出手段から出力された周波数特性を時間応答に変換した後、前記更新後の周波数特性を時間応答に変換することを特徴とする。
【0011】
つぎの発明にかかる受信装置にあっては、受信信号に含まれる既知シンボルを用いて周波数特性を算出する周波数特性算出手段と、前記周波数特性を時間応答に変換する周波数/時間変換手段と、前記時間応答の最大振幅値に応じて決定したしきい値を用いて波形整形を行い、波形整形後の時間応答の周波数特性と前記周波数特性算出手段による周波数特性との差分により、信号帯域内の周波数特性を更新する更新手段と、を備え、前記周波数/時間変換手段は、前記周波数特性算出手段から出力された周波数特性を時間応答に変換した後、前記更新後の周波数特性を時間応答に変換することを特徴とする。
【0012】
つぎの発明にかかる受信装置にあっては、受信信号に含まれる既知シンボルを用いて周波数特性を算出する周波数特性算出手段と、前記周波数特性を時間応答に変換する周波数/時間変換手段と、前記時間応答から初期波形(初回は0値)を減算し、当該減算結果の最大振幅値に応じて決定したしきい値を用いて波形整形を行い、波形整形後の時間応答の周波数特性により、信号帯域内の周波数特性を更新する更新手段と、を備え、前記周波数/時間変換手段は、前記周波数特性算出手段から出力された周波数特性を時間応答に変換した後、前記更新後の周波数特性を時間応答に変換することを特徴とする。
【0013】
つぎの発明にかかる受信装置において、前記更新手段は、更新後の周波数特性を変換した時間応答に基づいて周波数特性を再更新する構成とし、前記周波数/時間変換手段と前記更新手段による信号処理を、所定回数にわたって繰り返し実行することを特徴とする。
【0014】
つぎの発明にかかる受信装置において、前記既知シンボルが周波数軸上および時間軸上で一定の周期で繰り返し挿入された場合、前記周波数特性算出手段は、複数シンボル単位に周波数特性を算出することを特徴とする。
【0015】
つぎの発明にかかる受信装置にあっては、値が存在しないサンプル(キャリア)の周波数特性を内挿補間する内挿補間手段を備え、前記周波数/時間変換手段は、内挿補間後の周波数特性を時間応答に変換することを特徴とする。
【0016】
つぎの発明にかかる受信装置にあっては、前記周波数特性を時間的に平均化する積分手段、を備えることを特徴とする。
【0017】
つぎの発明にかかる受信装置において、前記更新手段は、前記時間応答の最大振幅値の代わりに、前記時間応答の電力に応じて、しきい値を決定することを特徴とする。
【0018】
つぎの発明にかかる伝送路推定方法にあっては、受信信号に含まれる既知シンボルを用いて周波数特性を算出する周波数特性算出ステップと、前記周波数特性を時間応答に変換する周波数/時間変換ステップと、前記時間応答から1つ前の時間応答を減算し、当該減算結果の最大振幅値に応じて決定したしきい値を用いて波形整形を行い、波形整形後の時間応答の周波数特性と前記周波数特性算出手段による周波数特性との差分を、前記波形整形後の時間応答の周波数特性に加算することにより、信号帯域内の周波数特性を更新する更新ステップと、を含み、前記周波数/時間変換ステップでは、前記周波数特性算出ステップによって出力された周波数特性を時間応答に変換した後、前記更新後の周波数特性を時間応答に変換することを特徴とする。
【0019】
つぎの発明にかかる伝送路推定方法にあっては、受信信号に含まれる既知シンボルを用いて周波数特性を算出する周波数特性算出ステップと、前記周波数特性を時間応答に変換する周波数/時間変換ステップと、前記時間応答の最大振幅値に応じて決定したしきい値を用いて波形整形を行い、波形整形後の時間応答の周波数特性と前記周波数特性算出手段による周波数特性との差分により、信号帯域内の周波数特性を更新する更新ステップと、を含み、前記周波数/時間変換ステップでは、前記周波数特性算出ステップによって出力された周波数特性を時間応答に変換した後、前記更新後の周波数特性を時間応答に変換することを特徴とする。
【0020】
つぎの発明にかかる伝送路推定方法にあっては、受信信号に含まれる既知シンボルを用いて周波数特性を算出する周波数特性算出ステップと、前記周波数特性を時間応答に変換する周波数/時間変換ステップと、前記時間応答から初期波形(初回は0値)を減算し、当該減算結果の最大振幅値に応じて決定したしきい値を用いて波形整形を行い、波形整形後の時間応答の周波数特性により、信号帯域内の周波数特性を更新する更新ステップと、を含み、前記周波数/時間変換ステップでは、前記周波数特性算出ステップによって出力された周波数特性を時間応答に変換した後、前記更新後の周波数特性を時間応答に変換することを特徴とする。
【0021】
つぎの発明にかかる伝送路推定方法において、前記更新ステップでは、更新後の周波数特性を変換した時間応答に基づいて周波数特性を再更新し、前記周波数/時間変換ステップと前記更新ステップによる信号処理を、所定回数にわたって繰り返し実行することを特徴とする。
【0022】
つぎの発明にかかる伝送路推定方法において、前記既知シンボルが周波数軸上および時間軸上で一定の周期で繰り返し挿入された場合、前記周波数特性算出ステップでは、複数シンボル単位に周波数特性を算出することを特徴とする。
【0023】
つぎの発明にかかる伝送路推定方法にあっては、値が存在しないサンプル(キャリア)の周波数特性を内挿補間する内挿補間ステップを含み、前記周波数/時間変換ステップでは、内挿補間後の周波数特性を時間応答に変換することを特徴とする。
【0024】
つぎの発明にかかる伝送路推定方法にあっては、前記周波数特性を時間的に平均化する積分ステップ、を含むことを特徴とする。
【0025】
つぎの発明にかかる伝送路推定方法において、前記更新ステップでは、前記時間応答の最大振幅値の代わりに、前記時間応答の電力に応じて、しきい値を決定することを特徴とする。
【0026】
【発明の実施の形態】
以下に、本発明にかかる受信装置および伝送路推定方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
【0027】
実施の形態1.
図1は、本発明にかかる受信装置の実施の形態1の構成を示す図である。図1において、1は受信信号を時間軸信号から周波数軸信号に変換するFFT部であり、2は各サブキャリアに既知の振幅/位相特性を有し、予め決められた規則に従って挿入されているパイロット信号を抽出するパイロット信号抽出部であり、3はパイロット信号発生部であり、4はパイロット信号抽出部2の出力信号をパイロット信号発生部3の出力信号で除算することにより、周波数特性を求める伝送路推定部であり、5は伝送路推定部4の出力信号を記憶する周波数特性メモリ部であり、6は周波数特性メモリ部5の出力信号を周波数軸信号から時間軸信号に変換するIFFT部であり、7はIFFT部6の出力信号を波形整形する波形整形部であり、8は波形整形部7の出力信号に基づいて判定を行う判定部であり、9は波形整形部7の出力信号を時間軸信号から周波数軸信号に変換するFFT部であり、10は周波数特性メモリ部5の出力信号とFFT部9の出力信号から更新された周波数特性を算出する周波数特性更新部である。
【0028】
なお、判定部8の出力制御信号は、IFFT部6に入力する信号を、周波数特性メモリ部5出力とするか、周波数特性更新部10とするか、を選択するスイッチaを制御し、さらに、波形整形部7の出力先を、FFT部9にするか、出力時間応答として外部出力にするか、を選択するスイッチbを制御する。
【0029】
まず、FFT部1では、受信信号を時間軸信号から周波数軸信号に変換し、その変換結果をパイロット信号抽出部2に入力する。パイロット信号抽出部2では、予め決められた規則に従ってパイロット信号が抽出される。伝送路推定部4では、パイロット信号抽出部2の出力信号をパイロット信号発生部3の出力信号で除算することにより、推定伝送路を算出する。これを、式で表すと、
H(z)=Y(z)/X(z) …(1)
となる。ここで、X(z)は、送信信号の周波数特性を表し、Y(z)は受信信号の周波数特性を表し、H(z)は伝送路応答の周波数特性を表す。
【0030】
伝送路推定部4によって得られた周波数特性は、周波数特性メモリ部5に記憶されると同時にIFFT部6に送られ、IFFT部6では、周波数軸信号を時間軸信号に変換し、変換後の信号を波形整形部7へ送る。
【0031】
ここで、波形整形部7の動作を詳細に説明する。図2は、波形整形部7の構成を示す図である。図2において、201は波形減算部であり、202は絶対値算出部であり、203は最大値検出部であり、204はしきい値規定部であり、205は比較部であり、206はゲート回路であり、207は波形加算部であり、208はメモリ部である。なお、IFFT部6の出力信号をl(t,i)とする。ただし、tは時刻tを表し、iは時刻tのi番目の時間波形を表す。
【0032】
出力信号l(t,i)は、波形減算部201に入力され、ここで、メモリ部208に記憶されている1つ前の時間応答m(t,i−1)との差分信号が求められる。
m(t,i)=l(t,i)−m(t,i−1) …(2)
【0033】
差分信号m(t,i)は、ゲート回路206と同時に絶対値算出部202に送られ、絶対値算出部202では、各サンプルにおける時間応答の絶対値を求める。最大値検出部203では、当該絶対値に基づいて観測区間内における最大値を求め、しきい値規定部204では、当該最大値に基づいて波形整形のためのしきい値th1を決定し、そのしきい値を比較部205と判定部8に送信する。
【0034】
比較部205では、絶対値算出部202の出力信号と、しきい値規定部204において決定されたしきい値th1と、を比較し、その比較結果をゲート回路206に送出する。
【0035】
ゲート回路206では、比較部205における比較結果に基づいた処理を行う。すなわち、サンプルの時間応答の絶対値がしきい値th1よりも大きい場合にはそのまま出力し、小さい場合には強制的に0として出力する。
【0036】
ゲート回路206の出力信号は、波形加算部207に送信され、波形加算部207では、ゲート回路206の出力信号とメモリ部208の出力信号とを加算し、その加算結果を出力時間応答またはFFT部9への出力信号として出力する。同時に、上記加算結果は、新たなメモリ信号としてメモリ部208に記憶される。波形加算部207の出力信号は、下記(3)式のように表すことができる。
m(t,i)=m(t,i)+m(t,i−1) …(3)
【0037】
また、しきい値規定部204の出力信号th1は、判定部8に送信され、判定部8では、th1が予め設定されたしきい値THよりも大きいか小さいかを判定する。たとえば、th1がTHよりも大きい場合には、スイッチaを周波数特性更新部10へ接続し、スイッチbをFFT部9へ接続するように制御する。またth1がTHよりも小さい場合には、スイッチaを周波数特性メモリ部5へ接続し、スイッチbを、波形整形部7の出力信号を出力時間応答として出力するように接続する。
【0038】
また、波形整形部7の出力信号がFFT部9に送信される場合には、FFT部9では、波形整形部7の出力信号を時間軸信号から周波数軸信号に変換し、その変換結果を周波数特性更新部10へ送信する。
【0039】
つぎに、周波数特性更新部10の動作を詳細に説明する。図3は、周波数特性更新部10の構成を示す図であり、211は周波数特性差分算出部であり、212は周波数特性差分加算部である。
【0040】
周波数特性差分算出部211では、FFT部9出力の周波数特性と周波数特性メモリ部5に記憶された周波数特性との信号帯域内の差分を取り、周波数特性差分加算部212では、その差分をFFT部9出力の周波数特性に加算することにより信号帯域内の周波数特性を更新し、再びIFFT部6へ送出する。これを式で表すと、
H´(z)=H´(z)+(H(z)−H´(z)) …(4)
となる。なお、H´(z)は、波形整形後のFFT部9出力の周波数特性である。
【0041】
以降、再びIFFT部6では、周波数特性更新部10の出力信号を周波数軸信号から時間軸信号に変換し、波形整形部7では、IFFT部6の出力信号を波形整形し、さらに、FFT部9では、波形整形部7の出力信号を時間軸信号から周波数軸信号に変換し、このようなループ処理が繰り返し行われる。
【0042】
そして、判定部8によって、波形整形部7におけるしきい値規定部204の出力信号th1が、しきい値THよりも小さいと判定された場合、スイッチaおよびスイッチbが制御され、波形整形部7の出力信号が、出力時間応答として出力される。同時に、波形整形部7内のメモリ部208内の値がリセットされ、初期値0となる。
【0043】
その後、伝送路推定部4より新たな周波数特性が出力され、周波数特性メモリ部5に記憶されると、再び波形整形動作が行われる。
【0044】
つぎに、上記動作を、図面を用いて具体的に説明する。図4は、時間応答の2波のモデルを示す図である。また、図5は、伝送路推定部4出力の周波数特性を示す図であり、この周波数特性が周波数特性メモリ部5に記憶される。このとき、IFFT部6によって周波数軸信号から時間軸信号に変換され、波形整形部7に入力される時間応答は、図6のように表すことができる。
【0045】
なお、図5では、信号帯域幅とFFTサイズが異なるため、周波数軸上で矩形窓が乗算されたものと等価と考えられるので、図6の時間応答では、乗算された矩形窓に相当するsinc関数が畳み込まれた波形が出力される。これにより、本来インパルス状の波形しか存在しないはずであるが、他のサンプルにsinc関数のサイドローブにあたる波形が出力される。
【0046】
また、絶対値算出部202では、この時間応答の観測範囲において各サンプル点の振幅値を求め、最大値検出部203では、各振幅値の最大値を求める。そして、しきい値規定部204では、しきい値th1を決定する。図7は、比較部205およびゲート回路206によりしきい値th1以下の時間応答を強制的に0とした波形を示す図である。ここでは、しきい値を超えた1波目だけが出力される。
【0047】
なお、しきい値規定部204で決定されるしきい値th1は、FFTサイズと信号帯域幅が既知であり、畳み込まれるsinc関数の形状も既知となるため、それらをもとに設定する。具体的にいうと、しきい値は、sinc関数において最大のサイドローブのピークがメインローブのピークより約13dBだけ小さいこと、を考慮し、さらに、サンプリング周波数や、FFTサイズと信号帯域幅の関係や、ノイズなどにより最大のサイドローブのピークを上回るレベルのサンプリング点が存在すること、を考慮し、最大値とそこから13dBだけダウンしたレベルとの間に設定することが望ましい。
【0048】
そして、判定部8にてしきい値規定部204の出力信号th1がTHよりも大きいと判定された場合、波形整形されたゲート回路206の出力信号は、メモリ部208に入力される。同時に、ゲート回路206の出力信号は、FFT部9によって時間軸信号から周波数軸信号に変換され、周波数特性更新部10に送信される。図8は、FFT部9出力の周波数軸信号を示す図である。
【0049】
図8から明らかなように、sinc関数の畳み込みの影響を除去(サイドローブを除去)することにより、1波のみの周波数特性が得られる。また、信号帯域外の周波数特性も外挿されることになる。
【0050】
ただし、周波数特性メモリ部5の出力信号を波形整形する場合における、第1回目の波形整形時は、波形整形部7内のメモリ部208に初期値0が設定されているので、波形減算部201,波形加算部207では、入力信号がそのまま出力される。
【0051】
また、FFT部9出力の周波数軸信号を受け取った周波数特性更新部10では、当該周波数軸信号と周波数特性メモリ部5に記憶された信号との信号帯域内の差分を取る。そして、その差分をFFT部9出力の周波数軸信号に加算することにより、信号帯域内の周波数特性を更新する。これにより、1回目の波形整形で削除された2波目の信号成分が更新された周波数特性内に含まれるようになる。図9は、1回目の波形整形で削除された2波目の信号成分が更新された周波数特性を示す図である。
【0052】
IFFT部6では、再度、更新された周波数特性を周波数軸信号から時間軸信号に変換し、波形整形部7に送信する。図10は、IFFT部6出力の時間軸信号を示す図である。
【0053】
波形整形部7内の波形減算部201では、メモリ部208に記憶された1回目の波形整形信号との差分が算出される。図11は、波形減算部201出力の差分信号を示す図である。
【0054】
ここで再び、絶対値算出部202が、この時間応答の観測範囲において各サンプル点の振幅値を求め、最大値検出部203が、振幅値の最大値を求める。そして、しきい値規定部204が、新たなしきい値th1を決定する。図12は、比較部205およびゲート回路206においてしきい値th1以下の時間応答を強制的に0とした波形を示す図である。
【0055】
そして、波形加算部207では、ゲート回路206の出力信号とメモリ部208の出力信号とを加算する。図13は、波形加算部207出力の波形を示す図である。この時点で、1波目と2波目の理想的な波形が求められたことになる。
【0056】
本実施の形態では、上記処理をしきい値th1が判定部8におけるしきい値THよりも小さくなるまで繰り返し行い、波形整形を行う。
【0057】
このように、本実施の形態においては、時間応答における最大振幅値に応じて決定したしきい値を用いて波形整形を行い、その時間応答の周波数特性を求め、もとの周波数特性との差分により更新し、再び時間応答の波形整形を行う構成としたため、フィードフォワード型であっても、より正確に伝送路推定を行うことができる。
【0058】
なお、以上の動作は、FFTやIFFTによって伝送路推定を行い、FFTサイズと信号帯域幅が異なる、すべての受信装置に適用可能であり、マルチキャリア伝送方式、シングルキャリア伝送方式等の伝送方式によって制限されるものでない。
【0059】
実施の形態2.
つぎに、実施の形態2の伝送路推定方法について説明する。なお、受信装置の構成については、前述の実施の形態1と同様である。ここでは、実施の形態1と異なる動作についてのみ説明する。
【0060】
図14は、地上波ディジタル放送におけるパイロット信号を示す図である。パイロット信号は、図14に示すように、一定周期で挿入されている場合がある。この場合、パイロット信号抽出部2では、規則性に従ってパイロット信号を抽出し、伝送路推定部4では、抽出されたパイロット信号に基づいて周波数特性を求める。
【0061】
図14では、周波数軸方向については12キャリア毎に、時間軸方向については4シンボル毎に、それぞれパイロットシンボルが挿入されている。したがって、たとえば、4シンボル単位に周波数特性を求めれば、周波数軸方向に3キャリア毎にパイロット信号が挿入されることになる。
【0062】
上記パイロット信号を用いて前述の実施の形態1の動作を行った場合、IFFT部6の出力信号は、以下に示すような時間応答となる。図15は、IFFT部6出力の時間軸信号を示す図である。
【0063】
ここでは、3キャリア毎に周波数特性が存在することになるので、時間応答には折り返しが発生し、FFTサイズの1/3間隔で時間応答が繰り返されることになる。また、この場合、FFTサイズは、2のN乗の幅であり、3の倍数の幅ではないことから、折り返し波形は、サンプリングタイミングの間に存在することになる。そして、2回目,3回目の折り返し波形は、タイミングがずれた波形として出力されることになる。しかしながら、1回目の波形(t=0〜FFTサイズ/3の時刻)はサンプリングタイミング上に出力されるため、その範囲を観測範囲とすれば、前述の実施の形態1に示した動作を行うことができる。
【0064】
なお、本実施の形態においては、周波数特性メモリ部5に、3つおきに値が存在する周波数特性が記憶されるため、周波数特性更新部10では、更新される周波数特性も3つおきに算出する必要がある。このように、本実施の形態においては、地上波ディジタル放送のようなOFDM(直交周波数分割多重)信号に対応できる。
【0065】
実施の形態3.
つぎに、実施の形態3の伝送路推定方法について説明する。なお、受信装置の構成については、前述の実施の形態1と同様である。本実施の形態における受信装置においては、先に説明した実施の形態1における受信装置の波形整形部7と周波数特性更新部10の簡略化を図ることによって、H/W規模を削減した。
【0066】
図16は、波形整形部7の構成を示す図である。図16の波形整形部7は、図2における波形減算部201が存在せず、メモリ部208は、波形加算部207と信号のやり取りを行う。また、図17は、周波数特性更新部10の構成を示す図である。図17では、図3における周波数特性差分加算部212が存在しない。なお、図16および図17において、先に説明した図2および図3と同様の構成については、同一の符号を付してその説明を省略する。ここでは、実施の形態1と異なる動作についてのみ説明する。また、ここでは、説明の便宜上、図4に示す2波のモデルを使用する。
【0067】
たとえば、周波数特性メモリ部5に記憶された信号は、IFFT部6により周波数軸信号から時間軸信号に変換され、当該時間軸信号が波形整形部7に送信される。このときの時間軸信号は、図6のように表すことができる。
【0068】
波形整形部7では、先に説明した実施の形態1の動作から波形減算部201の処理を削除し、すなわち、IFFT部6の出力信号を直接絶対値算出部202に送信し、以降、実施の形態1と同様の手順で、sinc関数の畳み込みの影響を除去する。このときの時間軸信号は、図7のように表すことができる。
【0069】
その後、判定部8にてしきい値規定部204の出力がしきい値THよりも大きいと判断した場合、波形整形部7の出力信号は、FFT部9によって周波数軸信号に変換され、その周波数軸信号は周波数特性更新部10に送信される。このときの周波数軸信号は、図8のように表すことができる。
【0070】
周波数特性更新部10では、周波数特性メモリ部5からの周波数特性とFFT部9出力の新たな周波数特性との信号帯域内の差分を出力する。図18は、周波数特性差分算出部211の出力信号を示す図である。
【0071】
周波数特性更新部10の出力信号は、IFFT部6によって周波数軸信号から時間軸信号に変換され、波形整形部7に送信される。図19は、IFFT部6出力の時間軸信号であり、ここでの波形は、前回の波形整形で切り捨てられた信号成分がsinc関数の畳み込みの影響を受けた波形となる。
【0072】
さらに、波形整形部7内部では、観測区間内の最大値を求めてしきい値を決定し、しきい値以下のサンプルを強制的に0とし、その結果を波形加算部207へ送信する。図20は、しきい値以下のサンプルを強制的に0とした場合の時間軸信号を示す図である。
【0073】
波形加算部207では、メモリ部208の出力信号とゲート回路206の出力信号とを加算し、時間応答の更新が行われる。図21は、波形加算部207における時間応答を示す図である。以降、実施の形態1と同様の処理が繰り返し行われる。
【0074】
このように、本実施の形態においては、先に説明した実施の形態1と同様の効果が得られるとともに、さらに、H/W規模を削減することができる。
【0075】
実施の形態4.
つぎに、実施の形態4の伝送路推定方法について説明する。図22は、本発明にかかる受信装置の実施の形態4の構成を示す図である。先に説明した実施の形態3では、周波数軸信号の差分を算出することにより時間軸信号の更新を行っていたが、本実施の形態では、周波数特性メモリ部5から周波数特性更新部10への信号線がない構成となっており、時間軸信号の差分を取り、その差分信号に対して波形整形を行った信号を更新する。
【0076】
図23は、波形整形部7の構成を示す図である。図23において、209は初期波形メモリ部である。図2の波形整形部7との違いは、初期波形メモリ部209が新たに挿入されている点である。なお、図2と同様の構成については、同一の符号を付してその説明を省略する。また、ここでは、説明の便宜上、図4に示す2波のモデルを使用する。
【0077】
たとえば、周波数特性メモリ部5に記憶された信号は、IFFT部6により周波数軸信号から時間軸信号に変換され、波形整形部7に送信される。このときの時間軸信号は、図6のように表すことができる。
【0078】
波形整形部7では、波形減算部201によって初期波形メモリ部209に記憶されている信号とIFFT部6からの出力信号との差分が取られる。なお、周波数特性メモリ部5に新たな周波数特性が入力され、初めてのIFFT部6の出力信号が入力された場合には、初期波形メモリ部209に0値が記憶されているため、波形減算部201の入力信号レベルがそのまま出力されることになる。その他の処理は、先に説明した実施の形態1と同様である。初期波形メモリ部209は、IFFT部6の出力信号が初めて入力された場合、波形減算部201の出力が入力されるように制御される。
【0079】
波形整形部7の出力信号は、判定部8にてしきい値規定部204の出力がしきい値THよりも大きいと判断された場合、FFT部9によって時間軸信号から周波数軸信号へ変換されて周波数特性更新部10に入力される。このときの周波数軸信号は、図8のように表すことができる。
【0080】
周波数特性更新部10では、FFT部9からの周波数軸信号を信号帯域内で抽出し、新たな周波数軸信号とする。図24は、周波数特性更新部10における周波数特性を示す図である。
【0081】
更新された周波数軸信号は、IFFT部6によって周波数軸信号から時間軸信号に変換され、波形整形部7へ送信される。図25は、IFFT部6出力の時間軸信号を示す図である。
【0082】
IFFT部6出力の時間軸信号は、1回目の波形整形部7の処理で抽出された信号にsinc関数が畳み込まれた信号であるため、波形減算部201では、初期波形メモリ部209に記憶された時間軸信号から上記図25の時間軸信号を減算し、1回目の処理で切り捨てられた信号成分を出力する。図26は、波形減算部201出力の時間軸信号を示す図である。
【0083】
比較部205およびゲート回路206では、1回目と同様の処理で新たに決定されたしきい値以下の各サンプルの信号成分を強制的に0とし、その結果を波形加算部207に送信する。図27は、ゲート回路206出力の時間軸信号を示す図である。
【0084】
波形加算部207では、図27の時間軸信号とメモリ部208に記憶された信号との加算を行う。メモリ部208に記憶された信号は図7に示す信号であるから、波形加算部207では、図28に示すような信号を出力することになる。なお、判定部8のしきい値THよりも波形整形でのしきい値th1が小さいと判断された場合には、初期波形メモリ部209はリセットされ、初期値0となる。
【0085】
このように、本実施の形態においては、時間軸信号の差分を取り、その差分信号に対して波形整形を行った信号を更新し、再び時間応答の波形整形を行う構成としたため、フィードフォワード型であっても、より正確に伝送路推定を行うことができる。
【0086】
実施の形態5.
つぎに、実施の形態5の伝送路推定方法について説明する。図29は、本発明にかかる受信装置の実施の形態5の構成を示す図であり、11は補間処理部である。
【0087】
先に説明した実施の形態3では、所定の規則に従って挿入されたパイロット信号を用いて伝送路推定を行い、周波数特性を算出していたが、本実施の形態では、伝送路推定部4の出力信号を補間処理部11に入力し、値が存在しないサンプル(キャリア)の周波数特性を内挿補間することにより周波数特性を求めている。
【0088】
ここでの内挿補間としては、たとえば、1次補間や2次補間、さらに理想sinc関数の周波数軸上での畳み込みによる内挿補間など、が用いられる。
【0089】
これにより、本実施の形態では、実施の形態3と同様の効果が得られるとともに、さらに、正確に伝送路推定を行うことができる。
【0090】
実施の形態6.
つぎに、実施の形態6の伝送路推定方法について説明する。図30は、本発明にかかる受信装置の実施の形態6の構成を示す図であり、12は積分処理部である。
【0091】
先に説明した実施の形態1〜5では、伝送路推定部4出力や補間処理部11出力の周波数特性を用いて伝送路推定を行っていたが、本実施の形態では、伝送路推定部4の出力信号や補間処理部11の出力信号を、積分処理部12が時間的に平均化して周波数特性を求めている。
【0092】
これにより、本実施の形態では、前述の実施の形態1〜5と同様の効果が得られるとともに、さらに、ノイズの影響を低減でき、より精度良く伝送路推定を行うことができる。
【0093】
なお、平均化の手法としては、たとえば、図31に示すようなFIRフィルタによる移動平均による構成で行ってもよいし、図32に示すようなIIRフィルタによる構成で行ってもよい。
【0094】
実施の形態7.
つぎに、実施の形態7の伝送路推定方法について説明する。なお、受信装置の構成については、前述の実施の形態1〜6と同様である。
【0095】
図33は、波形整形部7の構成を示す図であり、210は電力算出部である。なお、図33において、先に説明した図2,図16および図23と同様の構成については、同一の符号を付してその説明を省略する。ここでは、実施の形態1と異なる動作についてのみ説明する。
【0096】
先に説明した実施の形態1〜6では、波形整形時の比較対象に時間応答の絶対値(振幅)を用いていたが、本実施の形態では、時間応答の電力値(2乗値)を算出し、当該電力値とこの電力値に基づいて決定したしきい値とを比較して波形整形を行う。電力値を算出する場合には、絶対値(振幅)を算出する場合に用いた平方根の演算が不要となり、その分だけH/W回路を簡単に構成できる。
【0097】
これにより、本実施の形態では、前述の実施の形態1〜6と同様の効果が得られるとともに、さらに、絶対値を求めて比較を行う場合よりもH/W規模を削減できる。
【0098】
【発明の効果】
以上、説明したとおり、本発明によれば、時間応答における最大振幅値に応じて決定したしきい値を用いて波形整形を行い、その時間応答の周波数特性を求め、もとの周波数特性との差分により信号帯域内の周波数特性を更新し、更新後の周波数特性を時間応答に変換する構成とした。これにより、フィードフォワード型であっても、正確に伝送路推定を行うことが可能な受信装置を得ることができる、という効果を奏する。
【0099】
つぎの発明によれば、さらに、H/W規模を削減することが可能な受信装置を得ることができる、という効果を奏する。
【0100】
つぎの発明によれば、時間軸信号の差分を取り、その差分信号に対して波形整形を行った信号を更新し、更新後の周波数特性を時間応答に変換する構成とした。これにより、フィードフォワード型であっても、正確に伝送路推定を行うことが可能な受信装置を得ることができる、という効果を奏する。
【0101】
つぎの発明によれば、周波数/時間変換手段と更新手段による信号処理を、所定回数にわたって繰り返し実行する構成とした。これにより、さらに正確に伝送路推定を行うことが可能な受信装置を得ることができる、という効果を奏する。
【0102】
つぎの発明によれば、地上波ディジタル放送のようなOFDM(直交周波数分割多重)信号に対応可能な受信装置を得ることができる、という効果を奏する。
【0103】
つぎの発明によれば、さらに、正確に伝送路推定を行うことが可能な受信装置を得ることができる、という効果を奏する。
【0104】
つぎの発明によれば、ノイズの影響を低減できるため、さらに精度良く伝送路推定を行うことが可能な受信装置を得ることができる、という効果を奏する。
【0105】
つぎの発明によれば、絶対値を求めて比較を行う場合よりもH/W規模を削減可能な受信装置を得ることができる、という効果を奏する。
【0106】
つぎの発明によれば、時間応答における最大振幅値に応じて決定したしきい値を用いて波形整形を行い、その時間応答の周波数特性を求め、もとの周波数特性との差分により信号帯域内の周波数特性を更新し、更新後の周波数特性を時間応答に変換することとしたため、フィードフォワード型であっても、より正確に伝送路推定を行うことができる、という効果を奏する。
【0107】
つぎの発明によれば、さらに、H/W規模を削減することができる、という効果を奏する。
【0108】
つぎの発明によれば、時間軸信号の差分を取り、その差分信号に対して波形整形を行った信号を更新し、更新後の周波数特性を時間応答に変換することとしたため、フィードフォワード型であっても、より正確に伝送路推定を行うことができる、という効果を奏する。
【0109】
つぎの発明によれば、周波数/時間変換ステップと更新ステップによる信号処理を、所定回数にわたって繰り返し実行することとしたため、さらに正確に伝送路推定を行うことができる、という効果を奏する。
【0110】
つぎの発明によれば、地上波ディジタル放送のようなOFDM(直交周波数分割多重)信号に対応できる、という効果を奏する。
【0111】
つぎの発明によれば、さらに、正確に伝送路推定を行うことができる、という効果を奏する。
【0112】
つぎの発明によれば、ノイズの影響を低減できるため、さらに精度良く伝送路推定を行うことができる、という効果を奏する。
【0113】
つぎの発明によれば、絶対値を求めて比較を行う場合よりもH/W規模を削減できる、という効果を奏する。
【図面の簡単な説明】
【図1】 本発明にかかる受信装置の実施の形態1〜3の構成を示す図である。
【図2】 波形整形部の一構成例を示す図である。
【図3】 周波数特性更新部の一構成例を示す図である。
【図4】 時間応答の2波のモデルを示す図である。
【図5】 伝送路推定部出力の周波数特性を示す図である。
【図6】 IFFT部出力の時間軸信号を示す図である。
【図7】 比較部およびゲート回路によりしきい値th1以下の時間応答を強制的に0とした波形を示す図である。
【図8】 FFT部出力の周波数軸信号を示す図である。
【図9】 周波数特性更新部における周波数特性を示す図である。
【図10】 IFFT部出力の時間軸信号を示す図である。
【図11】 波形減算部出力の差分信号を示す図である。
【図12】 比較部およびゲート回路においてしきい値th1以下の時間応答を強制的に0とした波形を示す図である。
【図13】 波形加算部出力の波形を示す図である。
【図14】 地上波ディジタル放送におけるパイロット信号を示す図である。
【図15】 IFFT部出力の時間軸信号を示す図である。
【図16】 波形整形部の一構成例を示す図である。
【図17】 周波数特性更新部の一構成例を示す図である。
【図18】 周波数特性差分算出部の出力信号を示す図である。
【図19】 IFFT部出力の時間軸信号を示す図である。
【図20】 しきい値以下のサンプルを強制的に0とした場合の時間軸信号を示す図である。
【図21】 波形加算部における時間応答を示す図である。
【図22】 本発明にかかる受信装置の実施の形態4の構成を示す図である。
【図23】 波形整形部の一構成例を示す図である。
【図24】 周波数特性更新部における周波数特性を示す図である。
【図25】 IFFT部出力の時間軸信号を示す図である。
【図26】 波形減算器出力の時間軸信号を示す図である。
【図27】 ゲート回路出力の時間軸信号を示す図である。
【図28】 波形加算部の出力信号を示す図である。
【図29】 本発明にかかる受信装置の実施の形態5の構成を示す図である。
【図30】 本発明にかかる受信装置の実施の形態6の構成を示す図である。
【図31】 積分処理部による平均化手法の一例を示す図である。
【図32】 積分処理部による平均化手法の一例を示す図である。
【図33】 波形整形部の一構成例を示す図である。
【図34】 地上波ディジタル放送における中継機の構成を示す図である。
【図35】 中継機内の周波数帯域拡張回路の構成を示す図である。
【符号の説明】
1 FFT部、2 パイロット信号抽出部、3 パイロット信号発生部、4 伝送路推定部、5 周波数特性メモリ部、6 IFFT部、7 波形整形部、8判定部、9 FFT部、10 周波数特性更新部、11 補間処理部、12 積分処理部、201 波形減算部、202 絶対値算出部、203 最大値検出部、204 しきい値規定部、205 比較部、206 ゲート回路、207 波形加算部、208 メモリ部、209 初期波形メモリ部、210 電力算出部、211 周波数特性差分算出部、212 周波数特性差分加算部。

Claims (16)

  1. 受信信号に含まれる既知シンボルを用いて周波数特性を算出する周波数特性算出手段と、
    前記周波数特性を時間応答に変換する周波数/時間変換手段と、
    前記時間応答から1つ前の時間応答を減算し、当該減算結果の最大振幅値に応じて決定したしきい値を用いて波形整形を行い、波形整形後の時間応答の周波数特性と前記周波数特性算出手段による周波数特性との差分を、前記波形整形後の時間応答の周波数特性に加算することにより、信号帯域内の周波数特性を更新する更新手段と、
    を備え、
    前記周波数/時間変換手段は、前記周波数特性算出手段から出力された周波数特性を時間応答に変換した後、前記更新後の周波数特性を時間応答に変換することを特徴とする受信装置。
  2. 受信信号に含まれる既知シンボルを用いて周波数特性を算出する周波数特性算出手段と、
    前記周波数特性を時間応答に変換する周波数/時間変換手段と、
    前記時間応答の最大振幅値に応じて決定したしきい値を用いて波形整形を行い、波形整形後の時間応答の周波数特性と前記周波数特性算出手段による周波数特性との差分により、信号帯域内の周波数特性を更新する更新手段と、
    を備え、
    前記周波数/時間変換手段は、前記周波数特性算出手段から出力された周波数特性を時間応答に変換した後、前記更新後の周波数特性を時間応答に変換することを特徴とする受信装置。
  3. 受信信号に含まれる既知シンボルを用いて周波数特性を算出する周波数特性算出手段と、
    前記周波数特性を時間応答に変換する周波数/時間変換手段と、
    前記時間応答から初期波形(初回は0値)を減算し、当該減算結果の最大振幅値に応じて決定したしきい値を用いて波形整形を行い、波形整形後の時間応答の周波数特性により、信号帯域内の周波数特性を更新する更新手段と、
    を備え、
    前記周波数/時間変換手段は、前記周波数特性算出手段から出力された周波数特性を時間応答に変換した後、前記更新後の周波数特性を時間応答に変換することを特徴とする受信装置。
  4. 前記更新手段は、更新後の周波数特性を変換した時間応答に基づいて周波数特性を再更新する構成とし、
    前記周波数/時間変換手段と前記更新手段による信号処理を、所定回数にわたって繰り返し実行することを特徴とする請求項1、2または3に記載の受信装置。
  5. 前記既知シンボルが周波数軸上および時間軸上で一定の周期で繰り返し挿入された場合、
    前記周波数特性算出手段は、複数シンボル単位に周波数特性を算出することを特徴とする請求項1〜4のいずれか一つに記載の受信装置。
  6. 値が存在しないサンプル(キャリア)の周波数特性を内挿補間する内挿補間手段を備え、
    前記周波数/時間変換手段は、内挿補間後の周波数特性を時間応答に変換することを特徴とする請求項5に記載の受信装置。
  7. 前記周波数特性を時間的に平均化する積分手段、
    を備えることを特徴とする請求項1〜6のいずれか一つに記載の受信装置。
  8. 前記更新手段は、前記時間応答の最大振幅値の代わりに、前記時間応答の電力に応じて、しきい値を決定することを特徴とする請求項1〜7のいずれか一つに記載の受信装置。
  9. 受信信号に含まれる既知シンボルを用いて周波数特性を算出する周波数特性算出ステップと、
    前記周波数特性を時間応答に変換する周波数/時間変換ステップと、
    前記時間応答から1つ前の時間応答を減算し、当該減算結果の最大振幅値に応じて決定したしきい値を用いて波形整形を行い、波形整形後の時間応答の周波数特性と前記周波数特性算出手段による周波数特性との差分を、前記波形整形後の時間応答の周波数特性に加算することにより、信号帯域内の周波数特性を更新する更新ステップと、
    を含み、
    前記周波数/時間変換ステップでは、前記周波数特性算出ステップによって出力された周波数特性を時間応答に変換した後、前記更新後の周波数特性を時間応答に変換することを特徴とする伝送路推定方法。
  10. 受信信号に含まれる既知シンボルを用いて周波数特性を算出する周波数特性算出ステップと、
    前記周波数特性を時間応答に変換する周波数/時間変換ステップと、
    前記時間応答の最大振幅値に応じて決定したしきい値を用いて波形整形を行い、波形整形後の時間応答の周波数特性と前記周波数特性算出手段による周波数特性との差分により、信号帯域内の周波数特性を更新する更新ステップと、
    を含み、
    前記周波数/時間変換ステップでは、前記周波数特性算出ステップによって出力された周波数特性を時間応答に変換した後、前記更新後の周波数特性を時間応答に変換することを特徴とする伝送路推定方法。
  11. 受信信号に含まれる既知シンボルを用いて周波数特性を算出する周波数特性算出ステップと、
    前記周波数特性を時間応答に変換する周波数/時間変換ステップと、
    前記時間応答から初期波形(初回は0値)を減算し、当該減算結果の最大振幅値に応じて決定したしきい値を用いて波形整形を行い、波形整形後の時間応答の周波数特性により、信号帯域内の周波数特性を更新する更新ステップと、
    を含み、
    前記周波数/時間変換ステップでは、前記周波数特性算出ステップによって出力された周波数特性を時間応答に変換した後、前記更新後の周波数特性を時間応答に変換することを特徴とする伝送路推定方法。
  12. 前記更新ステップでは、更新後の周波数特性を変換した時間応答に基づいて周波数特性を再更新し、
    前記周波数/時間変換ステップと前記更新ステップによる信号処理を、所定回数にわたって繰り返し実行することを特徴とする請求項9、10または11に記載の伝送路推定方法。
  13. 前記既知シンボルが周波数軸上および時間軸上で一定の周期で繰り返し挿入された場合、
    前記周波数特性算出ステップでは、複数シンボル単位に周波数特性を算出することを特徴とする請求項9〜12のいずれか一つに記載の伝送路推定方法。
  14. 値が存在しないサンプル(キャリア)の周波数特性を内挿補間する内挿補間ステップを含み、
    前記周波数/時間変換ステップでは、内挿補間後の周波数特性を時間応答に変換することを特徴とする請求項13に記載の伝送路推定方法。
  15. 前記周波数特性を時間的に平均化する積分ステップ、
    を含むことを特徴とする請求項9〜14のいずれか一つに記載の伝送路推定方法。
  16. 前記更新ステップでは、前記時間応答の最大振幅値の代わりに、前記時間応答の電力に応じて、しきい値を決定することを特徴とする請求項9〜15のいずれか一つに記載の伝送路推定方法。
JP2002013802A 2002-01-23 2002-01-23 受信装置および伝送路推定方法 Expired - Fee Related JP3910453B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013802A JP3910453B2 (ja) 2002-01-23 2002-01-23 受信装置および伝送路推定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013802A JP3910453B2 (ja) 2002-01-23 2002-01-23 受信装置および伝送路推定方法

Publications (2)

Publication Number Publication Date
JP2003218827A JP2003218827A (ja) 2003-07-31
JP3910453B2 true JP3910453B2 (ja) 2007-04-25

Family

ID=27650665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013802A Expired - Fee Related JP3910453B2 (ja) 2002-01-23 2002-01-23 受信装置および伝送路推定方法

Country Status (1)

Country Link
JP (1) JP3910453B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523294B2 (ja) * 2003-02-10 2010-08-11 三菱電機株式会社 通信装置
EP1521413A3 (en) 2003-10-01 2009-09-30 Panasonic Corporation Multicarrier reception with channel estimation and equalisation
US8391413B2 (en) 2003-12-19 2013-03-05 Qualcomm Incorporated Channel estimation for an OFDM communication system with inactive subbands
KR20070036147A (ko) * 2004-07-29 2007-04-02 마쓰시다 일렉트릭 인더스트리얼 컴패니 리미티드 무선 송신 장치, 무선 수신 장치, 무선 송신 방법 및 무선수신 방법
JP4856637B2 (ja) * 2005-06-14 2012-01-18 パナソニック株式会社 受信装置、集積回路及び受信方法
JP4628977B2 (ja) * 2006-03-07 2011-02-09 Kddi株式会社 伝送路推定装置、伝送路推定プログラム、および記録媒体
JP5042219B2 (ja) * 2006-06-07 2012-10-03 シャープ株式会社 受信機および周波数情報推定方法
JP5146929B2 (ja) * 2007-04-18 2013-02-20 株式会社メガチップス Ofdm受信装置
JP5249541B2 (ja) * 2007-08-22 2013-07-31 株式会社モバイルテクノ 伝搬路推定装置及び受信装置

Also Published As

Publication number Publication date
JP2003218827A (ja) 2003-07-31

Similar Documents

Publication Publication Date Title
Coulson Maximum likelihood synchronization for OFDM using a pilot symbol: algorithms
KR100967058B1 (ko) 무선통신 시스템에서의 개량된 채널 추정 방법 및 채널 추정기
US10542511B2 (en) Method and apparatus for primary synchronization in internet of things
JP4818346B2 (ja) 通信システムの信号送受信装置におけるエコー信号除去装置及び方法
EP2928140A1 (en) Method and a device for cancelling a narrow band interference in a single carrier signal
JP3910453B2 (ja) 受信装置および伝送路推定方法
JP6168375B2 (ja) 平準化器を利用したics中継器の干渉除去装置及びその方法
WO2018030920A1 (ru) Способ компенсации влияния фазового шума на передачу данных в радиоканале
JP5707202B2 (ja) 受信装置
JP4827723B2 (ja) Ofdm受信装置
JP2000341242A (ja) 回り込みキャンセラ
JP2008054193A (ja) 回り込みキャンセラ
CN112953593A (zh) LoRa高级接收器
KR101012444B1 (ko) 파일롯 심볼들을 사용하는 직교 주파수 다중화 방식 시스템에서 주파수 오프셋을 추정하는 방법
JP6028572B2 (ja) 受信装置
KR100695005B1 (ko) 직교주파수분할다중 기반 수신기의 채널 추정 장치 및 그방법
JP3713211B2 (ja) 伝送路特性測定器および回り込みキャンセラ
JP6603252B2 (ja) 無線通信装置及び受信処理方法
KR101058734B1 (ko) 통신 시스템의 신호 송수신 장치에서 반향 신호 제거 장치 및 방법
JP4009143B2 (ja) 遅延プロファイル測定装置および遅延プロファイル測定方法
JP3954849B2 (ja) アダプティブ受信装置
KR20060095256A (ko) 주파수 영역 및 시간 영역의 상호 변환을 이용한 채널 추정장치 및 그 방법
EP2928139B1 (en) Method and a device for cancelling a narrow band interference in a single carrier signal
JP4087047B2 (ja) Ofdm信号受信装置
KR20160116994A (ko) 샘플링 클락 옵셋을 보상하는 방법 및 그 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees