JP3909696B2 - ハイブリッド車輌の制御装置 - Google Patents
ハイブリッド車輌の制御装置 Download PDFInfo
- Publication number
- JP3909696B2 JP3909696B2 JP2002382171A JP2002382171A JP3909696B2 JP 3909696 B2 JP3909696 B2 JP 3909696B2 JP 2002382171 A JP2002382171 A JP 2002382171A JP 2002382171 A JP2002382171 A JP 2002382171A JP 3909696 B2 JP3909696 B2 JP 3909696B2
- Authority
- JP
- Japan
- Prior art keywords
- motor
- engine
- torque
- coast
- control means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005540 biological transmission Effects 0.000 claims description 48
- 238000002347 injection Methods 0.000 claims description 32
- 239000007924 injection Substances 0.000 claims description 32
- 230000007246 mechanism Effects 0.000 claims description 24
- 238000001514 detection method Methods 0.000 claims description 21
- 230000008859 change Effects 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 9
- 239000012530 fluid Substances 0.000 claims description 9
- 239000000446 fuel Substances 0.000 description 30
- 238000000034 method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000000881 depressing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 230000000994 depressogenic effect Effects 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Landscapes
- Hybrid Electric Vehicles (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Control Of Fluid Gearings (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Description
【発明の属する技術分野】
本発明は、ハイブリッド車輌の制御装置に係り、詳しくは、コースト走行開始時においてのロックアップクラッチの係合制御を改善し得るハイブリッド車輌の制御装置に関する。
【0002】
【従来の技術】
近年、エンジン及びモータ・ジェネレータの両方を変速機に付設して、発進時や加速時等においてはエンジン及びモータ・ジェネレータの両方の駆動力を変速機に伝え、また降坂路走行時や制動時においてはモータ・ジェネレータをジェネレータとして機能させてエンジンブレーキ効果を補い、また制動エネルギを回生して燃費を向上すると共に排気ガス排出量を低減させるようにしたパラレル・ハイブリット方式が知られるようになった(例えば、特許文献1参照)。
【0003】
このようなハイブリッド方式の車輌(HEV:Hybrid Electric Vehicle)に限らず、エンジンのみの駆動トルクで走行する車輌においても、エンジンと駆動車輪との間に自動変速機を備え、かつ該自動変速機とエンジンとの間にトルクコンバータを備える場合、該トルクコンバータには、そのポンプインペラ側(入力側)とタービンランナ側(出力側)とを直結させ得るロックアップクラッチが搭載されている。
【0004】
このようなトルクコンバータにおいては、燃費向上を図るなどの目的から、例えば、ロックアップクラッチをOFF(解除)した走行状態から、エンジントルクに依らずに慣性走行するコースト状態に移行した際には、エンジン回転数を低下させない(エンジンストールさせない)ためにロックアップクラッチをON(係合)した上で、エンジンへの燃料噴射を遮断(フューエルカット)するように制御している(例えば、特許文献2参照)。
【0005】
【特許文献1】
特開平9−215270号公報(図1,図5及び図6)
【特許文献2】
特開2000−134713号公報(図1ないし図3)
【0006】
【発明が解決しようとする課題】
ところで、上記ロックアップクラッチの係合は、その入力側(エンジン側)と出力側(駆動車輪側)との回転数差をできる限り小さくした状態で行わなければ、ロックアップクラッチに大きな負担をかけることになり、また該クラッチの油圧構造上の問題などから或る程度の時間をかけなければ実行が困難である。このため、ロックアップクラッチ係合に時間がかかってドライバに違和感を与えたり、ロックアップクラッチ係合後のフューエルカットの実施が遅くなってフューエルカット領域をそれほど拡大できず燃費をあまり向上できなくなったりする、などの問題を招く虞がある。
【0007】
そこで本発明は、コースト状態の開始時に、車輌がハイブリッド車輌である場合に特有のモータを活用し、トルクコンバータ等の流体伝動装置における入力側の回転数を出力側と略々等しくなるように制御してロックアップクラッチを速やかに接続し得るように構成し、もって上記課題を解決するハイブリッド車輌の制御装置を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
請求項1に係る本発明は(例えば図1及び図5参照)、エンジン(1)と連係して駆動し得るモータ(2)と、これらエンジン及びモータの両方に共通する回転部(33)に駆動連結した入力部材(32)と該入力部材(32)で受けた前記エンジン(1)及び前記モータ(2)からの駆動トルクを動力伝達下流側に出力する出力部材(19)とを有する流体伝動装置(5)と、該出力部材(19)からの前記駆動トルクを変速して駆動車輪に伝達する変速機構(6)と、前記入力部材(32)と前記出力部材(19)とを直結し得るロックアップクラッチ(27)と、を備えたハイブリッド車輌の制御装置において、
前記車輌の走行中、前記車輌を慣性走行させるコースト状態の開始を判定するコースト判定手段(56)と、
該コースト判定手段(56)により前記コースト状態の開始が判定された際、前記ロックアップクラッチ(27)を係合させるロックアップクラッチ制御手段(55)と、
該ロックアップクラッチ制御手段(55)による前記ロックアップクラッチ(27)の係合動作に先立ち、前記入力部材(32)の回転数を、前記慣性走行に伴い前記駆動車輪側からのトルクで回転する前記出力部材(19)の回転数との差が小さくなるように前記モータ(2)を駆動させるモータ制御手段(53)と、を備え、
前記モータ制御手段(53)は、
前記ロックアップクラッチ(27)の係合動作に先立って行う前記モータ駆動制御に必要な、前記入力部材(32)と前記出力部材(19)の間の回転差を0にし得るような回転数が得られるモータトルク値を算出した際に、該必要モータトルク値が前記モータ(2)のその時点での出力可能な少なくとも回転数に基づいた前記モータの最大トルク値より大きいか否かを判定し、前記必要モータトルク値が前記モータ最大トルク値以下の場合には前記モータのみを使用し、前記必要モータトルク値が前記モータ最大トルク値より大きい場合には前記モータ及び前記エンジンにてトルクを補って、前記入力部材(32)の回転数を前記出力部材(19)の回転数と略々等しくするように前記モータ(2)を駆動させてなる、
ことを特徴とするハイブリッド車輌の制御装置にある。
【0009】
なお、本発明における「モータ」とは、電気エネルギを回転運動に変換する所謂狭義のモータに限らず、回転運動を電気エネルギに変換する所謂ジェネレータをも含む概念である。
【0011】
請求項2に係る本発明は(例えば図1参照)、前記コースト判定手段(56)は、前記入力部材(32)と前記出力部材(19)とに関する回転数の変化に基づき前記コースト状態の開始と判定してなる、
請求項1記載のハイブリッド車輌の制御装置にある。
【0012】
請求項3に係る本発明は(例えば図1参照)、前記エンジン(1)の駆動を所定の条件に応じて停止させて前記コースト状態に移行させるエンジン制御手段(52)と、前記エンジン(1)側に備えたスロットルの開度を検出するスロットル開度検出手段(60)と、を備え、
前記コースト判定手段(56)は、前記スロットル開度が0%になったことを前記スロットル開度検出手段(60)が検出したときに前記コースト状態の開始と判定してなる、
請求項1記載のハイブリッド車輌の制御装置にある。
【0013】
請求項4に係る本発明は(例えば図1参照)、前記エンジン(1)の駆動を所定の条件に応じて停止させて前記コースト状態に移行させるエンジン制御手段(52)と、前記エンジン(1)側に備えたインジェクションの作動状態を検出するインジェクション検出手段(58)と、を備え、
前記コースト判定手段(56)は、前記インジェクションのOFF状態を前記インジェクション検出手段(58)が検出したときに前記コースト状態の開始と判定してなる、
請求項1記載のハイブリッド車輌の制御装置にある。
【0015】
請求項5に係る本発明は(例えば図1及び図5参照)、前記モータ制御手段(53)は、前記必要モータトルク値が前記モータ最大トルク値より大きいと判定した場合、該モータ最大トルク値を、前記エンジン(1)の減少分のトルク値である予め設定された規定値と比較してなり、
前記モータ制御手段(53)は、前記モータ最大トルク値が前記規定値より大きいと判定した場合、該モータ最大トルク値と共に使用し得る前記エンジン(1)の低減トルク出力を要求してなる、
請求項1ないし4のいずれか1項記載のハイブリッド車輌の制御装置にある。
【0017】
請求項6に係る本発明は(例えば図1及び図5参照)、前記モータ制御手段(53)は、前記モータ最大トルク値が前記規定値より小さいと判定した場合、前記モータ(2)のトルク出力は行わず前記エンジン(1)を一時的に駆動させる旨の要求をしてなる、
請求項1ないし5のいずれか1項記載のハイブリッド車輌の制御装置にある。
【0018】
なお、上記カッコ内の符号は、図面と対照するためのものであるが、これは、発明の理解を容易にするための便宜的なものであり、特許請求の範囲の構成に何等影響を及ぼすものではない。
【0019】
【発明の効果】
請求項1に係る本発明によると、コースト判定手段がコースト状態の開始を判定し、該コースト状態の開始が判定された際にロックアップクラッチ制御手段がロックアップクラッチを係合させ、該ロックアップクラッチの係合動作に先立って、モータ制御手段が流体伝動装置の入力部材の回転数を、慣性走行に伴い駆動車輪側からのトルクで回転する流体伝動装置の出力部材の回転数と略々等しくするようにモータ駆動させるので、ハイブリッド車輌に特有のモータを活用して、コースト状態の開始時に流体伝動装置の入力部材の回転数を出力部材との差が小さくなるように制御して、ロックアップクラッチに大きな負担をかけることなく速やかに接続することができる。これにより、ロックアップクラッチ係合に時間がかかってドライバに違和感を与えたり、ロックアップクラッチ係合後のフューエルカットの実施が遅くなって燃費向上をあまり期待できなくなったりする等の問題を解消することができる。また、モータ制御手段が、入力部材の回転数を、出力部材の回転数と略々等しくするようにモータを駆動させるので、ロックアップクラッチのより速やかな接続が実現する。更に、必要モータトルク値をモータから出力し得るか否かを特定することができる。
【0021】
請求項2に係る本発明によると、コースト判定手段が入力部材と出力部材とに関する回転数の変化に基づき前記コースト状態の開始と判定するので、特別な検出手段を別途用意することなく、コーストの開始を簡単にかつ確実に検出することができる。
【0022】
請求項3に係る本発明によると、コースト判定手段が、電子制御スロットルによるスロットル開度が0%になったことをスロットル開度検出手段が検出したときにコースト状態の開始と判定するので、コースト状態の開始をより簡単に検出することができる。
【0023】
請求項4に係る本発明によると、コースト判定手段が、インジェクションのOFF状態をインジェクション検出手段が検出したときにコースト状態の開始と判定するので、コースト状態の開始をより簡単に検出することができる。
【0025】
請求項5に係る本発明によると、必要モータトルク値をモータから出力し得ない場合での適切な処置を判断することができる。そして、全ての必要トルクをモータのみでは出力し得ない場合でも、該必要トルクをモータとエンジンとで分配して燃費効果を高めることができる。
【0027】
請求項6に係る本発明によると、モータの出力トルクが期待できない場合での適切な処置を実施できる。
【0028】
【発明の実施の形態】
以下、図面に沿って、本発明に係る実施の形態について説明する。図1は本実施の形態におけるハイブリッド車輌の制御装置を示すブロック図、図2は該制御装置にて制御し得る車輌の駆動系を示すブロック図、図3は図2に示す車輌の駆動系の一例を詳細に示す断面図、図4は該駆動系の要部を詳細に示す断面図、図5は本制御装置による制御の具体例を示すフローチャート、図6は本制御装置による制御状況の一例を示すタイムチャートである。
【0029】
図2に示すように、ハイブリッド車輌の駆動源は、内燃エンジン(以下、単にエンジンとも言う)1と、ブラシレスDCモータ等からなるモータ・ジェネレータ(以下、単にモータとも言う)2とから構成されており、その駆動力は自動変速機3に出力される。該自動変速機3は、上記エンジン1及びモータ2の出力トルクを、動力伝達下流側の駆動車輪(図示せず)に伝達するもので、トルクコンバータ(流体伝動装置)5と自動変速機構(多段変速機構)6とから構成されている。なお、本実施の形態における「内燃エンジン」は、燃料を燃焼させてエネルギを回転運動に変換するものであり、ガソリンエンジン、ディーゼルエンジン等を含む概念である。
【0030】
上記自動変速機構6は、変速するための複数の摩擦係合要素(図示せず)を有しており、該摩擦係合要素の係合状態が、後述する変速制御手段62の制御にて変更される。これにより、エンジン1やモータ2から入力される駆動力が、車輌走行状況に基づき変速されて、駆動車輪等に出力される。
【0031】
図3に示すように、前記車輌の駆動系では、自動変速機(A/T)のトルクコンバータ部分にモータ・ジェネレータ2が付設されており、内燃エンジン(同図ではエンジン出力軸7のみ図示)1と、モータハウジング9に収納されているモータ・ジェネレータ2と、これらエンジン1及びモータ2からの駆動力が伝達される自動変速機3と、を備えている。すなわち、該車輌の駆動系では、エンジン側(図3の右側)から順に、モータ・ジェネレータ2、自動変速機3のトルクコンバータ5及び自動変速機構6が配置されている。トルクコンバータ5と自動変速機構6との間にはオイルポンプ10が配置されている。
【0032】
エンジン1(図2参照)から自動変速機3へはクランク軸(エンジン出力軸)7が延設されており、そのクランク軸7の先端部分には可撓性のドライブプレート11が固定されている。また、このドライブプレート11に対向する位置には可撓性のインプットプレート12が、互いの先端部をボルトで固定・連結された状態で配置されている。そして、モータ・ジェネレータ2はステータ13とロータ15とを有している。
【0033】
前記自動変速機3に備えた多段変速機構6は、ミッションケース16及びリヤケース17に収納されていて、入力軸19に同軸状に配置されている主変速機構部20、上記入力軸19に平行なカウンタ軸21に同軸状に配置されている副変速機構部22、及び前輪駆動軸に同軸状に配置されたディファレンシャル装置23からなり、これらが分割可能な一体ケースに収納されたFF(フロントエンジン・フロントドライブ)タイプのものからなる。
【0034】
トルクコンバータ5は、コンバータハウジング26に収納されていて、ロックアップクラッチ27、タービンランナ29、ポンプインペラ30、ステータ31、及びこれらを覆うように配置されたフロントカバー32を有しており、該フロントカバー32における回転中心部分には、その外側にセンターピース33が固定されている。そして、ポンプインペラ30の外郭には、フロントカバー32に溶接されてポンプシェル35が一体に設けられており、該ポンプシェル35の内径部分(回転中心部分)には、スリーブ状のインペラハブ36が溶接により一体に固定されている。
【0035】
そして、図4に示すように、上記インペラハブ36は、上記ケース26,16と一体のポンプケース37の円筒部の内周面にブッシュ39を介して回転自在に支持されていると共に、その先端部にて前記オイルポンプ10のロータ10aに結合されている。
【0036】
また、前記ロックアップクラッチ27は、フロントカバー32の中間部分32bの内径側に収納・配置されており、該中間部分32bの内周面には、軸方向に延びるスプライン40が一体に形成されている。該スプライン40には、複数の外摩擦板が抜け止めされて係合されている。更に、上記中間部分32bの内周面と、センターピース33に一体のピストンハブ33aの外周面との間には、油密状で移動可能にピストンプレート41が配置されている。
【0037】
また、上記センターピース33と一軸状に前記入力軸19が配置されており、該入力軸19は、その一端部を上記ピストンハブ33aの内周部に回転自在に被嵌された状態で、前記トルクコンバータ5の回転中心部のブッシュ39内を貫通して、その他端が前記自動変速機構6側に延びている。上記ロックアップクラッチ27は、その外径側がフロントカバー32の内周面に係合した状態でその内径側が、衝撃的回転を吸収するダンパ装置42、及び上記タービンランナ29に連結されているハブ43を介して上記入力軸19に連結されている。該ハブ43は該入力軸19に対してスプライン係合している。また、前記ステータ31は、ワンウェイクラッチ45及びスリーブ軸46を介してポンプカバー47に固定されている。
【0038】
なお、上記フロントカバー32によりトルクコンバータ(流体伝動装置)5の入力部材が構成されると共に、上記タービンランナ29にハブ43を介して連結される上記自動変速機構6の入力軸19により上記トルクコンバータ5の出力部材が構成されている。また、上記「入力部材」には、上記フロントカバー32に限らず、該フロントカバー32と一体に回転し得る部材であれば他の部材を用いることができることは勿論である。
【0039】
上記構成を有するロックアップクラッチ42では、ピストンプレート41及びフロントカバー内径部分32aにて形成される油室を有するロックアップ制御バルブ44の該油室に所定油圧が供給又は解放されることにより、ピストンプレート41を移動させ、該プレート41の外摩擦板への押圧力を制御し、摩擦板を接続(係合)、解放又はスリップ制御させることができる。なお、該スリップ制御は、ロックアップクラッチ27を係合動作させる際に、入力側と出力側とが適度の回転数差になった状態で該クラッチ27の摩擦板を相互に摺接させながら徐々に回転数を合わせつつ係合させる制御である。このように制御すると、モータ制御手段53の制御によるモータ2の回転によって入力部材側の回転数を出力部材側の回転数に合わせてロックアップクラッチ27を係合させる際に、より滑らかなクラッチ係合動作が実現する。
【0040】
ついで、本発明に係るハイブリッド車輌の制御装置を図1に沿って説明する。同図に示すように、該制御装置は電子制御装置(ECU:Electronic Control Unit)51を有しており、該電子制御装置51は、エンジン制御手段52、モータ制御手段53、ロックアップクラッチ制御手段55、コースト判定手段56、トルク算出手段57、車速検出手段59、インジェクション検出手段58と、アクセル開度検出手段60、エンジン回転数検出手段61、及び変速制御手段62と、を有している。
【0041】
上記電子制御装置51には、スロットルセンサ67、自動変速機構6の入力軸19(出力部材)の回転数を検知する出力側回転数センサ65、車輌の走行速度を検知する車速センサ66、不図示のインジェクションのON,OFF状態(即ち作動状態)を検知するインジェクションセンサ64、不図示のアクセルペダルの踏み込み量(アクセル操作量)を検知しその結果を上記アクセル開度検出手段60に出力するアクセルセンサ70、及びエンジン1の回転数を検知するエンジン回転数センサ69が接続されている。なお、該エンジン回転数センサ69の検知結果により、トルクコンバータ5のフロントカバー32(入力部材)の回転数が得られる。また、本実施の形態では、エンジン1側に設けられたスロットルバルブ(図示せず)の回動軸に電磁クラッチを介して連結されたDCモータ(図示せず)の駆動力にて該スロットルバルブの開度(実スロットル開度)を制御するのであるが、上記スロットルセンサ67は、該実スロットル開度の検知結果を上記エンジン制御手段52に出力する。更に上記電子制御装置51には、前記エンジン1、前記モータ・ジェネレータ2、前記ロックアップクラッチ27用のロックアップ制御バルブ44(図4参照)、及び自動変速機構6が接続されている。
【0042】
なお、上記エンジン1には、そのクランク軸の回転数、スロットル開度などに基づいて出力トルクとイナーシャトルクとを含めて所定のトルク信号として出力する不図示のコンピュータが設けられており、上記モータ2には、これに通電される電流値などに基づいて出力トルクとイナーシャトルクとを含めて所定のトルク信号として出力する不図示のコンピュータが設けられている。
【0043】
上記エンジン制御手段52は、アクセル開度検出手段60からの後述する目標スロットル開度の設定信号を受けたとき、エンジン1側のスロットルバルブ(図示せず)をフィードバック制御で前述のDCモータを駆動し、前記スロットルセンサ67から受けた実スロットル開度を目標スロットル開度に一致させるように制御する。また、該エンジン制御手段52は、車速センサ66の検知結果に基づき車速検出手段59で検出された車速や不図示のブレーキセンサの検知結果に基づくブレーキ作動状態などに基づいたエンジン1の停止制御、エンジン1の完爆判定、或いは、エンジン1の点火制御など、エンジン駆動に関する各種制御を実行する。該点火制御において、エンジン制御手段52は、車速センサ66の検知結果に基づき車速0[km/h]になったことを検出した時点でインジェクションをOFFにしてエンジン1の駆動を停止させ、またモータ2のみの回転駆動で走行開始した後、スロットル開度が所定値以上でかつエンジン回転数が所定値以上になったとき、インジェクションをONにして点火し、エンジン1を回転駆動するように制御する。更に、上記エンジン制御手段52は、車輌の走行中、ドライバがアクセルペダルの踏み込みを緩めてアクセル開度が0%になった等の所定の条件に応じて、インジェクションをOFFにしてエンジン駆動を停止させて、車輌を慣性走行(コースト走行)させるコースト制御を行う。なお、これに限らず、例えばスロットル開度が3%以下になったときにアイドルスイッチをONとしてコースト制御を行うことも可能である。
【0044】
前記モータ制御手段53は、モータ・ジェネレータ2による始動制御、停止制御及びアシスト制御を含む走行駆動制御と、発電制御と、回生制御とを実行するもので、車速検出手段59で検出される車速、及びアクセル開度検出手段60で検出される目標スロットル開度、或いはブレーキセンサの検知結果に基づき検出されるドライバの減速意図、変速制御手段62からの指令、及びトルク算出手段57からの算出データなどの諸条件に基づき、モータ・ジェネレータ2を適時制御する。更に、該モータ制御手段53は、前記ロックアップクラッチ制御手段55によるロックアップクラッチ27の係合動作に先立ち、前記トルクコンバータ5の入力部材であるフロントカバー32の回転数を、慣性走行に伴い駆動車輪側からのトルクで回転する出力部材である前記入力軸19の回転数と略々等しくするようにモータ2を駆動させる補助トルク付与制御を実行する。
【0045】
上記ロックアップクラッチ制御手段55は、前記コースト判定手段56によりコースト状態の開始が判定された際、上記トルクコンバータ5を係合させる制御を実行する。
【0046】
前記コースト判定手段56は、車輌の走行中、前記コースト判定手段56にてフロントカバー32と入力軸19とに関する所定の回転数変化が判定されたことに基づき、コースト状態の開始と判定する。該所定の回転数変化とは、即ち、エンジン回転数センサ69及び出力側回転数センサ65からそれぞれ入力されるフロントカバー32及び入力軸19それぞれの回転数から両方の回転数差を算出し、該算出した回転数差に基づき、コースト状態の開始を判定する。なお、出力側回転数センサ65に基づく出力側回転数からエンジン回転数センサ69に基づく入力側回転数を減じた際の値が正になったときにコースト状態と判定することもできる。
【0047】
また、前記トルク算出手段57は、エンジン1からの出力トルクとイナーシャトルクとを含めた所定のトルク信号を受けて、エンジン1の出力トルクとイナーシャトルクとを算出すると共に、モータ2からの所定のトルク信号を受けて、該モータ2の出力トルクとイナーシャトルクとを算出する。そして、該トルク算出手段57は、後述する変速制御手段62による変速制御中に、エンジン回転数検出手段61で検出されるエンジン回転数に基づき、エンジンクランク軸7(図4参照)やトルクコンバータ5などのイナーシャトルクを算出し、該算出したイナーシャトルクと、予め算出したエンジン1及びモータ2の上記出力トルク及びイナーシャトルクとを合計した合計トルクを算出し、エンジン制御手段52及びモータ制御手段53に出力する。
【0048】
前記車速検出手段59は、車速センサ66の検知結果に基づき、本制御装置1が搭載されたハイブリッド車輌の走行速度(車速)を検出して、エンジン制御手段52及びモータ制御手段53に出力する。
【0049】
前記アクセル開度検出手段60は、前記アクセルセンサ70によるアクセルペダル(図示せず)の踏み込み量の検知結果に基づいて目標スロットル開度を設定し、その設定信号をエンジン制御手段52に出力する。
【0050】
前記エンジン回転数検出手段61は、エンジン回転数センサ69からの検知結果に基づき、エンジン回転数を検出してエンジン制御手段52、モータ制御手段53及びコースト判定出力56に出力する。
【0051】
前記変速制御手段62は、自動変速機構6に備えた摩擦係合要素である複数のクラッチやブレーキの係合、解放による掴み替えの制御を、車速検出手段59にて検出される車速等に基づいて行い、自動変速機構6による各種の変速制御を実行する。この際、トルクが関わる変速制御(例えば直接制御等)では、車速と共に、アクセル開度検出手段60にて検出される目標スロットル開度を用い、また変速点に関わる変速制御(運転者の意志をチェックしたい場合等)では、アクセル開度を用いることができる。また、該変速制御手段62は、自動変速機構6における入力軸19及び出力軸の回転数に基づき、ギヤ比(入出力回転数比)を検出し、該ギヤ比の変化に基づき、実際の変速開始及び実際の変速終了を判定する。
【0052】
ついで、本発明に係るハイブリッド車輌の制御装置による作用について、図1、図5ないし図8に沿って説明する。なお、図8では、各タイミングの関係を明瞭に示す目的から、便宜上ロックアップクラッチ27の係合状態などを瞬間的に描いているが、実際にはやや緩やかなカーブを描くこととなる。
【0053】
まず、本制御装置を搭載した車輌の停止状態において、イグニッションスイッチ(図示せず)がONされ、運転席に設けられたシフトレバー(図示せず)が走行レンジに操作されると、モータ制御手段53が制御を開始する。そして、アクセルペダルの踏み込みに応じて、モータ2が回転駆動されて走行が開始され、その後、所定のタイミングでエンジン制御手段52がエンジン1を始動させると共にモータ制御手段53がモータのトルク出力を停止させ、この状態で走行が継続される。
【0054】
そして、上記走行中、図8におけるB,Cに示すように、自動変速機構6により前進4速段(4th)とされ、かつロックアップクラッチがOFFされた状態において、ドライバが時刻t0から継続してアクセルペダルを踏み込んでいることにより、上述のようにモータ出力トルク0状態でエンジン1のみが駆動している。この際、同図DのようにインジェクションがONとされ、同図Fのように、フューエルカット領域(FuelCut)を超えた領域においてエンジン回転数が時刻t1に向かって次第に高まり、これに伴い、不図示の駆動車輪への出力回転(OutPutRpm)が同図Eのように時刻t1に向かって次第に上昇している。
【0055】
そして、例えば時刻t1にて、踏み込まれていたアクセルペダルが解放されると、同図Aのようにアクセル開度が0[%]となり、かつ同図DのようにインジェクションがOFFとなる。すると、これらの変化に基づく変速制御手段62の制御により、自動変速機構6内で所定の変速動作が行われて前進4速段が前進5速段(5th)に切換えられる。また、コースト判定手段56が、出力側回転数センサ65の検知結果に基づきトルクコンバータ5の出力部材をなす入力軸19の回転数(つまり出力側回転数)R1と、エンジン回転数センサ69の検知結果に基づきトルクコンバータ5の入力部材をなすフロントカバー32の回転数(つまり入力側回転数)R2とを求める等により、コースト状態の開始を判定する(ステップS3)。なお、コースト状態開始の判定に限らず、例えば、スロットル開度が0%以上でアイドルスイッチがONされた場合を判定することも可能である。
【0056】
上記判定の結果、コースト状態開始と判定した場合にはステップS5に進み、そうでなければ、処理を終了する。該ステップS5では、ロックアップクラッチ制御手段55が、ロックアップクラッチ27にフェールが有るか否かを判定し、フェールがある場合はそのまま処理を終了し、またフェールが無いと判定した場合は、更に、ロックアップクラッチ27の切換え状態を判定する(ステップS6)。上記ステップS5では、ロックアップクラッチ27を係合し得る状態、又はスリップ制御で係合できる状態にあるか否かをフェールの有無として判定する。引き続き、ロックアップクラッチ27の状態を判定し(ステップS6)、ロックアップクラッチ27がONしていれば処理を終了し、ロックアップクラッチ27がOFFしていれば、ステップS4に進んで、モータトルク要求量の算出を行う。即ち、上記フロントカバー32の回転数を上げて上記入力軸19の回転数と略々等しくさせて、ロックアップクラッチ27の係合動作を容易にするために必要なモータトルク値を算出する。この際、ロックアップクラッチ27では、トルクコンバータ5の構造にもよるが、上記入力部材と出力部材の間の回転数差が100回転位以下となるように制御されることが望ましく、従って上記モータトルク指令値は、回転数差を0にし得るような回転数が得られるように設定される。
【0057】
ここで、上記ステップS4における「モータトルク要求量算出」処理のサブルーチンを、図6に沿って説明する。即ち、まずステップS20において入力(インプット)回転数(出力側回転数)とエンジン回転数(入力側回転数)とを取得した後、ステップS21において、次式、
tempRpm=inRpm−EgRpm
により、入力側回転数(inRpm)とエンジン回転数(つまり出力側回転数(EgRpm))との偏差(tempRpm)を算出する。引き続き、ステップS22において、モータトルク値の算出を行う。即ち、上記偏差(tempRpm)と、出力側回転数(inRpm)とに応じてモータトルク値を可変とする。例えば、偏差(tempRpm)や出力側回転数(inRpm)が大きければ大きいほど大となるようにする。
【0058】
また、上記ステップS4における「モータトルク要求量算出」処理は、図6に示したものに限らず、図7に示すような処理をしても実現することができる。即ち、同図に示すように、ステップS23において、出力側回転数(inRpm)を目標値としてモータ速度制御を行い、PI制御によって算出されたモータ出力トルク値を算出する。
【0059】
次いで、上記「モータトルク要求量算出」処理の後、ステップS7にて、モータ制御手段53が、モータトルク指令値はモータ最大出力トルクより大きいか、つまり、算出した必要モータトルク指令値を実際にモータ2から出力できる状態にあるか否かを判定する。
【0060】
上記判定の結果、モータトルク指令値がモータ最大出力トルクより大きければ、モータ2が現在実際に出力可能な最大の出力トルク(モータ最大出力トルク)が規定値より大きいか否かを判定する(ステップS9)。つまり、該ステップS9では、全ての必要モータトルクは出力できないがエンジン1側とモータ2側とでトルクを分配して燃費効果を向上させるための判定を行う。なお、モータ最大出力トルクは、回転数と最大トルクの関係を予め定めたマップから求められ、更にSOC(充電量)に応じて制限をかけることもできるが、この場合のように電力使用する際には、SOCが低いときはトルク量で制限するようにすることもできる。また、上記ステップS9の判定はつまり、モータ2だけでは全ての必要トルクを出力できない場合に、エンジン1側とモータ2側とでトルクを分配して燃費効果を向上させる等のために行う。上記規定値には、例えば4気筒エンジンの場合そのうちの所定の2気筒へのフューエルカットを一時的に行なって気筒カットした状態でのエンジントルクの減少分のトルク値、或いは、上記4気筒の全てに対する吸気減少による減少分のトルク値などを用いることができる。
【0061】
一方、上記ステップS7における判定の結果、モータトルク指令値がモータ最大出力トルク以下であれば、インジェクション検出手段58がフューエルカットを要求(ステップS8)した後、モータ制御手段53の制御に基づいてモータトルクが出力される(ステップS10)。ここで、エンジン回転数は図8のFに示すようにやや減少するが、この時点で、同図Gのように時刻t1から時刻t2までの間、モータ制御手段53が、算出したモータトルク指令値に応じた所定回転数となるようにモータ2を回転駆動させるので、同図Eに示す出力回転数は、急に落ち込むことなく、緩やかなカーブを描いて徐々に下降する。
【0062】
次いで、ロックアップクラッチ制御手段55がロックアップ制御バルブ44を制御してロックアップクラッチ27を係合させる(ステップS11)。つまり、時刻t2に至るまでに、トルクコンバータ5の入力部材であるフロントカバー32と出力部材である入力軸19との回転数差が略々等しくなっているので、ロックアップクラッチ27は滑らかに係合する。この際、ロックアップクラッチ制御手段55は、上記入力部材及び出力部材の双方の回転数が所定の許容範囲に入った時点から、ロックアップクラッチ27の摩擦板同士をスリップ(摺接)させて両者間の微妙な回転数差を吸収しつつ徐々に係合させるようにロックアップ制御バルブ44を制御(スリップ制御)するので、ロックアップクラッチ27はより滑らかに係合することとなる。なお、該ロックアップクラッチ係合時のスリップ制御は、目標値であるモータトルク指令値に対してステップで段階的にトルク出力するように、或いは、制御開始時のトルクから所定のスィープ量(傾き)によって徐々にモータ駆動信号を増加させるように実施することができる。
【0063】
続いて、ロックアップクラッチ27がON(係合)したか否かを判定し(ステップS12)、ONしていなければ上記の処理を繰り返し実行する。そして、前記モータ2は、図8のGに示すように、前記時刻t2でロックアップクラッチ27が係合した時点から徐々にトルクダウンし、モータトルク(MTrq)が0Nmより下降したときからモータ制御手段53による制御切換えにて回生制御されることとなる(ステップS13)。
【0064】
また、前記ステップS7にて必要モータトルク指令値をモータ2からは出力できない状態にあると判定した場合にあって、モータ制御手段53が、前記ステップS9にてモータ最大出力トルクが規定値よりも大きいと判定した際には、エンジン制御手段52に対してエンジン1の気筒カットを要求し(ステップS14)、ステップS16に進む。該ステップS16では、上記モータトルク指令値をモータ最大出力トルクに設定した後、ステップS10に進む。なお、上記ステップS14では、例えば、フューエルON時よりも少ない燃料噴射量の要求、或いは、4気筒エンジンの場合にそのうちの所定の2気筒への吸気量を減少させる旨の要求、など行うことで減少させたエンジントルクを、後段のステップS10で発生させる比較的弱いモータトルクによって補うようにする。
【0065】
また、上記ステップS9において、モータ最大出力トルクが規定値以下であると判定した際には、モータトルクを全く使用せずにエンジン1を一時的に駆動させた際の出力トルクのみにて前記フロントカバー32の回転を引き上げるため、遮断していた燃料の噴射(フューエル復帰)を要求した後(ステップS15)、ロックアップクラッチ制御手段55によりロックアップクラッチ27の係合(ON)制御を実行する(ステップS11)。
【0066】
なお、本実施の形態では、ステップS3において、コースト状態開始の有無を、前記コースト判定手段56が回転数差を検出することで判定したが、これに限らず、例えばアクセル開度検出手段60によってアクセル開度が0[%]となった旨(及びアイドル回転となった旨)を検出した際にコースト状態開始と判定することができる。また、該判定は、0%ではなく、極低開度できる3%程度とすることもできる。また、インジェクション検出手段58によりインジェクションOFFを検出した際にコースト状態開始と判定すること、或いは、入力側のエンジントルクと出力側のエンジントルクとの偏差に基づいてコースト状態開始と判定することもできる。
【0067】
ここで、図9及び図10のタイムチャートに沿って、モータトルクでなくエンジントルクのみを用いて入力部材側と出力部材側との回転数差を合わせるようにした第1及び第2の比較例について説明する。
【0068】
まず、図9に示すように、第1の比較例では、同図Cのように、ロックアップクラッチOFF状態、かつ自動変速機構6による前進4速段の状態において、ドライバが時刻t0から継続してアクセルペダルを踏み込んでいることで、モータ停止状態でのエンジン駆動のみにて走行している。この際、同図DのようにインジェクションがONとされ、また同図Fのように、フューエルカット領域(FuelCut)を超えた領域においてエンジン回転数が時刻t1に向かって次第に高まり、これに伴い、駆動車輪への出力回転(OutPutRpm)が同図Eのように、時刻t1に向かって次第に上昇している。
【0069】
上記状態において、例えば時刻t1でアクセルペダルが解放されると、同図Aのようにスロットル開度が0[%]となり、かつ同図Dのようにインジェクションが一旦OFFとなってコースト状態になると共に、自動変速機構6内で所定の変速動作が実行されて前進4速段が前進5速段に切換えられる。すると、同図Fのようにエンジン回転数が急峻に減少して、フューエルカット領域を下回る瞬間(時刻t3)に、インジェクションがONされてエンジン駆動が一時的に再開される。これにより、エンジントルクがフューエルカット領域に至り(この時点で再度フューエルカットされる(時刻t4))、そして該領域に復帰してトルクコンバータの入力部材の回転数を出力部材の回転数と略々等しくなるように高める。このため、ロックアップクラッチが、スリップ制御の併用により滑らかに係合する(時刻t2’)ので、同図Eに示す出力回転数は、急に落ち込むようなことなく、緩やかなカーブを描いて徐々に下降する。更に、同図Gのように、ロックアップクラッチが係合した上記時刻t2’からモータ・ジェネレータの回生制御が行われる。
【0070】
また、図10に示す第2の比較例は、図9の第1の比較例におけるGに示したモータ・ジェネレータの回生制御を実施しない点で異なるが、他の制御に関しては略々同様である。つまり、該第2の比較例では、ロックアップクラッチの係合後に回生制御を実施しないことにより、図10のEに示す駆動車輪への出力回転(OutPutRpm)が、上記第1の比較例の場合よりも緩やかに下降している。
【0071】
以上のように上記第1及び第2の比較例では、コースト状態開始時にトルクコンバータの入力部材の回転数を、一旦停止させたエンジンを再度駆動させて高めるように制御するので、図9及び図10のDにおいての時刻t3〜時刻t4間での燃料噴射分が浪費されることになり、フューエルカットの拡大が制限されている。
【0072】
これに比して本実施の形態の制御装置では、図8に示すように、コースト状態が開始した時刻t1の時点から直ちにモータ2を回転駆動させその出力トルクにて出力部材の回転数を持ち上げるので、上記第1及び第2の比較例にて示した上記時刻t3〜時刻t4間での燃料噴射による浪費を削減して燃費を向上させることができると共に、図9及び図10のFにて落ち込んだエンジントルクを持ち上げるのに要する時間(時刻t1〜t4)を削減した分だけロックアップクラッチ係合作動を速やかに行なうことができる。
【0073】
このように本実施の形態によると、ロックアップクラッチ27に大きな負担をかけることなく速やかに接続することができ、ロックアップクラッチ係合に時間がかかってドライバに違和感を与えたり、ロックアップクラッチ係合後のフューエルカットの実施が遅くなって燃費向上をあまり期待できなくなったりする等の問題を解消することができる。
【0074】
また、本実施の形態によると、コースト判定手段56が上記フロントカバー32と入力軸19とに関する回転数の変化に基づき前記コースト状態の開始と判定するので、特別な検出手段を別途用意することなく、コーストの開始を簡単にかつ確実に検出することができる。或いは、これに代えて、コースト判定手段56が、電子制御スロットル開度(目標スロットル開度)が0%になったことをスロットル開度検出手段が検出したときにコースト状態開始と判定するように構成することで、コースト状態の開始をより簡単に検出することができる。また、コースト判定手段56がインジェクションのOFF状態をインジェクション検出手段58が検出したときにコースト状態開始と判定するように構成しても、コースト状態の開始をより簡単に検出できるようになる。
【図面の簡単な説明】
【図1】本発明に係る実施の形態におけるハイブリッド車輌の制御装置を示すブロック図。
【図2】本制御装置によって制御し得る車輌の駆動系を示すブロック図。
【図3】車輌の駆動系の一例を詳細に示す断面図。
【図4】図3に示す駆動系の主要部を詳細に示す断面図。
【図5】本制御装置による制御を具体的に示すフローチャート。
【図6】図5のフローチャートにおけるサブルーチンを示すフローチャート。
【図7】図5のフローチャートにおけるサブルーチンを示すフローチャート。
【図8】本制御装置による制御状況を示すタイムチャート。
【図9】第1の比較例を示すタイムチャート。
【図10】第2の比較例を示すタイムチャート。
【符号の説明】
1 エンジン
2 モータ
3 回転部
5 流体伝動装置(トルクコンバータ)
6 変速機構(自動変速機構)
19 出力部材(自動変速機構の入力軸)
27 ロックアップクラッチ
32 入力部材(フロントカバー)
33 回転部(センターピース)
44 ロックアップ制御バルブ
51 電子制御装置
52 エンジン制御手段
53 モータ制御手段
55 ロックアップクラッチ制御手段
56 コースト判定手段
58 インジェクション検出手段
60 アクセル開度検出手段
Claims (6)
- エンジンと連係して駆動し得るモータと、これらエンジン及びモータの両方に共通する回転部に駆動連結した入力部材と該入力部材で受けた前記エンジン及び前記モータからの駆動トルクを動力伝達下流側に出力する出力部材とを有する流体伝動装置と、該出力部材からの前記駆動トルクを変速して駆動車輪に伝達する変速機構と、前記入力部材と前記出力部材とを直結し得るロックアップクラッチと、を備えたハイブリッド車輌の制御装置において、
前記車輌の走行中、前記車輌を慣性走行させるコースト状態の開始を判定するコースト判定手段と、
該コースト判定手段により前記コースト状態の開始が判定された際、前記ロックアップクラッチを係合させるロックアップクラッチ制御手段と、
該ロックアップクラッチ制御手段による前記ロックアップクラッチの係合動作に先立ち、前記入力部材の回転数を、前記慣性走行に伴い前記駆動車輪側からのトルクで回転する前記出力部材の回転数との差が小さくなるように前記モータを駆動させるモータ制御手段と、を備え、
前記モータ制御手段は、
前記ロックアップクラッチの係合動作に先立って行う前記モータ駆動制御に必要な、前記入力部材と前記出力部材の間の回転差を0にし得るような回転数が得られるモータトルク値を算出した際に、該必要モータトルク値が前記モータのその時点での出力可能な少なくとも回転数に基づいた前記モータの最大トルク値より大きいか否かを判定し、前記必要モータトルク値が前記モータ最大トルク値以下の場合には前記モータのみを使用し、前記必要モータトルク値が前記モータ最大トルク値より大きい場合には前記モータ及び前記エンジンにてトルクを補って、前記入力部材の回転数を前記出力部材の回転数と略々等しくするように前記モータを駆動させてなる、
ことを特徴とするハイブリッド車輌の制御装置。 - 前記コースト判定手段は、前記入力部材と前記出力部材とに関する回転数の変化に基づき前記コースト状態の開始と判定してなる、
請求項1記載のハイブリッド車輌の制御装置。 - 前記エンジンの駆動を所定の条件に応じて停止させて前記コースト状態に移行させるエンジン制御手段と、前記エンジン側に備えたスロットルの開度を検出するスロットル開度検出手段と、を備え、
前記コースト判定手段は、前記スロットル開度が0%になったことを前記スロットル開度検出手段が検出したときに前記コースト状態の開始と判定してなる、
請求項1記載のハイブリッド車輌の制御装置。 - 前記エンジンの駆動を所定の条件に応じて停止させて前記コースト状態に移行させるエンジン制御手段と、前記エンジン側に備えたインジェクションの作動状態を検出するインジェクション検出手段と、を備え、
前記コースト判定手段は、前記インジェクションのOFF状態を前記インジェクション検出手段が検出したときに前記コースト状態の開始と判定してなる、
請求項1記載のハイブリッド車輌の制御装置。 - 前記モータ制御手段は、前記必要モータトルク値が前記モータ最大トルク値より大きいと判定した場合、該モータ最大トルク値を、前記エンジンの減少分のトルク値である予め設定された規定値と比較してなり、
前記モータ制御手段は、前記モータ最大トルク値が前記規定値より大きいと判定した場合、該モータ最大トルク値と共に使用し得る前記エンジンの低減トルク出力を要求してなる、
請求項1ないし4のいずれか1項記載のハイブリッド車輌の制御装置。 - 前記モータ制御手段は、前記モータ最大トルク値が前記規定値より小さいと判定した場合、前記モータのトルク出力は行わず前記エンジンを一時的に駆動させる旨の要求をしてなる、
請求項1ないし5のいずれか1項記載のハイブリッド車輌の制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002382171A JP3909696B2 (ja) | 2002-12-27 | 2002-12-27 | ハイブリッド車輌の制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002382171A JP3909696B2 (ja) | 2002-12-27 | 2002-12-27 | ハイブリッド車輌の制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004210123A JP2004210123A (ja) | 2004-07-29 |
JP3909696B2 true JP3909696B2 (ja) | 2007-04-25 |
Family
ID=32817825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002382171A Expired - Fee Related JP3909696B2 (ja) | 2002-12-27 | 2002-12-27 | ハイブリッド車輌の制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3909696B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8061463B2 (en) | 2004-11-25 | 2011-11-22 | Honda Motor Co., Ltd. | Control system for hybrid vehicle |
GB201420988D0 (en) | 2014-11-26 | 2015-01-07 | Tomtom Telematics Bv | Apparatus and method for vehicle economy improvement |
JP7002933B2 (ja) * | 2017-12-26 | 2022-01-20 | 株式会社Subaru | 車両用制御装置 |
JP2020131740A (ja) * | 2019-02-13 | 2020-08-31 | トヨタ自動車株式会社 | 車両の制御装置 |
JP7345273B2 (ja) * | 2019-05-14 | 2023-09-15 | 株式会社エクセディ | 駆動ユニット |
CN110077405A (zh) * | 2019-05-23 | 2019-08-02 | 大连民族大学 | 基于stm32的节能车自动控制系统和方法 |
-
2002
- 2002-12-27 JP JP2002382171A patent/JP3909696B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004210123A (ja) | 2004-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3915699B2 (ja) | ハイブリッド車輌の制御装置 | |
JP3653028B2 (ja) | 車両用動力伝達制御装置 | |
JP2002171601A (ja) | 車両の回生制御装置 | |
JP3584680B2 (ja) | 内燃機関と電動機の複合型車両駆動装置 | |
JPH11205907A (ja) | ハイブリッド車の駆動制御装置 | |
JP2004211600A (ja) | ハイブリッド車輌の制御装置 | |
JP2002089687A (ja) | ハイブリッド車輌の制御装置 | |
JP3921218B2 (ja) | ハイブリッド車両の制御装置 | |
JP3612939B2 (ja) | 内燃機関と電動機の複合型車両駆動装置およびその制御方法 | |
WO2010068100A1 (en) | Start system for a combustion engine | |
JP3909696B2 (ja) | ハイブリッド車輌の制御装置 | |
JP5617301B2 (ja) | 車両用駆動制御装置 | |
JP3675469B2 (ja) | ハイブリッド車両の制御装置 | |
JPH11299006A (ja) | ハイブリッド車両のクリープ走行制御装置 | |
JP3702897B2 (ja) | ハイブリッド車両の制御装置 | |
JP3896640B2 (ja) | 車両のパワートレーンシステム | |
JP5533150B2 (ja) | 車両制御システム | |
JP6595091B2 (ja) | 車両用制御装置 | |
JP3861486B2 (ja) | ハイブリッド車の制御装置 | |
JP3911889B2 (ja) | ハイブリッド車の制御装置 | |
JP3852345B2 (ja) | 車両の制御装置 | |
JP4253937B2 (ja) | 車両用駆動装置の制御装置 | |
JP4180559B2 (ja) | 車両のエンジン自動停止装置 | |
JPH10336804A (ja) | 車両のハイブリッドパワートレーンシステム | |
JP3855510B2 (ja) | ハイブリッド車の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060613 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3909696 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100202 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110202 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120202 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130202 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140202 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |