JP3908124B2 - レーザー装置及びレーザー照射方法 - Google Patents

レーザー装置及びレーザー照射方法 Download PDF

Info

Publication number
JP3908124B2
JP3908124B2 JP2002252777A JP2002252777A JP3908124B2 JP 3908124 B2 JP3908124 B2 JP 3908124B2 JP 2002252777 A JP2002252777 A JP 2002252777A JP 2002252777 A JP2002252777 A JP 2002252777A JP 3908124 B2 JP3908124 B2 JP 3908124B2
Authority
JP
Japan
Prior art keywords
laser
processed
film
turntable
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002252777A
Other languages
English (en)
Other versions
JP2003178996A (ja
Inventor
舜平 山崎
幸一郎 田中
秀和 宮入
愛子 志賀
明久 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2002252777A priority Critical patent/JP3908124B2/ja
Publication of JP2003178996A publication Critical patent/JP2003178996A/ja
Application granted granted Critical
Publication of JP3908124B2 publication Critical patent/JP3908124B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)
  • Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板又は半導体膜などをレーザー光を用いて結晶化又はイオン注入後の活性化をするレーザー処理装置及びレーザー照射方法と、当該レーザー装置を用いて形成された半導体装置及びその作製方法と、前記半導体装置を用いた電子機器に関する。
【0002】
【従来の技術】
近年、基板上にTFTを形成する技術が大幅に進歩し、アクティブマトリクス型の半導体表示装置への応用開発が進められている。特に、ポリシリコン膜を用いたTFTは、従来のアモルファスシリコン膜を用いたTFTよりも電界効果移動度(モビリティともいう)が高いので、高速動作が可能である。そのため、従来基板の外に設けられた駆動回路で行っていた画素の制御を、画素と同一の基板上に形成した駆動回路で行うことが可能である。
【0003】
ところで半導体装置に用いる基板は、コストの面から単結晶シリコン基板よりも、ガラス基板が有望視されている。ガラス基板は耐熱性に劣り、熱変形しやすいため、ガラス基板上にポリシリコンTFTを形成する場合には、ガラス基板の熱変形を避けるために、半導体膜の結晶化にレーザーアニールが用いられる。
【0004】
レーザーアニールの特徴は、輻射加熱或いは伝導加熱を利用するアニール法と比較して処理時間を大幅に短縮できることや、半導体又は半導体膜を選択的、局所的に加熱して、基板に殆ど熱的損傷を与えないことなどが上げられている。
【0005】
なお、ここでいうレーザーアニール法とは、半導体基板又は半導体膜に形成された損傷層やアモルファス層を再結晶化する技術や、基板上に形成された非晶質半導体膜を結晶化させる技術を指している。また、半導体基板又は半導体膜の平坦化や表面改質に適用される技術も含んでいる。適用されるレーザー発振装置は、エキシマレーザーに代表される気体レーザー発振装置、YAGレーザーに代表される固体レーザー発振装置であり、レーザー光の照射によって半導体の表面層を数十ナノ〜数十マイクロ秒程度のごく短時間加熱して結晶化させるものとして知られている。
【0006】
【発明が解決しようとする課題】
レーザーはその発振方法により、パルス発振と連続発振の2種類に大別される。パルス発振のレーザーは出力エネルギーが比較的高いため、ビームスポットの大きさを数cm2以上として量産性を上げることができる。特に、ビームスポットの形状を光学系を用いて加工し、長さ10cm以上の線状にすると、基板へのレーザー光の照射を効率的に行うことができ、量産性をさらに高めることができる。そのため、半導体膜の結晶化には、パルス発振のレーザーを用いるのが主流となりつつあった。
【0007】
しかし近年、半導体膜の結晶化においてパルス発振のレーザーよりも連続発振のレーザーを用いる方が、半導体膜内に形成される結晶の粒径が大きくなることが見出された。半導体膜内の結晶粒径が大きくなると、該半導体膜を用いて形成されるTFTの移動度が高くなり、結晶粒界によるTFTの特性のばらつきが抑えられる。そのため、連続発振のレーザーはにわかに脚光を浴び始めている。
【0008】
しかし、一般的に連続発振のレーザーは、パルス発振のレーザーに比べてその最大出力エネルギーが小さいため、ビームスポットのサイズが10-3mm2程度と小さい。そのため、1枚の大きな基板を処理するためには、基板におけるビームの照射位置を上下左右に移動させる必要がある。
【0009】
ビームの照射位置を上下左右に移動させるには、基板の位置を固定してビームの照射方向を変化させる方法と、ビームの照射方向を固定して基板の位置を移動させる方法と、上記2つの方法を組み合わせた方法とがある。
【0010】
ビームの照射方向を変化させると、照射する位置によって基板に対するビームの照射角度が変化する。照射角度が変化すると、基板で反射して戻ってくるビームの強さや干渉の強さ等が基板の位置によって変化するため、基板に対する処理を均一に行うことができなくなる。例えばレーザー照射により半導体膜を結晶化させる場合、基板の位置によって結晶性に差が生じたりする。
【0011】
一方、ビームの照射方向を固定して基板の位置を移動させる場合、基板に対するビームの照射角度は、基板の位置に関わらず固定されているため、上述した問題は回避され、さらに光学系もよりシンプルになる。
【0012】
しかし、基板の移動において問題となるのが、方向転換に伴う時間のロスである。
【0013】
図20に、ビームの照射方向を固定して基板の位置を移動させたときの、基板上のビームの照射位置の移動する方向を矢印で示す。一般的にレーザー光の照射は、一定方向に照射位置を移動させた後、方向を変えて、再び一定方向に照射位置を移動させる。このとき、照射位置の移動速度が基板の位置によって変化すると、基板に対する処理を均一に行うことが難しくなる。よって、照射位置の移動速度は一定に保つことが肝要であり、照射位置の移動方向を転換するためには、図20の破線で囲んだ部分に示すように、照射位置が基板から外れた時に行うのが一般的である。照射位置が基板から外れた後、一旦基板の移動を停止し、基板の移動する方向を変えて再び一定の値まで基板の移動速度を上げた後に、レーザー光の基板への照射が行われるようにする必要がある。したがって、必然的に基板の方向転換には所定の時間を要することとなり、基板の処理速度を低下させる原因となっていた。
【0014】
これはビームの照射方向を変化させる場合にも生じる問題であり、ビームの照射方向を転換する際に所定の時間を要するため、基板の処理速度を低下させる原因となる。
【0015】
特に、連続発振のレーザーの場合、パルス発振のレーザーと異なりビームスポットのサイズがもともと小さいので、処理の効率が悪く、基板の処理速度の向上が重要な課題となっている。
【0016】
本発明は上述した問題に鑑み、従来に比べて処理の効率を高めることができる、連続発振のレーザー装置及び該レーザー装置を用いた半導体装置の作製方法の提供を課題とする。
【0017】
【課題を解決するための手段】
本発明のレーザー装置は、被処理物を設置する第1の手段と、被処理物が設置された該第1の手段の位置を、所定の直線上において移動させる第2の手段と、該直線の延長上にその中心が存在するように、被処理物、第1の手段及び第2の手段を回転させる第3の手段と、第3の手段によって回転している被処理物に対して、一定の位置及び一定の方向からレーザー光を照射することができる第4の手段とを有する。
【0018】
本発明のレーザー装置は、一定の位置及び一定の方向からレーザー光を照射していても、第2の手段及び第3の手段によって、被処理物の移動方向を転換せずに被処理物におけるレーザー光の照射位置をX方向及びY方向へ移動させることができ、被処理物全面をレーザー光で照射することができる。よって、被処理物の移動方向の転換に伴う時間のロスが生じることはなく、従来に比べて処理の効率を高めることができる。
【0019】
また、第4の手段により照射されたレーザー光は、被処理物に対する照射角度が照射位置に関わらず固定されているため、被処理物内で反射して戻ってくるビームの強さや干渉の強さ等が照射位置によって異なることを防ぎ、被処理物に対する処理をほぼ均一に行うことができる。例えばレーザー照射により半導体膜を結晶化させる場合、半導体膜の位置によって結晶性に差が生じるのを防ぐことができる。そして、ビームの照射方向を変えて被処理物全体をレーザー光で照射する場合に比べて、光学系をシンプルにすることができる。
【0020】
なお、第1の手段及び第2の手段を複数設けることで、並行して複数の被処理物の処理を行うことができる。この場合、複数の第2の手段による複数の第1の手段の移動は、それぞれ向きの異なった直線上において行われても良い。ただし、全ての該直線の延長上に第3の手段による回転の中心が存在する。上記構成により、処理の効率をより高めることができる。
【0021】
なお、本発明のレーザー装置は、連続発振のレーザーを前提としているが、無論パルス発振のレーザーを用いていても良い。
【0022】
また本発明のレーザー装置の用途は、半導体膜の結晶化にのみに限定されない。本発明のレーザー装置は、上述したレーザーアニール法全般に用いることができる。
【0023】
【発明の実施の形態】
以下、本発明のレーザー装置の構成について説明する。図1(A)に本発明の発光装置の側面図、図1(B)に上面図を示す。
【0024】
図1に示した本発明のレーザー装置は、被処理物を設置する第1の手段に相当するステージ101を複数有している。ここではステージが4つ設けられている例について示した。ステージを複数設けて複数の被処理物を並行して処理することで、処理の効率をより高めることができる。各ステージ101上にはレーザー光を照射する被処理物100が設置されている。
【0025】
各ステージ101は、回転台103上に設けられたガイドレール102に沿って移動可能になっている。なお、ガイドレール102に沿ってステージ101を移動させたときに、ステージ101が直線上において移動するようにガイドレールを設置するようにする。ステージ101が移動した直線状の軌跡の延長上には、回転台103の回転の中心104が存在している。
【0026】
なお、1つのガイドレール沿って、2つ以上のステージを移動させるようにしても良い。
【0027】
ガイドレール102に沿ってステージ101を移動させる手段が、本発明のレーザー装置が有する第2の手段に相当する。具体的に図1では、回転103内に設けられたモーター105と、ガイドレール102とが第2の手段に相当する。しかし本発明のレーザー装置における第2の手段は、ステージ101を直線上において移動させることができれば良く、図1に示した構成に限定されない。
【0028】
また回転103は、回転103用のモーター(以下、回転用モーターとする)106によって、104を中心として第1の手段及び第2の手段を矢印の方向に回転させることができる。回転の方向は設計者が適宜設定することができる。回転103と、回転用モーター106とが、本発明のレーザー装置の第3の手段に相当する。
【0029】
そして、発振装置及びその他光学系107によって、一定の位置及び一定の方向からレーザー光が被処理物100に照射することができる。発振装置及びその他光学系107は、本発明のレーザー装置の第4の手段に相当する。
【0030】
レーザーは、処理の目的によって適宜変えることが可能である。本発明のレーザー装置の第4の手段として、公知のレーザーを用いることができる。レーザーは、連続発振またはパルス発振の気体レーザーもしくは固体レーザーを用いることができる。気体レーザーとして、エキシマレーザー、Arレーザー、Krレーザーなどがあり、固体レーザーとして、YAGレーザー、YVOレーザー、YLFレーザー、YAlOレーザー、ガラスレーザー、ルビーレーザー、アレキサンドライレーザー、Ti:サファイアレーザーまたはYレーザーなどが挙げられる。固体レーザーとしては、Cr、Nd、Er、Ho、Ce、Co、Ti、Yb又はTmがドーピングされたYAG、YVO、YLF、YAlOなどの結晶を使ったレーザーが適用される。当該レーザーの基本波はドーピングする材料によって異なり、1μm前後の基本波を有するレーザー光が得られる。基本波に対する高調波は、非線形光学素子を用いることで得ることができる。
【0031】
またさらに、固体レーザーから発せられらた赤外レーザー光を非線形光学素子でグリーンレーザー光に変換後、さらに別の非線形光学素子によって得られる紫外レーザー光を用いることもできる。
【0032】
なお本発明のレーザー装置は、上記4つの手段の他に、被処理物の温度を調節する手段を備えていても良い。
【0033】
次に、実際にレーザー光がどのように被処理物100に照射されるかについて説明する。図2に、図1に示したレーザー装置によって、被処理物100にレーザー光が照射される様子を示す。
【0034】
図2(A)と図2(B)は、被処理物100へのレーザー光照射におけるステージ101の経時的な位置の変化を示している。図2(A)から図2(B)へと、ステージ101が白抜きの矢印で示すように、回転103の回転の中心104に向かって移動する。回転103は、104を中心に回転している。
【0035】
回転103が回転することで、レーザー光は破線で示すような軌跡108を描くように、回転103上に照射される。該レーザー光の軌跡108は、104を中心として円を描いている。被処理物100は、該レーザー光の軌跡と重なる部分においてレーザー光が照射される。
【0036】
なお、回転103上の被処理物100と重ならない部分においてもレーザー光が照射されるので、回転103はレーザー光によって変形または損傷しないような材質で形成するのが望ましい。
【0037】
さらに、ステージ101は白抜きの矢印の方向に移動しているので、被処理物100とレーザー光の軌跡108と重なる部分が時間と共にずれてゆき、最終的には被処理物100全面にレーザー光を照射することができる。
【0038】
図3に、図2でレーザー光が照射された被処理物100における、レーザー光の照射位置の移動方向を矢印で示す。矢印の数は回転103の回転数と同じであり、回転数が増えれば増えるほど矢印の数が増えていく。
【0039】
照射位置の移動するスピードは、被処理物の場所による照射時間を一定に保つために、常に等速に保つのが望ましい。例えば半導体膜の結晶化に用いる場合、エネルギー密度が5×104〜1.3×105(cm2/W)のとき、照射位置の移動速度を10〜100cm/sec、好ましくは20〜50cm/secに保つと良い。
【0040】
なお、被処理物100全面をレーザー光で照射しようとするならば、回転103の回転速度(角速度)と、ステージ101の移動速度とを適宜調整する必要がある。回転103の回転速度に対してステージ101の移動速度が速すぎると被処理物全面をレーザー光で照射できなくなる。
【0041】
また、被処理物100の各部分におけるレーザー光の適切な照射時間を考慮に入れ、回転103の回転速度とステージ101の移動速度とを決めることが重要である。回転103の回転速度と、ステージ101の移動速度とを調整することで、被処理物100の各部分において複数回レーザー光を照射することも可能である。また、ステージ101を一方向に移動させた後、逆方向に移動させることで、被処理物100に複数回レーザー光を照射させることも可能である。
【0042】
なお、図2ではステージ101の移動する方向が回転の中心104に向かっているが、回転の中心104から離れる方向にステージ101が移動していても良い。
【0043】
上記構成により本発明のレーザー装置は、一定の位置及び一定の方向からレーザー光を照射していても、被処理物の移動方向を転換せずに被処理物におけるレーザー光の照射位置を移動させ、被処理物全面をレーザー光で照射することができる。よって、被処理物の移動方向の転換に伴う時間のロスが生じることはなく、従来に比べて処理の効率を高めることができる。
【0044】
また、レーザー光は被処理物に対する照射角度が照射位置に関わらず固定されているため、被処理物で反射して戻ってくるビームの強さや干渉の強さ等が照射位置によって異なることを防ぎ、被処理物に対する処理をほぼ均一に行うことができる。例えばレーザー照射により半導体膜を結晶化させる場合、被処理物の位置によって結晶性に差が生じるのを防ぐことができる。そして、ビームの照射方向を変えて被処理物全体をレーザー光で照射する場合に比べて、光学系をシンプルにすることができる。
【0045】
【実施例】
以下、本発明の実施例について説明する。
【0046】
(実施例1)
本実施例では、被処理物が設置されているステージを回転台上において一方向に移動させた後、逆方向に移動させ、なおかつ被処理物に2回以上レーザー光を照射する場合について説明する。
【0047】
図4(A)に、本実施例のレーザー装置が有する回転台とステージの上面図を示す。本実施例では、6枚の被処理物を並行して処理することが可能な場合について説明するが、処理する被処理物の枚数は設計者が適宜設定することができる。
【0048】
図4(A)では、被処理物を設置する第1の手段に相当するステージ201が、回転台203上に6つ設けられている。ステージを複数設けて複数の被処理物を並行して処理することで、処理の効率をより高めることができる。各ステージ201上にはレーザー光を照射する被処理物200が設置されている。
【0049】
各ステージ201は、回転台203上に設けられたガイドレール202に沿って移動可能になっている。なお、ガイドレール202に沿ってステージ201を移動させたときに、ステージ201が直線上において移動するようにガイドレールを設置する。ステージ201が移動した直線状の軌跡の延長上には、回転台203の回転の中心204が存在している。1つのガイドレールに沿って、2つ以上のステージを移動させるようにしても良い。なおガイドレールは図4(A)に示した形状に限定されない。またガイドレールを設けなくとも、ステージ201を直線上において移動させることができれば良い。
【0050】
また回転台203は、204を中心として第1の手段であるステージ203及び第2の手段であるガイドレール202を矢印の方向に回転させることができる。回転の方向は設計者が適宜設定することができる。
【0051】
ステージ201は、ガイドレール202に沿って、白抜きの矢印で示すように回転台203の回転の中心204に向かって移動する。回転台203は、204を中心に回転している。
【0052】
回転台203が回転することで、レーザー光は破線で示したような軌跡208を描くように、回転台203上に照射される。該レーザー光の軌跡208は、204を中心として円を描いている。被処理物200は、該レーザー光の軌跡と重なる部分においてレーザー光が照射される。
【0053】
ステージ201は白抜きの矢印の方向に移動しているので、被処理物200とレーザー光の軌跡208と重なる部分が時間と共にずれてゆき、最終的には被処理物200全面にレーザー光を照射することができる。そして本実施例では、回転台203上においてステージ201を一方向に移動させて被処理物200全面にレーザー光を照射した後、ステージ201を逆方向に移動させて再び被処理物200全面にレーザー光を照射する。
【0054】
図4(B)に、図4でレーザー光が照射された被処理物200における、レーザー光の照射位置の移動方向を矢印で示す。矢印209は、1回目のレーザー照射によるレーザー光の照射位置の移動方向であり、同じく全ての破線の矢印も1回目のレーザー照射によるレーザー光の照射位置の移動方向を示している。矢印210は、2回目のレーザー照射によるレーザー光の照射位置の移動方向であり、同じく全ての実線の矢印も2回目のレーザー照射によるレーザー光の照射位置の移動方向を示している。矢印の数は回転台203の回転数と同じであり、回転数が増えれば増えるほど矢印の数が増えていく。
【0055】
なお、被処理物200全面をレーザー光で照射しようとするならば、回転台203の回転速度と、ステージ201の移動速度とを適宜調整する必要がある。回転台203の回転速度に対してステージ201の移動速度が速すぎると被処理物全面をレーザー光で照射できなくなる。
【0056】
また、被処理物200の各部分におけるレーザー光の適切な照射時間を考慮に入れ、回転台203の回転速度とステージ201の移動速度とを決めることが重要である。
【0057】
上記構成により、2回のレーザー照射を連続して行うことが可能になり、処理の効率をより高めることが可能になる。
【0058】
(実施例2)
本実施例では、レーザー照射を複数回行う場合において、各回におけるレーザー光のエッジの部分が重ならないようにレーザー光を照射する場合について説明する。
【0059】
一般的にレーザー光は、エッジの部分におけるエネルギーが他の部分に比べて低くなっている。そこで本実施例では、複数回のレーザー照射において、レーザー光のエッジの部分を重ねないようにすることで、エッジの部分におけるエネルギーの低さを補うようにした。
【0060】
エッジを重ねないようにするためには、1回目のレーザー照射と2回目のレーザー照射において、ステージが移動する範囲をずらす方法がある。図5(A)に1回目のレーザー照射におけるレーザー装置の断面図を、図5(B)に2回目のレーザー照射におけるレーザー装置の断面図を示す。301は回転台、302はガイドレール、303はステージ、304は被処理物を示している。
【0061】
1回目のレーザー照射と、2回目のレーザー照射とのそれぞれにおいて、ステージ303が移動した範囲を矢印で示している。共に同じ直線上において移動しており、そして移動範囲の長さも同じであるが、回転台の中心305とステージ303の移動する範囲との距離が異なっている。
【0062】
上記方法により、1回目のレーザー照射におけるレーザー光のエッジと、2回目のレーザー照射におけるレーザー光のエッジとが重ならず、エッジの部分におけるエネルギーの低さを補うことができる。
【0063】
本実施例は、実施例1と組み合わせて実施することが可能である。
【0064】
(実施例3)
本実施例では、レーザー照射を複数回行う場合において、各回におけるレーザー光のエッジの部分が重ならないようにレーザー光を照射する、実施例2とは異なる方法について説明する。
【0065】
本実施例では、エッジを重ねないようにするために、1回目のレーザー照射と2回目のレーザー照射において、回転台におけるレーザー光の照射位置を変える。図6に、回転台における1回目のレーザー照射と2回目のレーザー照射における、レーザー光の軌跡を示す。401は回転台、402は被処理物を示している。
【0066】
403は、1回目のレーザー照射におけるレーザー光の軌跡を示しており、404は、2回目のレーザー照射におけるレーザー光の軌跡を示している。レーザー光の軌跡403とレーザー光の軌跡404は互いに重なっており、そのエッジは互いに重なっていない。1回目のレーザー照射においては、被処理物402のレーザー光の軌跡403と重なる部分において処理がなされ、2回目のレーザー照射においては、被処理物402のレーザー光の軌跡404と重なる部分において処理がなされる。
【0067】
上記方法により、1回目のレーザー照射におけるレーザー光のエッジと、2回目のレーザー照射におけるレーザー光のエッジとが重ならないので、エッジの部分におけるエネルギーの不均一さを緩和し、被処理物への処理をほぼ均一に行うことができるようになる。
【0068】
本実施例は、実施例1または実施例2と組み合わせて実施することが可能である。
【0069】
(実施例4)
本実施例では、被処理物上に形成された被処理膜の表面及び裏面からレーザー光を照射するための構成について説明する。
【0070】
図7(A)に本実施例のレーザー装置の側面図を示す。図7(A)に示した本発明のレーザー装置は、被処理物410とステージ411の間に、レーザー光を反射させるための反射体420が配置されている。
【0071】
ステージ411は、モーター415によって回転台413上に設けられたガイドレール412に沿って移動可能になっている。ステージ411が移動する直線状の軌跡の延長上には、回転台413の回転の中心が存在している。また回転台413は、回転台413用のモーター(以下、回転台用モーターとする)416によって回転する
【0072】
そして、発振装置及びその他光学系417、光学系418によって、一定の位置及び一定の方向からレーザー光を被処理物410に照射することができる。
【0073】
なお本実施例では、基板の表面でレーザー光の一部が反射し、入射したときと同じ光路を戻るいわゆる戻り光が、レーザー発振装置の出力、周波数等の変動や、ロッドの破壊などの悪影響を及ぼすのを防ぐために、基板対して垂直にレーザー光を入射させずに、基板に対して斜めに入射させるようにする。この場合、レーザー光は指向性およびエネルギー密度の高い光であるため、反射光が不適切な箇所を照射するのを防ぐためダンパーを設置して、反射光を吸収させるのが好ましい。なお、ダンパーには冷却水が循環しており、反射光の吸収によりダンパーの温度が上昇するのを防いでいる。
【0074】
なお、レーザー光を基板に対して斜めに入射させなくとも、戻り光を取り除きレーザーの発振を安定させるため、アイソレータを設置するようにしても良い。
【0075】
図7(B)に、図7(A)における被処理物410と反射体420との位置関係を示す。
【0076】
図7(B)において、被処理物410は、透光性を有する基板421と、その表面(薄膜または素子が形成される側の面)に形成された絶縁膜422と、非晶質半導体膜423が形成されている。また、透光性基板421の下にはレーザー光を反射させるための反射体420が配置される。
【0077】
透光性基板421はガラス基板、石英基板、結晶化ガラス基板若しくはプラスチック基板が用いられる。また、絶縁膜422は酸化シリコン膜や窒化酸化シリコン膜(SiOxNy)などの珪素を含む絶縁膜を用いれば良い。非晶質半導体膜423はアモルファスシリコン膜、アモルファスシリコンゲルマニウム膜などがありうる。
【0078】
また、反射体420は表面(レーザー光の反射面)に金属膜を形成した基板であっても良いし、金属元素でなる基板であっても良い。この場合、金属膜としては如何なる材料を用いても良い。代表的には、アルミニウム、銀、タングステン、チタン、タンタルのいずれかの元素を含む金属膜を用いる。
【0079】
また、反射体420を配置する代わりに、透光性基板421の裏面(表面の反対側の面)に直接上述のような金属膜を形成し、そこでレーザー光を反射させることも可能である。但し、その構成は半導体装置の作製過程で裏面に形成した金属膜が除去されないことが前提である。
【0080】
そして、光学系418(図中ではシリンドリカルレンズのみを示す。)を経由して線状に加工されたレーザー光が、非晶質半導体膜423に照射される。このとき、非晶質半導体膜423に照射されるレーザー光には、光学系418を通過して直接照射されるレーザー光と、反射体420で一旦反射されて非晶質半導体膜423へ照射されるレーザー光とが得られるように、光学系418が設計されていることが肝要である。なお、本明細書中では、非晶質半導体膜の表面に照射されるレーザー光を第一次レーザー光と呼び、裏面に照射されるレーザー光を第二次レーザー光と呼ぶ。
【0081】
光学系418を通過したレーザー光は、集光される過程で基板表面に対して45〜90°の入射角を持つ。そのため、第二次レーザー光は非晶質半導体膜423の裏面側にも回り込んで照射される。また、反射体420の反射面に起伏部を設けてレーザー光を乱反射させることで、第二次レーザー光をさらに効率良く得ることができる。
【0082】
特に、YAGレーザーの第2高調波の波長は532nmであり、非晶質半導体膜に照射した場合、最も非晶質半導体膜で反射しない波長範囲(530nm前後)内である。また、この波長範囲においては、非晶質半導体膜を透過するレーザー光が十分な光量であるため、反射体を用いて再度、裏面側から非晶質半導体膜に照射することにより効率よく照射できる。また、第2高調波のレーザーエネルギーは、(既存のYAGレーザー装置における)最大値で約1.5J/pulseと大きく、線状に加工した場合、長手方向の長さを飛躍的に長くすることができ、一括で大面積のレーザー光照射が可能となる。
【0083】
図7(C)に、図7(A)の矢印425から見た、被処理物410と反射体420との位置関係を示す。本実施例では、戻り光がもときた光路をたどって発振装置417に戻るのを防ぐために、基板421に対する入射角が、0より大きく90°より小さくなるように保っている。より具体的には5〜30°に保つ。
【0084】
なお、照射面に垂直な平面であって、かつ前記長いビームの形状を長方形と見立てたときの短辺を含む面を入射面と定義すると、前記レーザビームの入射角度θは、前記短辺の長さがW、前記照射面に設置され、かつ、前記レーザビームに対して透光性を有する基板の厚さがdであるとき、θ≧arctan(W/2d)を満たすのが望ましい。なお、レーザビームの軌跡が、前記入射面上にないときは、該軌跡を該入射面に射影したものの入射角度をθとする。この入射角度θでレーザビームが入射されれば、基板の表面での反射光と、前記基板の裏面からの反射光とが干渉せず、一様なレーザビームの照射を行うことができる。以上の議論は、基板の屈折率を1として考えた。実際は、基板の屈折率が1.5前後のものが多く、この数値を考慮に入れると上記議論で算出した角度よりも大きな計算値が得られる。しかしながら、ビームスポットの長手方向の両端のエネルギーは減衰があるため、この部分での干渉の影響は少なく、上記の算出値で十分に干渉減衰の効果が得られる。
【0085】
以上のように、本実施例によれば、レーザー光を第一次レーザー光及び第二次レーザー光に分光して、非晶質半導体膜の表面及び裏面に照射することが可能である。
【0086】
本実施例は、実施例1〜実施例3と組み合わせて実施することが可能である。
【0087】
(実施例5)
本実施例では、絶縁表面上に公知の成膜法で成膜した半導体膜を、パターニングして島状にした後、本発明のレーザー装置を用いたレーザーアニールにより結晶化する例について説明する。
【0088】
図8(A)に島状の半導体膜450にレーザー光を照射し、結晶化している様子を示す。島状の半導体膜450は、非晶質構造を有しており、半導体の材料に限定はないが、好ましくはシリコンまたはシリコンゲルマニウム(SiGe)合金などで形成すると良い。
【0089】
破線451は、島状の半導体膜450をレーザーアニールにより結晶化した後、パターニングすることによって得られるTFTの活性層の位置を示している。レーザー光の照射位置452は、キャリアが移動する方向またはその逆の方向に沿うように移動させる。
【0090】
島状の半導体膜450においてレーザー光が最初に照射される部分453の拡大図を、図8(B)に示す。本実施例では、レーザー光の照射は、意図的に島状の半導体膜のエッジの部分から開始する。エッジとは、レーザー光が照射される方向から島状の半導体膜を見たときに、半導体膜の角を有している部分を指す。
【0091】
図8(B)において、レーザー光が照射される方向から見たときの、エッジの角度θ1は、180°未満にする。また、絶縁表面に対する
島状の半導体膜450の側面の角度θ2は、90±10°とし、よりのぞましくは90±5°とする。
【0092】
島状の半導体膜450が有するエッジの部分からレーザー光の照射を開始すると、エッジの部分から(100)面の配向を有する結晶が成長を開始する。そして、島状の半導体膜450へのレーザー光の照射が終了すると、島状の半導体膜450全体の(100)面の配向率を高めることができる。
【0093】
半導体膜の(100)面の配向率を高めると、活性層として用いたときにTFTの移動度を高くすることができる。また、半導体膜の(100)面の配向率が高いと、その上に形成するゲート絶縁膜の膜質のバラツキを少なくすることができ、それ故にTFTのしきい値電圧のバラツキを小さくすることができる。
【0094】
次に、上述した半導体膜の結晶化の方法を、駆動回路を画素部と同じ基板上に有する、アクティブマトリクス型の半導体表示装置の作製方法に応用した例について説明する。
【0095】
図9(A)に、基板500上に画素部501と、信号線駆動回路502と、走査線駆動回路503とが備えられた、液晶パネルの上面図を示す。図9(A)において、破線で示した矢印の方向に向かって、レーザー光の照射位置が移動する。
【0096】
図9(A)の画素部501の一部504の拡大図を図9(B)に、信号線駆動回路502の一部505の拡大図を図9(C)に、走査線駆動回路503の一部506の拡大図を図9(D)に示す。
【0097】
画素部501、信号線駆動回路502、走査線駆動回路503のそれぞれにおいて、各TFTの活性層となる島状の半導体膜が複数形成されている。507、508、509に示す領域にレーザー光が照射され、各領域は矢印の方向に向かって移動する。
【0098】
そして島状の半導体膜のそれぞれは、エッジの部分からレーザー光の照射が開始されるように、その配置が定められている。
【0099】
なお、島状の半導体膜のサイズ及び形状は、画素部501、信号線駆動回路502、走査線駆動回路503のそれぞれにおいて形成されるTFTの形状に合わせて決める。また、1つの島状の半導体膜から複数のTFTの活性層を形成するようにしても良い。
【0100】
本実施例は、実施例1〜実施例4と組み合わせて実施することが可能である。
【0101】
(実施例6)
本実施例では、本発明のレーザー装置において用いられるレーザー光の発振装置及びその他光学系について説明する。
【0102】
図10に本実施例のレーザー装置の構造を示す。520は連続発振又はパルス発振が可能なレーザー光の発振装置である。発振装置520は、チラー527によってその温度を一定に保たれるようにする。チラー527は必ずしも設ける必要はないが、発振装置520の温度を一定に保つことで、発振装置から出力されるレーザー光のエネルギーが、発振装置の温度によってばらつくのを抑えることができる。
【0103】
発振装置520から出力されたレーザー光は、固定ミラー521、522、523によってその光路を変えられて、コリメータレンズ又はシリンドリカルレンズなどのレンズ524、525によって集光され、ステージ528に設置された被処理物526に照射される。勿論、光学系の数に限定はなく、レーザー光が被処理物に、一定の位置及び一定の角度から照射される手段が備えられていれば良い。
【0104】
なお、被処理物に照射されたレーザー光は表面で反射して、再び光学系に入射することにより、レーザー発振装置にダメージを与えることがあるので、レーザー光は所定の角度をもって被処理物に入射させることが望ましい。
【0105】
そして、ステージ528を回転台529上において直線状に移動させ、回転台529をステージ528の移動した軌跡の延長上に存在する点を中心として回転させることによって、被処理物526上におけるレーザー光の照射位置を移動させ、被処理物526全面を処理することができる。
【0106】
本実施例は、実施例1〜実施例5と組み合わせて実施することが可能である。
【0107】
(実施例7)
本実施例では、本発明のレーザー装置において用いられるレーザー光の発振装置及びその他光学系について説明する。
【0108】
図11に本実施例のレーザー装置の構造を示す。本実施例のレーザー装置は、複数の発振装置を用い、該複数の発振装置から発振された複数のレーザー光を1つにまとめる。なお本実施例では3つの発振装置550(550a、550b、550c)を用いた場合を例に挙げて説明する。
【0109】
各発振装置からのレーザー光の発振は、制御装置552により自在に制御することができる。3つの発振装置550のうち、少なくとも1つは、出力するレーザー光は非線形光学素子により、第2高調波や、第3高調波、第4高調波に変換する。本実施例では、全ての発振装置550から出力されるレーザー光を非線形光学素子551a、551b、551cにより、それぞれその波長を変換する。変換する波長は同じであっても、いずれかが異なっていてもよい。
【0110】
3つの発振装置550からそれぞれ出力されたレーザー光は、1つに合成される。具体的に本実施例では、それぞれのレーザー光を、各レーザー光に対応したファイバーアレイ553を介して導波路554に入射させ、1つのレーザー光にまとめる。薄膜偏光素子(TFP:Thin Film Polarizer)やその他の偏光子を用いても行うことができる。
【0111】
導波路554を経て合成されたレーザー光を再び光ファイバ555へ入射させ、レーザー光が拡散するのを低減させる。光ファイバ555から射出したレーザー光は凸レンズ556により集光し、ステージ540に設置された被処理物559へ到達する。
【0112】
1つに合成されたレーザー光は、大出力レーザーから発振されたレーザー光に相当するエネルギー密度を有している。また、同じレーザーから発振されるレーザー光は干渉性が高いが、異なるレーザーから発振されるレーザー光同士は干渉しないため、複数のレーザーが1つにまとめられたレーザー光は、互いに補い合って干渉を低減することを可能とする。また、レーザー光を高調波に変換するために用いる非線形光学素子は、レーザー光が透過するため、十分な耐熱性、耐久性が必要とされ、大出力のレーザーであるほど、非線形光学素子における劣化は大きい。そのため、透過するレーザー光のエネルギーが少しでも小さければ、非線形光学素子の寿命が延び、コストダウンに繋がる。複数の非線形光学素子で複数のレーザー光の波長を変換した後、合成して1つのレーザー光とするという本実施例の構成は、単数の非線形光学素子で1つのレーザー光の波長を変換するよりも1つの非線形光学素子にかかる負担が軽減される。そのため、各非線形光学素子の寿命を延ばすことができ、コストダウンにさせることができる。
【0113】
そして、このようなレーザー光を光ファイバ、ガルバノメータ、ポリゴンメータなどの光学系を用いて、被処理物の全面に照射することができる。
【0114】
照射面におけるレーザー光の形状は、レーザーの種類によって異なるし、光学系により成形することもできる。例えば、ラムダ社製のXeClエキシマレーザー(波長308nm、パルス幅30ns)L3308から射出されたレーザー光の形状は、10mm×30mm(共にビームプロファイルにおける半値幅)の矩形状である。また、YAGレーザーから射出されたレーザー光の形状は、ロッド形状が円筒形であれば円状となり、スラブ型であれば矩形状となる。このようなレーザー光を光学系により、さらに成形することにより、所望の大きさのレーザー光をつくることもできる。
【0115】
さらに、被処理物が有する基板に対して垂直にレーザー光を入射させる場合は、基板の表面でレーザー光の一部が反射し、入射したときと同じ光路を戻る、いわゆる戻り光となるが、該戻り光はレーザーの出力や周波数の変動や、ロッドの破壊などの悪影響を及ぼす。そのため、戻り光を取り除きレーザーの発振を安定させるため、アイソレータを設置するのが好ましい。
【0116】
一方、戻り光を防ぐため、基板に対して斜めにレーザー光を入射させることもできる。しかしながら、レーザー光は指向性およびエネルギー密度の高い光であるため、反射光が不適切な箇所を照射するのを防ぐためダンパーを設置して、反射光を吸収させるのが好ましい。なお、ダンパーには冷却水が循環しており、反射光の吸収によりダンパーの温度が上昇するのを防いでいる。
【0117】
そして、ステージ540を回転台541上において直線状に移動させ、回転台541をステージ540の移動した軌跡の延長上に存在する点を中心として回転させることによって、被処理物559上におけるレーザー光の照射位置を移動させ、被処理物559全面を処理することができる。
【0118】
本実施例は、実施例1〜実施例5と組み合わせて実施することが可能である。
【0119】
(実施例8)
本実施例では、本発明のレーザー装置において用いられるレーザー光の発振装置及びその他光学系について説明する。
【0120】
図12に本実施例のレーザー装置の構造を示す。本実施例のレーザー装置は、発振装置571から発振されたレーザー光が非線形光学素子572により高調波に変換され、分割手段であるミラー573により複数のレーザー光に分割される。
【0121】
それぞれのレーザー光は周期的なエネルギー分布を有するレーザー光の形成手段であるミラー574a、574bによって反射され、それぞれシリンドリカルレンズ575a、575bによって集光され、ステージ(本実施例では図示せず)上に設置された被処理物561に到達する。被処理物561において、複数のレーザー光が合成されることで干渉が生じ、周期的なエネルギー分布を有するレーザー光が形成される。シリンドリカルレンズ575a、575bは必ずしも設置する必要はないが、設置することで照射面においてエネルギー密度を高めることができる。
【0122】
なお、レーザーから射出されたレーザー光の形状は、レーザーの種類によって異なり、ロッド形状が円筒形であれば円状となり、スラブ型であれば矩形状となる。
【0123】
そして、ステージを回転台560上において直線状に移動させ、回転台560をステージの移動した軌跡の延長上に存在する点を中心として回転させることによって、被処理物561上におけるレーザー光の照射位置を移動させ、被処理物561全面を処理することができる。
【0124】
本実施例は、実施例1〜実施例5と組み合わせて実施することが可能である。
【0125】
(実施例9)
本実施例ではアクティブマトリクス基板の作製方法について図13〜図15を用いて説明する。本明細書ではCMOS回路、及び駆動回路と、画素TFT、保持容量とを有する画素部を同一基板上に形成された基板を、便宜上アクティブマトリクス基板と呼ぶ。
【0126】
まず、本実施例ではバリウムホウケイ酸ガラス、またはアルミノホウケイ酸ガラスなどのガラスからなる基板600を用いる。なお、基板600としては、石英基板やシリコン基板、金属基板またはステンレス基板の表面に絶縁膜を形成したものを用いても良い。また、本実施例の処理温度に耐えうる耐熱性が有するプラスチック基板を用いてもよい。
【0127】
次いで、基板600上に酸化珪素膜、窒化珪素膜または酸化窒化珪素膜などの絶縁膜から成る下地膜601を公知の手段(スパッタ法、LPCVD法、プラズマCVD法等)により形成する。本実施例では下地膜601として2層構造を用いるが、前記絶縁膜の単層膜または2層以上積層させた構造を用いても良い。
【0128】
次いで、下地膜上に半導体層602〜606を形成する。半導体層602〜606は公知の手段(スパッタ法、LPCVD法、プラズマCVD法等)により25〜80nm(好ましくは30〜60nm)の厚さで半導体膜を成膜し、レーザー結晶化法により結晶化させる。レーザー結晶化法は、本発明のレーザー装置を用いて行うことができる。もちろん、レーザー結晶化法だけでなく、他の公知の結晶化法(RTAやファーネスアニール炉を用いた熱結晶化法、結晶化を助長する金属元素を用いた熱結晶化法等)と組み合わせて行ってもよい。そして、得られた結晶性半導体膜を所望の形状にパターニングして半導体層602〜606を形成する。前記半導体膜としては、非晶質半導体膜や微結晶半導体膜、結晶性半導体膜などがあり、非晶質珪素ゲルマニウム膜などの非晶質構造を有する化合物半導体膜を適用しても良い。
【0129】
レーザー発振装置は、パルス発振型または連続発光型のエキシマレーザーやYAGレーザー、YVO4レーザーを用いる。結晶化の条件は実施者が適宣選択するものであるが、エキシマレーザーを用いる場合はパルス発振周波数300Hzとし、レーザーエネルギー密度を100〜400mJ/cm2(代表的には200〜300mJ/cm2)とする。また、YAGレーザーを用いる場合にはその第2高調波を用いパルス発振周波数30〜300kHzとし、レーザーエネルギー密度を300〜600mJ/cm2(代表的には350〜500mJ/cm2)とすると良い。そして幅100〜1000μm、例えば400μmで線状に集光したレーザー光を基板全面に渡って照射し、この時の線状レーザー光の重ね合わせ率(オーバーラップ率)を50〜90%として行う。
【0130】
なおレーザーは、連続発振またはパルス発振の気体レーザーもしくは固体レーザーを用いることができる。気体レーザーとして、エキシマレーザー、Arレーザー、Krレーザーなどがあり、固体レーザーとして、YAGレーザー、YVOレーザー、YLFレーザー、YAlOレーザー、ガラスレーザー、ルビーレーザー、アレキサンドライレーザー、Ti:サファイアレーザー、Yレーザーなどが挙げられる。固体レーザーとしては、Cr、Nd、Er、Ho、Ce、Co、Ti、Yb又はTmがドーピングされたYAG、YVO、YLF、YAlOなどの結晶を使ったレーザー等も使用可能である。当該レーザーの基本波はドーピングする材料によって異なり、1μm前後の基本波を有するレーザー光が得られる。基本波に対する高調波は、非線形光学素子を用いることで得ることができる。
【0131】
非晶質半導体膜の結晶化に際し、大粒径に結晶を得るためには、連続発振が可能な固体レーザーを用い、基本波の第2高調波〜第4高調波を適用するのが好ましい。代表的には、Nd:YVO4レーザー(基本波1064nm)の第2高調波(532nm)や第3高調波(355nm)を適用するのが望ましい。具体的には、出力10Wの連続発振のYVO4レーザーから射出されたレーザー光を非線形光学素子により高調波に変換する。また、共振器の中にYVO4結晶と非線形光学素子を入れて、高調波を射出する方法もある。そして、好ましくは光学系により照射面にて矩形状または楕円形状のレーザー光に成形して、被処理体に照射する。このときのエネルギー密度は0.01〜100MW/cm2程度(好ましくは0.1〜10MW/cm2)が必要である。そして、10〜2000cm/s程度の速度でレーザー光に対して相対的に半導体膜を移動させて照射する。
【0132】
続いて、フォトリソグラフィ法を用いたパターニング処理によって半導体層602〜606を形成する。
【0133】
また、半導体層602〜606を形成した後、TFTのしきい値を制御するために微量な不純物元素(ボロンまたはリン)のドーピングを行ってもよい。
【0134】
次いで、半導体層602〜606を覆うゲート絶縁膜607を形成する。ゲート絶縁膜607はプラズマCVD法またはスパッタ法を用い、厚さを40〜150nmとして珪素を含む絶縁膜で形成する。本実施例では、プラズマCVD法により110nmの厚さで酸化窒化珪素膜(組成比Si=32%、O=59%、N=7%、H=2%)で形成した。勿論、ゲート絶縁膜は酸化窒化珪素膜に限定されるものでなく、他の珪素を含む絶縁膜を単層または積層構造として用いても良い。
【0135】
また、酸化珪素膜を用いる場合には、プラズマCVD法でTEOS(Tetraethyl Orthosilicate)とO2とを混合し、反応圧力40Pa、基板温度300〜400℃とし、高周波(13.56MHz)電力密度0.5〜0.8W/cm2で放電させて形成することができる。このようにして作製される酸化珪素膜は、その後400〜500℃の熱アニールによりゲート絶縁膜として良好な特性を得ることができる。
【0136】
次いで、ゲート絶縁膜607上に膜厚20〜100nmの第1の導電膜608と、膜厚100〜400nmの第2の導電膜609とを積層形成する。本実施例では、膜厚30nmのTaN膜からなる第1の導電膜608と、膜厚370nmのW膜からなる第2の導電膜609を積層形成した。TaN膜はスパッタ法で形成し、Taのターゲットを用い、窒素を含む雰囲気内でスパッタする。また、W膜は、Wのターゲットを用いたスパッタ法で形成した。その他に6フッ化タングステン(WF6)を用いる熱CVD法で形成することもできる。いずれにしてもゲート電極として使用するためには低抵抗化を図る必要があり、W膜の抵抗率は20μΩcm以下にすることが望ましい。W膜は結晶粒を大きくすることで低抵抗率化を図ることができるが、W膜中に酸素などの不純物元素が多い場合には結晶化が阻害され高抵抗化する。従って、本実施例では、高純度のW(純度99.9999%)のターゲットを用いたスパッタ法で、さらに成膜時に気相中からの不純物の混入がないように十分配慮してW膜を形成することにより、抵抗率9〜20μΩcmを実現することができる。
【0137】
なお、本実施例では、第1の導電膜608をTaN、第2の導電膜609をWとしたが、特に限定されず、いずれもTa、W、Ti、Mo、Al、Cu、Cr、Ndから選ばれた元素、または前記元素を主成分とする合金材料若しくは化合物材料で形成してもよい。また、リン等の不純物元素をドーピングした多結晶珪素膜に代表される半導体膜を用いてもよい。また、AgPdCu合金を用いてもよい。また、第1の導電膜をタンタル(Ta)膜で形成し、第2の導電膜をW膜とする組み合わせ、第1の導電膜を窒化チタン(TiN)膜で形成し、第2の導電膜をW膜とする組み合わせ、第1の導電膜を窒化タンタル(TaN)で形成し、第2の導電膜をWとする組み合わせ、第1の導電膜を窒化タンタル(TaN)膜で形成し、第2の導電膜をAl膜とする組み合わせ、第1の導電膜を窒化タンタル(TaN)膜で形成し、第2の導電膜をCu膜とする組み合わせとしてもよい。
【0138】
また、2層構造に限定されず、例えば、タングステン膜、アルミニウムとシリコンの合金(Al−Si)膜、窒化チタン膜を順次積層した3層構造としてもよい。また、3層構造とする場合、タングステンに代えて窒化タングステンを用いてもよいし、アルミニウムとシリコンの合金(Al−Si)膜に代えてアルミニウムとチタンの合金膜(Al−Ti)を用いてもよいし、窒化チタン膜に代えてチタン膜を用いてもよい。
【0139】
なお、導電膜の材料によって、適宜最適なエッチングの方法や、エッチャントの種類を選択することが重要である。
【0140】
次に、フォトリソグラフィ法を用いてレジストからなるマスク610〜615を形成し、電極及び配線を形成するための第1のエッチング処理を行う。第1のエッチング処理では第1及び第2のエッチング条件で行う。(図13(B))本実施例では第1のエッチング条件として、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング用ガスにCF4とCl2とO2とを用い、それぞれのガス流量比を25:25:10(sccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成してエッチングを行う。基板側(試料ステージ)にも150WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。この第1のエッチング条件によりW膜をエッチングして第1の導電層の端部をテーパー形状とする。
【0141】
この後、レジストからなるマスク610〜615を除去せずに第2のエッチング条件に変え、エッチング用ガスにCF4とCl2とを用い、それぞれのガス流量比を30:30(sccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成して約30秒程度のエッチングを行った。基板側(試料ステージ)にも20WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。CF4とCl2を混合した第2のエッチング条件ではW膜及びTaN膜とも同程度にエッチングされる。なお、ゲート絶縁膜上に残渣を残すことなくエッチングするためには、10〜20%程度の割合でエッチング時間を増加させると良い。
【0142】
上記第1のエッチング処理では、レジストからなるマスクの形状を適したものとすることにより、基板側に印加するバイアス電圧の効果により第1の導電層及び第2の導電層の端部がテーパー形状となる。このテーパー部の角度は15〜45°となる。こうして、第1のエッチング処理により第1の導電層と第2の導電層から成る第1の形状の導電層617〜622(第1の導電層617a〜622aと第2の導電層617b〜622b)を形成する。616はゲート絶縁膜であり、第1の形状の導電層617〜622で覆われない領域は20〜50nm程度エッチングされ薄くなった領域が形成される。
【0143】
次いで、レジストからなるマスクを除去せずに第2のエッチング処理を行う。(図13(C))ここでは、エッチングガスにCF4とCl2とO2とを用い、W膜を選択的にエッチングする。この時、第2のエッチング処理により第2の導電層628b〜633bを形成する。一方、第1の導電層617a〜622aは、ほとんどエッチングされず、第2の形状の導電層628〜633を形成する。
【0144】
そして、レジストからなるマスクを除去せずに第1のドーピング処理を行い、半導体層にn型を付与する不純物元素を低濃度に添加する。ドーピング処理はイオンドープ法、若しくはイオン注入法で行えば良い。イオンドープ法の条件はドーズ量を1×1013〜5×1014/cm2とし、加速電圧を40〜80keVとして行う。本実施例ではドーズ量を1.5×1013/cm2とし、加速電圧を60keVとして行う。n型を付与する不純物元素として15族に属する元素、典型的にはリン(P)または砒素(As)を用いるが、ここではリン(P)を用いる。この場合、導電層628〜633がn型を付与する不純物元素に対するマスクとなり、自己整合的に不純物領域623〜627が形成される。不純物領域623〜627には1×1018〜1×1020atoms/cm3の濃度範囲でn型を付与する不純物元素を添加する。
【0145】
レジストからなるマスクを除去した後、新たにレジストからなるマスク634a〜634cを形成して第1のドーピング処理よりも高い加速電圧で第2のドーピング処理を行う。イオンドープ法の条件はドーズ量を1×1013〜1×1015/cm2とし、加速電圧を60〜120keVとして行う。ドーピング処理は第2の導電層628b〜632bを不純物元素に対するマスクとして用い、第1の導電層のテーパー部の下方の半導体層に不純物元素が添加されるようにドーピングする。続いて、第2のドーピング処理より加速電圧を下げて第3のドーピング処理を行って図14(A)の状態を得る。イオンドープ法の条件はドーズ量を1×1015〜1×1017/cm2とし、加速電圧を50〜100keVとして行う。第2のドーピング処理および第3のドーピング処理により、第1の導電層と重なる低濃度不純物領域636、642、648には1×1018〜5×1019 atoms/cm3の濃度範囲でn型を付与する不純物元素を添加され、高濃度不純物領域635、641、644、647には1×1019〜5×1021 atoms/cm3の濃度範囲でn型を付与する不純物元素を添加される。
【0146】
もちろん、適当な加速電圧にすることで、第2のドーピング処理および第3のドーピング処理は1回のドーピング処理で、低濃度不純物領域および高濃度不純物領域を形成することも可能である。
【0147】
次いで、レジストからなるマスクを除去した後、新たにレジストからなるマスク650a〜650cを形成して第4のドーピング処理を行う。この第4のドーピング処理により、pチャネル型TFTの活性層となる半導体層に前記一導電型とは逆の導電型を付与する不純物元素が添加された不純物領域653、654、659、660を形成する。第2の導電層628a〜632aを不純物元素に対するマスクとして用い、p型を付与する不純物元素を添加して自己整合的に不純物領域を形成する。本実施例では、不純物領域653、654、659、660はジボラン(B26)を用いたイオンドープ法で形成する。(図14(B))この第4のドーピング処理の際には、nチャネル型TFTを形成する半導体層はレジストからなるマスク650a〜650cで覆われている。第1乃至3のドーピング処理によって、不純物領域653、654と659、660はそれぞれ異なる濃度でリンが添加されているが、そのいずれの領域においてもp型を付与する不純物元素の濃度を1×1019〜5×1021atoms/cm3となるようにドーピング処理することにより、pチャネル型TFTのソース領域およびドレイン領域として機能するために何ら問題は生じない。
【0148】
以上までの工程で、それぞれの半導体層に不純物領域が形成される。
【0149】
次いで、レジストからなるマスク650a〜650cを除去して第1の層間絶縁膜661を形成する。この第1の層間絶縁膜661としては、プラズマCVD法またはスパッタ法を用い、厚さを100〜200nmとして珪素を含む絶縁膜で形成する。本実施例では、プラズマCVD法により膜厚150nmの酸化窒化珪素膜を形成した。勿論、第1の層間絶縁膜661は酸化窒化珪素膜に限定されるものでなく、他の珪素を含む絶縁膜を単層または積層構造として用いても良い。
【0150】
次いで、図14(C)に示すように、活性化処理としてレーザー照射方法を用いる。レーザーアニール法を用いる場合、結晶化の際に用いたレーザーを使用することが可能である。活性化の場合は、移動速度は結晶化と同じにし、0.01〜100MW/cm2程度(好ましくは0.01〜10MW/cm2)のエネルギー密度が必要となる。また結晶化の際には連続発振のレーザーを用い、活性化の際にはパルス発振のレーザーを用いるようにしても良い。
【0151】
また、第1の層間絶縁膜を形成する前に活性化処理を行っても良い。
【0152】
そして、加熱処理(300〜550℃で1〜12時間の熱処理)を行うと水素化を行うことができる。この工程は第1の層間絶縁膜661に含まれる水素により半導体層のダングリングボンドを終端する工程である。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)や、3〜100%の水素を含む雰囲気中で300〜650℃で1〜12時間の加熱処理を行っても良い。この場合は、第1の層間絶縁膜の存在に関係なく半導体層を水素化することができる。
【0153】
次いで、第1の層間絶縁膜661上に無機絶縁膜材料または有機絶縁物材料から成る第2の層間絶縁膜662を形成する。本実施例では、膜厚1.6μmのアクリル樹脂膜を形成したが、粘度が10〜1000cp、好ましくは40〜200cpのものを用いても良い。また、表面に凸凹が形成されるものを用いても良い。
【0154】
本実施例では、鏡面反射を防ぐため、表面に凸凹が形成される第2の層間絶縁膜を形成することによって画素電極の表面に凸凹を形成した。また、画素電極の表面に凹凸を持たせて光散乱性を図るため、画素電極の下方の領域に凸部を形成してもよい。その場合、凸部の形成は、TFTの形成と同じフォトマスクで行うことができるため、工程数の増加なく形成することができる。なお、この凸部は配線及びTFT部以外の画素部領域の基板上に適宜設ければよい。こうして、凸部を覆う絶縁膜の表面に形成された凸凹に沿って画素電極の表面に凸凹が形成される。
【0155】
また、第2の層間絶縁膜662として表面が平坦化する膜を用いてもよい。その場合は、画素電極を形成した後、公知のサンドブラスト法やエッチング法等の工程を追加して表面を凹凸化させて、鏡面反射を防ぎ、反射光を散乱させることによって白色度を増加させることが好ましい。
【0156】
そして、駆動回路686において、各不純物領域とそれぞれ電気的に接続する配線664〜668を形成する。なお、これらの配線は、膜厚50nmのTi膜と、膜厚500nmの合金膜(AlとTiとの合金膜)との積層膜をパターニングして形成する。もちろん、二層構造に限らず、単層構造でもよいし、三層以上の積層構造にしてもよい。また、配線の材料としては、AlとTiに限らない。例えば、TaN膜上にAlやCuを形成し、さらにTi膜を形成した積層膜をパターニングして配線を形成してもよい。(図15)
【0157】
また、画素部687においては、画素電極670、ゲート配線669、接続電極668を形成する。この接続電極668によりソース配線(643aと643bの積層)は、画素TFTと電気的な接続が形成される。また、ゲート配線669は、画素TFTのゲート電極と電気的な接続が形成される。また、画素電極670は、画素TFTのドレイン領域690と電気的な接続が形成され、さらに保持容量を形成する一方の電極として機能する半導体層685と電気的な接続が形成される。また本願では画素電極と接続電極とを同じ材料で形成しているが、画素電極670としてAlまたはAgを主成分とする膜、またはそれらの積層膜等の反射性の優れた材料を用いても良い。
【0158】
以上の様にして、nチャネル型TFT681とpチャネル型TFT682からなるCMOS回路、及びnチャネル型TFT683を有する駆動回路686と、画素TFT684、保持容量685とを有する画素部687を同一基板上に形成することができる。こうして、アクティブマトリクス基板が完成する。
【0159】
駆動回路686のnチャネル型TFT681はチャネル形成領域637、ゲート電極の一部を構成する第1の導電層628aと重なる低濃度不純物領域636(GOLD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域652と、を有している。このnチャネル型TFT681と電極666で接続してCMOS回路を形成するpチャネル型TFT682にはチャネル形成領域640、ソース領域またはドレイン領域として機能する高濃度不純物領域653と、p型を付与する不純物元素が導入された不純物領域654を有している。また、nチャネル型TFT683にはチャネル形成領域643、ゲート電極の一部を構成する第1の導電層630aと重なる低濃度不純物領域642(GOLD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域656とを有している。
【0160】
画素部の画素TFT684にはチャネル形成領域646、ゲート電極の外側に形成される低濃度不純物領域645(LDD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域658とを有している。また、保持容量685の一方の電極として機能する半導体層には、n型を付与する不純物元素およびp型を付与する不純物元素が添加されている。保持容量685は、絶縁膜616を誘電体として、電極(632aと632bの積層)と、半導体層とで形成している。
【0161】
本実施例の画素構造は、ブラックマトリクスを用いることなく、画素電極間の隙間が遮光されるように、画素電極の端部をソース配線と重なるように配置形成する。
【0162】
本実施例は、実施例1〜実施例8と組み合わせて実施することが可能である。
【0163】
(実施例10)
本実施例では、実施例9で作製したアクティブマトリクス基板から、反射型液晶表示装置を作製する工程を以下に説明する。説明には図16を用いる。
【0164】
まず、実施例9に従い、図15の状態のアクティブマトリクス基板を得た後、図15のアクティブマトリクス基板上、少なくとも画素電極670上に配向膜867を形成しラビング処理を行う。なお、本実施例では配向膜867を形成する前に、アクリル樹脂膜等の有機樹脂膜をパターニングすることによって基板間隔を保持するための柱状のスペーサ872を所望の位置に形成した。また、柱状のスペーサに代えて、球状のスペーサを基板全面に散布してもよい。
【0165】
次いで、対向基板869を用意する。次いで、対向基板869上に着色層870、871、平坦化膜873を形成する。赤色の着色層870と青色の着色層871とを重ねて、遮光部を形成する。また、赤色の着色層と緑色の着色層とを一部重ねて、遮光部を形成してもよい。
【0166】
本実施例では、実施例9に示す基板を用いている。従って、少なくともゲート配線669と画素電極670の間隙と、ゲート配線669と接続電極668の間隙と、接続電極668と画素電極670の間隙を遮光する必要がある。本実施例では、それらの遮光すべき位置に着色層の積層からなる遮光部が重なるように各着色層を配置して、対向基板を貼り合わせた。
【0167】
このように、ブラックマスク等の遮光層を形成することなく、各画素間の隙間を着色層の積層からなる遮光部で遮光することによって工程数の低減を可能とした。
【0168】
次いで、平坦化膜873上に透明導電膜からなる対向電極876を少なくとも画素部に形成し、対向基板の全面に配向膜874を形成し、ラビング処理を施した。
【0169】
そして、画素部と駆動回路が形成されたアクティブマトリクス基板と対向基板とをシール材868で貼り合わせる。シール材868にはフィラーが混入されていて、このフィラーと柱状スペーサによって均一な間隔を持って2枚の基板が貼り合わせられる。その後、両基板の間に液晶材料875を注入し、封止剤(図示せず)によって完全に封止する。液晶材料875には公知の液晶材料を用いれば良い。このようにして図16に示す反射型液晶表示装置が完成する。そして、必要があれば、アクティブマトリクス基板または対向基板を所望の形状に分断する。さらに、対向基板のみに偏光板(図示しない)を貼りつけた。そして、公知の技術を用いてFPCを貼りつけた。
【0170】
以上のようにして作製される液晶表示装置はエネルギー分布が周期的または一様なレーザー光が照射され、大粒径の結晶粒が形成された半導体膜を用いて作製されたTFTを有しており、前記液晶表示装置の動作特性や信頼性を十分なものとなり得る。そして、このような液晶表示装置は各種電子機器の表示部として用いることができる。
【0171】
なお、本実施例は実施例1〜実施例9と組み合わせて実施することが可能である。
【0172】
(実施例11)
本実施例では、実施例9で示したアクティブマトリクス基板を作製するときのTFTの作製方法を用いて、発光装置を作製する例を以下に説明する。本明細書において、発光装置とは、基板上に形成された発光素子を該基板とカバー材の間に封入した表示用パネルおよび該表示用パネルにTFT等を実装した表示用モジュールを総称したものである。なお、発光素子は、電場を加えることで発生するルミネッセンス(Electro Luminescence)が得られる有機化合物を含む層(発光層)と陽極層と、陰極層とを有する。また、有機化合物におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)があり、これらのうちどちらか、あるいは両方の発光を含む。
【0173】
なお、本明細書中では、発光素子において陽極と陰極の間に形成された全ての層を有機発光層と定義する。有機発光層には具体的に、発光層、正孔注入層、電子注入層、正孔輸送層、電子輸送層等が含まれる。基本的に発光素子は、陽極層、発光層、陰極層が順に積層された構造を有しており、この構造に加えて、陽極層、正孔注入層、発光層、陰極層や、陽極層、正孔注入層、発光層、電子輸送層、陰極層等の順に積層した構造を有していることもある。
【0174】
図17は本実施例の発光装置の断面図である。図17において、基板700上に設けられたスイッチングTFT733は実施例9の作製方法を用いて形成される。
【0175】
なお、本実施例ではチャネル形成領域が二つ形成されるダブルゲート構造としているが、チャネル形成領域が一つ形成されるシングルゲート構造もしくは三つ形成されるトリプルゲート構造であっても良い。
【0176】
基板700上に設けられた駆動回路は実施例9の作製方法を用いて形成される。なお、本実施例ではシングルゲート構造としているが、ダブルゲート構造もしくはトリプルゲート構造であっても良い。
【0177】
また、配線701、703はCMOS回路のソース配線、702はドレイン配線として機能する。また、配線704はソース配線708とスイッチングTFTのソース領域とを電気的に接続する配線として機能し、配線705はドレイン配線709とスイッチングTFTのドレイン領域とを電気的に接続する配線として機能する。
【0178】
なお、電流制御TFT734は実施例9の作製方法を用いて形成される。なお、本実施例ではシングルゲート構造としているが、ダブルゲート構造もしくはトリプルゲート構造であっても良い。
【0179】
また、配線706は電流制御TFTのソース配線(電流供給線に相当する)であり、707は電流制御TFTのドレイン領域と画素電極711とを電気的に接続する電極である。
【0180】
なお、711は、透明導電膜からなる画素電極(発光素子の陽極)である。透明導電膜としては、酸化インジウムと酸化スズとの化合物、酸化インジウムと酸化亜鉛との化合物、酸化亜鉛、酸化スズまたは酸化インジウムを用いることができる。また、前記透明導電膜にガリウムを添加したものを用いても良い。画素電極711は、上記配線を形成する前に平坦な層間絶縁膜710上に形成する。本実施例においては、樹脂からなる平坦化膜710を用いてTFTによる段差を平坦化することは非常に重要である。後に形成される発光層は非常に薄いため、段差が存在することによって発光不良を起こす場合がある。従って、発光層をできるだけ平坦面に形成しうるように画素電極を形成する前に平坦化しておくことが望ましい。
【0181】
配線701〜707を形成後、図17に示すようにバンク712を形成する。バンク712は100〜400nmの珪素を含む絶縁膜もしくは有機樹脂膜をパターニングして形成すれば良い。
【0182】
なお、バンク712は絶縁膜であるため、成膜時における素子の静電破壊には注意が必要である。本実施例ではバンク712の材料となる絶縁膜中にカーボン粒子や金属粒子を添加して抵抗率を下げ、静電気の発生を抑制する。この際、抵抗率は1×106〜1×1012Ωm(好ましくは1×108〜1×1010Ωm)となるようにカーボン粒子や金属粒子の添加量を調節すれば良い。
【0183】
画素電極711の上には発光層713が形成される。なお、図17では一画素しか図示していないが、本実施例ではR(赤)、G(緑)、B(青)の各色に対応した発光層を作り分けている。また、本実施例では蒸着法により低分子系有機発光材料を形成している。具体的には、正孔注入層として20nm厚の銅フタロシアニン(CuPc)膜を設け、その上に発光層として70nm厚のトリス−8−キノリノラトアルミニウム錯体(Alq3)膜を設けた積層構造としている。Alq3にキナクリドン、ペリレンもしくはDCM1といった蛍光色素を添加することで発光色を制御することができる。
【0184】
但し、以上の例は発光層として用いることのできる有機発光材料の一例であって、これに限定する必要はまったくない。発光層、電荷輸送層または電荷注入層を自由に組み合わせて発光層(発光及びそのためのキャリアの移動を行わせるための層)を形成すれば良い。例えば、本実施例では低分子系有機発光材料を発光層として用いる例を示したが、中分子系有機発光材料や高分子系有機発光材料を用いても良い。なお、本明細書中において、昇華性を有さず、かつ、分子数が20以下または連鎖する分子の長さが10μm以下の有機発光材料を中分子系有機発光材料とする。また、高分子系有機発光材料を用いる例として、正孔注入層として20nmのポリチオフェン(PEDOT)膜をスピン塗布法により設け、その上に発光層として100nm程度のパラフェニレンビニレン(PPV)膜を設けた積層構造としても良い。なお、PPVのπ共役系高分子を用いると、赤色から青色まで発光波長を選択できる。また、電荷輸送層や電荷注入層として炭化珪素等の無機材料を用いることも可能である。これらの有機発光材料や無機材料は公知の材料を用いることができる。
【0185】
次に、発光層713の上には導電膜からなる陰極714が設けられる。本実施例の場合、導電膜としてアルミニウムとリチウムとの合金膜を用いる。勿論、公知のMgAg膜(マグネシウムと銀との合金膜)を用いても良い。陰極材料としては、周期表の1族もしくは2族に属する元素からなる導電膜もしくはそれらの元素を添加した導電膜を用いれば良い。
【0186】
この陰極714まで形成された時点で発光素子715が完成する。なお、ここでいう発光素子715は、画素電極(陽極)711、発光層713及び陰極714で形成されたダイオードを指す。
【0187】
発光素子715を完全に覆うようにしてパッシベーション膜716を設けることは有効である。パッシベーション膜716としては、炭素膜、窒化珪素膜もしくは窒化酸化珪素膜を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層で用いる。
【0188】
この際、カバレッジの良い膜をパッシベーション膜として用いることが好ましく、炭素膜、特にDLC(ダイヤモンドライクカーボン)膜を用いることは有効である。DLC膜は室温から100℃以下の温度範囲で成膜可能であるため、耐熱性の低い発光層713の上方にも容易に成膜することができる。また、DLC膜は酸素に対するブロッキング効果が高く、発光層713の酸化を抑制することが可能である。そのため、この後に続く封止工程を行う間に発光層713が酸化するといった問題を防止できる。
【0189】
さらに、パッシベーション膜716上に封止材717を設け、カバー材718を貼り合わせる。封止材717としては紫外線硬化樹脂を用いれば良く、内部に吸湿効果を有する物質もしくは酸化防止効果を有する物質を設けることは有効である。また、本実施例においてカバー材718はガラス基板や石英基板やプラスチック基板(プラスチックフィルムも含む)の両面に炭素膜(好ましくはダイヤモンドライクカーボン膜)を形成したものを用いる。
【0190】
こうして図17に示すような構造の発光装置が完成する。なお、バンク712を形成した後、パッシベーション膜716を形成するまでの工程をマルチチャンバー方式(またはインライン方式)の成膜装置を用いて、大気解放せずに連続的に処理することは有効である。また、さらに発展させてカバー材718を貼り合わせる工程までを大気解放せずに連続的に処理することも可能である。
【0191】
こうして、基板700上にnチャネル型TFT731、732、スイッチングTFT(nチャネル型TFT)703および電流制御TFT(nチャネル型TFT)734が形成される。
【0192】
さらに、図17を用いて説明したように、ゲート電極に絶縁膜を介して重なる不純物領域を設けることによりホットキャリア効果に起因する劣化に強いnチャネル型TFTを形成することができる。そのため、信頼性の高い発光装置を実現できる。
【0193】
また、本実施例では画素部と駆動回路の構成のみ示しているが、本実施例の製造工程に従えば、その他にも信号分割回路、D/Aコンバータ、オペアンプ、γ補正回路などの論理回路を同一の絶縁体上に形成可能であり、さらにはメモリやマイクロプロセッサをも形成しうる。
【0194】
以上のようにして作製される発光装置はエネルギー分布が周期的または一様なレーザー光が照射され、大粒径の結晶粒が形成された半導体膜を用いて作製されたTFTを有しており、前記発光装置の動作特性や信頼性を十分なものとなり得る。そして、このような発光装置は各種電子機器の表示部として用いることができる。
【0195】
なお、本実施例は実施例1〜実施例9のいずれか一と組み合わせて実施することが可能である。
【0196】
(実施例12)
本実施例では、本発明の半導体装置の1つである発光装置の画素の、実施例11とは異なる構成について説明する。図18に本実施例の発光装置の画素の断面図を示す。
【0197】
751はnチャネル型TFTであり、752はpチャネル型TFTである。nチャネル型TFT751は、半導体膜753と、第1の絶縁膜770と、第1の電極754、755と、第2の絶縁膜771と、第2の電極756、757とを有している。そして、半導体膜753は、第1濃度の一導電型不純物領域758と、第2濃度の一導電型不純物領域759と、チャネル形成領域760、761を有している。
【0198】
第1の電極754、755とチャネル形成領域760、761とは、それぞれ第1の絶縁膜770を間に挟んで重なっている。また、第2の電極756、757と、チャネル形成領域760、761とは、それぞれ第2の絶縁膜771を間に挟んで重なっている。
【0199】
pチャネル型TFT752は、半導体膜780と、第1の絶縁膜770と、第1の電極782と、第2の絶縁膜771と、第2の電極781とを有している。そして、半導体膜780は、第3濃度の一導電型不純物領域783と、チャネル形成領域784を有している。
【0200】
第1の電極782とチャネル形成領域784とは、それぞれ第1の絶縁膜770を間に挟んで重なっている。第2の電極781とチャネル形成とは、それぞれ第2の絶縁膜771を間に挟んで重なっている。
【0201】
そして、第1の電極782と第2の電極781とは、配線790を介して電気的に接続されている。
【0202】
本発明のレーザー装置は、半導体膜753、780の結晶化、活性化またはその他レーザーアニールを用いる工程において使用することができる。
【0203】
本実施例では、スイッチング素子として用いるTFT(本実施例の場合nチャネル型TFT751)は、第1の電極に一定の電圧を印加している。第1の電極に一定の電圧を印加することで、電極が1つの場合に比べて閾値のばらつきを抑えることができ、なおかつオフ電流を抑えることができる。
【0204】
また、スイッチング素子として用いるTFTよりも大きな電流を流すTFT(本実施例の場合pチャネル型TFT752)は、第1の電極と第2の電極とを電気的に接続している。第1の電極と第2の電極に同じ電圧を印加することで、実質的に半導体膜の膜厚を薄くしたのと同じように空乏層が早く広がるので、サブスレッショルド係数を小さくすることができ、オン電流を大きくすることができる。よって、この構造のTFTを駆動回路に使用することにより、駆動電圧を低下させることができる。また、オン電流を大きくすることができるので、TFTのサイズ(特にチャネル幅)を小さくすることができる。そのため集積密度を向上させることができる。
【0205】
なお、本実施例は実施例1〜実施例11のいずれか一と組み合わせて実施することが可能である。
【0206】
(実施例13)
本実施例では、本発明の半導体装置の1つである発光装置の画素の、実施例11、実施例12とは異なる構成について説明する。図19に本実施例の発光装置の画素の断面図を示す。
【0207】
図19において、911は基板、912は下地となる絶縁膜(以下、下地膜という)である。基板911としては透光性基板、代表的にはガラス基板、石英基板、ガラスセラミックス基板、又は結晶化ガラス基板を用いることができる。但し、作製プロセス中の最高処理温度に耐えるものでなくてはならない。
【0208】
8201はスイッチングTFT、8202は電流制御TFTであり、それぞれnチャネル型TFT、pチャネル型TFTで形成されている。有機発光層の発光方向が基板の下面(TFT及び有機発光層が設けられていない面)の場合、上記構成であることが好ましい。しかしスイッチングTFTと電流制御TFTは、nチャネル型TFTでもpチャネル型TFTでも、どちらでも構わない。
【0209】
スイッチングTFT8201は、ソース領域913、ドレイン領域914、LDD領域915a〜915d、分離領域916及びチャネル形成領域917a、917bを含む活性層と、ゲート絶縁膜918と、ゲート電極919a、919bと、第1層間絶縁膜920と、ソース信号線921と、ドレイン配線922とを有している。なお、ゲート絶縁膜918又は第1層間絶縁膜920は基板上の全TFTに共通であっても良いし、回路又は素子に応じて異ならせても良い。
【0210】
また、図19に示すスイッチングTFT8201はゲート電極917a、917bが電気的に接続されており、いわゆるダブルゲート構造となっている。勿論、ダブルゲート構造だけでなく、トリプルゲート構造などいわゆるマルチゲート構造(直列に接続された二つ以上のチャネル形成領域を有する活性層を含む構造)であっても良い。
【0211】
マルチゲート構造はオフ電流を低減する上で極めて有効であり、スイッチングTFTのオフ電流を十分に低くすれば、それだけ電流制御TFT8202のゲート電極に接続された保持容量が必要とする最低限の容量を抑えることができる。即ち、保持容量の面積を小さくすることができるので、マルチゲート構造とすることは発光素子の有効発光面積を広げる上で有効である。
【0212】
さらに、スイッチングTFT8201においては、LDD領域915a〜915dは、ゲート絶縁膜918を介してゲート電極919a、919bと重ならないように設ける。このような構造はオフ電流を低減する上で非常に効果的である。また、LDD領域915a〜915dの長さ(幅)は0.5〜3.5μm、代表的には2.0〜2.5μmとすれば良い。なお、二つ以上のゲート電極を有するマルチゲート構造の場合、チャネル形成領域の間に設けられた分離領域916(ソース領域又はドレイン領域と同一の濃度で同一の不純物元素が添加された領域)がオフ電流の低減に効果的である。
【0213】
次に、電流制御TFT8202は、ソース領域926、ドレイン領域927及びチャネル形成領域965を含む活性層と、ゲート絶縁膜918と、ゲート電極930と、第1層間絶縁膜920と、ソース信号線931並びにドレイン配線932を有して形成される。本実施例において電流制御TFT8202はpチャネル型TFTである。
【0214】
また、スイッチングTFT8201のドレイン領域914は電流制御TFT8202のゲート930に接続されている。図示してはいないが、具体的には電流制御TFT8202のゲート電極930はスイッチングTFT8201のドレイン領域914とドレイン配線(接続配線とも言える)922を介して電気的に接続されている。なお、ゲート電極930はシングルゲート構造となっているが、マルチゲート構造であっても良い。また、電流制御TFT8202のソース信号線931は電源供給線(図示せず)に接続される。
【0215】
以上は画素内に設けられたTFTの構造について説明したが、このとき同時に駆動回路も形成される。図19には駆動回路を形成する基本単位となるCMOS回路が図示されている。
【0216】
図19においては極力動作速度を落とさないようにしつつホットキャリア注入を低減させる構造を有するTFTをCMOS回路のnチャネル型TFT8204として用いる。なお、ここでいう駆動回路としては、ソース信号側駆動回路、ゲート信号側駆動回路を指す。勿論、他の論理回路(レベルシフタ、A/Dコンバータ、信号分割回路等)を形成することも可能である。
【0217】
CMOS回路のnチャネル型TFT8204の活性層は、ソース領域935、ドレイン領域936、LDD領域937及びチャネル形成領域938を含み、LDD領域937はゲート絶縁膜918を介してゲート電極939と重なっている。
【0218】
ドレイン領域936側のみにLDD領域937を形成しているのは、動作速度を落とさないための配慮である。また、このnチャネル型TFT8204はオフ電流値をあまり気にする必要はなく、それよりも動作速度を重視した方が良い。従って、LDD領域937は完全にゲート電極に重ねてしまい、極力抵抗成分を少なくすることが望ましい。即ち、いわゆるオフセットはなくした方がよい。
【0219】
また、CMOS回路のpチャネル型TFT8205は、ホットキャリア注入による劣化が殆ど気にならないので、特にLDD領域を設けなくても良い。従って活性層はソース領域940、ドレイン領域941及びチャネル形成領域961を含み、その上にはゲート絶縁膜918とゲート電極943が設けられる。勿論、nチャネル型TFT8204と同様にLDD領域を設け、ホットキャリア対策を講じることも可能である。
【0220】
なお942、938、917a、917b、929はチャネル形成領域961〜965を形成するためのマスクである。
【0221】
また、nチャネル型TFT8204及びpチャネル型TFT8205はそれぞれソース領域上に第1層間絶縁膜920を間に介して、ソース信号線944、945を有している。また、ドレイン配線946によってnチャネル型TFT8204とpチャネル型TFT8205とのドレイン領域は互いに電気的に接続される。
【0222】
本発明のレーザー装置は、活性層の結晶化、活性化またはその他レーザーアニールを用いる工程において使用することができる。
【0223】
なお本実施例の構成は、実施例1〜11と自由に組み合わせて実施することが可能である。
【0224】
(実施例14)
本実施例では、半導体膜をレーザー光照射により結晶化したときに溶融した半導体膜中に混入した不純物を、除去する例について説明する。以下に代表的な作製手順を簡略に図21を用いて示す。
【0225】
図21(A)中、1100は、絶縁表面を有する基板、1101は下地絶縁膜、1102は非晶質構造を有する半導体膜である。
【0226】
まず、基板1100上にブロッキング層として酸化シリコン膜、窒化シリコン膜または酸化窒化シリコン膜などの絶縁膜からなる下地絶縁膜1101を形成する。ここでは下地絶縁膜1101として2層構造(膜厚50nmの酸化窒化シリコン膜、膜厚100nmの酸化窒化シリコン膜)を用いるが、単層膜または2層以上積層させた構造を用いても良い。ただし、ブロッキング層を設ける必要がない場合には下地絶縁膜を形成しなくともよい。(図21(A))
【0227】
次いで、下地絶縁膜上に非晶質構造を有する半導体膜1102を公知の手段により結晶化して結晶構造を有する半導体膜1104を形成する。(図21(B))
【0228】
本実施例において、結晶構造を有する半導体膜は、プラズマCVD法、減圧熱CVD法、またはスパッタ法で得られる非晶質構造を有する半導体膜1102を、本発明のレーザー装置を用いたレーザーアニールにより結晶化を行う。
【0229】
なおレーザー発振装置は、連続発振またはパルス発振の気体レーザーもしくは固体レーザーを用いることができる。気体レーザーとして、エキシマレーザー、Arレーザー、Krレーザーなどがあり、固体レーザーとして、YAGレーザー、YVOレーザー、YLFレーザー、YAlOレーザー、ガラスレーザー、ルビーレーザー、アレキサンドライレーザー、Ti:サファイアレーザー、Yレーザーなどが挙げられる。固体レーザーとしては、Cr、Nd、Er、Ho、Ce、Co、Ti、Yb又はTmがドーピングされたYAG、YVO、YLF、YAlOなどの結晶を使ったレーザー等も使用可能である。当該レーザーの基本波はドーピングする材料によって異なり、1μm前後の基本波を有するレーザー光が得られる。基本波に対する高調波は、非線形光学素子を用いることで得ることができる。レーザー光の照射における詳しい条件については、実施例9の記載を参照することができる。
【0230】
なお、結晶構造を有する半導体膜1104中の酸素濃度(SIMS分析)は、5×1018atoms/cm3以下となるように形成することが望ましい。
【0231】
次いで、結晶構造を有する半導体膜1104上に珪素を主成分とするバリア層1105を形成する。なお、このバリア層1105は極薄いものでよく、自然酸化膜であってもよいし、酸素を含む雰囲気下において紫外線の照射によりオゾンを発生させて酸化させる酸化膜であってもよい。また、このバリア層1105として、炭素、即ち有機物の除去のために行われるヒドロ洗浄と呼ばれる表面処理に使用するオゾンを含む溶液で酸化させた酸化膜であってもよい。このバリア層1105は、主にエッチングストッパーとして用いるものである。また、このバリア層1105を形成した後、チャネルドープを行い、その後、強光を照射して活性化させてもよい。
【0232】
次いで、バリア層1105上に第2の半導体膜1106を形成する。(図21(C))この第2の半導体膜1106は非晶質構造を有する半導体膜であってもよいし、結晶構造を有する半導体膜であってもよい。この第2の半導体膜1106の膜厚は、5〜50nm、好ましくは10〜20nmとする。第2の半導体膜1106には、酸素(SIMS分析での濃度が5×1018atoms/cm3以上、好ましくは1×1019atoms/cm3以上)を含有させてゲッタリング効率を向上させることが望ましい。
【0233】
次いで、第2の半導体膜1106上に希ガス元素を含む第3の半導体膜(ゲッタリングサイト)1107を形成する。この第3の半導体膜1107はプラズマCVD法、減圧熱CVD法、またはスパッタ法を用いた非晶質構造を有する半導体膜であってもよいし、結晶構造を有する半導体膜であってもよい。第3の半導体膜は、成膜段階で希ガス元素を含む半導体膜であってもよいし、希ガス元素を含んでいない半導体膜の成膜後に希ガス元素を添加してもよい。本実施例では成膜段階で希ガス元素を含む第3の半導体膜1107を形成した後、さらに希ガス元素を選択的に添加して第3の半導体膜1108を形成した例を示した。(図21(D))また、第2の半導体膜と第3の半導体膜とを大気に触れることなく連続的に成膜してもよい。また、第2の半導体膜の膜厚と第3の半導体膜の膜厚との和は30〜200nm、例えば50nmとすればよい。
【0234】
本実施例は、第2の半導体膜1106によって、第1の半導体膜1104と第3の半導体膜(ゲッタリングサイト)1108との間隔を空けている。ゲッタリングの際、半導体膜1104中に存在する金属等の不純物元素は、ゲッタリングサイトの境界付近に集まりやすい傾向があるため、本実施例のように第2の半導体膜1106によって、ゲッタリングサイトの境界を第1の半導体膜1104から遠ざけてゲッタリング効率を向上させることが望ましい。加えて、第2の半導体膜1106は、ゲッタリングの際、ゲッタリングサイトに含まれる不純物元素が拡散して第1の半導体膜の界面に達することがないようにブロッキングする効果も有している。また、第2の半導体膜1106は、希ガス元素を添加する場合、第1の半導体膜にダメージを与えないように保護する効果も有している。
【0235】
次いで、ゲッタリングを行う。ゲッタリングを行う工程としては、窒素雰囲気中で450〜800℃、1〜24時間、例えば550℃にて14時間の熱処理を行えばよい。また、熱処理に代えて強光を照射してもよい。また、熱処理に加えて強光を照射してもよい。また、加熱したガスを噴射して基板を加熱するようにしても良い。この場合、600℃〜800℃、より望ましくは650℃〜750℃で1〜60分加熱を行えば良く。時間を短縮化することができる。このゲッタリングにより、図21(E)中の矢印の方向に不純物元素が移動し、バリア層1105で覆われた半導体膜1104に含まれる不純物元素の除去、または不純物元素の濃度の低減が行われる。ここでは、不純物元素が第1の半導体膜1104に偏析しないよう全て第3の半導体膜1108に移動させ、第1の半導体膜1104に含まれる不純物元素がほとんど存在しない、即ち膜中の不純物元素濃度が1×1018atoms/cm3以下、望ましくは1×1017atoms/cm3以下になるように十分ゲッタリングする。
【0236】
次いで、バリア層1105をエッチングストッパーとして、1106、1108で示した半導体膜のみを選択的に除去した後、半導体膜1104を公知のパターニング技術を用いて所望の形状の半導体層1109を形成する。(図21(F))
【0237】
次いで、半導体層の表面をフッ酸を含むエッチャントで洗浄した後、ゲート絶縁膜1110となる珪素を主成分とする絶縁膜を形成する。この表面洗浄とゲート絶縁膜の形成は、大気にふれさせずに連続的に行うことが望ましい。
【0238】
次いで、ゲート絶縁膜表面を洗浄した後、ゲート電極1111を形成し、半導体にn型を付与する不純物元素(P、As等)、ここではリンを適宜添加して、ソース領域1112及びドレイン領域1113を形成する。添加した後、不純物元素を活性化するために加熱処理、強光の照射、または本発明のレーザー装置を用いたレーザー光の照射を行う。また、活性化と同時にゲート絶縁膜へのプラズマダメージやゲート絶縁膜と半導体層との界面へのプラズマダメージを回復することができる。特に、室温〜300℃の雰囲気中において、表面または裏面からYAGレーザーの第2高調波を照射して不純物元素を活性化させることは非常に有効である。YAGレーザーはメンテナンスが少ないため好ましい活性化手段である。
【0239】
以降の工程は、層間絶縁膜1115を形成し、水素化を行って、ソース領域、ドレイン領域に達するコンタクトホールを形成し、ソース電極1116、ドレイン電極1117を形成してTFTを完成させる。(図21(G))
【0240】
こうして得られたTFTは、少なくともチャネル形成領域1114に含まれていた不純物元素は除去され、且つ、希ガス元素も含有していない。
【0241】
また、本実施例は図21の構造に限定されず、必要があればチャネル形成領域とドレイン領域(またはソース領域)との間にLDD領域を有する低濃度ドレイン(LDD:Lightly Doped Drain)構造としてもよい。この構造はチャネル形成領域と、高濃度に不純物元素を添加して形成するソース領域またはドレイン領域との間に低濃度に不純物元素を添加した領域を設けたものであり、この領域をLDD領域と呼んでいる。さらにゲート絶縁膜を介してLDD領域をゲート電極と重ねて配置させた、いわゆるGOLD(Gate Overlapped LDD)構造としてもよい。
【0242】
また、ここではnチャネル型TFTを用いて説明したが、半導体にn型を付与する不純物元素に代えて、半導体にp型を付与する不純物元素を用いることによってpチャネル型TFTを形成することができることは言うまでもない。
【0243】
また、本実施例では、ゲッタリングが終了してから半導体膜をパターニングしているが、本実施例はこの構成に限定されない。半導体膜のパターニングは結晶化する前に行っても良いし、結晶化した後バリア層を形成する前に行っても良い。また、半導体膜を、結晶化する前、または結晶化した後でなおかつバリア層を形成する前に、大まかにパターニングし、そして、ゲッタリングした後に再びパターニングを行って、TFTの活性層を形成するようにしても良い。
【0244】
また、ここではトップゲート型TFTを例として説明したが、TFT構造に関係なく本実施例を適用することが可能であり、例えばボトムゲート型(逆スタガ型)TFTや順スタガ型TFTに適用することが可能である。
【0245】
なお本実施例の構成は、実施例1〜13と自由に組み合わせて実施することが可能である。
【0246】
(実施例15)
本発明のレーザー装置によって形成された半導体装置を用いた電子機器として、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)、ノート型パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍等)、記録媒体を備えた画像再生装置(具体的にはDVD(digital versatile disc)等の記録媒体を再生し、その画像を表示しうるディスプレイを備えた装置)などが挙げられる。それら電子機器の具体例を図22に示す。
【0247】
図22(A)は表示装置であり、筐体2001、支持台2002、表示部2003、スピーカー部2004、ビデオ入力端子2005等を含む。本発明の半導体装置は表示部2003に用いることができる。半導体装置は自発光型であるためバックライトが必要なく、液晶ディスプレイよりも薄い表示部とすることができる。なお、表示装置は、パソコン用、TV放送受信用、広告表示用などの全ての情報表示用表示装置が含まれる。
【0248】
図22(B)はデジタルスチルカメラであり、本体2101、表示部2102、受像部2103、操作キー2104、外部接続ポート2105、シャッター2106等を含む。本発明の半導体装置は表示部2102及びその他回路に用いることができる。
【0249】
図22(C)はノート型パーソナルコンピュータであり、本体2201、筐体2202、表示部2203、キーボード2204、外部接続ポート2205、ポインティングマウス2206等を含む。本発明の半導体装置は表示部2203及びその他回路に用いることができる。
【0250】
図22(D)はモバイルコンピュータであり、本体2301、表示部2302、スイッチ2303、操作キー2304、赤外線ポート2305等を含む。本発明の半導体装置は表示部2302に用いることができる。
【0251】
図22(E)は記録媒体を備えた携帯型の画像再生装置(具体的にはDVD再生装置)であり、本体2401、筐体2402、表示部A2403、表示部B2404、記録媒体(DVD等)読み込み部2405、操作キー2406、スピーカー部2407等を含む。表示部A2403は主として画像情報を表示し、表示部B2404は主として文字情報を表示するが、本発明の半導体装置はこれら表示部A、B2403、2404及びその他回路に用いることができる。なお、記録媒体を備えた画像再生装置には家庭用ゲーム機器なども含まれる。
【0252】
図22(F)はゴーグル型ディスプレイ(ヘッドマウントディスプレイ)であり、本体2501、表示部2502、アーム部2503を含む。本発明の半導体装置は表示部2502及びその他回路に用いることができる。
【0253】
図22(G)はビデオカメラであり、本体2601、表示部2602、筐体2603、外部接続ポート2604、リモコン受信部2605、受像部2606、バッテリー2607、音声入力部2608、操作キー2609、接眼部2610等を含む。本発明の半導体装置は表示部2602及びその他回路に用いることができる。
【0254】
ここで図22(H)は携帯電話であり、本体2701、筐体2702、表示部2703、音声入力部2704、音声出力部2705、操作キー2706、外部接続ポート2707、アンテナ2708等を含む。本発明の半導体装置は表示部2703及びその他回路に用いることができる。なお、表示部2703は黒色の背景に白色の文字を表示することで携帯電話の消費電力を抑えることができる。
【0255】
なお、上述した電子機器の他に、フロント型若しくはリア型のプロジェクターに用いることも可能となる。
【0256】
以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器に用いることが可能である。また、本実施例の電子機器は実施例1〜14に示したいずれの構成の半導体装置を用いても良い。
【0257】
(実施例16)
本実施例では、本発明のレーザー装置を用いて半導体膜を結晶化例について説明する。
【0258】
図23(A)中、3000は、絶縁表面を有する基板、3001は基板中の不純物が半導体膜中に入り込むのを防ぐ絶縁膜である下地膜、3002は非晶質構造を有する半導体膜である。
【0259】
図23(A)において、基板3000はガラス基板、石英基板、セラミック基板などを用いることができる。また、シリコン基板、金属基板またはステンレス基板の表面に絶縁膜を形成したものを用いても良い。また、本工程の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよい。
【0260】
まず、図23(A)に示すように基板3000上に酸化シリコン膜、窒化シリコン膜または酸化窒化シリコン膜(SiOxy)等の絶縁膜から成る下地絶縁膜3001を形成する。代表的な一例は下地絶縁膜3001として2層構造から成り、SiH4、NH3、及びN2Oを反応ガスとして成膜される第1酸化窒化シリコン膜を30〜100nm、SiH4、及びN2Oを反応ガスとして成膜される第2酸化窒化シリコン膜を30〜150nmの厚さに積層形成する構造を用いることができる。また、第1酸化窒化シリコン膜、第2酸化窒化シリコン膜、窒化シリコン膜とを順次積層した3層構造を用いてもよい。
【0261】
次いで、下地絶縁膜3001上に非晶質構造を有する半導体膜3002を形成する。半導体膜3002は、シリコンを主成分とする半導体材料を用いる。代表的には、非晶質シリコン膜又は非晶質シリコンゲルマニウム膜などが適用され、プラズマCVD法や減圧CVD法、或いはスパッタ法で10〜100nmの厚さに形成する。後の結晶化で良質な結晶性を有する半導体膜を得るためには、非晶質構造を有する半導体膜3002の膜中に含まれる酸素、窒素などの不純物濃度を5×1018 atoms/cm3(二次イオン質量分析法(SIMS)にて測定した原子濃度)以下に低減させておくと良い。これらの不純物は後の結晶化を妨害する要因となり、また、結晶化後においても捕獲中心や再結合中心の密度を増加させる要因となる。そのために、高純度の材料ガスを用いることはもとより、反応室内の鏡面処理(電界研磨処理)やオイルフリーの真空排気系を備えた超高真空対応のCVD装置を用いることが望ましい。
【0262】
次いで、大気中または酸素雰囲気化において非晶質構造を有する半導体膜3002を、本発明のレーザー装置を用いて第1のレーザー光を照射し、結晶化させる。本実施例では第1のレーザーとして連続発振のYVO4レーザーを用いる。本実施例では、レーザー光の出力エネルギーを27Wとし、レーザーのビームスポットを、長軸×短軸が500μm×50μmの楕円形状とし、楕円の短軸方向にレーザー光が移動するようにする。なお、レーザー光の出力エネルギーや、ビームスポットの形状は、設計者が適宜設定することが可能である。
【0263】
なお本実施例では連続発振型のYVO4レーザーを用いるが、本実施例はこの構成に限定されない。例えば、レーザー発振装置は、パルス発振型または連続発光型のエキシマレーザーやYAGレーザー、YVO4レーザーを用いることができる。結晶化の条件は実施者が適宣選択するものであるが、エキシマレーザーを用いる場合はパルス発振周波数300Hzとし、レーザーエネルギー密度を100〜400mJ/cm2(代表的には200〜300mJ/cm2)とする。また、YAGレーザーを用いる場合にはその第2高調波を用いパルス発振周波数30〜300kHzとし、レーザーエネルギー密度を300〜600mJ/cm2(代表的には350〜500mJ/cm2)とすると良い。そして幅100〜1000μm、例えば400μmで線状に集光したレーザー光を基板全面に渡って照射し、この時の線状レーザー光の重ね合わせ率(オーバーラップ率)を50〜90%として行う。
【0264】
なおレーザーは、連続発振またはパルス発振の気体レーザーもしくは固体レーザーを用いることができる。気体レーザーとして、エキシマレーザー、Arレーザー、Krレーザーなどがあり、固体レーザーとして、YAGレーザー、YVOレーザー、YLFレーザー、YAlOレーザー、ガラスレーザー、ルビーレーザー、アレキサンドライレーザー、Ti:サファイアレーザー、Yレーザーなどが挙げられる。固体レーザーとしては、Cr、Nd、Er、Ho、Ce、Co、Ti、Yb又はTmがドーピングされたYAG、YVO、YLF、YAlOなどの結晶を使ったレーザー等も使用可能である。当該レーザーの基本波はドーピングする材料によって異なり、1μm前後の基本波を有するレーザー光が得られる。基本波に対する高調波は、非線形光学素子を用いることで得ることができる。
【0265】
非晶質半導体膜の結晶化に際し、大粒径に結晶を得るためには、連続発振が可能な固体レーザーを用い、基本波の第2高調波〜第4高調波を適用するのが好ましい。代表的には、Nd:YVO4レーザー(基本波1064nm)の第2高調波(532nm)や第3高調波(355nm)を適用するのが望ましい。具体的には、出力10Wの連続発振のYVO4レーザーから射出されたレーザー光を非線形光学素子により高調波に変換する。また、共振器の中にYVO4結晶と非線形光学素子を入れて、高調波を射出する方法もある。そして、好ましくは光学系により照射面にて矩形状または楕円形状のレーザー光に成形して、被処理体に照射する。このときのエネルギー密度は0.01〜100MW/cm2程度(好ましくは0.1〜10MW/cm2)が必要である。そして、10〜2000cm/s程度の速度でレーザー光に対して相対的に半導体膜を移動させて照射する。
【0266】
レーザー光の照射により、非晶質構造を有する半導体膜3002が結晶化され、結晶性を有する半導体膜3003と、半導体膜3003に接する酸化膜3004が形成される。なお、レーザー光の照射の際に、半導体膜3003の結晶粒界に沿って突起した部分(リッジ)3005が形成される。(図23(B))
【0267】
次いで、酸化膜3004を除去する。本実施例ではフッ酸系のエッチング液を用いて酸化膜3004を除去し、結晶性を有する半導体膜3003の表面を露出する。なお酸化膜3004の除去の仕方は上述した方法に限定されない。例えば、フッ素系ガスを用いて酸化膜3004を除去するようにいても良い。
【0268】
次いで、結晶性を有する半導体膜3003に対してレーザー光(第2のレーザー光)を、窒素または真空雰囲気下で照射する(図23(C))。なお、不活性雰囲気下で第2のレーザー光を照射する場合、例えば図24に示すように、半導体膜3003のレーザー光が照射される部分にのみ不活性ガスを照射するようにしても良い。例えば図24(A)に示すように、レーザー発振装置及び光学系4001から出力されたレーザー光が、ガス吹きつけ部4002のスリットを通過して半導体膜3003に照射されるようにしても良い。図24(B)はガス吹きつけ部4002の拡大図であり、ガス吹きつけ部4002は、レーザー光が通過できるスリット4006が設けられている。また、ガス吹きつけ部4002は、導管4007を通して供給される不活性ガスが、半導体膜3003のレーザー光が照射される周辺に噴射できるような開口部4008が設けられている。開口部4008から噴射された不活性ガスは半導体膜3003に吹き付けられる。
【0269】
第2のレーザー光照射により、レーザー光(第2のレーザー光)を照射した場合、第1のレーザー光の照射により形成された凹凸の高低差(P―V値:Peak to Valley、高さの最大値と最小値の差分)が低減、即ち、平坦化された半導体膜3006が形成される。(図23(D))ここで、凹凸のP―V値は、AFM(原子間力顕微鏡)により観察すればよい。具体的には、第1のレーザー光の照射により形成された表面の凹凸のP―V値が例えば10nm〜30nm程度であった場合、第2のレーザー光の照射により表面における凸凹のP―V値を5nm以下とすることができる。
【0270】
このレーザー光(第2のレーザー光)には波長400nm以下のエキシマレーザー光や、YAGレーザーの第2高調波、第3高調波を用いる。また、上述した第1のレーザー光と同じレーザーを用いても良い。
【0271】
なお、第2のレーザー光の照射は、第1のレーザー光のエネルギー密度よりも高いが、照射前後で結晶性はほとんど変化しない。また、粒径などの結晶状態もほとんど変化しない。即ち、この第2のレーザー光の照射では平坦化のみが行われていると思われる。
【0272】
結晶性を有する半導体膜3006が第2のレーザー光の照射により平坦化されたメリットは非常に大きい。具体的には、平坦性が向上したことによって、後に形成されるゲート絶縁膜を薄くすることが可能となり、TFTのオン電流値を向上させることができる。また、平坦性が向上したことによって、TFTを作製した場合、リーク電流を低減することができる。
【0273】
本実施例は、実施例1〜実施例15と組み合わせて実施することが可能である。
【0274】
(実施例17)
本実施例では、本発明のレーザー装置を用いたレーザーアニールにより半導体膜を結晶化する工程を、駆動回路を画素部と同じ基板上に有するアクティブマトリクス型の半導体表示装置の作製方法に応用した例について説明する。
【0275】
図25(A)に、基板6000上に画素部6001と、信号線駆動回路6002と、走査線駆動回路6003とが備えられた、液晶パネルの上面図を示す。図25(A)において、破線で示した矢印の方向に向かって、レーザー光の照射位置が移動する。
【0276】
本発明のレーザー装置によって半導体膜にレーザー光を照射すると、レーザー光の軌跡が完全な直線は描かず、ゆるやかな円弧を描く。よって本発明のレーザー装置を用いて半導体膜を結晶化すると、半導体膜にレーザー光の照射跡が円弧状に形成される。なおこの円弧は、円弧どうしで曲率半径がほぼ同じである。しかし該半導体膜をパターニングして形成されるTFTの活性層のサイズは、該円弧の半径に比較して小さいため、活性層1つ1つのレーザー光の照射跡が残っていたとしても、該照射跡はほぼ直線状になっている。
【0277】
図25(A)の画素部6001の一部6004の拡大図を図25(B)に、信号線駆動回路6002の一部6005の拡大図を図25(C)に、走査線駆動回路6003の一部6006の拡大図を図25(D)に示す。
【0278】
画素部6001、信号線駆動回路6002、走査線駆動回路6003のそれぞれにおいて、各TFTの活性層となる島状の半導体膜が複数形成されている。6007、6008、6009はパターニング後にTFTの活性層となる部分である。破線6020はレーザー光の照射跡である。
【0279】
レーザー光の照射跡6020は、キャリアが移動する方向またはその逆の方向にほぼ沿うようにする。
【0280】
本実施例は、実施例1〜実施例16と組み合わせて実施することが可能である。
【0281】
【発明の効果】
本発明のレーザー装置は、一定の位置及び一定の方向からレーザー光を照射していても、被処理物の移動方向を転換せずに被処理物におけるレーザー光の照射位置をX方向及びY方向へ移動させることができ、被処理物全面をレーザー光で照射することができる。よって、被処理物の移動方向の転換に伴う時間のロスが生じることはなく、従来に比べて処理の効率を高めることができる。
【0282】
また、レーザー光は、被処理物に対する照射角度が照射位置に関わらず固定されているため、被処理物内で反射して戻ってくるビームの強さや干渉の強さ等が照射位置によって異なることを防ぎ、被処理物に対する処理をほぼ均一に行うことができる。例えばレーザー照射により半導体膜を結晶化させる場合、半導体膜の位置によって結晶性に差が生じるのを防ぐことができる。そして、ビームの照射方向を変えて被処理物全体をレーザー光で照射する場合に比べて、光学系をシンプルにすることができる。
【図面の簡単な説明】
【図1】 本発明のレーザー装置の構造を示す図。
【図2】 本発明のレーザー装置の構造を示す図。
【図3】 被処理物においてレーザー光の照射位置の移動する方向を示す図。
【図4】 本発明のレーザー装置の構造を示す図と、被処理物においてレーザー光の照射位置の移動する方向を示す図。
【図5】 レーザー光の照射される位置を示す図。
【図6】 レーザー光の照射される位置を示す図。
【図7】 本発明のレーザー装置の構造を示す図。
【図8】 レーザー光の照射される位置を示す図。
【図9】 液晶パネルにレーザー光を照射する方法を示す図。
【図10】 本発明のレーザー装置の構造を示す図。
【図11】 本発明のレーザー装置の構造を示す図。
【図12】 本発明のレーザー装置の構造を示す図。
【図13】 本発明のレーザー装置を用いた半導体装置の作製方法を示す図。
【図14】 本発明のレーザー装置を用いた半導体装置の作製方法を示す図。
【図15】 本発明のレーザー装置を用いた半導体装置の作製方法を示す図。
【図16】 本発明のレーザー装置を用いた半導体装置の作製方法を示す図。
【図17】 本発明のレーザー装置を用いた半導体装置の作製方法を示す図。
【図18】 本発明のレーザー装置を用いた半導体装置の作製方法を示す図。
【図19】 本発明のレーザー装置を用いた半導体装置の作製方法を示す図。
【図20】 従来の被処理物においてレーザー光の照射位置の移動する方向を示す図。
【図21】 本発明のレーザー装置を用いた半導体装置の作製方法を示す図。
【図22】 本発明のレーザー装置で形成された半導体装置を用いた電子機器の図。
【図23】 本発明のレーザー装置を用いた半導体膜の結晶化の方法を示す図。
【図24】 本発明のレーザー装置の一実施例を示す図。
【図25】 液晶パネルにおけるレーザー光の軌跡を示す図。

Claims (25)

  1. 連続発振型のレーザー発振装置と、
    被処理物を設置し、かつ該被処理物を回転させる回転台と、
    前記被処理物を前記回転台の回転の中心に向かって、または前記中心から外側へ向かって直線状に移動させる手段と、
    前記レーザー発振装置から出力されたレーザー光を加工し、固定された一定の位置から前記加工されたレーザー光を照射する光学系と、を具備し、
    前記回転台を回転させながら、前記回転の中心に向かって、または前記中心から外側へ向かって直線状に前記被処理物を移動させることで、前記加工されたレーザー光が前記被処理物に照射されることを特徴とするレーザー装置。
  2. 請求項1において、前記回転台に前記被処理物を複数設置することを特徴とするレーザー装置。
  3. 連続発振型のレーザー発振装置と、
    被処理物を設置し、かつ該被処理物を回転させる回転台と、
    前記被処理物を前記回転台の回転の中心に向かって、または前記中心から外側へ向かって直線状に移動させる手段と、
    前記レーザー発振装置から出力されたレーザー光を加工し、固定された一定の位置から前記加工されたレーザー光を照射する光学系と、を具備し、
    前記手段には、それぞれ2つ以上の前記被処理物が設けられ、
    前記回転台を回転させながら、前記回転の中心に向かって、または前記中心から外側へ向かって直線状に移動させることで、前記加工されたレーザー光を前記被処理物に照射させることを特徴とするレーザー装置。
  4. 請求項1乃至請求項のいずれか一項において、前記被処理物の下方に反射体が配置されていることを特徴とするレーザー装置。
  5. 請求項1乃至請求項のいずれか一項において、複数の前記レーザー発振装置から出力されたレーザー光を合成させて、前記被処理物に照射させる手段を有することを特徴とするレーザー装置。
  6. 請求項1乃至請求項のいずれか一項において、前記レーザー発振装置から出力されたレーザー光を分割させて、前記被処理物に照射させる手段を有することを特徴とするレーザー装置。
  7. 請求項1乃至請求項のいずれか一項において、前記レーザー発振装置は、固体レーザーを用いることを特徴とするレーザー装置。
  8. 請求項において、前記固体レーザーは、YAGレーザー、YVOレーザー、YLFレーザー、YAlOレーザー、ルビーレーザー、アレキサンドライトレーザー、Ti:サファイアレーザーまたはYレーザーであることを特徴とするレーザー装置。
  9. 請求項1乃至請求項のいずれか一項において、前記レーザー発振装置はエキシマレーザー、ArレーザーまたはKrレーザーを用いることを特徴とするレーザー装置。
  10. 請求項1乃至請求項のいずれか一項において、前記レーザー光は第2高調波であることを特徴とするレーザー装置。
  11. レーザー発振装置から出力された連続発振のレーザー光を、光学系を用いて一定の位置に固定して照射されるように加工し、
    被処理物を設置した回転台を回転させながら、前記回転台の回転の中心に向かって、または前記中心から外側へ向かって前記被処理物を直線状に移動させて、前記加工されたレーザー光を前記被処理物に照射することを特徴とするレーザー照射方法。
  12. 請求項11において、前記回転台に前記被処理物を複数設置することを特徴とするレーザー照射方法。
  13. レーザー発振装置から出力された連続発振のレーザー光を、光学系を用いて一定の位置に固定して照射されるように加工し、
    被処理物を設置した回転台を回転させながら、前記回転台の回転の中心に向かって、または前記中心から外側へ向かって前記被処理物を直線状に移動させて、前記加工されたレーザー光を前記被処理物に照射し、
    前記被処理物を前記回転台の中心に向かって、または前記中心から外側へ向かって直線状に移動させる手段には、2つ以上の前記被処理物がそれぞれ設けられていることを特徴とするレーザー照射方法。
  14. 請求項11乃至請求項13のいずれか一項において、前記被処理物の下方に反射体を配置し、前記反射体で反射したレーザー光を前記被処理物の裏面から照射することを特徴とするレーザー照射方法。
  15. 請求項11乃至請求項14のいずれか一項において、前記レーザー光を前記被処理物に対して入射角5°〜30°で照射することを特徴とするレーザー照射方法。
  16. 請求項11乃至請求項15のいずれか一項において、複数の前記レーザー発振装置から出力されたレーザー光を合成して、前記被処理物に照射することを特徴とするレーザー照射方法。
  17. 請求項11乃至請求項15のいずれか一項において、前記レーザー発振装置から出力されたレーザー光を分割して、前記被処理物に照射することを特徴とするレーザー照射方法。
  18. 請求項11乃至請求項17のいずれか一項において、前記被処理物に照射するn(nは自然数)回目のレーザー光の軌跡と、(n+1)回目のレーザー光の軌跡は互いに重なり、かつ、前記n回目のレーザー光のエッジと前記(n+1)回目のレーザー光のエッジは互いに重ならないことを特徴とするレーザー照射方法。
  19. 請求項11乃至請求項18のいずれか一項において、前記レーザー発振装置は、固体レーザーを用いることを特徴とするレーザー照射方法。
  20. 請求項19において、前記固体レーザーは、YAGレーザー、YVOレーザー、YLFレーザー、YAlOレーザー、ルビーレーザー、アレキサンドライトレーザー、Ti:サファイアレーザーまたはYレーザーであることを特徴とするレーザー照射方法。
  21. 請求項11乃至請求項18のいずれか一項において、前記レーザー発振装置はエキシマレーザー、ArレーザーまたはKrレーザーを用いることを特徴とするレーザー照射方法。
  22. 請求項11乃至請求項21のいずれか一項において、前記レーザー光は第2高調波であることを特徴とするレーザー照射方法。
  23. 請求項11乃至請求項22のいずれか一項において、
    前記回転台を回転させる角速度が一定に保たれていることを特徴とするレーザー照射方法。
  24. 請求項23において、
    前記被処理物を前記回転台の回転の中心に向かって、または前記中心から外側へ向かって移動させる速度が一定に保たれていることを特徴とするレーザー照射方法。
  25. 請求項11乃至請求項24のいずれか一項において、
    前記回転により形成される平面に対する前記レーザー光の入射角θは、前記レーザー光の入射面と前記平面の交線における前記レーザー光の幅をW、前記被処理物が形成されている基板の厚さをdとすると、
    θ≧arctan(W/2d)
    を満たすことを特徴とするレーザー照射方法。
JP2002252777A 2001-09-07 2002-08-30 レーザー装置及びレーザー照射方法 Expired - Fee Related JP3908124B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252777A JP3908124B2 (ja) 2001-09-07 2002-08-30 レーザー装置及びレーザー照射方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001-272751 2001-09-07
JP2001272751 2001-09-07
JP2001-273687 2001-09-10
JP2001273687 2001-09-10
JP2002252777A JP3908124B2 (ja) 2001-09-07 2002-08-30 レーザー装置及びレーザー照射方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2002256549A Division JP3908128B2 (ja) 2001-09-07 2002-09-02 半導体装置の作製方法
JP2006301374A Division JP4646894B2 (ja) 2001-09-07 2006-11-07 半導体装置の作製方法

Publications (2)

Publication Number Publication Date
JP2003178996A JP2003178996A (ja) 2003-06-27
JP3908124B2 true JP3908124B2 (ja) 2007-04-25

Family

ID=27347464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252777A Expired - Fee Related JP3908124B2 (ja) 2001-09-07 2002-08-30 レーザー装置及びレーザー照射方法

Country Status (1)

Country Link
JP (1) JP3908124B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4963163B2 (ja) * 2004-06-16 2012-06-27 株式会社半導体エネルギー研究所 レーザ処理装置及び半導体装置の作製方法
JPWO2007052393A1 (ja) * 2005-11-02 2009-04-30 シャープ株式会社 半導体装置及びその製造方法
JP2008093682A (ja) 2006-10-10 2008-04-24 Tokyo Electron Ltd レーザ発光装置の位置調整方法
KR100854407B1 (ko) 2007-03-19 2008-08-26 한양대학교 산학협력단 타겟용 위치가변유니트 및 이를 갖는 반도체 소자 제조용펄스파 레이저 증착설비
JP5605821B2 (ja) * 2008-06-11 2014-10-15 ワイエイシイフェトン株式会社 レーザアニール装置
JP4481347B2 (ja) * 2009-04-24 2010-06-16 シャープ株式会社 多結晶半導体膜の形成方法、半導体デバイスの製造方法及び半導体デバイス製造装置

Also Published As

Publication number Publication date
JP2003178996A (ja) 2003-06-27

Similar Documents

Publication Publication Date Title
US8044372B2 (en) Laser apparatus, laser irradiation method, semiconductor manufacturing method, semiconductor device, and electronic equipment
JP4127565B2 (ja) 半導体装置の作製方法
JP3980465B2 (ja) 半導体装置の作製方法
JP5227900B2 (ja) 半導体装置の作製方法
JP3949564B2 (ja) レーザ照射装置及び半導体装置の作製方法
US6844523B2 (en) Laser apparatus, laser irradiation method, manufacturing method for a semiconductor device, semiconductor device and electronic equipment
JP2004179474A6 (ja) レーザー照射装置
JP2004158720A6 (ja) レーザー装置及びレーザー照射方法
JP2004179389A6 (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP3908124B2 (ja) レーザー装置及びレーザー照射方法
JP3908128B2 (ja) 半導体装置の作製方法
JP3892368B2 (ja) レーザー装置及びレーザー照射方法
JP3908129B2 (ja) 半導体装置の作製方法
JP3908153B2 (ja) 半導体装置の作製方法
JP4646894B2 (ja) 半導体装置の作製方法
JP3883935B2 (ja) レーザ照射装置
JP4579217B2 (ja) 半導体装置の作製方法
JP3883936B2 (ja) レーザ照射方法および半導体装置の作製方法
JP4397582B2 (ja) 半導体装置の作製方法
JP3949709B2 (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP4762121B2 (ja) レーザ照射方法、及び半導体装置の作製方法
JP4566504B2 (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP2004200559A6 (ja) レーザ照射方法および半導体装置の作製方法
JP3883952B2 (ja) レーザ照射装置
JP2004153022A (ja) レーザ照射方法および半導体装置の作製方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees