JP3894487B2 - エレベータかご監視装置及び方法並びにエレベータかご監視装置の取付け方法 - Google Patents
エレベータかご監視装置及び方法並びにエレベータかご監視装置の取付け方法 Download PDFInfo
- Publication number
- JP3894487B2 JP3894487B2 JP2002312547A JP2002312547A JP3894487B2 JP 3894487 B2 JP3894487 B2 JP 3894487B2 JP 2002312547 A JP2002312547 A JP 2002312547A JP 2002312547 A JP2002312547 A JP 2002312547A JP 3894487 B2 JP3894487 B2 JP 3894487B2
- Authority
- JP
- Japan
- Prior art keywords
- communication
- elevator car
- data
- carrier
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/0006—Monitoring devices or performance analysers
- B66B5/0012—Devices monitoring the users of the elevator system
Landscapes
- Indicating And Signalling Devices For Elevators (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Telephonic Communication Services (AREA)
Description
【発明の属する技術分野】
本発明はエレベータのかご内の状態をカメラで撮影した画像や、かご内の保守データ(走行データ)をかご外に効率よく伝送するエレベータかご監視装置に関する。
【0002】
【従来の技術】
近年、建築物の高層化が進み、各種ビルのエレベータに対する利便性やセキュリティ、さらには運転保守の高度化が要求されるようになってきている。特に、セキュリティの面では、エレベータかご内の画像を外部で監視するシステムが一般的となってきている。また、エレベータの運用においては、保守効率向上の観点から、遠隔的にかごの走行状態を監視できるシステムが望まれている。このようなエレベータかご内の画像監視について、従来技術としては次のものがある(例えば、特許文献1参照)。特許文献1には、テールコードとしてツイストペア線を用い、このツイストペア線を介して、かご内に設置してあるカメラからの映像信号を機械室の制御装置に伝送し、さらにこの映像信号を制御装置から同軸ケーブルで集中管理する監視室に伝送するようにした技術が開示されている。上記ツイストペア線の代わりに同軸ケーブルが利用されることがある。また、エレベータの遠隔監視について、従来技術としては次のものがある(例えば、特許文献2参照)。特許文献2には、エレベータかご内に設置した加速度センサで検出された走行時の振動、つまり保守データ(走行データ)をテールコードを介してエレベータの制御盤に伝送し、そこから電話回線を介してサービスセンタに送信し、サービスセンタにて保守データ(走行データ)を解析するようにした技術が開示されている。
【0003】
【特許文献1】
特開2002−173273号公報(段落〔0012〕−〔0023〕)
【特許文献2】
特開2001−341956号公報(段落〔0016〕−〔0029〕)
【0004】
【発明が解決しようとする課題】
しかしながら、上記のいずれの従来技術においても、エレベータかごからの情報(データ)を機械室(制御盤や制御装置が設置される場所)に伝送するようになっている。その際、機械室とエレベータかご間にはテールコードが設置されており、これを用いて通信するが、テールコード利用上の特別な検討はなされていないのが現状である。テールコードは一般的に複数の撚り線(ツイストされていない)からなっているだけであり、ツイストペア線や同軸ケーブルがテールコードに組み込まれていることはない。このため、複数の撚り線からなるテールコードとは別にツイストペア線や同軸ケーブルを新たなテールコードとして敷設する必要があり、新たな工事が発生する。また、別な方法として、ツイストペア線や同軸ケーブルを複数の撚り線と一緒にした特殊なテールコードを新たに製造する必要がある。
【0005】
複数の撚り線からなる既設のテールコードをそのまま利用してエレベータかごからの情報を伝送することが実現できれば、新たなケーブル敷設工事が発生することもなく、エレベータかごと機械室間の通信を可能とするシステムを容易にかつ短時間で構築することが可能になる。この撚り線は同軸ケーブルのようにシールドがなされてはいない。また、ツイストペア線のように撚り線2本をツイストするようなこともしていない。従って、耐ノイズ性の観点からは非常に弱いケーブルである。テールコードを構成するこれらの複数の撚り線、特に高周波の電磁ノイズの影響を受けやすい構造となっている。
【0006】
エレベータかご内の画像や保守データ(走行データ)の送信は、エレベータかごが走行している状態でなされる。最近のエレベータは、走行性能向上や快適な走行のためにインバータが採用されている。インバータを構成するスイッチング素子(例えばIGBT、バイポーラトランジスタ、FET、サイリスタなどの半導体スイッチング素子)のオン・オフ動作によって電磁ノイズが発生する。この電磁ノイズは、スイッチング素子がオンあるいはオフした際に、回路内の配線によるインダクタンスや浮遊容量及びスイッチング素子のスイッチング速度によって決まる高周波ノイズである。この周波数を実験により評価した結果、数百kHzから数十MHz、場合によっては数百MHzまで及ぶことが分かった。さらに、エレベータかごの速度制御のためにモータ電圧の周波数が可変になっており、この周波数の基本波やその高周波が発生することにより数十kHz以下の電磁ノイズも発生する。この結果、エレベータかごが走行時における電磁ノイズは数MHz以下が主体であることも分かった。
【0007】
テールコードに組み込まれている複数の撚り線の一部はエレベータかごの制御ための信号線であり、制御装置に接続されている。従って、監視画像や保守データの伝送用として、同一のテールコードに組み込まれている他の撚り線を利用すると、これらの線も、インバータやその制御装置、さらにはエレベータ駆動用モータの動力線の近くに配置されることになる。エレベータかごが走行している際は、エレベータかごの走行制御のためにインバータが動作しており、インバータで発生した上記電磁ノイズは、エレベータかごの制御のための信号線に誘導し、この信号線に重畳した電磁ノイズが同一のテールコードに組み込まれている画像伝送用の撚り線や保守データ伝送用の撚り線にさらに誘導したり、また、直接、空間を介してインバータから画像伝送用の撚り線や保守データ伝送用の撚り線に誘導したり、さらにはエレベータ駆動用モータの動力線に重畳したインバータからの電磁ノイズが画像伝送用の撚り線や保守データ伝送用の撚り線に誘導したりすることが分かった。この結果、テールコードを構成する複数の撚り線の一部の線を用いてエレベータかご内の画像や保守データ(走行データ)を送信するようにすると、エレベータかごが走行している状態では、上記の電磁ノイズにより、通信が途絶えたり、伝送エラーが多発し、十分な通信ができないという問題が発生することがわかった。
そこで、本発明の課題は、エレベータかごの走行のためにエレベータ用のインバータが動作しても、テールコードを構成する複数の撚り線の一部の線を用いてエレベータかご内の画像や保守データ(走行データ)を安定してリアルタイムに送信することができ、エレベータ内を監視することができるエレベータかご監視装置及び方法を提供することである。
【0008】
【課題を解決するための手段】
上記課題を解決するために、エレベータかご監視装置は、エレベータかごと昇降路或いは機械室とに通信装置(通信手段)を設け、この両通信装置をテールコードに組み込まれている複数の撚り線の一部の線を通信線として用いて通信を行う。そしてこれら通信手段は、複数の搬送波信号(マルチキャリアともいう)を用い、各搬送波信号に送信データを割り付けて通信するものであり、各搬送波信号に対してS/N(信号とノイズの比)の値に応じて、送信データ割り付け量を変更して通信する。また、各搬送波信号に対して伝送誤り率を評価し、評価した伝送誤り率に応じて、送信データ割り付け量を変更して通信する。さらに上記に加えOFDM(直交周波数多重分割)方式によって通信する。また、これら通信手段は、搬送波信号に対してあらかじめ定めているS/Nが得られるか否かを判断し、判定結果があらかじめ定めているS/N以下の場合に、あらかじめ定められている異なった周波数に搬送波の周波数を変更して通信するものであり、さらに、通信信号をより広い帯域に拡散して通信するスペクトル拡散通信方式によって通信するようにする。
また、エレベータかご監視装置は、両通信装置をかご内に設けられているインターホンに接続されているインターホン線を利用して通信するようにする。
そして、前述の両通信装置間での通信においては、エレベータかご内の監視画像や保守データ(走行データ)をエレベータかごからエレベータかご外へリアルタイムに送信して監視する。
【0009】
本発明によれば、S/Nの高い搬送波信号による通信や、S/Nの高い周波数帯域での通信や、通信帯域より広い帯域に拡散して通信するスペクトル拡散通信によるS/N向上を図った通信により、エレベータかごの走行のためにエレベータ用のインバータが動作してノイズが発生しても、これに大きく影響を受けることなく、テールコードを構成する複数の撚り線の一部の線を用いてエレベータかご内の画像や保守データ(走行データ)を安定して送信することが可能になる。また、この送信のために新たな通信線のためのケーブル敷設工事を行う必要がない。さらに、監視画像や保守データはエレベータのセキュリティ及び走行状態などの運用を遠隔監視するために使用することができるなどの効果がある。
【0010】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を詳細に説明する。なお、本発明の実施形態は、(1)テールコードの撚り線の一部を利用してマルチキャリア方式で通信するエレベータかご監視装置である第一の実施形態と、(2)インターホン線を利用して通信するエレベータかご監視装置である第二の実施形態とに大別して説明する。
【0011】
〔第一の実施形態〕
テールコードの撚り線の一部を利用してマルチキャリア方式で通信するエレベータかご監視装置である第一の実施形態について図面を参照して詳細に説明する。図1は、第一の実施形態のエレベータかご監視装置の構成を示す図である。エレベータかご1内にはカメラ2が設置されており、エレベータかご1内の状況が監視できるようになっている。カメラ2は広角レンズを備えており、エレベータかご内の全域を写すことが可能である。カメラ2と通信装置5b間は専用のケーブル、例えばイーサー(R)ケーブルや同軸ケーブルで接続される。イーサー(R)ケーブルの場合には、カメラ2が例えばウエブカメラのようにイーサー(R)ケーブルが接続可能なようになっている。カメラ2で撮影したエレベータかご内の画像信号は通信装置5bに出力される。さらに、通信装置5bはデータ収集装置3と、例えばイーサー(R)ケーブル、USB(Universal Serial Bus)ケーブルなどのような専用線で接続されている。データ収集装置3はエレベータかご1の保守のためにデータを収集するためのものであり、例えば、エレベータかごに取り付けた加速度計31による振動データの収集や、マイクロホン32による音響データ(異常音検出のために利用)の収集や、図示していないが各フロアでの停止位置検出信号などを収集する。これら収集した信号は保守データとしてデータ収集装置3から通信装置5bに出力される。このように、監視画像と保守データを送信するが、監視画像の方がデータ量が多く、通信速度は1Mbps程度以上は要求される。
【0012】
通信装置5bの構成は、例えば機械室に設置される通信装置5aと同一構成になっており、その詳細については通信装置5aで説明する。通信装置5bはエレベータかご1と機械室側との間に設置されるテールコード7(移動ケーブルあるいはトラベリングコードと呼ぶこともある)内の電線である2本の撚り線に接続されているが、ここでは単線図で示している。テールコード7は例えば図2に示すような構成になっており、シールドもツイストもされていない単なる電線である撚り線が複数本束になっており、この束になったものがテールコード7として複数組み込まれている。本実施の形態では8本の撚り線が一つの束を構成し、それが4束設けてある。テールコード7内の電線(撚り線)はシールドもツイストもされていないため、電磁ノイズの影響を受けやすい電線である。このテールコード7は、照明用、制御用、インターロック用、インターホン用などのために用いられている。既設のテールコード7を用いる場合には、テールコード7の一部の未使用の撚り線2本(例えば予備線)を利用して、通信装置5aと通信装置5bが相互に通信することになる。この線を通信線71と呼ぶことにする。インターホン4に接続されている撚り線をインターホン線72と呼ぶことにする。また、制御用、インターロック用に用いられる撚り線を制御線73と呼ぶことにする。エレベータかご1の昇降のためにテールコード7内の電線は可撓性の観点から一般に撚り線になっているが、単線であっても通信としては問題ない。インターホン4はエレベータかご1外との直話を目的としており、インターホン線72を介して機械室側に設置されるインターホン装置(インターホン通信装置)6との間で音声情報を通信する。エレベータかご1に設置されている各種センサ(図示せず)からの出力信号(制御に必要な信号)が制御装置14、制御線73を介して制御装置8に入力される。該制御装置8はインバータ81を制御して昇降用モータ82の駆動制御を行い、エレベータかご1の走行を制御する。インバータ81が動作すると、高周波の電磁ノイズが発生し、上述した通信線71にこの電磁ノイズが重畳する。なお、制御装置14は、制御装置8からの出力信号を受信しエレベータかご1のドアの開閉制御をしたり、エレベータかご1に設置されている各種センサ(図示せず)からの出力信号を制御装置8に出力したりする。
【0013】
インバータ81を構成するスイッチング素子(例えばIGBT、バイポーラトランジスタ、FET、サイリスタなどの半導体スイッチング素子)は、そのオン・オフ動作によって電磁ノイズを発生する。この電磁ノイズは、スイッチング素子がオンあるいはオフした際に、回路内の配線によるインダクタンスや浮遊容量及びスイッチング素子のスイッチング速度によって決まる高周波ノイズである。この周波数を実験により評価した結果、数百kHzから数十MHz、場合によっては数百MHzまで及ぶことが分かった。さらに、エレベータかご1の速度制御のためにモータ電圧の周波数を可変にしており、この周波数の基本波やその高周波が発生することにより数十kHz以下の電磁ノイズも発生する。この結果、エレベータかご1の走行時における電磁ノイズは数MHz以下が主体であることも分かった。その一例を図3に示す。この図ではエレベータかご1の走行時における通信線71に重畳されるノイズと通信の送信信号及び受信信号も合わせて示している。これらの関係については後述する。ノイズは約5MHz以下のパワーが高く、約5MHz以上ではあまり高くないことが分かる。例えば、カメラ2の出力である画像信号を直接この通信線71に接続し、機械室側でモニタする実験を実施したが、エレベータかご1を走行させると、受信側の画像が乱れて、監視に耐えられないことが分かった。しかし、5MHz以上でもノイズは重畳しており、この帯域を利用する通信にとって障害になってしまう。
【0014】
通信装置5a、5bはこのようなノイズの影響を非常に低減した通信を可能にするものであり、図1を参照して以下に説明する。通信装置5aと5bは同一構成であり、ここでは通信装置5aを基に説明する。通信装置5aはバンドパスフィルタ(BPフィルタ)50、60、受信アンプ51、送信アンプ59、アナログ/ディジタル変換器(A/D)52、ディジタル/アナログ変換器(D/A)58、等化器53、復調器54、変調器57、アクセスコントローラ55、プロトコール変換器56からなっている。
【0015】
サーバ9と通信装置5a間のインタフェースは、例えばイーサー(R)やUSBなどの標準的な規格になっているケースが多く、このために通信装置5aにプロトコール変換器56を設けている。プロトコール変換器56がサーバ9からデータを受け取ると、通信装置5aで扱う所定フォーマットの通信パケットに変換する。アクセスコントローラ55はプロトコール変換器56からの通信パケットを受信すると、このデータを変調器57に出力する。変調器57は別途入力している搬送波ごとのデータ割付量情報55bに基づいて、各搬送波に上記データを割り付ける。このことをビット割付ともいう。搬送波にデータが割り付けられた信号はD/A58によりアナログ信号に変換され、送信アンプ59によって増幅され、BPフィルタ60を介して通信線71に出力され、通信装置5bに通信される。
【0016】
一方、通信装置5bから送信されてきた信号は、BPフィルタ50によって通信帯域以外の信号を抑制し通信帯域の信号を受信アンプ51に出力する。受信アンプ51は受信信号を増幅してA/D52に出力し、A/D52によってディジタル信号に変換された信号が等化器53に出力される。等化器53は通信線71の通信路歪(伝送路歪ともいう)を補正するためのものであり、通信路歪の補正処理を行った信号が復調器54に出力される。復調器54では、別途入力している搬送波ごとのデータ割付量情報55aに基づいて、各搬送波に割り付けられているデータを取り出し、アクセスコントローラ55に出力する。アクセスコントローラ55では、この取り出したデータを所定フォーマットの通信パケットに変換し、プロトコール変換器56に出力する。プロトコール変換器56は、この通信パケットを、サーバ9とのインタフェース(例えばイーサー(R)やUSBなど)が取れるようにプロトコールの変換をして、サーバ9に情報を出力する。
【0017】
アクセスコントローラ55は復調器54及び変調器57にデータ割付量情報55a、55bを出力するが、この情報で示されるデータ割付量は常に一定ではなく、一定時間ごとに通信装置5aと5b間の通信特性に対するトレーニング(学習ともいう)を行って搬送波ごとにS/Nを推定(測定あるいは判定という)するか、あるいは通信時の伝送誤り率を評価し、これらの結果に応じて、搬送波ごとあるいは全搬送波に対してデータ割付量を変更する。またS/Nの推定と伝送誤り率の評価を併用してデータ割付量を変更しても良い。このように、通信装置5aと5b間で通信線71の通信特性(伝送誤りやS/N)をダイナミックに評価し、この結果に基づいて変復調の処理(データ割付量の変更)を変更することで伝送エラーを発生させないように通信することが可能になる。以下では、この点を詳細に説明する。
【0018】
図3に示したように、通信線71に重畳されるノイズは低周波ほど高く、高周波、例えば5MHz以上ではあまり高くない。通信装置5bから通信装置5aにデータを送信するとして、通信装置5bが通信線71に送信した信号の強さが図3のように一定であっても、通信線71の特性が周波数依存性を持っているため、通信装置5aで受信した信号の強さは高周波ほど低下し、かつ変動している。これは通信線のインダクタンスや通信線の往路及び復路間の静電容量により通信信号の減衰や、通信線71の端点での反射などによるものである。安定した監視画像の通信(通信速度は1Mbps程度以上)のためには、受信信号とノイズの比(dB表現では差)であるS/Nを所定以上とする必要があり、受信信号の高周波帯域での減衰を評価すると、30MHz以下の周波数帯域を通信帯域として使用することが望ましい。なお、EMI(electromagnetic interference、電磁干渉)の規定として、30MHz以上に対し、10m離れた地点で放射電界が30dBμV/m以下と定められている。従って、このように、使用する周波数帯域を限定することにより、外部への放射電界つまり放射ノイズを抑制することが可能となる。また、エレベータかご1内にいる人への放射ノイズの影響も抑制できるなどの効果がある。等化器53は通信線71の通信路歪を補正し、復調する際に正しくデータを復元するために必要である。これは通信におけるプリアンブル信号を用いて通信路歪を評価し、この評価結果を用いて補正される。図3のように、等化器53は減衰した受信信号を増幅するが、その際ノイズ成分も増幅されるためS/Nは改善されない。この等化器53がなければ、通信路歪の影響でデータが復元できない、つまり伝送エラーを生じてしまう。この点についても後述する。
【0019】
搬送波として使用帯域内で複数の搬送波(マルチキャリア)を用いる場合を例に、S/Nを評価してデータ割付量を変更する仕組みについて以下説明する。図4にマルチキャリアのスペクトルを示す。帯域Δfの搬送波は使用帯域に複数割り当てるが、搬送波と搬送波が重ならないようにするために、搬送波間で所定帯域だけスペースを取るのが一般的である。各搬送波には所定の送信データのビットが割り付けられる。図5に示すように、マルチキャリアの特殊なケースであるOFDM(直交周波数多重分割)は、搬送波のピーク点では、他の搬送波のパワーがゼロとなるように各搬送波が配置され、各搬送波の帯域をΔfとすると、時間1/(Δf/2)での逆フーリエ変換による直交性の維持を図っている。このため、一般のマルチキャリアとは異なって、各搬送波が重なり合っても信号が復元可能で、かつ使用帯域が一般のマルチキャリアより狭くて良く、周波数利用効率が一般のマルチキャリアより高いという特徴をもっている。なお、OFDMもマルチキャリアの一種である。
【0020】
搬送波を用いて通信する方式として、上述のような複数の搬送波を用いて通信する方式(マルチキャリア通信方式という)と、単一の搬送波(単一キャリアともいう)を用いて通信する方式(単一キャリア通信方式という)があり、いずれも搬送波(キャリア)にデータ(ビット)を割り付けて伝送する。搬送波(キャリア)にデータを割り付けて伝送するわけであるが、キャリアごとのS/Nによりそのデータ割り付け量には制限がある。マルチキャリア通信方式は、使用帯域内で複数の狭帯域のキャリアを設けて通信する方式である。このため、通信線71に重畳したノイズのうち、特定の周波数のノイズのレベルが高いと、そのノイズの周波数に合致するキャリアのS/Nが他のキャリアよりも低くなり、そのキャリアへのデータ割付け量がより低くなるだけであり、全キャリアとして高いデータ割付け量を維持できる。この結果、高い伝送速度を確保することが可能である。このように、マルチキャリア通信方式は、複数のキャリアを用いて通信しているため、S/Nの低くなった特定の搬送波(キャリア)に対してデータ割り付け量が低くなるだけである。これに対して、単一キャリア通信方式では、特定の周波数のノイズのレベルが高いだけであっても、キャリアが一つであるため、そのキャリアに割り付けるデータ量が低くなり、マルチキャリア通信方式と比べ、かなり伝送速度が低下する。特にエレベータかご1の監視画像を伝送するためには1Mbps以上の伝送速度が要求されるために、単一キャリア通信方式より、マルチキャリア通信方式の方が適している。
【0021】
各搬送波(キャリア)ごとに複数の波形(振幅と位相が異なる)を使用し、この波形にデータ(ビット)を割り付けて伝送するが、多数の送信波形を用いて伝送する際の変調は多値変調と呼ばれ、各キャリアごとのS/Nによりそのデータ割り付け量(ビット割り付け量ともいう)には制限があり、図6のような関係になっている。例えば、伝送誤り率を1/105に設定すれば、256QAM、64QAM、16QAM、QPSK、BPSKではS/Nがそれぞれ約22.5dB、約17.7dB、約13.5dB、約9.5dB、約6.3dB 必要である。256QAMでは8ビットの割付が可能であり、64QAMは6ビット、16QAMは4ビット、QPSKは2ビット、BPSKは1ビットの割付が可能であり、S/Nが約6.3dB未満であれば、ビットの割付をしない。なお、QAMはQuadrature Amplitude Modulation、QPSKはQuadrature Phase Shift Keying、BPSKはBinary Phase Shift Keyingと呼ばれ、QAMは振幅変調、QPSK及びBPSKは位相変調である。上記例では128QAM、32QAMなどを示していないが、その他のQAMもある。なお、誤り訂正機能を付加することにより、伝送誤り率を1/105から1/107程度にすることが可能である。従って、例えば、伝送速度が1Mbpsであれば、確率的に10秒に1回誤りが発生することになり、誤りが発生した伝送フレームを再送することにより、何ら問題なく安定した通信が可能になる。
【0022】
〔S/Nの推定評価〕
次に、図7を参照して、S/Nの評価について説明する。図7は、一定時間毎のS/N評価のための処理フロー図であり,通信装置5aから通信装置5bにS/Nを評価するためのトレーニングデータを送信してS/Nを算出する例を示している。なお、通信装置5bから通信装置5aにS/Nを評価するためのトレーニングデータを送信してS/Nを算出する場合も同一である。通信装置5aから通常のデータを送信する場合はステップ1からステップ5の手順により実施しており、S/N評価のための処理は割込み処理によって実施する。ここでは、割込み処理として、一定時間で起動する割込み処理を例にしている。図7に示す処理はアクセスコントローラ55によってなされる。通常のデータ送信においては、まずステップ1にて、プロトコール変換器56から取込んだデータを基に通信装置内のパケットデータを作成する。次にステップ2で、作成したパケットデータを変調器57に出力する。これによって、データが変調され通信装置5bに出力される。通信装置5bから送信されてくるデータについては、ステップ3に示すように復調器54からのパケットデータを取込む。ステップ4にてCRC(Cycle Redundancy Check:巡回冗長検査)の評価を実施して、伝送誤り検出を行う。ステップ5にて、伝送誤りがあれば、通信装置5bに再送要求をし、伝送誤りがなければ取り込んだデータをプロトコール変換器56に出力する。
【0023】
このような通常のデータ通信処理を実施している状態で、S/N評価のための割込み処理を実施する。ステップ6で、あらかじめ用意しているトレーニングデータを変調器57に出力する。この結果、トレーニングデータが変調されて、通信装置5bに送信される。これに対して、通信装置5bは、ステップ10でトレーニングデータを受信し、ステップ11で搬送波ごとのS/Nを計算する。この計算については後述する。さらに、ステップ12で、搬送波番号とビット割付量をペアとしてパケットデータに変換し、変調器に出力する。搬送波番号とビット割付量をペアとしてビット割付情報とよぶ。この結果、通信装置5bから通信装置5aにビット割付情報(搬送波番号とビット割付量)が送信されてくる。また、自局である、通信装置5b自体のビット割付情報を更新するためにビット割付情報テーブルの書き換えを実施する。このビット割付情報は、通信装置5aから伝送されてきたデータを通信装置5bの復調器で復調する際に使用する。その後、通信装置5aは通信装置5bから送信されてくるビット割付情報をステップ7で受信し、ステップ8にてビット割付情報テーブルの書き換えを実施する。この処理が終了すると、ステップ9にてビット割付情報テーブルの書き換え完了を示すACKを送信する。通信装置5bでは、ステップ13にてACKを受信し、処理を終了する。この処理が終了すると、通信装置5bから通信装置5aにトレーニング情報を送信し、通信装置5bから通信装置5aへの伝送に対するS/Nを評価する。これは、通信線のS/Nが対称になっていれば必要はないが、S/Nに対称性がない場合には有効である。エレベータの場合、ノイズ源であるインバータは通信装置5a側にあり、インバータは通信装置5a側のノイズが通信装置5bのノイズより強い。しがって、通信装置5aにおけるS/Nが低くなるため、通信装置5bから通信装置5aにデータを送信する場合には、各搬送波に割り付けるビットをS/Nに応じて低くする必要が生じる。このように各通信装置でのS/Nに差がある場合には、双方向でのS/N評価を実施し、この結果得られるビット割付情報を各アクセスコントローラ55に記憶しておき、変調及び復調に対応して利用する。
【0024】
トレーニングデータを送信するか通常のデータを送信するかを区別する必要があるが、これは図8に示したように、伝送フォーマットを構成することにより実現できる。この伝送フォーマットは、プリアンブル信号、ヘッダー、データ、CRCからなっており、ヘッダーの中にトレーニング情報か通常のデータ情報かを示すようにしている。ヘッダーでトレーニング情報を示せば、データの中にはトレーニング用データが入っており、ヘッダーでデータ情報を示せば、データの中には通常の通信のデータが入っている。トレーニング用データとしては、256QAM、64QAM、QPSKなどがあるが、ここでは理解を容易にするために、QPSKを例に説明する。なお、プリアンブル信号はシンボル同期のために用いる。QPSKは各搬送波に2ビットを割り付ける変調方式であり、信号点配置は図9のようになっている。I軸とは信号の同相成分を示し、Q軸は信号の直交成分を表している。信号点へのデータ割付は、例えば、第1象限の信号点でデータ“00”を示し、第2象限の信号点でデータ“01”、第3象限の信号点でデータ“11”、第4象限の信号点でデータ“10”を表す。そこで、全ての象限のデータを送信した方がS/Nをより一層正確に評価することが可能である。厳密でなければ、2ビットからなる適当なデータを利用しても良い。例えば、第1象限と第3象限のデータで構成し、“00”、“11”としても良いし、すべて第1象限のデータとし、“00”としても良い。
【0025】
図7のトレーニング用データとして“00”、“01”、“11”、“10”が設定される。そして、この場合、図1においてアクセスコントローラ55から変調器57に出力するビット割付情報として各搬送波ごとに2ビットの割付(QPSKである)であることを出力する。これにより、変調器57はQPSK変調により、2ビットづつのトレーニング用データを、各搬送波に2ビットを割り付け伝送する。トレーニングの場合には、各搬送波のS/Nを評価することが目的であるため、全搬送波に対してQPSK変調を施してデータを送信する。トレーニングの際にはあらかじめQPSK変調で伝送することが決まっているため、受信側ではQPSKで復調する。なお、QPSKではどの信号点に対しても振幅が一定であり、位相のみが異なるだけであり、復調処理が簡単であるが、256QAM、64QAMなどを利用してトレーニングを実施しても良い。
【0026】
さて、S/Nの評価は以下のように実施される。QPSKの場合、通信線上にノイズもなく減衰もなければ、復調した際の信号点は図10のようになる。しかし、通信線上にはノイズがあり、かつ減衰もする。減衰については図1の等化器53によって補正されるため、復調された信号は信号点配置において、基本的には真値の周りに復元されることになる。図10において、丸で示した範囲が復調後の信号点位置である。原点から真値までの距離が信号の強さSであり、真値から復調後の信号点位置までの距離がノイズの強さNである。従って、両者の比を計算すればS/Nが求まる。トレーニングでは変調方式をあらかじめ定めているので、真値がどこにあるかをあらかじめ通信装置に記憶させておくことができる。上述のように、真値を用いてS/Nを計算する方式の他には、平均値を用いる方式がある。これは、復調後の信号点位置の平均を算出し、この結果を用いて原点からの距離をSとし、各復調後の信号点位置からの距離をNとする方式である。なお、いずれの方式においても、ノイズをより正確に評価(推定あるいは測定)するためには、各搬送波に対して何度もトレーニングデータを送信する必要がある。エレベータかご画像監視を考慮すると、1秒ごとの画像監視が従来から求められているため、秒オーダ、望ましくは1秒ごとにトレーニングを実施することが望ましい。
【0027】
〔伝送誤り率評価〕
次に、トレーニングをイベントで実施する方式を説明する。このための処理を図11に示す。図7と異なる点は、一定時間毎にトレーニングを実施するのではなく、通常のデータ伝送を実施し、伝送誤りが多数発生する場合に、トレーニングを実施させるようにしている点である。このために、図11に示したステップ4でのCRCによる誤りチェック結果を基に、ステップ5で所定時間内での誤り発生頻度を算出し、この結果があらかじめ定めた所定値を超えた場合にトレーニングを実施する。トレーニングについては、図7と同様に、ステップ6からステップ13を実施することにより達成される。このトレーニングが終了したら、通常のデータ通信を実施する。なお、この例では、通信装置5bから通信装置5aへのデータ送信時に発生した伝送誤りに基づいて、通信装置5aから通信装置5bへのトレーニングを示したが、逆に、通信装置5aから通信装置5bへのデータ送信時に発生した伝送誤りに基づいて、通信装置5bから通信装置5aへのトレーニングも同様にして実施される。
【0028】
このように、伝送誤り率に応じてトレーニングをするようにしたこと(イベント駆動のトレーニング)、つまり、S/Nが悪化したときにトレーニングをするため、一定時間毎にトレーニングを実施する方式に比べ伝送効率が高くなるという特徴が得られる。
【0029】
さらに、このイベント駆動のトレーニングと一定時間毎のトレーニングとを併用するとさらに伝送効率が良くなる。つまり、イベント駆動のトレーニングによりS/Nが悪化したときのトレーニングが可能であり、S/Nが改善した場合には一定時間のトレーニングにより、高いS/N状態でのデータ割付が可能になるため、伝送速度をより一層速くできる。イベント駆動のトレーニングのみでは悪化したときのトレーニングによって決まるデータ割付のみになってしまうため、伝送速度の改善ができないが、両方式を併用することにより、この問題を解決することができる。このために処理は、アクセスコントローラにより、イベント駆動のトレーニングを図11の処理で実施し、一定時間毎のトレーニングを割込み処理で実施すればよい。
【0030】
〔OFDM通信〕
上記に加え、OFDMを含むマルチキャリア通信方式を利用して通信装置5a、5b間で通信することにより、十分なS/Nが確保できない周波数が存在し、この結果データの割付のできないキャリアが存在しても、その他の周波数のS/Nが高ければ、これらの周波数の搬送波に多くのデータ割付が可能になり、全体として1Mbps以上の十分な通信速度を確保できる効果がある。さらに、OFDMは周波数利用効率が高いため、一般のマルチキャリア通信方式より狭い帯域で同等の通信速度を確保することが可能になる。このため、インバータノイズによりS/Nが周波数によって変化するが、そのS/Nの変化がある程度の周波数範囲にわたっているために、OFDMでは比較的S/Nの高い周波数帯域を使用周波数帯域として設定しやすいという特徴がある。
【0031】
〔単一搬送波のS/N評価〕
次に、単一キャリアを使用した場合のS/N評価について説明する。単一キャリアを使用して、マルチキャリアと同一の伝送速度を実現するには単一キャリアの帯域を広くする必要がある。単一キャリアの帯域を広くすることにより、伝送速度を速くすることが可能になる。変調方式としては、マルチキャリアと変わらないため、図7及び図11に示したトレーニングがそのまま適用できる。また、S/N評価も図10に示した通りである。
【0032】
〔搬送波周波数の変更方式〕
次に、S/N評価結果に基づいて搬送波(キャリア)周波数を変更する方式を説明する。図7及び図11ではデータ割付け量を変更することを示したが、この代わりに、データ割付け量を変更せずに搬送波の周波数をS/Nが同等以上の周波数帯に変更(シフトともいう)することも可能である。この場合、図1に示したデータ割付量情報55a、55bの代わりに搬送波周波数変更情報がアクセスコントローラ55から変調器57及び復調器54に出力される。なお、あらかじめS/Nの測定を実施しておき、どの周波数帯に変更するかを決めておく。この方式では、単一キャリアの場合、搬送波が1本であるため、この変更処理は容易である。ただし、通信の使用帯域は周波数変更が可能なように十分広い帯域である必要がある。
【0033】
以上のように、S/Nの高い搬送波信号による通信や、S/Nの高い周波数帯域での通信により、エレベータかごの走行のためにエレベータ用のインバータが動作してノイズが発生しても、これに大きく影響を受けることなく、テールコードを構成する複数の撚り線の一部の線を用いてエレベータかご内の画像や保守データを安定して送信することが可能になる。
【0034】
〔スペクトル拡散通信方式〕
スペクトル拡散通信方式で通信するエレベータかご監視装置について図12を参照して説明する。図12にスペクトル拡散通信方式を適用した実施形態を示す。図1と異なる点は変調器57及び復調器54に係わる部分であり、その他は同一である。OFDMを含めたマルチキャリア方式は各搬送波ごとにビット割付変更を行ったが、スペクトル拡散通信方式はこのような処理はなく、その代わりにベースバンドの帯域をより広い帯域に拡散して通信し、復調時に帯域をベースバンドの帯域に圧縮して、データを復元するようにしてある。このスペクトル拡散通信方式は、通信路上にランダムのノイズが重畳される状況下での通信に対してS/Nを高くでき、安定した通信が可能であり、エレベータかご駆動時のような特定周波数帯域でのノイズ(周波数選択性ノイズという)のレベルが高くなるような場合の通信に好適である。図1との相違点を説明する。変調器57はスペクトル拡散通信方式の場合、1次変調器とも呼ばれ、通常の伝送で用いられる振幅変調、周波数変調、位相変調(BPSK、QPSK)、位相と振幅を同時に変調する16QAM、64QAM、256QAMなどの各種変調方式が採用される。変調器57の出力信号(1次変調された信号)はスペクトル拡散変調器63に入力される。スペクトル拡散変調器63は1次変調された信号に対して拡散符号発生器64から出力されるPN(Pseudorandom Noise)系列と呼ばれる特殊な波形を乗積されてD/A58に出力する。この処理をアナログ処理回路で実現することも可能であり、その場合にはD/A58が不要である。これらの処理により、拡散変調された信号が通信装置5aから通信装置5bに通信されることになる。拡散変調後の帯域幅は1次変調の帯域幅とPN系列のそれの和になる。通常は帯域拡散の倍率が大きいので、実質的にPN系列の帯域幅が拡散信号の帯域幅になる。従って、使用帯域は1次変調の帯域幅(ベースバンドの帯域)より広い帯域にする必要があり、拡散率は5倍以上にすることが望ましいが、エレベータかご駆動の場合ノイズレベルが比較的高いため、少なくとも10倍以上にすることが望ましい。エレベータかご内の監視画像伝送や保守データ伝送のために最低でも1Mbpsの伝送速度が要求されるため、ベースバンドの帯域は少なくとも1MHz以上が必要であり、その10倍の帯域である、10MHz以上の帯域が使用帯域として必要である。しかも図3に示したように、その測定結果から判断して5MHz以上を使用することが有効である。つまり、エレベータかご駆動の場合、5MHz以上でかつ少なくとも10MHz以上の帯域を使用帯域として使用することが有効である。
【0035】
一方、復調については次のように処理される。A/D52の出力信号はタイミング/同期回路61及びスペクトル拡散逆拡散器62に出力される。スペクトル拡散逆拡散器62では送信側で用いたものとまったく同一のPN系列を再度乗積して、1次変調の信号を復元する。この処理を帯域圧縮とも呼ぶ。この帯域圧縮により、S/NのうちSが向上し、エレベータかご駆動時のインバータノイズのような周波数選択性ノイズのNが抑制される。このため、復調器54での復調処理でのS/Nが十分高く、通信路上でのノイズの影響を受けることなく、元の信号を復元することが可能になる。なお、タイミング/同期回路61は、スペクトル拡散逆拡散器62にてPN系列を再度乗積するための同期をとるために用いられる。また、タイミング/同期回路61及びスペクトル拡散逆拡散器62がアナログ回路で実現される場合にはA/D52は不要になる。
【0036】
以上のように、スペクトル拡散通信方式を用いて通信装置5aと通信装置5b間で通信することにより、マルチキャリア通信方式の時に必要であったビット割付量を決定するためのトレーニングを実施する必要もないため、常にエレベータかご内の監視画像や保守データ伝送の一時的な伝送中断が発生することがないという特徴をもたせることが可能になる。
【0037】
〔第二の実施形態〕
次に、インターホン線72を利用して通信するエレベータかご監視装置である第二の実施形態について説明する。
これまで説明した、OFDMを含めたマルチキャリア通信方式、単一キャリア通信方式、キャリア周波数を変更して通信する方式、スペクトル拡散通信方式のいずれかを用いて、エレベータかご内の監視画像や保守データをかご外に通信する第二の実施形態について、図13を参照して説明する。図13ではマルチキャリア通信方式を例として示している。通信装置5a側では、インターホン4と音声信号の通信を行うインターホン装置(インターホン通信装置)6に接続されているインターホン線72の途中に周波数スプリッタ80aが接続されており、この周波数スプリッタ80aを介して通信装置5aが接続されている。通信装置5b側では、インターホン4に接続されているインターホン線72の途中に周波数スプリッタ80bが接続されており、この周波数スプリッタ80bを介して通信装置5bが接続されている。インターホン装置6とインターホン4間の通信情報は音声信号であり、周波数帯域としては4kHzである。一方通信装置5aと通信装置5b間の通信情報は、エレベータかごの監視画像や保守データであり、少なくとも1Mbps以上の伝送速度が要求されるため、メガヘルツ(MHz)以上の通信帯域である。つまり、インターホン線72を共有し、インターホンのための音声信号と、エレベータかごの監視画像や保守データの両方の信号を通信させようとするものである。このために、周波数スプリッタ80a、80bを設置している。音声信号は4kHz以下の信号であり、エレベータかごの監視画像や保守データはメガヘルツ(MHz)以上であり、両者の周波数に大きな差があり、周波数の差を利用し、周波数を分割して通信することにより、両者の信号を一本のインターホン線を利用して通信することが可能になる。また、インターホン線72は直流電圧が重畳されることがあるため、通信装置5a、5bは結合器65を介して周波数スプリッタに接続する。周波数スプリッタ80a、80bの構成について、80aを例として図14に示す。なお、結合器65の構成も合わせ示している。なお、インターホン線72は単線図でなく、2本の電線で示している。周波数スプリッタ80aはインターホン線72の途中に高周波遮断フィルタ80a1を備え、高周波遮断フィルタ80a1を介してインターホン装置6に接続される。高周波遮断フィルタ80a1は通信装置間で通信するメガヘルツ(MHz)以上の信号を遮断させ、4kHz以下の音声信号を通過させることが目的である。このため、高周波遮断フィルタ80a1の代わりに低周波通過フィルタであってもよい。高周波遮断フィルタ80aの遮断周波数は100kHzで十分である。低周波通過フィルタの遮断周波数も100kHzで十分であるが、不必要な高周波を抑制させるために40kHz程度(4kHzの十倍)で十分である。通信装置5a、5b間の通信は、高周波遮断フィルタ80a1間で挟まれるインターホン線72を利用して通信することになる。インターホン線72は直流電圧が重畳されることがあるため、結合器65はコンデンサで直流をカットし、トランスのインダクタンスとこのコンデンサの静電容量の値で決まる高周波通過特性を持たせることにより、メガヘルツ(MHz)の高周波を減衰させることなしにインターホン線72に重畳させるようにしている。通信装置5a、5bには通信帯域のみを通過させるためのバンドパスフィルタ(BPフィルタ)50、60が設けられているため、音声信号が通信装置内に取り込まれることはない。インターホン線72に直流電圧が重畳されることがない場合には、結合器65を用いる必要はない。以上のように構成することにより、音声信号と、エレベータかごの監視画像や保守データの通信信号とが混信することなく、周波数を分離して通信することが可能になる。
【0038】
上述したものにおいて、インターホン線72に直流電圧が重畳されている状態でも結合器65を用いることにより通信装置5a、5b間の通信を可能にしているのでインターホン線72の代わりに、エレベータかごに直流電圧を供給する電線を利用して、通信装置5a、5b間で通信することが可能になる。この場合の、周波数スプリッタ80aは図14の構成とし、インターホン線72は直流電圧供給の電線になるだけである。なお、インターホン4及びインターホン装置6は音声信号を通信するために、この音声信号の帯域のみを通過させるように、フィルタが組み込まれている場合がある。このフィルタは低周波通過、つまり高周波遮断フィルタであり、通信装置5aのBPフィルタ50及び60で示したように、通信線とのインタフェースをとるところに設置されることになる。従って、図14に示した高周波遮断フィルタ80a1の機能をこのフィルタによって達成することが可能になる。この結果、図14の高周波遮断フィルタ80a1は取り外すことが可能になる。つまり、周波数スプリッタ80aそのものが不要になり、結合器65をインターホン線72に接続するだけで、インターホン線72を利用して、通信装置5a、5b間の通信が可能になる。当然、インターホン4及びインターホン装置6間で、通信装置5a、5b間の通信に何ら影響を受けることなく、音声通信が可能である。
【0039】
以上のように、エレベータかご内に設けられているインターホン線72を利用して通信する構成とすることにより、新たな通信線を敷設する必要がなくなり、予備線の確保を維持した状態でエレベータかご内の画像や保守データを安定して送信することが可能になる。
【0040】
〔エレベータかご監視装置の取付け方法〕
次にエレベータかご監視装置の取り付け方法について図15を参照して説明する。図15はエレベータへの通信装置の設置図である。エレベータの昇降路200、エレベータかご1、機械室100、テールコード7、建物300、居住空間ないし共有空間などの建物内のスペース310を示している。エレベータかご1には図1で示したカメラ2やインターホン(図示せず)が設置されている。
【0041】
通信装置5bはエレベータかご1である可動する部分に取り付けてあり、エレベータかご1の動きと共に動きカメラ2などからの監視画像やデータ収集装置(図1中符号3で示した装置)で収集された保守データを一方の通信装置5aに送信する。可動部分への取り付け方はエレベータかご1の内部であってもかまわないし、またはエレベータかご1の外部、例えば、上部、側面いずれの場所であってもかまわない。また、一方の通信装置5aは可動しない部分、例えば、機械室100に設置されているか、昇降路200のビルの中に薄型にして収めてしまってもかまわない。特に機械室100というスペースに限定されるものではない。そして、通信装置5aと通信装置5bはテールコード7に組み込まれている複数の撚り線の一部の線或いは図示しないインターホン線72で接続されており、この撚り線の一部の線或いはインターホン線72を通信線として利用するものである。可動しない部分に設置された通信装置5aとエレベータかご1(可動する部分)に設置した通信装置5bは1対1であってもまた一台の通信装置5aが複数台のエレベータかご1に設置された通信装置5bと1対Nの関係で通信を行ってもかまわない。この場合、通信装置5aは複数の通信を制御するためのスイッチング制御などの機能が必要となる。また、このような1対Nの場合、通信装置5aは個々の昇降路ではなく各昇降路に共通な共通部に設置されることが望ましい。
【0042】
このように機械室100に限定せずにエレベータの可動する部分と可動しない部分に通信装置5a、5bを設置することによりエレベータかご1内の監視が可能である。
【0043】
〔監視画像または保守データを監視可能なエレベータかご監視方法〕
図1に示した通信装置5aはサーバ9と通信網10を介して管理センタ11、画像蓄積サーバ12、サービスセンタ13と接続されている。管理センタ11はサービスセンタ13と連携して建物や設備に関する管理を行っている。サービスセンタ13はエレベータを含む建物に関する設備の保守点検などのサービスを保守データなどに基づいて行っている。また、画像蓄積サーバ12は通信装置5aから送られてくる監視画像を蓄積しておくサーバである。監視画像は、エレベータかご1内に設置されたカメラ2などを通して、また、保守データはデータ収集装置3で収集され通信装置5b、テールコード7に組み込まれている複数の撚り線の一部の線或いはインターホン線72などの通信路、通信装置5aを介して画像蓄積サーバ12に送られてくる。この監視画像や保守データは、リアルタイムで送られてくるので管理センタ11またはサービスセンタ13で逐次監視することができる。本発明に拠れば、監視画像はリアルタイムで送信されるので、これまでのように1秒刻みなどの監視画像をエレベータかご1の中に設置された記憶装置に記憶しておき後日取り出して見るというような手間を省くことができ、何らかのエレベータかご1内の出来事に対してタイムリーに対処できるという効果が得られる。なお画像蓄積サーバ12は管理センタ11やサービスセンタ13内のシステムの一つとして設置されてもよい。
【0044】
近年、インターネットなどや各設備を監視するなどの情報設備を備えた建物であるIT建物などが建築されてきている。エレベータのかご監視装置による監視画像や保守データは、これらのIT建物のセキュリティや保守のための管理情報として活用することができる。
すなわち、マンション、オフィスビルまたはテナントビルはIT化の進歩と通信技術の進歩で情報機器や情報端末が設置されるようになっており、代表的な例はインターネットが可能なインターネットマンションである。マンション内にサーバを設置しマンション内のLANで各住戸のパソコンを結ぶものである。また、照明、空調及び給湯器のオン・オフができる情報家電の制御などがある。さらに各種センサや監視カメラを用いたセキュリティがあり、これらは管理会社(管理センタ)や警備会社(サービスセンタ)とオンラインで接続されており緊急時にはリアルタイムで対応できるようになっている。施設設備は、保守のための情報が収集され保守データを基に定期的な保守作業や日常の運用管理が行われている。エレベータ、エスカレータ、電力設備、空調設備、防災設備などの設備機器は、管理会社により遠隔監視され定期的に保守を含めて管理されている。エレベータのかご監視装置で収集した監視画像や保守データは、これらの一つとして管理会社(管理センタ)やサービスセンタで監視され活用されることになる。
【0045】
このようにエレベータかご監視による監視画像や保守データは、エレベータのセキュリティ及び走行状態などの運用を遠隔監視するために使用することができるなどの効果がある。
【0046】
なお、本実施形態では、通信線としてテールコード7、インターホン線72について説明したがテールコード7は一般的に複数の撚り線(ツイストされていない)からなっているだけであり、ツイストペア線や同軸ケーブルがテールコードに組み込まれていることはないが、もちろん通信線としてはツイストペア線や同軸ケーブルであってもかまわない。この場合、これらの線に重畳されるノイズのレベルが低減するために、より一層S/Nが高くなるために、さらに高速の通信が可能になり、保守データの通信周期を短くでき、より監視性能を向上させることが可能になる。
【0047】
【発明の効果】
以上、本発明によれば、エレベータ用のインバータが動作してノイズが発生しても、これに大きく影響を受けることなく、テールコードを構成する複数の撚り線の一部の線またはインターホン線を用いてエレベータかご内の監視画像や保守データ(走行データ)を安定してリアルタイムに送信することが可能になる。また、新たな通信線を敷設する必要がなくなり、予備線の確保を維持した状態でエレベータかご内の監視画像や保守データ(走行データ)をセキュリティ及び走行状態などの運用の遠隔監視のために使用することができる。
【図面の簡単な説明】
【図1】本発明の第一の実施形態を説明する図である。
【図2】テールコードの概略構成図である。
【図3】通信特性を説明する図である。
【図4】一般のマルチキャリアのスペクトルを説明する図である。
【図5】OFDMのスペクトルを説明する図である。
【図6】ガウス雑音下での通信誤り特性を説明する図である。
【図7】一定時間毎のS/N評価のための処理フロー図である。
【図8】伝送フォーマットを説明する図である。
【図9】QPSKの信号点配置を説明する図である。
【図10】QPSKのS/N評価を説明する図である。
【図11】イベント駆動によるS/N評価のための処理フロー図である。
【図12】スペクトル拡散通信方式を適用した実施形態を説明する図である。
【図13】本発明の第二の実施形態(インターホン線を利用した通信)を説明する図である。
【図14】周波数スプリッタ80aの構成例である。
【図15】エレベータへの通信装置の設置図である。
【符号の簡単な説明】
1・・・エレベータかご、2・・・カメラ、3・・・データ収集装置、4・・・インターホン、
5a、5b・・・通信装置、6・・・インターホン装置、7・・・テールコード、72・・・インターホン線、
80a、80b・・・周波数スプリッタ、
9・・・サーバ、11・・・管理センタ、12・・・画像蓄積サーバ、13・・・サービスセンタ
100・・・機械室、200・・・昇降路、300・・・建物、310・・・建物内のスペース
Claims (3)
- エレベータかご内の画像または保守データを監視するエレベータかご監視装置であって、
前記エレベータかごと昇降路或いは機械室との双方に通信手段を設け、両通信手段をテールコードに組み込まれている撚り線で接続し、前記撚り線を通信線として通信を行い、
前記エレベータかご監視装置は、その通信手段において複数の搬送波信号を用いて各搬送波信号に送信データを割り付けて通信するものであって、各搬送波信号に対して信号とノイズの比であるS/Nを推定あるいは測定し、推定あるいは測定したS/Nの値に応じて、各搬送波信号への送信データ割り付け量を変更して通信を行うことを特徴とするエレベータかご監視装置。 - エレベータかご内の画像または保守データを監視するエレベータかご監視装置であって、
前記エレベータかごと昇降路或いは機械室との双方に通信手段を設け、両通信手段をテールコードに組み込まれている撚り線で接続し、前記撚り線を通信線として通信を行い、
前記エレベータかご監視装置は、その通信手段において複数の搬送波信号を用い、各搬送波信号に送信データを割り付けて通信するものであって、各搬送波信号に対して伝送誤り率を評価し、評価した伝送誤り率に応じて、各搬送波信号への送信データ割り付け量を変更して通信を行うことを特徴とするエレベータかご監視装置。 - エレベータかご内の画像または保守データを監視するエレベータかご監視装置であって、
前記エレベータかごと昇降路或いは機械室との双方に通信手段を設け、両通信手段をテールコードに組み込まれている撚り線で接続し、前記撚り線を通信線として通信を行い、
前記エレベータかご監視装置は、その通信手段において少なくとも1本の搬送波信号を用い、搬送波信号に送信データを割り付けて通信するものであって、搬送波信号に対してあらかじめ定められている信号とノイズの比であるS/Nが得られるか否かを判定し、判定結果があらかじめ定めているS/N以下の場合に、あらかじめ定められている異なった周波数に搬送波信号の周波数を変更して通信を行うことを特徴とするエレベータかご監視装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002312547A JP3894487B2 (ja) | 2002-10-28 | 2002-10-28 | エレベータかご監視装置及び方法並びにエレベータかご監視装置の取付け方法 |
CNB2003101044085A CN1323922C (zh) | 2002-10-28 | 2003-10-28 | 电梯轿厢监视装置及方法及电梯轿厢监视装置的安装方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002312547A JP3894487B2 (ja) | 2002-10-28 | 2002-10-28 | エレベータかご監視装置及び方法並びにエレベータかご監視装置の取付け方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006280875A Division JP4571606B2 (ja) | 2006-10-16 | 2006-10-16 | エレベータかご監視装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004142924A JP2004142924A (ja) | 2004-05-20 |
JP3894487B2 true JP3894487B2 (ja) | 2007-03-22 |
Family
ID=32457409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002312547A Expired - Fee Related JP3894487B2 (ja) | 2002-10-28 | 2002-10-28 | エレベータかご監視装置及び方法並びにエレベータかご監視装置の取付け方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3894487B2 (ja) |
CN (1) | CN1323922C (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007221614A (ja) * | 2006-02-20 | 2007-08-30 | Hitachi Ltd | 自動車内通信装置 |
JP4571606B2 (ja) * | 2006-10-16 | 2010-10-27 | 株式会社日立製作所 | エレベータかご監視装置 |
JP2008308244A (ja) * | 2007-06-12 | 2008-12-25 | Nippon Otis Elevator Co | エレベータの情報伝送システム |
CN102983882A (zh) * | 2011-09-05 | 2013-03-20 | 秦皇岛国安电力电子技术有限公司 | 使用随行电缆传输网络数据的方法、系统和信号处理装置 |
JP5987750B2 (ja) * | 2013-03-29 | 2016-09-07 | 三菱電機株式会社 | エレベーターのカメラ装置 |
CN103264937B (zh) * | 2013-05-10 | 2016-04-20 | 苏州汇川技术有限公司 | 双井道电梯系统及控制方法 |
JP6106575B2 (ja) * | 2013-11-13 | 2017-04-05 | 株式会社日立ビルシステム | エレベーター装置 |
CN104555639B (zh) * | 2015-01-05 | 2017-07-18 | 湖南崇友电梯科技有限公司 | 电梯维保监察方法 |
EP3243307B1 (en) | 2015-01-25 | 2019-09-11 | Valens Semiconductor Ltd. | Fast adaptive mode-conversion digital canceller |
US10256920B2 (en) | 2015-01-25 | 2019-04-09 | Valens Semiconductor Ltd. | Mode-conversion digital canceller for high bandwidth differential signaling |
US10171182B2 (en) | 2015-01-25 | 2019-01-01 | Valens Semiconductor Ltd. | Sending known data to support fast convergence |
CN105245411B (zh) * | 2015-11-18 | 2018-05-11 | 中景恒基云端物联网科技成都有限公司 | 一种用于电梯井道物联网设备无线通信故障的处理方法 |
EP3571149A1 (en) | 2017-01-17 | 2019-11-27 | Inventio AG | Real-time data communication for elevator system |
EP3978411A1 (en) * | 2020-10-02 | 2022-04-06 | KONE Corporation | Condition monitoring of an elevator |
CN112225038B (zh) * | 2020-10-21 | 2022-02-22 | 南京卓欧信息技术有限公司 | 用于电梯随行电缆信号缆线健康状态监测的检测系统 |
CN113213298B (zh) * | 2021-05-18 | 2022-01-07 | 江苏荣泽信息科技股份有限公司 | 一种基于区块链的电梯运行状态智能检测系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0379575A (ja) * | 1989-08-23 | 1991-04-04 | Mitsubishi Electric Corp | エレベータの非常相互通話装置 |
JPH04121380A (ja) * | 1990-09-10 | 1992-04-22 | Hitachi Ltd | エレベータ監視診断システム |
JPH04153176A (ja) * | 1990-10-16 | 1992-05-26 | Mitsubishi Electric Corp | エレベータの監視・制御装置 |
JP2001341956A (ja) * | 2000-06-05 | 2001-12-11 | Toshiba Corp | エレベータの遠隔保守方法及び遠隔保守システム |
JP2002173273A (ja) * | 2000-12-08 | 2002-06-21 | Toshiba It & Control Systems Corp | エレベーター監視装置 |
-
2002
- 2002-10-28 JP JP2002312547A patent/JP3894487B2/ja not_active Expired - Fee Related
-
2003
- 2003-10-28 CN CNB2003101044085A patent/CN1323922C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1498846A (zh) | 2004-05-26 |
JP2004142924A (ja) | 2004-05-20 |
CN1323922C (zh) | 2007-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3894487B2 (ja) | エレベータかご監視装置及び方法並びにエレベータかご監視装置の取付け方法 | |
JP3835759B2 (ja) | 車両外施設・車両間通信装置及び車両外施設・車両間通信システム並びに車両外施設・車両間通信装置を用いた通信方法 | |
US9042245B2 (en) | Network measurements and diagnostics | |
US8295301B2 (en) | Managing coexistence among signaling protocols on a shared medium | |
JP5758360B2 (ja) | 通信方法、及び電力線通信システム | |
JP3874352B2 (ja) | 列車内通信システム及び列車内通信装置 | |
US9467237B2 (en) | Power line communication methods and devices | |
JP4571606B2 (ja) | エレベータかご監視装置 | |
EP1925097A1 (en) | Power line communication apparatus | |
CN1398472A (zh) | 在多种物理层中建立家庭网络的方法 | |
JP2006352267A (ja) | 送信装置及び受信装置並びに送信方法及び受信方法 | |
JP2005294991A (ja) | 電力線搬送通信装置および電力線搬送通信方法 | |
JP2005151384A (ja) | ドアホン線を利用した通信装置 | |
JP4672467B2 (ja) | 通信システム及び通信方法 | |
JP4185466B2 (ja) | 通信装置および通信システム | |
JP4629592B2 (ja) | 多重伝送システム | |
JP4749815B2 (ja) | マルチキャリア通信装置、マルチキャリア通信システム、及びマルチキャリア通信方法 | |
JP4893413B2 (ja) | 列車内通信装置 | |
JP2006352300A (ja) | 通信装置 | |
CN107070996B (zh) | 通信系统中功率提升的方法、系统和调制解调器 | |
Ackerman | Timed power line data communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060816 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061208 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101222 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101222 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111222 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111222 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131222 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |