JP3883827B2 - 窒化物系半導体素子および窒化物系半導体の形成方法 - Google Patents

窒化物系半導体素子および窒化物系半導体の形成方法 Download PDF

Info

Publication number
JP3883827B2
JP3883827B2 JP2001234314A JP2001234314A JP3883827B2 JP 3883827 B2 JP3883827 B2 JP 3883827B2 JP 2001234314 A JP2001234314 A JP 2001234314A JP 2001234314 A JP2001234314 A JP 2001234314A JP 3883827 B2 JP3883827 B2 JP 3883827B2
Authority
JP
Japan
Prior art keywords
layer
nitride
forming
mask
based semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001234314A
Other languages
English (en)
Other versions
JP2003045814A (ja
Inventor
隆司 狩野
潔 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001234314A priority Critical patent/JP3883827B2/ja
Publication of JP2003045814A publication Critical patent/JP2003045814A/ja
Application granted granted Critical
Publication of JP3883827B2 publication Critical patent/JP3883827B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、窒化物系半導体素子および窒化物系半導体の形成方法に関し、より特定的には、マスク層を用いて形成した窒化物系半導体層を含む窒化物系半導体素子および窒化物系半導体の形成方法に関する。
【0002】
【従来の技術】
近年、発光ダイオード素子などの半導体発光素子やトランジスタなどの電子素子に用いられる半導体素子として、窒化物系化合物半導体を利用した半導体素子の開発が盛んに行われている。このような窒化物系半導体素子の製造の際には、GaNからなる基板の製造が困難であるため、サファイア、SiC、SiまたはGaAsなどからなる基板上に、GaNからなる窒化物系半導体層をエピタキシャル成長させている。
【0003】
この場合、サファイアなどの基板とGaNとでは、格子定数が異なるため、サファイアなどの基板上に成長させた窒化物系半導体層では、基板から上下方向に延びる貫通転位(格子欠陥)が存在している。このような窒化物系半導体層における転位は、半導体素子の素子特性の劣化および信頼性の低下を招く。
【0004】
そこで、上記のような窒化物系半導体層における転位を低減する方法として、従来、選択横方向成長(ELO:Epitaxyial Lateral Overgrowth)が提案されている。
【0005】
従来の選択横方向成長を用いた窒化物系半導体層の形成方法の一例としては、たとえば、サファイア基板上に、基板温度を約500℃〜約600℃に保持した状態で、約20nmの膜厚を有するAlxGa1-xN(0≦x≦1)からなるバッファ層を形成する。そして、そのバッファ層上に、基板温度を約1000℃に上昇させた状態で、還元雰囲気(H2雰囲気)下で、約1μm〜約2μmの膜厚を有する第1GaN層を形成する。この第1GaN層の転位密度は、約1.0×109cm-2である。
【0006】
次に、第1GaN層上に、SiO2、SiNまたはタングステンからなるストライプ形状のマスク層を形成する。そして、そのマスク層をマスクとして、基板温度を約1000℃に保持した状態で、還元雰囲気(H2雰囲気)下で、第1GaN層上およびマスク層上に、第2GaN層を選択横方向成長させる。これにより、転位が横方向に曲げられて、全体的に転位密度が約6.0×107cm-2程度に低減された第2GaN層が形成される。
【0007】
【発明が解決しようとする課題】
上記した従来の選択横方向成長を用いる窒化物系半導体の形成方法では、約1000℃の温度で、還元雰囲気下で、マスク層を選択成長マスクとして、第2GaN層を成長させていた。この場合、約1000℃以上の高温の還元雰囲気下において、SiO2、SiNまたはタングステンからなるマスク層の表面が熱的に変質されるという不都合が生じる。たとえば、タングステン(W)からなるマスク層では、約1000℃以上の高温の還元雰囲気下において、GaNの原料であるNH3ガスを導入すると、マスク層の表面が、不安定な窒化タングステン(WN)に変質してしまう。このため、マスク層の表面が荒れた状態になる。このように、第2GaN層の成長時に、マスク層の表面が変質すると、第2GaN層の結晶性が低下するという問題点があった。
【0008】
また、約1000℃以上の高温の還元雰囲気下において、マスク層の表面が熱的に変質されるため、第2GaN層の成長時に、変質したマスク層からSi、NまたはOなどのマスク層の構成材料が第2GaN層に拡散するという不都合が生じる。このため、従来では、第2GaN層の電気抵抗が上昇するので、良好な電気特性を有する窒化物系半導体素子を形成することは困難であるという問題点があった。
【0009】
この発明は、上記のような課題を解決するためになされたものであり、
この発明の1つの目的は、良好な結晶性および電気特性を有する窒化物系半導体層を含む窒化物系半導体素子を提供することである。
【0010】
この発明のもう1つの目的は、良好な結晶性および電気特性を有する窒化物系半導体層を形成することが可能な窒化物系半導体の形成方法を提供することである。
【0011】
【課題を解決するための手段】
上記目的を達成するために、この発明の一の局面による窒化物系半導体素子は、下地上に下地の一部を露出するように所定の間隔を隔てて形成され、SiCNまたはCNxのうちのいずれかの材料からなる複数のマスク層と、マスク層間に露出された下地の上面上および前記マスク層上に形成された第1窒化物系半導体層とを備えている。
【0012】
この一の局面による窒化物系半導体素子では、上記のように、SiCNまたはCNxのうちのいずれかの材料からなる複数のマスク層を形成することによって、第1窒化物系半導体層の成長に用いられる高温の還元雰囲気下において、マスク層の表面が熱により変質するのを防止することができる。これにより、第1窒化物系半導体層の成長時に、マスク層の変質に起因して発生する第1窒化物系半導体層の結晶性の低下を防止することができるので、マスク層上に、結晶性の良好な第1窒化物系半導体層を形成することができる。また、マスク層の表面が熱により変質するのを防止することができるので、第1窒化物系半導体層の成長時に、変質したマスク層からマスク層の構成材料が第1窒化物系半導体層に拡散するという不都合も防止することができる。これにより、マスク層の構成材料の拡散に起因して第1窒化物系半導体層の電気抵抗が上昇するのを防止することができるので、良好な電気特性を有する窒化物系半導体素子を得ることができる。
【0016】
また、上記の場合、好ましくは、下地は、基板を含み、マスク層は、基板の上面に接触するように形成されている。このように構成すれば、基板上に直接第1窒化物系半導体層を成長させることができるので、全体の厚みを小さくすることができるとともに、窒化物系半導体層の成長回数を減少させることができる。
【0017】
上記の場合、好ましくは、下地は、基板上に形成された第2窒化物系半導体層からなる下地層を含み、マスク層は、第2窒化物系半導体層からなる下地層の上面上に形成されている。このように構成すれば、マスク層をマスクとして、第2窒化物系半導体層からなる下地層の上面上に、第1窒化物系半導体層を選択横方向成長により形成することができるので、基板上に直接第1窒化物系半導体層を形成する場合に比べて、結晶欠陥をより低減することができる。
【0018】
また、上記の場合、好ましくは、第1窒化物系半導体層上に形成され、素子領域を有する窒化物系半導体素子層をさらに備える。このように構成すれば、結晶性の良好な第1窒化物系半導体層上に、素子領域を有する窒化物系半導体層を形成することができるので、良好な素子特性を有する窒化物系半導体層を容易に形成することができる。その結果、良好な素子特性を有する窒化物系半導体素子を得ることができる。
【0019】
この発明の他の局面による窒化物系半導体の形成方法は、下地上に、下地の一部を露出するように所定の間隔を隔てて、SiCNまたはCNxのうちのいずれかの材料からなる複数のマスク層を形成する工程と、マスク層を用いて、マスク層間に露出された下地の上面上およびマスク層上に、第1窒化物系半導体層を選択横方向成長させる工程とを備えている。
【0020】
この他の局面による窒化物系半導体の形成方法では、上記のように、SiCNまたはCNxのうちのいずれかの材料からなる複数のマスク層を形成することによって、第1窒化物系半導体層の成長に用いられる高温の還元雰囲気下において、マスク層の表面が熱により変質するのを防止することができる、これにより、第1窒化物系半導体層の成長時に、マスク層の変質に起因して発生する第1窒化物系半導体層の結晶性の低下を防止することができるので、マスク層上に、結晶性の良好な第1窒化物系半導体層を形成することができる。また、マスク層の表面が熱により変質するのを防止することができるので、第1窒化物系半導体層の成長時に、変質したマスク層からマスク層の構成材料が第1窒化物系半導体層に拡散するという不都合も防止することができる。これにより、マスク層の構成材料の拡散に起因して第1窒化物系半導体層の電気抵抗が上昇するのを防止することができるので、良好な電気特性を有する窒化物系半導体層を形成することができる。
【0023】
上記の場合、好ましくは、下地は、基板を含み、マスク層を形成する工程は、マスク層を、基板の上面に接触するように形成する工程を含む。このように構成すれば、基板上に直接第1窒化物系半導体層を成長させることができるので、全体の厚みを小さくすることができるとともに、窒化物系半導体層の成長回数を減少させることができる。
【0024】
また、上記の場合、好ましくは、下地は、基板上に成長された第2窒化物系半導体層からなる下地層を含み、マスク層を形成する工程は、マスク層を、第2窒化物系半導体層からなる下地層上に形成する工程を含む。このように構成すれば、マスク層をマスクとして、第2窒化物系半導体層からなる下地層の上面上に、第1窒化物系半導体層を選択横方向成長により形成することができるので、基板上に直接第1窒化物系半導体層を形成する場合に比べて、結晶欠陥をより低減することができる。
【0025】
また、上記の場合、好ましくは、マスク層を形成する工程は、下地上に、SiCNからなる層を形成する工程と、SiCNからなる層の所定領域を酸化した後、酸化された領域をウエットエッチングすることによって、SiCNからなるマスク層を形成する工程とを含む。このように構成すれば、容易に、下地上にSiCNからなるマスク層を形成することができる。
【0026】
また、上記の場合、好ましくは、第1窒化物系半導体層上に、素子領域を有する窒化物系半導体素子層を成長させる工程をさらに備える。このように構成すれば、結晶性の良好な第1窒化物系半導体層上に、素子領域を有する窒化物系半導体層を形成することができるので、良好な素子特性を有する窒化物系半導体層を容易に形成することができる。その結果、良好な素子特性を有する窒化物系半導体素子を形成することができる。
【0027】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0028】
(第1実施形態)
図1〜図5は、本発明の第1実施形態による窒化物系半導体の形成方法を説明するための断面図である。図1〜図5を参照して、以下に、第1実施形態による窒化物系半導体の形成方法について説明する。
【0029】
まず、図1に示すように、基板温度を約500℃〜約600℃に保持した状態で、NH3を含む還元雰囲気下で、サファイア基板1上に、約20nmの膜厚を有するAlxGa1-xN(0≦x≦1)からなる低温バッファ層2を形成する。そして、基板温度を約1000℃に上昇させて、NH3を含む還元雰囲気下で、低温バッファ層2上に、約1μm〜約2μmの膜厚を有する下地層としての第1GaN層3を形成する。なお、サファイア基板1は、本発明の「基板」の一例であり、第1GaN層3は、本発明の「第2窒化物系半導体層(下地)」の一例である。
【0030】
次に、図2に示すように、第1GaN層3上に、PLD法(Pulsed−laser deposition method)を用いて、SiCN膜4aを約200nm〜約300nmの厚みで形成する。この場合、SiCN膜4aの形成条件は、Nの原料ガス:N2、SiおよびCの原料:SiC、基板温度:常温、および、成長圧力:6.7×10-5Paである。
【0031】
その後、図3に示すように、SiCN膜4a上の所定領域に、ストライプ形状にパターニングされたNiからなるエッチングマスクとしてのマスク層5を形成する。次に、このマスク層5をマスクとして、RIE(Reactive Ion Etching:反応性イオンエッチング)法などのドライエッチングにより、SiCN膜4aを第1GaN層3の上面が露出されるまでエッチングする。これにより、図4に示されるような、ストライプ形状のSiCNからなる選択成長マスクとしてのマスク層4が形成される。その後、マスク層4上のマスク層5を除去する。なお、SiCNからなるマスク層4は、後の工程で第2GaN層6を成長させる際の高温(約1000℃以上)の還元雰囲気下において変質されない材料であればよく、SiCNの非晶質膜、多結晶膜または単結晶膜のいずれでもよい。
【0032】
次に、図5に示すように、基板温度を約1000℃に保持した状態で、NH3を含む還元雰囲気(H2雰囲気)下で、第1GaN層3上に、SiCNからなるマスク層4をマスクとして、選択横方向成長により第2GaN層6を形成する。これにより、転位が低減された第2GaN層6が形成される。なお、第2GaN層6は、本発明の「第1窒化物系半導体層」の一例である。
【0033】
第1実施形態では、上記のように、SiCNからなるマスク層4を形成することによって、第2GaN層6の成長に用いられる高温(約1000℃)のNH3を含む還元雰囲気(H2雰囲気)下において、マスク層4の表面が熱により変質するのを防止することができる。これにより、第2GaN層6の成長時に、マスク層4の変質に起因して発生する第2GaN層6の結晶性の低下を防止することができるので、マスク層4上に、結晶性の良好な第2GaN層6を形成することができる。
【0034】
また、SiCNからなるマスク層4の表面が熱により変質するのを防止することができるので、第2GaN層6の成長時に、変質したマスク層4からマスク層4の構成材料が第2GaN層6に拡散するという不都合も防止することができる。これにより、マスク層4の構成材料の拡散に起因して第2GaN層6の電気抵抗が上昇するのを防止することができるので、良好な電気特性を有する第2GaN層6を形成することができる。
【0035】
また、第1実施形態では、上記のように、サファイア基板1上に、低温バッファ層2を介して形成された下地層としての第1GaN層3の上面上に、マスク層4を形成することによって、そのマスク層4をマスクとして、転位がある程度低減された第1GaN層3の上面上に、第2GaN層6を選択横方向成長により形成することができる。これにより、サファイア基板1上に直接第2GaN層6を形成する場合に比べて、結晶欠陥をより低減することができる。
【0036】
図6は、上記した第1実施形態の窒化物系半導体の形成方法を用いて形成した窒化物系半導体レーザ素子を示した断面図である。次に、図6を参照して、第1実施形態による窒化物系半導体の形成方法を用いて形成した窒化物系半導体レーザ素子の構造について説明する。
【0037】
第1実施形態の窒化物系半導体レーザ素子の構造としては、図5に示した第1実施形態の第2GaN層6上に、図6に示すように、n型GaNからなるn型コンタクト層7、n型AlGaNからなるn型クラッド層8および発光層9が形成されている。発光層9上には、p型AlGaNからなるp型クラッド層10が凸部を有するように形成されている。p型クラッド層10の凸部の上面上のほぼ全面と接触するように、p型GaNからなるp型コンタクト層11が形成されている。また、p型コンタクト層11の上面上には、p側電極12が形成されている。また、p型クラッド層10からn型コンタクト層7までの一部領域が除去されている。そのn型コンタクト層7の露出した表面には、n側電極13が形成されている。
【0038】
なお、n型コンタクト層7、n型クラッド層8、発光層9、p型クラッド層10およびp型コンタクト層11は、本発明の「素子領域を有する窒化物系半導体素子層」の一例である。
【0039】
上記した第1実施形態の窒化物系半導体レーザ素子では、図1〜図5に示した第1実施形態の窒化物系半導体の形成方法を用いて形成された、良好な結晶性および電気特性を有する第2GaN層6を下地層として、その上に各層7〜11を形成することによって、各層7〜11において良好な結晶性を実現することができる。これにより、第1実施形態では、良好な素子特性を有する窒化物系半導体レーザ素子を得ることができる。
【0040】
(第2実施形態)
図7および図8は、本発明の第2実施形態による窒化物系半導体の形成方法を説明するための断面図である。この第2実施形態では、選択成長マスクとしてのマスク層をウェットエッチングにより形成した例を示している。なお、第2実施形態におけるマスク層4の形成プロセス以外の窒化物系半導体の形成方法は、図1、図2および図5に示した第1実施形態の窒化物系半導体の形成方法と同様である。図7および図8を参照して、以下に、第2実施形態による窒化物系半導体の形成方法について説明する。
【0041】
まず、第1実施形態の形成方法と同様の形成方法を用いて、図7に示すように、サファイア基板1上に、AlxGa1-xN(0≦x≦1)からなる低温バッファ層2、第1GaN層3およびSiCN膜4aを形成する。
【0042】
次に、図7に示すように、SiCN膜4a上の所定領域に、ストライプ形状にパターニングされたレジスト15を形成する。そして、このレジスト15をマスクとして、SiCN膜4aを、熱酸化装置などを用いて酸化する。この酸化部分4bをフッ酸などを用いてウェットエッチングにより除去する。これにより、図8に示されるような、ストライプ形状のSiCNからなるマスク層4が形成される。その後、マスク層4上のレジスト15を除去する。
【0043】
これ以降の工程は、図5を用いて説明した第1実施形態の形成方法と同様である。すなわち、基板温度を約1000℃に保持した状態で、NH3を含む還元雰囲気(H2雰囲気)下で、第1GaN層3上に、SiCNからなるマスク層4をマスクとして、選択横方向成長により第2GaN層6(図5参照)を形成する。
【0044】
第2実施形態では、上記のような製造プロセスを用いることによって、SiCNからなるストライプ形状のマスク層4を容易に形成することができる。なお、第2実施形態のその他の効果は、第1実施形態と同様である。
【0045】
(第3実施形態)
図9〜図13は、本発明の第3実施形態による窒化物系半導体の形成方法を説明するための断面図である。図9〜図13を参照して、以下に、第3実施形態による窒化物系半導体の形成方法について説明する。
【0046】
まず、図9に示すように、基板温度を約500℃〜約600℃に保持した状態で、NH3を含む還元雰囲気下で、サファイア基板21上に、約20nmの膜厚を有するAlxGa1-xN(0≦x≦1)からなる低温バッファ層22を形成する。そして、基板温度を約1000℃に上昇させて、NH3を含む還元雰囲気下で、低温バッファ層22上に、約1μm〜約2μmの膜厚を有する下地層としての第1GaN層23を形成する。なお、サファイア基板21は、本発明の「基板」の一例であり、第1GaN層23は、本発明の「第2窒化物系半導体層(下地)」の一例である。
【0047】
次に、図10に示すように、第1GaN層23上に、プラズマCVD法を用いて、SiC膜24aを約200nm〜約300nmの厚みで形成する。この場合、SiC膜24aの形成条件は、原料ガス:SiH4,CH4、基板温度:600℃、および、成長圧力:4.0Paである。
【0048】
その後、図11に示すように、SiC膜24a上の所定領域に、ストライプ形状にパターニングされたNiからなるエッチングマスクとしてのマスク層25を形成する。次に、このマスク層25をマスクとして、RIE法などのドライエッチングにより、SiC膜24aを第1GaN層23の上面が露出されるまでエッチングする。これにより、図12に示されるような、ストライプ形状のSiCからなる選択成長マスクとしてのマスク層24が形成される。その後、マスク層24上のマスク層25を除去する。なお、SiCからなるマスク層24は、後の工程で第2GaN層26を成長させる際の高温(約1000℃以上)の還元雰囲気下において変質されない材料であればよく、SiCの非晶質膜、多結晶膜または単結晶膜のいずれでもよい。
【0049】
次に、図13に示すように、基板温度を約1000℃に保持した状態で、NH3を含む還元雰囲気(H2雰囲気)下で、第1GaN層23上に、SiCからなるマスク層24をマスクとして、選択横方向成長により第2GaN層26を形成する。これにより、転位が低減された第2GaN層26が形成される。なお、第2GaN層26は、本発明の「第1窒化物系半導体層」の一例である。
【0050】
第3実施形態では、上記のように、SiCからなるマスク層24を形成することによって、第2GaN層26の成長に用いられる高温(約1000℃)の還元雰囲気(H2雰囲気)下において、マスク層24の表面が熱により変質するのを防止することができる。これにより、第2GaN層26の成長時に、マスク層24の変質に起因して発生する第2GaN層26の結晶性の低下を防止することができるので、マスク層24上に、結晶性の良好な第2GaN層26を形成することができる。
【0051】
また、SiCからなるマスク層24の表面が熱により変質するのを防止することができるので、第2GaN層26の成長時に、変質したマスク層24からマスク層24の構成材料が第2GaN層26に拡散するという不都合も防止することができる。これにより、マスク層24の構成材料の拡散に起因して第2GaN層26の電気抵抗が上昇するのを防止することができるので、良好な電気特性を有する第2GaN層26を形成することができる。
【0052】
また、第3実施形態では、上記のように、サファイア基板21上に、低温バッファ層22を介して形成された下地層としての第1GaN層23の上面上に、マスク層24を形成することによって、そのマスク層24をマスクとして、転位がある程度低減された第1GaN層23の上面上に、第2GaN層26を選択横方向成長により形成することができる。これにより、サファイア基板21上に直接第2GaN層26を形成する場合に比べて、結晶欠陥をより低減することができる。
【0053】
図14は、上記した第3実施形態の窒化物系半導体の形成方法を用いて形成した窒化物系半導体レーザ素子を示した断面図である。次に、図14を参照して、第3実施形態による窒化物系半導体の形成方法を用いて形成した窒化物系半導体レーザ素子の構造について説明する。
【0054】
第3実施形態の窒化物系半導体レーザ素子の構造としては、図13に示した第3実施形態の第2GaN層26上に、図14に示すように、n型コンタクト層7、n型クラッド層8および発光層9が形成されている。発光層9上には、p型クラッド層10が凸部を有するように形成されている。p型クラッド層10の凸部の上面上のほぼ全面と接触するように、p型コンタクト層11が形成されている。また、p型コンタクト層11の上面上には、p側電極12が形成されている。また、p型クラッド層10からn型コンタクト層7までの一部領域が除去されている。そのn型コンタクト層7の露出した表面には、n側電極13が形成されている。なお、第3実施形態の各層7〜11の組成は、図6に示した第1実施形態の各層7〜11の組成と同様である。
【0055】
上記した第3実施形態の窒化物系半導体レーザ素子では、図9〜図13に示した第3実施形態の窒化物系半導体の形成方法を用いて形成された、良好な結晶性および電気特性を有する第2GaN層26を下地層として、その上に各層7〜11を形成することによって、各層7〜11において良好な結晶性を実現することができる。これにより、第3実施形態では、良好な素子特性を有する窒化物系半導体レーザ素子を得ることができる。
【0056】
(第4実施形態)
図15〜図18は、本発明の第4実施形態による窒化物系半導体の形成方法を説明するための断面図である。図15〜図18を参照して、以下に、第4実施形態による窒化物系半導体の形成方法について説明する。
【0057】
まず、図15に示すように、サファイア基板31上に、プラズマCVD法を用いて、ダイヤモンド膜32aを約200nm〜約300nmの厚みで形成する。この場合、ダイヤモンド膜32aの形成条件は、原料ガス:CH4、基板温度:500℃、および、成長圧力:6.7Paである。そして、ダイヤモンド膜32a上に、ストライプ形状にパターニングされたNiからなるエッチングマスクとしてのマスク層33を形成する。なお、サファイア基板31は、本発明の「基板(下地)」の一例である。
【0058】
その後、図16に示すように、このマスク層33をマスクとして、RIE法などのドライエッチングにより、ダイヤモンド膜32aをサファイア基板31の上面が露出されるまでエッチングする。これにより、図16に示されるような、ストライプ形状のダイヤモンドからなる選択成長マスクとしてのマスク層32が形成される。その後、マスク層32上のマスク層33を除去する。なお、ダイヤモンドからなるマスク層32は、後の工程でGaN層35を成長させる際の高温(約1000℃以上)の還元雰囲気下において変質されない材料であればよく、ダイヤモンドの非晶質膜、多結晶膜または単結晶膜のいずれでもよい。
【0059】
次に、図17に示すように、マスク層32間に露出されたサファイア基板31の上面上に、基板温度を約500℃〜約600℃に保持した状態で、NH3を含む還元雰囲気下で、約20nmの膜厚を有するAlxGa1-xN(0≦x≦1)からなる低温バッファ層34を形成する。
【0060】
その後、図18に示すように、基板温度を約1000℃に保持した状態で、NH3を含む還元雰囲気(H2雰囲気)下で、低温バッファ層34上に、ダイヤモンドからなるマスク層32をマスクとして、選択横方向成長によりGaN層35を形成する。これにより、転位が低減されたGaN層35が形成される。なお、GaN層35は、本発明の「第1窒化物系半導体層」の一例である。
【0061】
第4実施形態では、上記のように、ダイヤモンドからなるマスク層32を形成することによって、GaN層35の成長に用いられる高温(約1000℃)の還元雰囲気(H2雰囲気)下において、マスク層32の表面が熱により変質するのを防止することができる。これにより、GaN層35の成長時に、マスク層32の変質に起因して発生するGaN層35の結晶性の低下を防止することができるので、マスク層32上に、結晶性の良好なGaN層35を形成することができる。
【0062】
また、ダイヤモンドからなるマスク層32の表面が熱により変質するのを防止することができるので、GaN層35の成長時に、変質したマスク層32からマスク層32の構成材料がGaN層35に拡散するという不都合も防止することができる。これにより、マスク層32の構成材料の拡散に起因してGaN層35の電気抵抗が上昇するのを防止することができるので、良好な電気特性を有するGaN層35を形成することができる。
【0063】
また、第4実施形態では、上記のように、サファイア基板31の上面に接触するようにマスク層32を形成することによって、下地となるGaN層を成長させることなく、サファイア基板31上にGaN層35を成長させることができる。これにより、全体の厚みを小さくすることができるとともに、窒化物系半導体層の成長回数を減少させることができる。
【0064】
図19は、上記した第4実施形態の窒化物系半導体の形成方法を用いて形成した窒化物系半導体レーザ素子を示した断面図である。次に、図19を参照して、第4実施形態による窒化物系半導体の形成方法を用いて形成した窒化物系半導体レーザ素子の構造について説明する。
【0065】
第4実施形態の窒化物系半導体レーザ素子の構造としては、図18に示した第4実施形態のGaN層35上に、図19に示すように、n型コンタクト層7、n型クラッド層8および発光層9が形成されている。発光層9上には、p型クラッド層10が凸部を有するように形成されている。p型クラッド層10の凸部の上面上のほぼ全面と接触するように、p型コンタクト層11が形成されている。また、p型コンタクト層11の上面上には、p側電極12が形成されている。また、p型クラッド層10からn型コンタクト層7までの一部領域が除去されている。そのn型コンタクト層7の露出した表面には、n側電極13が形成されている。なお、第4実施形態の各層7〜11の組成は、図6に示した第1実施形態の各層7〜11の組成と同様である。
【0066】
上記した第4実施形態の窒化物系半導体レーザ素子では、図15〜図18に示した第4実施形態の窒化物系半導体の形成方法を用いて形成された、良好な結晶性および電気特性を有するGaN層35を下地層として、その上に各層7〜11を形成することによって、各層7〜11において良好な結晶性を実現することができる。これにより、第4実施形態では、良好な素子特性を有する窒化物系半導体レーザ素子を得ることができる。
【0067】
(第5実施形態)
図20〜図23は、本発明の第5実施形態による窒化物系半導体の形成方法を説明するための断面図である。図20〜図23を参照して、第5実施形態による窒化物系半導体の形成方法について説明する。
【0068】
まず、図20に示すように、サファイア基板41上に、PLD法を用いて、CN膜42aを約200nm〜約300nmの厚みで形成する。この場合、CN膜42aの形成条件は、Nの原料ガス:N2、Cの原料:グラファイト、基板温度:常温、および、成長圧力:6.7×10-5Paである。そして、CN膜42a上に、ストライプ形状にパターニングされたNiからなるエッチングマスクとしてのマスク層43を形成する。なお、サファイア基板41は、本発明の「基板(下地)」の一例である。
【0069】
その後、図21に示すように、このマスク層43をマスクとして、RIE法などのドライエッチングにより、CN膜42aをサファイア基板41の上面が露出されるまでエッチングする。これにより、図21に示されるような、ストライプ形状のCNからなる選択成長マスクとしてのマスク層42が形成される。その後、マスク層42上のマスク層43を除去する。なお、CNからなるマスク層42は、後の工程でGaN層45を成長させる際の高温(約1000℃以上)の還元雰囲気下において変質されない材料であればよく、CNの非晶質膜、多結晶膜または単結晶膜のいずれでもよい。
【0070】
次に、図22に示すように、マスク層42間に露出されたサファイア基板41の上面上に、基板温度を約500℃〜約600℃に保持した状態で、NH3を含む還元雰囲気下で、約20nmの膜厚を有するAlxGa1-xN(0≦x≦1)からなる低温バッファ層44を形成する。
【0071】
その後、図23に示すように、基板温度を約1000℃に保持した状態で、NH3を含む還元雰囲気(H2雰囲気)下で、低温バッファ層44上に、CNからなるマスク層42をマスクとして、選択横方向成長によりGaN層45を形成する。これにより、転位が低減されたGaN層45が形成される。なお、GaN層45は、本発明の「第1窒化物系半導体層」の一例である。
【0072】
第5実施形態では、上記のように、CNからなるマスク層42を形成することによって、GaN層45の成長に用いられる高温(約1000℃)の還元雰囲気(H2雰囲気)下において、マスク層42の表面が熱により変質するのを防止することができる。これにより、GaN層45の成長時に、マスク層42の変質に起因して発生するGaN層45の結晶性の低下を防止することができるので、マスク層42上に、結晶性の良好なGaN層45を形成することができる。
【0073】
また、CNからなるマスク層42の表面が熱により変質するのを防止することができるので、GaN層45の成長時に、変質したマスク層42からマスク層42の構成材料がGaN層45に拡散するという不都合も防止することができる。これにより、マスク層42の構成材料の拡散に起因してGaN層45の電気抵抗が上昇するのを防止することができるので、良好な電気特性を有するGaN層45を形成することができる。
【0074】
また、第5実施形態では、上記のように、サファイア基板41の上面に接触するようにマスク層42を形成することによって、下地となるGaN層を成長させることなく、サファイア基板41上にGaN層45を成長させることができる。これにより、全体の厚みを小さくすることができるとともに、窒化物系半導体層の成長回数を減少させることができる。
【0075】
図24は、上記した第5実施形態の窒化物系半導体の形成方法を用いて形成した窒化物系半導体レーザ素子を示した断面図である。次に、図24を参照して、第5実施形態による窒化物系半導体の形成方法を用いて形成した窒化物系半導体レーザ素子の構造について説明する。
【0076】
第5実施形態の窒化物系半導体レーザ素子の構造としては、図23に示した第5実施形態のGaN層45上に、図24に示すように、n型コンタクト層7、n型クラッド層8および発光層9が形成されている。発光層9上には、p型クラッド層10が凸部を有するように形成されている。p型クラッド層10の凸部の上面上のほぼ全面と接触するように、p型コンタクト層11が形成されている。また、p型コンタクト層11の上面上には、p側電極12が形成されている。また、p型クラッド層10からn型コンタクト層7までの一部領域が除去されている。そのn型コンタクト層7の露出した表面には、n側電極13が形成されている。なお、第5実施形態の各層7〜11の組成は、図6に示した第1実施形態の各層7〜11の組成と同様である。
【0077】
上記した第5実施形態の窒化物系半導体レーザ素子では、図20〜図23に示した第5実施形態の窒化物系半導体の形成方法を用いて形成された、良好な結晶性および電気特性を有するGaN層45を下地層として、その上に各層7〜11を形成することによって、各層7〜11において良好な結晶性を実現することができる。これにより、第5実施形態では、良好な素子特性を有する窒化物系半導体レーザ素子を得ることができる。
【0078】
なお、今回開示された実施形態は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
【0079】
たとえば、上記第1〜第5実施形態では、高温の還元雰囲気下で変質されにくい材料からなるマスク層の例として、SiC、SiCN、CNまたはダイヤモンドからなるマスク層を用いたが、本発明はこれに限らず、上記以外の高温の還元雰囲気下で変質されにくい材料を用いてもよい。
【0080】
また、上記第1〜第5実施形態では、導電性を有しないサファイア基板を用いるとともに、サファイア基板の上面側にp側電極12およびn側電極13を形成した例を示したが、本発明はこれに限らず、サファイア基板の代わりに導電性を有する基板を用いてもよい。
【0081】
図25には、第1実施形態の変形例による窒化物系半導体レーザ素子の断面図が示されている。この場合、図6に示した第1実施形態では、サファイア基板1を用いているのに対して、図25に示した第1実施形態の変形例では、導電性を有するn型SiC基板51を用いている。このn型SiC基板51上には、第1実施形態の低温バッファ層2、第1GaN層3、マスク層4および第2GaN層6と同様の組成および膜厚を有するように、低温バッファ層52、第1GaN層53、SiCNからなるマスク層54および第2GaN層55が形成されている。
【0082】
また、第2GaN層55上には、n型AlGaInNからなるクラック防止層56、n型AlGaNからなるn型第2クラッド層57、n型GaNからなるn型第1クラッド層58、発光層59およびp型GaNからなるp型第1クラッド層60が順次形成されている。p型第1クラッド層60上には、メサ形状(台形状)のp型AlGaNからなるp型第2クラッド層61が形成されている。また、p型第1クラッド層60上の上面と、メサ形状のp型第2クラッド層61の側面とを覆うとともに、p型第2クラッド層61の上面を露出させるように、n型AlGaNからなる電流阻止層62が形成されている。電流阻止層62上には、露出されたp型第2クラッド層61の上面と接触するように、p型GaNからなるp型コンタクト層63が形成されている。
【0083】
また、p型第2クラッド層61のメサ形状を反映したp型コンタクト層63の凸部上には、p側電極64が形成されている。また、導電性を有するn型SiC基板51の裏面に、n側電極65が形成されている。
【0084】
上記の変形例のように、第1実施形態のサファイア基板1の代わりにn型SiC基板51などの導電性を有する基板を用いても、第1実施形態と同様の効果を得ることができる。また、第2〜第5実施形態において、サファイア基板の代わりに導電性を有する基板を用いてもよい。
【0085】
また、上記第3実施形態では、SiCからなるマスク層24をRIE法などのドライエッチングにより形成したが、本発明はこれに限らず、SiCからなるマスク層24を酸化した後、その酸化部分をウェットエッチングすることによって形成してもよい。なお、この場合のマスク層24のウェットエッチングの条件は、第2実施形態のSiCNからなるマスク層4のウェットエッチングの条件と同様である。
【0086】
また、上記第1〜第3実施形態では、サファイア基板上に形成された第1GaN層からなる下地層の上面上に、SiCまたはSiCNからなるマスク層を形成したが、本発明はこれに限らず、第1〜第3実施形態において、SiCまたはSiCNからなるマスク層の代わりに、ダイヤモンドまたはCNからなるマスク層を形成してもよい。
【0087】
また、上記第4および第5実施形態では、サファイア基板の上面に接触するように、ダイヤモンドまたはCNからなるマスク層を形成したが、本発明はこれに限らず、第4および第5実施形態において、ダイヤモンドまたはCNからなるマスク層の代わりに、SiCまたはSiCNからなるマスク層を形成してもよい。
【0088】
また、第5実施形態では、CNからなるマスク層42を用いたが、本発明はこれに限らず、CN以外のCNxからなるマスク層を用いても同様の効果を得ることができる。
【0089】
【発明の効果】
以上のように、本発明によれば、良好な結晶性および電気特性を有する窒化物系半導体層を形成することが可能な窒化物系半導体の形成方法を提供することができる。また、良好な結晶性および電気特性を有する窒化物系半導体層を含む窒化物系半導体素子を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図2】本発明の第1実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図3】本発明の第1実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図4】本発明の第1実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図5】本発明の第1実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図6】図1〜図5に示した第1実施形態の窒化物系半導体の形成方法を用いて形成した窒化物系半導体レーザ素子を示した断面図である。
【図7】本発明の第2実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図8】本発明の第2実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図9】本発明の第3実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図10】本発明の第3実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図11】本発明の第3実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図12】本発明の第3実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図13】本発明の第3実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図14】図9〜図13に示した第3実施形態の窒化物系半導体の形成方法を用いて形成した窒化物系半導体レーザ素子を示した断面図である。
【図15】本発明の第4実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図16】本発明の第4実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図17】本発明の第4実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図18】本発明の第4実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図19】図15〜図18に示した第4実施形態の窒化物系半導体の形成方法を用いて形成した窒化物系半導体レーザ素子を示した断面図である。
【図20】本発明の第5実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図21】本発明の第5実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図22】本発明の第5実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図23】本発明の第5実施形態による窒化物系半導体の形成方法を説明するための断面図である。
【図24】図20〜図23に示した第5実施形態の窒化物系半導体の形成方法を用いて形成した窒化物系半導体レーザ素子を示した断面図である。
【図25】本発明の変形例による窒化物系半導体レーザ素子を示した断面図である。
【符号の説明】
1、21 サファイア基板(基板)
3、23、53 第1GaN層(第2窒化物系半導体層、下地)
4、24、32、42、54 マスク層
6、26、55 第2GaN層(第1窒化物系半導体層)
7 n型コンタクト層(窒化物系半導体素子層)
8 n型クラッド層(窒化物系半導体素子層)
9、59 発光層(窒化物系半導体素子層)
10 p型クラッド層(窒化物系半導体素子層)
11 p型コンタクト層(窒化物系半導体素子層)
31、41 サファイア基板(基板、下地)
35、45 GaN層(第1窒化物系半導体層)
51 n型SiC基板(基板)
56 クラック防止層(窒化物系半導体素子層)
57 n型第2クラッド層(窒化物系半導体素子層)
58 n型第1クラッド層(窒化物系半導体素子層)
60 p型第1クラッド層(窒化物系半導体素子層)
61 p型第2クラッド層(窒化物系半導体素子層)
62 電流阻止層(窒化物系半導体素子層)
63 p型コンタクト層(窒化物系半導体素子層)

Claims (9)

  1. 下地上に前記下地の一部を露出するように所定の間隔を隔てて形成され、SiCNまたはCNxのうちのいずれかの材料からなる複数のマスク層と、
    前記マスク層間に露出された下地の上面上および前記マスク層上に形成された第1窒化物系半導体層とを備えた、窒化物系半導体素子。
  2. 前記下地は、基板を含み、
    前記マスク層は、前記基板の上面に接するように形成されている、請求項1に記載の窒化物系半導体素子。
  3. 前記下地は、基板上に形成された第2窒化物系半導体層からなる下地層を含み、
    前記マスク層は、前記第2窒化物系半導体層からなる下地層の上面上に形成されている、請求項1または2に記載の窒化物系半導体素子。
  4. 前記第1窒化物系半導体層上に形成され、素子領域を有する窒化物系半導体素子層をさらに備える、請求項1〜3のいずれか1項に記載の窒化物系半導体素子。
  5. 下地上に、前記下地の一部を露出するように所定の間隔を隔てて、SiCNまたはCNxのうちのいずれかの材料からなる複数のマスク層を形成する工程と、
    前記マスク層を用いて、前記マスク層間に露出された下地の上面上および前記マスク層上に、第1窒化物系半導体層を選択横方向成長させる工程とを備えた、窒化物系半導体の形成方法。
  6. 前記下地は、基板を含み、
    前記マスク層を形成する工程は、
    前記マスク層を、前記基板の上面に接触するように形成する工程を含む、請求項5に記載の窒化物系半導体の形成方法。
  7. 前記下地は、基板上に成長された第2窒化物系半導体層からなる下地層を含み、
    前記マスク層を形成する工程は、
    前記マスク層を、前記第2窒化物系半導体層からなる下地層上に形成する工程を含む、請求項5または6に記載の窒化物系半導体の形成方法。
  8. 前記マスク層を形成する工程は、
    前記下地上に、SiCNからなる層を形成する工程と、
    前記SiCNからなる層の所定領域を酸化した後、前記酸化された領域をウエットエッチングすることによって、前記SiCNからなるマスク層を形成する工程とを含む、請求項5〜7のいずれか1項に記載の窒化物系半導体の形成方法。
  9. 前記第1窒化物系半導体層上に、素子領域を有する窒化物系半導体素子層を成長させる工程をさらに備える、請求項5〜8のいずれか1項に記載の窒化物系半導体の形成方法。
JP2001234314A 2001-08-02 2001-08-02 窒化物系半導体素子および窒化物系半導体の形成方法 Expired - Fee Related JP3883827B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001234314A JP3883827B2 (ja) 2001-08-02 2001-08-02 窒化物系半導体素子および窒化物系半導体の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001234314A JP3883827B2 (ja) 2001-08-02 2001-08-02 窒化物系半導体素子および窒化物系半導体の形成方法

Publications (2)

Publication Number Publication Date
JP2003045814A JP2003045814A (ja) 2003-02-14
JP3883827B2 true JP3883827B2 (ja) 2007-02-21

Family

ID=19065943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001234314A Expired - Fee Related JP3883827B2 (ja) 2001-08-02 2001-08-02 窒化物系半導体素子および窒化物系半導体の形成方法

Country Status (1)

Country Link
JP (1) JP3883827B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814538B2 (ja) * 2004-03-15 2011-11-16 パナソニック株式会社 半導体レーザ装置及びその製造方法
EP1766667A4 (en) * 2004-05-19 2011-06-01 Epivalley Co Ltd METHOD FOR DRAWING GAN-BASED NITRIDE LAYER MATERIAL
US7253451B2 (en) * 2004-11-29 2007-08-07 Epivalley Co., Ltd. III-nitride semiconductor light emitting device
KR100983830B1 (ko) 2005-02-05 2010-09-27 주식회사 에피밸리 3족 질화물 반도체 발광소자
KR100750932B1 (ko) 2005-07-31 2007-08-22 삼성전자주식회사 기판 분해 방지막을 사용한 단결정 질화물계 반도체 성장및 이를 이용한 고품위 질화물계 발광소자 제작
JP2010232464A (ja) * 2009-03-27 2010-10-14 Showa Denko Kk Iii族窒化物半導体発光素子及びその製造方法、並びにレーザダイオード
JP5938871B2 (ja) * 2010-11-15 2016-06-22 住友電気工業株式会社 GaN系膜の製造方法
CN102723406B (zh) * 2011-03-29 2017-07-07 清华大学 半导体外延结构

Also Published As

Publication number Publication date
JP2003045814A (ja) 2003-02-14

Similar Documents

Publication Publication Date Title
JP4666295B2 (ja) 半導体レーザ及び半導体装置の製造方法
US6380051B1 (en) Layered structure including a nitride compound semiconductor film and method for making the same
JP3201475B2 (ja) 半導体装置およびその製造方法
US7834366B2 (en) Semiconductor device having a group III nitride semiconductor layer
JP4048191B2 (ja) 窒化物半導体発光素子及びその製造方法
US6030849A (en) Methods of manufacturing semiconductor, semiconductor device and semiconductor substrate
JP3863720B2 (ja) 窒化物系半導体素子および窒化物系半導体の形成方法
JP2000164929A (ja) 半導体薄膜と半導体素子と半導体装置とこれらの製造方法
JP2001196697A (ja) 半導体素子用基板およびその製造方法およびその半導体素子用基板を用いた半導体素子
JP3744155B2 (ja) 窒化ガリウム系化合物半導体基板の製造方法
JPH11274082A (ja) Iii 族窒化物半導体およびその製造方法、およびiii 族窒化物半導体装置
JP3883827B2 (ja) 窒化物系半導体素子および窒化物系半導体の形成方法
JP2010272593A (ja) 窒化物半導体発光素子及びその製造方法
JP4743989B2 (ja) 半導体素子およびその製造方法ならびに半導体基板の製造方法
JP3934320B2 (ja) GaN系半導体素子とその製造方法
JP3884969B2 (ja) 半導体発光素子およびその製造方法
JP4381397B2 (ja) 窒化物系半導体素子および窒化物系半導体の形成方法
JP4211358B2 (ja) 窒化物半導体、窒化物半導体素子及びそれらの製造方法
JP3789781B2 (ja) 半導体素子および半導体層の形成方法
JP3546634B2 (ja) 窒化物系化合物半導体の選択エッチング方法および半導体装置の製造方法
JP4200115B2 (ja) カーボンドープ半導体膜、半導体素子、及びこれらの製造方法
JP4416761B2 (ja) 窒化物系半導体素子および窒化物系半導体の形成方法
JP3668131B2 (ja) 窒化物系半導体素子および窒化物系半導体の形成方法
JP3913758B2 (ja) 半導体素子および半導体層の形成方法
JP3681540B2 (ja) 半導体の製造方法、半導体装置の製造方法及び半導体基板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

LAPS Cancellation because of no payment of annual fees