JP3863283B2 - 半導体記憶装置及びその製造方法 - Google Patents

半導体記憶装置及びその製造方法 Download PDF

Info

Publication number
JP3863283B2
JP3863283B2 JP06724698A JP6724698A JP3863283B2 JP 3863283 B2 JP3863283 B2 JP 3863283B2 JP 06724698 A JP06724698 A JP 06724698A JP 6724698 A JP6724698 A JP 6724698A JP 3863283 B2 JP3863283 B2 JP 3863283B2
Authority
JP
Japan
Prior art keywords
floating gate
insulating film
gate
transistor
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06724698A
Other languages
English (en)
Other versions
JPH11265948A (ja
Inventor
辺 浩 志 渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP06724698A priority Critical patent/JP3863283B2/ja
Priority to US09/267,607 priority patent/US6252272B1/en
Publication of JPH11265948A publication Critical patent/JPH11265948A/ja
Application granted granted Critical
Publication of JP3863283B2 publication Critical patent/JP3863283B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体記憶装置及びその製造方法に関する。
【0002】
【従来の技術】
半導体記憶装置は、近年の微細化によって長足の進歩を遂げてきた。しかしながら、LSIの高集積化が要求する低消費電力化の流れに沿って、トンネル酸化膜の信頼を確保したまま動作電圧の低減を謀ると、浮遊ゲートへの電子注入効率の低下という現象を引き起きしてしまう。
【0003】
例えば、現在の一般的な不揮発性半導体記憶装置では、最小加工寸法長をFとすると、最もセル構造が簡単でありセル面積が最も小さいもので、約5.5F2 の素子面積を必要とする。このような大きさのセルに対しても、浮遊ゲートに電子を注入してデータを書き込む場合、又は注入した電子を引き抜いてデータを消去する場合には、トンネル酸化膜にFNトンネリングを起こさせるために例えば18Vというような非常に高い電界を印加させる必要がある。
【0004】
また、基板と浮遊ゲートとの間に介在するトンネル酸化膜のみならず、浮遊ゲートと制御ゲートとの間に存在する絶縁膜にも高い電界が印加されることになる。そこで、トンネル酸化膜にのみトンネル電流が流れてデータの書き込み又は消去が効率良く行われるよう、絶縁膜に対するトンネル酸化膜の膜厚比を調節することにより、絶縁膜の容量C1 に対するトンネル酸化膜の容量C2 の容量結合比γ(=C2 /C1 )を小さくする工夫が施されている。しかし、このような工夫を行っても、従来の半導体記憶装置における書き込み又は消去を行うときの最大動作電圧は、約18Vとかなり高かった。
【0005】
一方で、最大動作電圧が12Vというように低い装置は、例えばチャネルホットエレクトロン注入法を用いることにより、書き込み又は消去に必要な電圧を低減させる工夫を行っている。しかし、その結果としてセル構造が複雑化し、セル面積が11.5F2 というようにかなり大きくなるという問題があった。
【0006】
【発明が解決しようとする課題】
上述したように、従来の半導体記憶装置には、セル面積の縮小と最大動作電圧の低減とを両立させることができないという問題があった。
【0007】
本発明は上記事情に鑑みてなされたもので、微細化及び最大動作電圧の大幅な低減を同時に達成することが可能な半導体記憶装置及びその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の半導体記憶装置は、表面が鋸歯状に加工されて形成された山部と谷部とを有する半導体基板と、前記半導体基板の谷部において第1の絶縁膜を介して形成され、上部が尖塔状に加工された浮遊ゲートと、前記半導体基板の谷部において前記浮遊ゲートの上部に第2の絶縁膜を介して形成され、下部が谷部に応じた形状を有する制御ゲートとを備え、前記浮遊ゲートの上部の先端と前記制御ゲートの下部の先端とが前記第2の絶縁膜を介して対向するように配置されていることを特徴としている。
【0009】
浮遊ゲートの上部が尖塔状に加工され、この浮遊ゲートの上部の先端と谷部に応じた形状を有する制御ゲートの下部の先端とが対向するように配置されていることで、浮遊ゲートへの電子の注入又は引き抜きに必要な最大動作電圧を低減することができる。また、鋸歯状に加工された半導体基板表面の谷部に浮遊ゲート及び制御ゲートが形成され、この谷部を単位として素子が形成されるので、素子面積が縮小される。
【0010】
ここで、前記浮遊ゲートへの電子の注入、又は注入された電子の引き抜きは、前記第2の絶縁膜を介して前記浮遊ゲートと前記制御ゲートとの間にトンネル電流を発生させて行ってもよい。
【0011】
また、前記半導体基板と前記第1の絶縁膜と前記浮遊ゲートとにより形成される第1の容量と、前記浮遊ゲートと前記第2の絶縁膜と前記制御ゲートとにより形成される第2の容量との容量結合比が、前記浮遊ゲートの底面の寸法と前記制御ゲートの底面の寸法との比率により設定されるものであってもよい。
【0012】
本発明のNAND型不揮発性記憶装置は、セレクトゲートを有する第1のトランジスタの一方の端子と、浮遊ゲート及び制御ゲートを有する少なくとも二つのメモリセルトランジスタのそれぞれの両端子と、セレクトゲートを有する第2のトランジスタの一方の端子とが直列に接続され、前記第1のトランジスタの他方の端子はセレクト線に接続され、前記第2のトランジスタの他方の端子はビット線に接続された装置であって、表面が鋸歯状に加工されて形成された山部と谷部とを有し、山部には不純物拡散層が形成され、それぞれの不純物拡散層が谷部により相互に分離された半導体基板において、前記第1のトランジスタは、谷部に第1の絶縁膜、又は第1及び第2の絶縁膜を介して形成されたセレクトゲートと、この谷部の両側の山部にそれぞれ形成された不純物拡散層とを有し、少なくとも二つの前記メモリセルトランジスタは、前記第1のトランジスタのセレクトゲートが形成された谷部に隣接する少なくとも二つの谷部にそれぞれ前記第1の絶縁膜を介して形成され上部が尖塔状に加工された浮遊ゲートと、この浮遊ゲートの上部に前記第2の絶縁膜を介して対向するようにそれぞれ形成された制御ゲートと、それぞれの谷部の両側の山部に形成された不純物拡散層とを有し、前記第2のトランジスタは、前記メモリセルトランジスタの浮遊ゲートが形成された連続する少なくとも二つの谷部にさらに隣接する谷部に前記第1の絶縁膜、又は前記第1及び第2の絶縁膜を介して形成されたセレクトゲートと、この谷部の両側の山部にそれぞれ形成された不純物拡散層とを有し、前記第1のトランジスタが有する二つの不純物拡散層のうち隣接する前記メモリセルトランジスタと共有しないものはセレクト線に接続され、前記第2のトランジスタが有する二つの不純物拡散層のうち隣接する前記メモリセルトランジスタと共有しないものはビット線に接続されることを特徴としている。
【0013】
本発明の半導体装置の製造方法は、半導体基板の表面を鋸歯状に加工し、山部と谷部とを形成する工程と、前記半導体基板の谷部の上部に第1の絶縁膜を形成する工程と、前記半導体基板の谷部において、前記第1の絶縁膜の表面上に導電材を堆積して浮遊ゲートを形成する工程と、さらに絶縁膜を形成する処理を行うことにより、前記浮遊ゲートの上部を尖塔状に加工する工程と、前記半導体基板の谷部において、前記浮遊ゲートの表面及び前記第1の絶縁膜を覆うように第2の絶縁膜を形成する工程と、前記半導体基板の谷部において、前記第2の絶縁膜を介して前記浮遊ゲートの上部に導電材を堆積して制御ゲートを形成する工程であって、前記制御ゲートの下部が下向きに凸状になっており、前記浮遊ゲートの尖塔状の上部の位置と自動的に一致する工程とを備えたことを特徴としている。
【0014】
【発明の実施の形態】
以下、本発明の一実施の形態について図面を参照して説明する。
【0015】
本実施の形態による半導体記憶装置は、図1に示されるようなセル構造を有している。p型半導体基板11の表面が、最小加工寸法Fと同一の間隔を有するように鋸歯状に加工されている。その鋸歯状の山部にn+ 型不純物拡散領域12が形成されており、この不純物領域12は相互に谷部によって分離されており、谷部の表面には膜厚t1 の絶縁膜13が形成されている。
【0016】
絶縁膜13の上部には、浮遊ゲートFGが形成されている。この浮遊ゲートFGは、その上部が尖塔状に加工されている。
【0017】
浮遊ゲートFGの上部に、厚さt2 のトンネル酸化膜14が形成されており、トンネル酸化膜14の上部に制御ゲートCGが形成されている。制御ゲートCG及びトンネル酸化膜14の上部は、絶縁膜15で覆われている。ここで、制御ゲートCGの下部は、半導体基板11の谷部の形状に応じた形状を有し、浮遊ゲートFGの尖塔状の上部とそのその先端同志の位置が一致し、対向するように配置される。また、浮遊ゲートFGと制御ゲートCGとは相対的な大きさが大きく相違し、浮遊ゲートFGの方がかなり小さく形成されている。
【0018】
このような浮遊ゲートFGと制御ゲートCGとの大きさの比率により、絶縁膜13の容量C1 に対するトンネル酸化膜14の容量C2 の容量結合比γ(=C2 /C1 )が小さくなっている。この結果、基板11と制御ゲートCGとの間に印加する制御ゲート電圧VG が低くとも、浮遊ゲートFGと制御ゲートCGとの間のトンネル酸化膜14においてFNトンネリングを起こしてトンネル電流を発生させ、データの書き込み又は消去を行うことができる。
【0019】
また、半導体基板11の表面が鋸歯状に加工され、山部にn+ 型不純物拡散領域12が形成され、それぞれの不純物領域12は谷部により相互に分離されている。これにより、n+ 型不純物領域12で構成されるソース、ドレイン領域を一つの谷部の中に収めることが可能である。この結果、セル面積の幅をほぼFと同一の値にすることが可能であり、微細化が達成される。
【0020】
以下に、本実施の形態によれば、絶縁膜13とトンネル酸化膜14との容量結合比に基づいて、最大動作電圧が低減されることを図2を用いて詳細に説明する。半導体基板11の谷部における浮遊ゲートFG下の絶縁膜13を、領域10、11及び12の3つの部分に分けて、それぞれの容量をC10、C11、C12とする。
【0021】
領域11及び12は、共に面積がs1 ・Wの平行板MOS容量であって、それぞれの容量は以下の(1)式のように表される。
【0022】
【数1】
Figure 0003863283
ここで、εは酸化膜の誘電率、Wはチャネル幅とする。
【0023】
残りの領域10は、絶縁破壊が発生しない限りにおいて、その容量C10の値は有限値となる。よって、この谷部における全容量C1 は、次の(2)式のようになる。
【0024】
【数2】
Figure 0003863283
一方で、浮遊ゲートFGの上部におけるトンネル酸化膜14の容量C2 は、
【0025】
【数3】
Figure 0003863283
のように表される。
【0026】
従って、絶縁膜13の容量C1 に対するトンネル酸化膜14の容量C2 の容量結合比γは、以下のようである。
【0027】
【数4】
Figure 0003863283
但し、簡単のため、絶縁膜13とトンネル酸化膜14とは比誘電率が等しい酸化膜で構成されているものとした。
【0028】
ここで、本実施の形態の特徴である浮遊ゲートFGと制御ゲートCGとの間においてFNトンネリング現象を利用したデータの書き込み又は消去を可能にするためには、以下の(5)式のような条件が成立する必要がある。
【0029】
【数5】
Figure 0003863283
ここで、電圧に関する単位は全て〔V〕とする。
【0030】
(5)式において、第1項及び第2項から成る不等式は、浮遊ゲートFGと制御ゲートCGとの間でFNトンネリングが発生するための制御電圧VG の下限を示し、第2項及び第3項から成る不等式は、半導体基板11と浮遊ゲートFGとの間でFNトンネリングが発生しないための制御電圧VG の上限値を示す。
【0031】
また、高電圧を印加するデータの書き込み又は消去時において、基板と浮遊ゲートFGとの間の薄い絶縁膜13に直接トンネル電流が流れても、浮遊ゲートFGと制御ゲートCGとの間で電子の注入又は引き抜きが可能となるためには、以下の(6)式が成立する必要がある。
【0032】
【数6】
Figure 0003863283
さらに、電子の注入速度及び引き抜き速度が低下しないようにするためには、トンネル酸化膜14に印加される電界F2 は、109 〔V/m〕程度が要求されるので、この部分の電圧V2 をトンネル酸化膜14の膜厚t2 で除した値F2 は、以下のようである。
【0033】
【数7】
Figure 0003863283
ここで、長さに関する単位は、全てオングストロームとする。
【0034】
上記(5)式及び(7)式より、以下の(8)式が導かれる。
【0035】
【数8】
Figure 0003863283
さらに上記(6)式においてγを0とすると、上記(8)式を用いることにより次の(9)式が得られる。
【0036】
t1 >24 (9)
この(8)式及び(9)式より、絶縁膜13の膜厚t1 とトンネル酸化膜14の膜厚t2 と、容量結合比γとの関係式が明らかにされた。
【0037】
次に、本実施の形態における最大閾値電圧Vthと制御電圧VG との関係について考察する。浮遊ゲートFGに電子を注入した後に、データを読み出す際の閾値電圧Vthは、Vthより高い読み出し時の電圧によって浮遊ゲートFGから電子が引き抜かれないように設定しなければならない。
【0038】
基板11の谷部における絶縁膜13に印加される電圧V1 によって、その表面に反転層が形成されるが、そのときの閾値電圧Vthは次の(10)式のように表される。
【0039】
【数9】
Figure 0003863283
ここで、NA はアクセプター不純物密度であり、その単位は〔cm-3〕とする。この(10)式において不等号が用いられているが、第1項及び第2項から成る不等式は、制御電圧VG が閾値Vthよりも高くなければならないことを示し、第2項及び第3項から成る不等式は、データ読み出し時において上述したように制御電圧VG がFNトンネリングを発生させる値よりも低くなければならないことを示している。
【0040】
また、この場合に製造工程に対して、以下の(11)式で表されるような条件が必要となる。
【0041】
【数10】
Figure 0003863283
この(11)式で示された条件と、上記(8)式が示す条件とを考慮すると、次の(12)式が成立しなければならない。
【0042】
【数11】
Figure 0003863283
ここで、NA を1017〔cm-3〕とすると、t1 <2100オングストロームとなる。実際のセルにおける絶縁膜13の膜厚t1 は、2100オングストロームよりもはるかに小さい値をとるので、殆ど考慮する必要のない条件である。
【0043】
次に、絶縁膜13の膜厚t1 に対するトンネル酸化膜t2 の膜厚比t2 /t1 の上限を、上記(6)式を用いて図3に示す。この図からも明らかなように、膜厚比t2 /t1 は容量結合比の逆数1/γに対して、単調に増加することがわかる。また、膜厚比t2 /t1 は制御ゲート電圧VG に対しても、3〜10〔V〕の範囲内では単調に増加する。
【0044】
ここで、この図3に示された範囲内では、膜厚比t2 /t1 は常に0.5以上の値を取っている。そこで、具体的なセルの一例として、絶縁膜t1 の膜厚を100オングストローム、トンネル酸化膜t2 の膜厚を50オングストロームとし、さらに、s1 がs2 の2倍以上ある場合を考えると、上記(8)式より、次の(13)式を導くことができる。
【0045】
γ-1>s1 /s2 >2 (13)
この(13)式と上記(5)式とを用いることにより、データの書き込み又は消去時には、次の(14)式で表されるような制御ゲート電圧VG が必要となることがわかる。
【0046】
4.5<VG <8.1 (14)
この(14)式で示されたように、本実施の形態によれば、基板と制御ゲートとの間に印加する電圧は、4.5〜8.1〔V〕というように従来のものよりも大幅に低減される。
【0047】
以下に、本実施の形態による半導体記憶装置の製造方法について図4及び図5を用いて説明する。
【0048】
先ず、図4を用いて半導体基板の表面に鋸歯状の加工を行う手順を説明する。図4(a)のように、p型半導体基板11の(100)表面に、n型不純物拡散層12を形成する。この形成は、例えば基板11の表面上にシリコン酸化膜又はシリコン窒化膜をn型不純物を導入させながら形成し、あるいは形成後に不純物をイオン注入し、熱拡散を行ってシリコン酸化膜又はシリコン窒化膜内の不純物を半導体基板11表面に拡散することで行うことができる。n型不純物拡散層12上にシリコン窒化膜51をマスク材としてCVD法により形成する。シリコン窒化膜51上に、所定の形状にパターニングされたレジスト膜52を形成する。
【0049】
図4(b)のように、レジスト膜52を用いてシリコン窒化膜51にエッチングを行う。得られたシリコン窒化膜51をマスク材として、図4(c)のように半導体基板11に結晶学的面異方性エッチング(LSIハンドブック、オーム社、第264〜265頁参照)を行い、(111)面が露出するようにV字型の溝を掘る。この時、溝の底面に半導体基板11の表面が露出するように溝の深さ及び不純物拡散層12の深さを設定する必要がある。
【0050】
図4(d)のように、溝の内部をCVD法によりシリコン酸化膜53で埋めた後、図4(e)のようにシリコン窒化膜51を剥離する。
【0051】
シリコン酸化膜53をマスクとして、半導体基板11に再び結晶学的面異方性エッチングを行い、図4(f)のようにV字型の溝を掘る。このような工程を経ることで、山部にn+ 型不純物拡散層12が形成され、谷部により拡散層12が相互に分離された鋸歯状に半導体基板11の表面が加工される。
【0052】
次に、図5を用いて谷部に浮遊ゲート及び制御ゲートを形成する手順について述べる。図5(a)のように、半導体基板11の表面が最小加工寸法Fの間隔で鋸歯状に加工されている。このような半導体基板11の表面に対してラジカル酸化を行い、図5(b)に示されたように薄いシリコン酸化膜21を形成する。この場合に、半導体基板11の谷部22において酸化剤が集中するので、シリコン酸化膜21は谷部22において他の部分よりも膜厚が相対的に厚くなる。
【0053】
図5(c)のように、グラフォーエピタキシャル成長を行うことで、谷部においてシリコン酸化膜21の表面上に、結晶性シリコンから成る浮遊ゲート23を形成する。ここで、浮遊ゲート23を構成するシリコンはエピタキシャル状であるので、従来の多結晶シリコンから成る浮遊ゲートよりも界面の状態は良好である。
【0054】
さらに、もう一度ラジカル酸化処理を行うと、谷部の表面に表れた基板11の(111)面の酸化速度が速いために、図5(d)に示されたように浮遊ゲート23の上部が尖塔状に加工されて行く。又、浮遊ゲート23の下部は酸化剤が集まらないため、他の部分より酸化の進行が遅く、その結果として谷部は丸見をおびる。
【0055】
さらに酸化処理を進めて、図5(e)に示されたように、浮遊ゲート23の表面及びシリコン酸化膜21の表面を覆うように、シリコン酸化膜24を形成する。
【0056】
図5(f)のように、浮遊ゲート23の上部に、シリコン酸化膜24を介して再度グラフォーエピタキシャル成長を行うことで、制御ゲート25を形成する。このようにして形成された制御ゲート25の下部は、谷部の形状に対応した形状を有し、上部が尖塔状である浮遊ゲート23とセルフアライメントでその先端の位置が一致し対向するように配置される。この後、図5(g)のようにCVD法を用いてシリコン酸化膜26を全体に堆積する。以上のような工程を経ることで、本実施の形態による半導体記憶装置を製造することが可能である。
【0057】
次に、本実施の形態による半導体記憶装置をNAND型E2 PROMに適用した場合について述べる。この場合の回路構成は、図6に示されているようである。ソース側のセレクトゲート用トランジスタT1の一方の端子はセレクト線SLに接続され、このトランジスタT1の他方の端子と、浮遊ゲート及び制御ゲートを有するメモリセルMC1〜MC4の両端子と、ドレイン側のセレクトゲート用トランジスタT2の一方の端子が直列に接続され、トランジスタT2の他方の端子がビット線コンタクトBLCを介してビット線BLに接続されている。トランジスタT1のセレクトゲートにはセレクトゲート線SGSが接続され、メモリセルMC1〜MC4のそれぞれの制御ゲートにはワード線WL1〜WL4が接続され、トランジスタT2のセレクトゲートにはセレクトゲート線SGDが接続されている。
【0058】
このような回路構成を有するNAND型E2 PROMに本実施の形態による半導体記憶装置を適用すると、図7に示されるような断面構成を有するものとなる。p型半導体基板11の表面が鋸歯状に加工されており、それぞれの山部にn型不純物領域12が形成されている。半導体基板11において順に隣接した6つの谷部を単位として、トランジスタT1、メモリセルMC1〜MC4、トランジスタT2がそれぞれ配置され、トランジスタT1は谷部にセレクトゲートSGSを有し、メモリセルMC1〜MC4は、それぞれの谷部に浮遊ゲートFG1〜FG4と制御ゲートCG1〜CG4とを有し、トランジスタT2は谷部にセレクトゲートSGDを有する。トランジスタT1の一方の端子に対応するn型不純物領域12(T1a)はセレクト線SLに接続され、トランジスタT2の一方の端子に対応するn型不純物領域12(T2b)はビット線BLに接続される。
【0059】
トランジスタT1の他方の端子に対応するn型不純物領域12(T1b)は、メモリセルMC1の一方のn型不純物領域12(MC1a)と同一の山部において共有し、メモリセルMC1の他方のn型不純物領域12(MC1b)とメモリセルMC2の一方のn型不純物領域12(MC2a)とは同一の山部により共有する。メモリセルMC2の他方のn型不純物領域12(MC2b)とメモリセルMC3の一方のn型不純物領域12(MC3a)とは同一の山部において共有し、メモリセルMC3の他方のn型不純物領域12(MC3b)とメモリセルMC4の一方のn型不純物領域12(MC4a)とは同一の山部において共有する。同様に、メモリセルMC4の他方のn型不純物領域12(MC4b)とトランジスタT2の他方の端子に対応するn型不純物領域12(T2a)とは、同一の山部で共有している。
【0060】
また、トランジスタT1のセレクトゲートSGS及びトランジスタT2のセレクトゲートSGDは、メモリセルトランジスタMC1〜MC4の浮遊ゲートFG1〜FG4と同一の工程で形成してもよく、あるいはメモリセルトランジスタMC1〜MC4の制御ゲートCG1〜CG4と同一の工程で形成してもよい。
【0061】
このように、本実施の形態をNAND型E2 PROMに適用することで、鋸歯状に加工された半導体基板の谷部を単位としてトランジスタT1、T2、メモリセルMC1〜MC2を連続的に配置することで集積度が向上し、さらにそれぞれの不純物領域12の素子分離も谷部を利用することで容易に行うことができる。
【0062】
上述した実施の形態は一例であり、本発明を限定するものではない。例えば、上記実施の形態による製造方法における各種製造条件や膜厚、材質等は一例であり、必要に応じて変えることができる。また、本発明による半導体記憶装置は、NAND型E2 PROMに限らず他の各種記憶装置に適用してもよい。
【0063】
【発明の効果】
以上説明したように、本発明の半導体記憶装置及びその製造方法によれば、鋸歯状に加工された半導体基板の谷部において、上部が尖塔状の形状を有する浮遊ゲートと、谷部の形状に応じて下方に向かって鋭角的な形状を有する制御ゲートとが対向するように配置されていることで、データの書き込み又は消去時に必要な最大動作電圧が低減されると共に、集積度を向上させることが可能である。
【図面の簡単な説明】
【図1】本発明のー実施の形態による半導体記憶装置の構成を示した縦断面図。
【図2】同半導体記憶装置における浮遊ゲートの断面をより詳細に示した縦断面図。
【図3】同半導体記憶装置における膜厚比、制御ゲート電圧、容量結合比の関係を示したグラフ。
【図4】同半導体記憶装置を製造する前段階として半導体基板の表面に鋸歯状の加工を行う手順を示した縦断面図。
【図5】同半導体記憶装置を製造するときの工程別の素子の断面構造を示した縦断面図。
【図6】NAND型E2 PROMの回路構成を示した回路図。
【図7】同NAND型E2 PROMに本実施の形態を適用した場合の断面構造を示した縦断面図。
【符号の説明】
11 p型半導体基板
12 n+ 型不純物領域
13、15、21、22、26、53 シリコン酸化膜
14、24 トンネル酸化膜
51 シリコン窒化膜
52 レジスト膜
FG、23 浮遊ゲート
CG、25 制御ゲート
WL1〜WL4 ワード線
SL セレクト線
SGS、SGD セレクトゲート
BL ビット線
MC1〜MC4 メモリセル
T1、T2 セレクトゲート用トランジスタ

Claims (5)

  1. 表面が鋸歯状に加工されて形成された山部と谷部とを有する半導体基板と、
    前記半導体基板の谷部において第1の絶縁膜を介して形成され、上部が尖塔状に加工された浮遊ゲートと、
    前記半導体基板の谷部において前記浮遊ゲートの上部に第2の絶縁膜を介して形成され、下部が谷部に応じた形状を有する制御ゲートと、
    を備え、
    前記浮遊ゲートの上部の先端と前記制御ゲートの下部の先端とが前記第2の絶縁膜を介して対向するように配置されていることを特徴とする半導体記憶装置。
  2. 前記浮遊ゲートへの電子の注入、又は注入された電子の引き抜きを、前記第2の絶縁膜を介して前記浮遊ゲートと前記制御ゲートとの間にトンネル電流を発生させて行うことを特徴とする請求項1記載の半導体記憶装置。
  3. 前記半導体基板と前記第1の絶縁膜と前記浮遊ゲートとにより形成される第1の容量と、前記浮遊ゲートと前記第2の絶縁膜と前記制御ゲートとにより形成される第2の容量との容量結合比が、前記浮遊ゲートの底面の寸法と前記制御ゲートの底面の寸法との比率により設定されることを特徴とする請求項1又は2記載の半導体記憶装置。
  4. セレクトゲートを有する第1のトランジスタの一方の端子と、浮遊ゲート及び制御ゲートを有する少なくとも二つのメモリセルトランジスタのそれぞれの両端子と、セレクトゲートを有する第2のトランジスタの一方の端子とが直列に接続され、前記第1のトランジスタの他方の端子はセレクト線に接続され、前記第2のトランジスタの他方の端子はビット線に接続されたNAND型不揮発性記憶装置であって、
    表面が鋸歯状に加工されて形成された山部と谷部とを有し、山部には不純物拡散層が形成され、それぞれの不純物拡散層が谷部により相互に分離された半導体基板において、
    前記第1のトランジスタは、谷部に第1の絶縁膜、又は第1及び第2の絶縁膜を介して形成されたセレクトゲートと、この谷部の両側の山部にそれぞれ形成された不純物拡散層とを有し、
    少なくとも二つの前記メモリセルトランジスタは、前記第1のトランジスタのセレクトゲートが形成された谷部に隣接する連続した少なくとも二つの谷部にそれぞれ前記第1の絶縁膜を介して形成された上部が尖塔状の浮遊ゲートと、この浮遊ゲートの上部に前記第2の絶縁膜を介して対向するようにそれぞれ形成された制御ゲートと、それぞれの谷部の両側の山部に形成された不純物拡散層とを有し、
    前記第2のトランジスタは、前記メモリセルトランジスタの浮遊ゲートが形成された連続する少なくとも二つの谷部にさらに隣接する谷部に前記第1の絶縁膜、又は前記第1及び第2の絶縁膜を介して形成されたセレクトゲートと、この谷部の両側の山部にそれぞれ形成された不純物拡散層とを有し、
    前記第1のトランジスタが有する二つの不純物拡散層のうち隣接する前記メモリセルトランジスタと共有しないものはセレクト線に接続され、前記第2のトランジスタが有する二つの不純物拡散層のうち隣接する前記メモリセルトランジスタと共有しないものはビット線に接続されることを特徴とする半導体記憶装置。
  5. 半導体基板の表面を鋸歯状に加工し、山部と谷部とを形成する工程と、
    前記半導体基板の谷部の上部に第1の絶縁膜を形成する工程と、
    前記半導体基板の谷部において、前記第1の絶縁膜の表面上に導電材を堆積して浮遊ゲートを形成する工程と、
    さらに絶縁膜を形成する処理を行うことにより、前記浮遊ゲートの上部を尖塔状に加工する工程と、
    前記半導体基板の谷部において、前記浮遊ゲートの表面及び前記第1の絶縁膜を覆うように第2の絶縁膜を形成する工程と、
    前記半導体基板の谷部において、前記第2の絶縁膜を介して前記浮遊ゲートの上部に導電材を堆積して制御ゲートを形成する工程であって、前記制御ゲートの下部が下向きに凸状になっており、前記浮遊ゲートの尖塔状の上部の位置と自動的に一致する工程と、
    を備えたことを特徴とする半導体記憶装置の製造方法。
JP06724698A 1998-03-16 1998-03-17 半導体記憶装置及びその製造方法 Expired - Fee Related JP3863283B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP06724698A JP3863283B2 (ja) 1998-03-17 1998-03-17 半導体記憶装置及びその製造方法
US09/267,607 US6252272B1 (en) 1998-03-16 1999-03-15 Semiconductor device, and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06724698A JP3863283B2 (ja) 1998-03-17 1998-03-17 半導体記憶装置及びその製造方法

Publications (2)

Publication Number Publication Date
JPH11265948A JPH11265948A (ja) 1999-09-28
JP3863283B2 true JP3863283B2 (ja) 2006-12-27

Family

ID=13339385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06724698A Expired - Fee Related JP3863283B2 (ja) 1998-03-16 1998-03-17 半導体記憶装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP3863283B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100751666B1 (ko) * 2001-12-13 2007-08-23 주식회사 하이닉스반도체 자기정렬 플로팅 게이트를 갖는 플래쉬 메모리의 제조 방법
US7342272B2 (en) * 2005-08-31 2008-03-11 Micron Technology, Inc. Flash memory with recessed floating gate

Also Published As

Publication number Publication date
JPH11265948A (ja) 1999-09-28

Similar Documents

Publication Publication Date Title
EP0320231B1 (en) Erasable programmable memory
US5231299A (en) Structure and fabrication method for EEPROM memory cell with selective channel implants
US6541326B2 (en) Nonvolatile semiconductor memory device and process of production and write method thereof
US5596213A (en) Shallow trench source EPROM cell
US7326991B2 (en) Nonvolatile semiconductor memory and method of operating the same
US4835741A (en) Frasable electrically programmable read only memory cell using a three dimensional trench floating gate
JP3397903B2 (ja) 不揮発性半導体記憶装置の製造方法
US4796228A (en) Erasable electrically programmable read only memory cell using trench edge tunnelling
JP2003078043A (ja) 半導体記憶装置
KR0138312B1 (ko) 비휘발성 반도체 메모리장치의 제조방법
JPH10189776A (ja) 不揮発性半導体記憶装置およびその製造方法
KR0144421B1 (ko) 플레쉬 이.이.피.롬의 제조방법
TW201709528A (zh) 半導體裝置及其製造方法
JP2008166379A (ja) 半導体記憶装置及びその製造方法
US4233616A (en) Semiconductor non-volatile memory
KR940005898B1 (ko) 불휘발성 반도체장치
US5394002A (en) Erasable programmable memory
US4713142A (en) Method for fabricating EPROM array
JPH09321254A (ja) 不揮発性半導体記憶装置及びその製造方法
US6144064A (en) Split-gate EEPROM device having floating gate with double polysilicon layer
US6025229A (en) Method of fabricating split-gate source side injection flash memory array
JP3863283B2 (ja) 半導体記憶装置及びその製造方法
JP2002026151A (ja) 半導体メモリ装置
US7084453B2 (en) Method of forming different oxide thickness for high voltage transistor and memory cell tunnel dielectric
JP3173907B2 (ja) 不揮発性記憶素子およびその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees