JP3859406B2 - バス電源装置及びノード - Google Patents

バス電源装置及びノード Download PDF

Info

Publication number
JP3859406B2
JP3859406B2 JP29818199A JP29818199A JP3859406B2 JP 3859406 B2 JP3859406 B2 JP 3859406B2 JP 29818199 A JP29818199 A JP 29818199A JP 29818199 A JP29818199 A JP 29818199A JP 3859406 B2 JP3859406 B2 JP 3859406B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
node
serial bus
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29818199A
Other languages
English (en)
Other versions
JP2001119417A (ja
Inventor
正久 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29818199A priority Critical patent/JP3859406B2/ja
Priority to US09/690,434 priority patent/US7010703B1/en
Publication of JP2001119417A publication Critical patent/JP2001119417A/ja
Application granted granted Critical
Publication of JP3859406B2 publication Critical patent/JP3859406B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40052High-speed IEEE 1394 serial bus

Description

【0001】
【発明の属する技術分野】
本発明は、IEEE1394規格に好適な、シリアルバスに接続されるノード、及び、そのノードを構成するバス電源装置に関する。
【0002】
【従来の技術】
IEEE1394規格の情報ネットワークにおいては、情報処理機器の他、音響映像機器(AV機器)やリピータその他の種々のノードを、最大63個まで同一のシリアルバス上に接続することができる。
【0003】
そして、IEEE1394規格のシリアルバスは、デジタルシリアル信号を伝搬する信号ラインとともに、電源ラインを備えている。このため、このシリアルバスに接続されたノードは、電源ラインを介して、他のノードから電力供給を受けて動作することができる。その結果、IEEE1394規格の情報ネットワークにおいては、必ずしも全てのノードがそれぞれ商業電源等の電源を個別に用意する必要はないという利点がある。以下、各ノードが個別に用意する固有の電源を、便宜的に「内部電源」とも称する。これに対して、シリアルバスを介して他のノードから直流電圧が印加される場合の電源を「バス電源」とも称する。
【0004】
ここで、図5に、IEEE1394規格による情報ネットワークの一例を示す。図5では、一つのバスライン110に、五つのノード101、102、103、104及び105が接続されている例を模式的に示している。この例では、ノード101及びノード105に、商業電源から電源電圧が供給されているので、他のノード102〜104にも、ノード101又はノード105からバスライン110を介して電力が供給される。したがって、ノード102〜104では、内部電源を用意する必要がない。
【0005】
次に、図6を参照して、従来のIEEE1394規格のシリアルバスに接続される一つのノードについて説明する。
なお、ノードは、リピータ等を除き、バス電源回路等の主要構成要素の他にリンク層などの種々の構成要素を有するのが一般的であるが、以下の各図においては、発明の理解を容易にするため、主要構成要素のみを図示して説明する。
【0006】
図6では、IEEE1394−1995で規定されたノードの構成例を示す。図6に示すように、ノード100cは、電源回路2、DC−DCコンバータ5及び物理層(PHY)6を備え、二つのコネクタ8及び9を介してそれぞれシリアルバスに接続されている。
【0007】
各コネクタ8及び9は、それぞれ電源端子81及び91と、信号端子82及び92とを備えている。電源端子81及び91には、シリアルバスの電源ラインから直流電圧が印加される。さらに、ノード100cでは、二つのコネクタ8及び9の電源端子81及び91どうしが導通している。このため、ノード100cは、シリアルバスを介して印加された直流電圧を、他のノードへ中継することができる。
【0008】
一方、信号端子82及び92では、シリアルバスの信号ラインから信号が入出力される。そして、二つの信号端子82及び92のうちの一方の信号端子から入力された信号は、物理層6でローカル・クロックによるデータの再同期化が行われ、他方の信号端子から出力される。
これにより、シリアルバスライン上で隣接していないノードどうしの信号のやり取りを中継することができる。
【0009】
また、電源回路2は、この信号を授受する物理層6及びシリアルバスへ直流電圧を供給するための手段である。そのため、電源回路2は、電源電圧入力端子1から入力された電源電圧を、シリアルバスに供給するのに適した直流電圧に変換して出力する。出力された直流電圧は、逆流防止のダイオード7を介して、電源端子81及び91へ印加されるとともに、DC−DCコンバータ5へ印加される。
【0010】
DC−DCコンバータ5には、電源回路2からだけでなく、電源端子81を介してシリアルバスからも直流電圧が印加される。そして、DC−DCコンバータ5は、入力された直流電圧を、物理層6へ供給するのに適した直流電圧に変換して出力する。出力された直流電圧は、物理層6へ印加される。
したがって、ノード100cは、バス電源からシリアルバスを介して印加される直流電圧と、内部電源から電源回路2を介して印加される直流電圧とのうちの、どちらの直流電圧によっても物理層6を駆動することができるように構成されている。
【0011】
ところで、シリアルバスには、IEEE1394の規格により、DC+8V〜DC+40Vと広い範囲内の直流電圧を印加することができる。また、IEEE1394を改良した「IEEE1394a Draft Standard」の規格においては、DC+20V〜DC+33Vの範囲内で直流電圧を印加することができる。
【0012】
その結果、シリアルバスで互いに接続された種々のノードの電源回路2からシリアルバスへそれぞれ印加される直流電圧が、ノードどうしで異なる場合がある。その場合、最も高い直流電圧が、シリアルバス全体に印加されることになる。このため、最も高い電圧を供給するノードが、他のノードの内部電源からの電力供給の有無に関係なく、シリアルバス上の全ノードの物理層へ電力を供給しなければならなくなるという問題があった。
【0013】
例えば、図5に示したシリアルバスの情報ネットワークにおいて、第一及び第二ノード101及び102の両方に電源電圧が供給されている場合、第一ノード101の供給電圧が、第二ノード102の供給電圧よりも高いときには、第一ノード101が、第二ノード102を含めた各ノードの分まで電力を供給しなければならない。すなわち、第二ノード102が内部電源を有するにもかかわらず、第一ノード101から第二ノード102へ電力が供給されてしまう。
【0014】
そこで、この問題を解決するため、「IEEE1394a Draft Standard」では、ノードのバス電源装置の構成を改良している。
ここで、図7に、改良されたノード100dの構成例を示す。図7に示すように、改正されたノード100dは、上述のノード100cと同様の構成要素を有するが、電源回路2、DC−DCコンバータ5、及び、二つの電源端子81及び91それぞれを結ぶ配線経路が異なっている。
【0015】
すなわち、ノード100dでは、電源回路2から出力された直流電圧は、逆流防止用のダイオード7を介して電源端子81へ印加されるとともに、ダイオード14を介して電源端子91へ印加されている。
また、電源端子81から印加された直流電圧は、ダイオード11を介してDC−DCコンバータ5へ印加され、一方、電源端子91から印加された直流電圧はダイオード12を介してDC−DCコンバータ5へ印加される。
【0016】
その結果、ノード100dにおいては、電源端子81及び91を結ぶ二つの配線経路上に、必ず、二つのダイオードが互いに逆向きに直列に設けられることになる。このため、ノード100dにおいては、両電源端子81及び91間に直流電流が流れない構成となっている。
【0017】
例えば、電源端子81からダイオード11及び12を経て電源端子91へ至る経路では、電源端子81から電源端子91へ向かう電流は、ダイオード12のため流れず、その反対向きの電流は、ダイオード11のため流れない。また、電源端子81からダイオード7及び14を経て電源端子91へ至る経路では、電源端子81から電源端子91へ向かう電流は、ダイオード7のため流れず、その反対向きの電流は、ダイオード14のため流れない。
【0018】
したがって、改良されたノード100dは、シリアルバスにより接続された全ノードのうち、隣接するノードにのみ直流電圧を印加できる構成となっている。このため、最も高い直流電圧のノードに要求される供給電力量の低減を図ることができる。
【0019】
【発明が解決しようとする課題】
しかしながら、この改良されたノードでは、両電源端子81及び91間に直流電流が流れないため、シリアスバスから印加された直流電圧を他のノードへ中継することができない。このため、隣接したノード以外の他のノードには、直流電圧を印加することができないという問題があった。すなわち、内部電源のないノードには、隣接するノードが電力を供給しなければならないという制約があった。
【0020】
例えば、図5に示した例では、内部電源のない第二ノード102には、隣の第一ノード101からシリアスバスを介して直流電圧が印加される。また、第四ノード104には、隣の第五ノード105からシリアスバスを介して直流電圧が印加される。
【0021】
しかし、第三ノード103及びその隣接ノードには、いずれも電源電圧が無いため、第三ノード103には、どこからも直流電圧を印加することができない。このため、第三ノード103の物理層が駆動せず、第三ノード103は信号を中継することができない。その結果、第一及び第二ノード101及び102と、第四及び第5ノード104及び105との間では、信号をやり取りすることができない。すなわち、シリアルバスによる情報ネットワークを構成することができない。
【0022】
その上、改良されたノードにおいても、互いに隣接したノードの両方に電源電圧がそれぞれ供給されている場合、最も高い直流電圧が両方のノードへ印加されることになる。このため、より高い直流電圧を出力する方のノードは、他方のノードが内部電源を有していても、その他方のノードの分まで電力を供給しなくてはならないという問題があった。
【0023】
本発明は、上記の問題を解決すべくなされたものであり、シリアルバスから印加された直流電圧の中継を確保しつつ、かつ、内部電源を有する場合には、他のノードからの直流電圧を物理層に印加されないようにすることができるバス電源装置、及び、それを用いたノードの提供を目的とする。
【0024】
【課題を解決するための手段】
この目的の達成を図るため、本発明の請求項1に係るバス電源装置によれば、ノードの物理層、及び、互いに導通した複数のコネクタを介してこのノードに接続されたシリアルバスへ、このノードの電源電圧から電力を供給できるように構成されたバス電源装置であって、前記ノードの電源電圧の非供給時に、前記シリアルバスから前記物理層へ直流電圧を供給し、前記ノードの電源電圧の供給時に、バス電源の電圧に関係なく、前記シリアルバスから前記物理層へ直流電圧を供給する経路を遮断して、前記ノードの電源電圧から前記物理層へ直流電圧を供給する構成としてある。
【0025】
このように、本発明のバス電源装置によれば、複数のコネクタの電源端子どうしが導通しているので、シリアスバスから印加された直流電圧を他のノードへ中継することができる。このため、隣接したノード以外の他のノードにも、直流電圧を印加することができる。
【0026】
さらに、本発明では、電源電圧の非供給時にシリアルバスから直流電圧を供給し、一方、電源電圧の供給時にその電源電圧から直流電圧を供給する構成としてある。このように、ノードが内部電源を有する場合、シリアルバスから物理層へ直流電圧を供給する経路を遮断することにより、物理層に他のノードからの直流電圧を印加されないようにすることができる。このため、内部電源を有するノードへは、他のノードからシリアルバスを介して電力を供給されない。その結果、最も高い直流電圧のノードに要求される供給電力量を、内部電源を有するノードの分だけ低減することができる。
【0027】
また、請求項2記載の発明によれば、バス電源装置として、前記電源電圧の供給の有無を検出する電圧検出手段と、前記電圧検出手段が電源電圧供給を、未検出の場合に、前記シリアルバスからの直流電圧を前記物理層へ供給し、検出した場合にシリアルバスから前記物理層へ直流電圧を供給する経路を遮断して、この電源電圧からの直流電圧を前記物理層へ供給する選択手段とを備えた構成としてある。
【0028】
このように、電圧検出手段と選択手段とを設ければ、電圧検出手段により、電源電圧の供給を検出し、選択手段により、電源電圧印加時と非印加時とで物理層へ供給する直流電圧源を切り替えることができる。
【0029】
また、請求項3記載の発明によれば、バス電源装置として、前記電源電圧を前記シリアルバス用の直流電圧に変換して出力する電源回路と、前記電源回路から出力された直流電圧を、前記物理層用の直流電圧に変換する電圧変換手段と、前記電源回路への前記電源電圧の供給の有無を検出する電圧検出手段と、前記電源回路に、前記電源電圧が供給されていない場合に、前記シリアルバスから印加されている直流電圧を前記電圧変換手段へ供給し、前記電源電圧が供給されている場合には前記シリアルバスから前記電圧変換手段へ直流電圧を供給する経路を遮断して、前記電源回路の出力を前記電圧変換手段へ供給する選択手段とを備えた構成としてある。
【0030】
このように、電源回路、電圧変換手段、電圧検出手段及び選択手段を設ければ、電源回路により、シリアルバスへ供給するのに適した直流電圧を出力し、電圧変換手段により、その直流電圧を物理層へ供給するのに適した直流電圧へ更に変換することができる。このため、シリアルバスへ印加する直流電圧と異なる直流電圧を物理層へ印加することができる。
【0031】
その上で、電圧検出手段により、この電源回路への電源電圧の供給を検出する。そして、この検出結果に基づいて、選択手段により、電源電圧の印加時と非印加時とで、電圧変換手段へ供給する直流電圧源を切り替えることができる。
【0032】
また、請求項4記載の発明によれば、電圧検出手段は、電源回路の出力電圧を検出することにより、電源電圧の供給の有無を検出する構成としてある。
このような構成とすれば、電源電圧が供給されているにもかかわらず、電源回路の故障等のため、電源回路から物理層へ直流電圧が出力されていないときに、電源電圧から物理層へ電力が供給されていないことを確実に検出することができる。したがって、電源回路が故障した場合にも、シリアルバスからの直流電圧を物理層へ確実に供給することができる。
【0033】
また、請求項5記載の発明によれば、選択手段として、電源電圧から電力を物理層へ供給する第一経路と、シリアルバスからの電力を物理層へ供給する第二経路とを備え、電源電圧から電力が供給されている場合に、第二経路を遮断する構成としてある。
【0034】
このように、電源電圧供給時に第二経路を遮断すれば、シリアルバスから物理層へ直流電圧が印加されなくなる。これにより、内部電源を有するノードへは、他のノードからシリアルバスを介して電力が供給されなくなる。その結果、最も高い直流電圧のノードに要求される供給電力量を、内部電源を有するノードの分だけ低減することができる。
なお、第一経路は、電源電圧非印加時に、遮断しても良いし、導通させておいても良い。ただし、導通させておく場合には、第一経路上に、ダイオード等の逆流を防ぐための手段を設けることが必要である。
【0035】
また、請求項6記載の発明によれば、選択手段として、半導体スイッチを備えた構成としてある。
このように、選択手段としてトランジスタ等の半導体スイッチを設ければ、電圧検出手段の出力電圧によって、半導体スイッチの導通及び遮断による経路の切替選択を容易に制御することができる。
【0036】
また、請求項7記載の発明によれば、電圧検出手段として、コンパレータを備えた構成としてある。
この構成によれば、電源電圧又は電源回路の出力電圧と基準電圧とを比較することにより、容易に電源電圧の供給を検出することができる。
【0037】
また、請求項8記載の発明によれば、電圧検出手段及び選択手段として、リレー素子を備えた構成としてある。
リレー素子に電源電圧を供給することによりリレーの接点を変位させることができる。そして、この接点を物理層へ印加される直流電圧源の切り替えに利用すれば、リレー素子を電圧検出手段及び選択手段として用いることができる。
【0038】
また、本発明の請求項9記載のノードによれば、シリアルバスに接続されるノードであって、シリアルバスに接続され、他のノードからの直流電圧が印加される電源端子と、他のノードからの信号が入力出力される信号端子とをそれぞれ有する複数のコネクタと、一方のコネクタの信号端子から入力された信号を、他方のコネクタの信号端子から出力する物理層と、電源電圧から前記物理層及び前記シリアルバスへ電力を供給できるように構成されたバス電源装置とを備えたノードであって、前記複数のコネクタの電源端子どうしを互いに導通してあり、前記バス電源装置は、前記ノードの電源電圧の非供給時に、前記電源端子を介してシリアルバスから前記物理層へ直流電圧を供給し、前記ノードの電源電圧の供給時に、バス電源の電圧に関係なく、前記シリアルバスから前記物理層へ直流電圧を供給する経路を遮断して、前記ノードの電源電圧から前記物理層へ直流電圧を供給する構成としてある。
【0039】
このように、本発明のノードによれば、シリアスバスから印加された直流電圧を他のノードへ中継することができるとともに、内部電源を有する場合には、シリアルバスから物理層へ直流電圧を供給する経路を遮断して、他のノードからの物理層へ直流電圧を印加されないようにすることができる。このため、シリアルバスから印加される直流電圧の中継を確保しつつ、最も高い直流電圧のノードに要求される供給電力量を、内部電源を有するノードの分だけ低減することができる。
【0040】
【発明の実施の形態】
以下、本発明のバス電源装置及びそれを備えたノードの実施の形態について、図面を参照して併せて説明する。
【0041】
[第一実施形態]
まず、図1を参照して、本発明の第一実施形態について説明する。
図1は、第一実施形態のノード100、特に、そのノード100を構成するバス電源回路10の構成を説明するためのブロック図である。図1に示すように、第一実施形態のノード100は、図6に示した従来のノード100cと同様に、物理層(PHY)6、第一コネクタ8及び第二コネクタ9を備えている。これら二つのコネクタ8及び9は、互いに導通している。
なお、従来と同じ構成成分については、その詳細な説明を省略する。
【0042】
そして、本実施形態のノード100は、さらにバス電源回路10を備えている。バス電源回路10は、電源電圧の非供給時には、バス電源からシリアルバス介して物理層6へ直流電圧を供給し、一方、電源電圧入力端子1から内部電源としての電源電圧が供給されているときは、必要に応じてシリアルバスへ直流電源を印加するとともに、内部電源から物理層6へ直流電圧を供給する。
【0043】
このような機能を実現するため、このバス電源回路10は、電源回路2、電圧検出手段3、選択手段としてのセレクタ4、電圧変換手段としてのDC−DCコンバータ5を備えている。そして、電源回路2とコネクタの電源端子81及び91とは、この電源端子81及び91からこの電源回路2への電流の逆流を防止するダイオードを介して接続されている。
【0044】
この電源回路2は、電源電圧入力端子1に印加された、商業電圧(例えば交流100V)の電源電圧をシリアルバス用の直流電圧に変換して出力する。本実施形態では、電源回路2は、「IEEE1394a Draft Standard」の規格を満たす、DC+20V〜DC+33Vの範囲内の直流電圧として、例えば24Vの直流電圧を出力する。
【0045】
また、DC−DCコンバータ5は、電源回路から出力された直流電圧を、物理層用の直流電圧に変換する。本実施形態では、DC−DCコンバータ5は、IEEE1394の規格を満たす、DC+8V〜DC+40Vの範囲内の直流電圧に対応できるように構成されている。そして、DC−DCコンバータ5は、入力された直流電圧を、物理層用として、例えば3.3Vの直流電圧に変換する。
【0046】
また、電圧検出手段3は、電源電圧入力端子1から電源回路2への電源電圧の供給の有無を検出する。本実施形態では、電圧検出手段3は、電源回路2の出力電圧を検出することにより、電源電圧の供給の有無を検出する。このようにすれば、電源回路2が故障した場合にも、電源電圧が供給されていないと判断することができる。
【0047】
セレクタ4は、DC−DCコンバータ5を介して物理層6へ印加される直流電圧源を切り替える手段である。そして、電源回路2に電源電圧が供給されていない場合、セレクタ4は、バス電源からシリアルバスを介して印加されている直流電圧を物理層6へ供給する。一方、電源回路2に内部電源からの電源電圧が供給されている場合、セレクタ4は、シリアルバスから物理層6へ直流電圧を供給する経路を遮断して、電源回路2の出力を物理層6へ供給する。
【0048】
このように、第一実施形態のノードによれば、シリアスバスから印加された直流電圧を他のノードへ中継することができるとともに、内部電源を有する場合には、シリアルバスから物理層へ直流電圧を供給する経路を遮断して、他のノードから物理層へ直流電圧を印加されないようにすることができる。このため、ネットワーク上で最も高い直流電圧のノードに要求される供給電力量を、本発明のノードのうち内部電源を有するノードの分だけ低減することができる。
【0049】
[第二実施形態]
次に、図2を参照して、本発明の第二実施形態について説明する。
図2は、第二実施形態のノード100a、特に、そのノード100aを構成するバス電源回路10aの構成を説明するためのブロック図である。図2に示すように、第二実施形態のノード100aは、セレクタとして、トランジスタ41及びダイオード13を備えている。
なお、第二実施形態では、第一実施形態と同一の構成成分については同一の符号を付し、その詳細な説明を省略する。
【0050】
トランジスタ41の第一電極41aは、電源端子81及び91に接続されている。また、トランジスタ41の第二電極41bは、DC−DCコンバータ5を介して物理層6に接続されるとともに、ダイオード13を介して電源回路2に接続されている。また、このダイオード13は、電源端子81及び91から電源電圧側の電源回路2への逆流を防止するために挿入してある。
さらに、トランジスタ41の制御電極41cは、電圧検出手段3に接続されている。したがって、電圧検出手段3の出力電圧によって、トランジスタ41の導通及び遮断による経路の切替選択を容易に制御することができる。
【0051】
すなわち、第二実施形態では、電源回路2を介して電源電圧から電力を物理層6へ供給する第一経路Aと、トランジスタ41を介してシリアルバスからの電力を物理層6へ供給する第二経路Bとが設けられていることになる。
なお、図2においては、第一経路及び第二経路を、実際の経路に沿った破線A及びBで模式的に示している。
そして、電源電圧から電力が供給されている場合には、このトランジスタ41によって、第二経路Bを遮断される。すなわち、トランジスタ41によって、シリアルバスから物理層6への直流電圧印加の有無を容易に制御することができる。
【0052】
その結果、電源電圧供給時に第二経路Bを遮断すれば、シリアルバスから物理層へ直流電圧が印加されなくなる。これにより、内部電源を有するノードへは、他のノードからシリアルバスを介して電力が供給されなくなる。その結果、ネットワーク上で最も高い直流電圧のノードに要求される供給電力量を、本発明のノードのうち内部電源を有するノードの分だけ低減することができる。
【0053】
次に、図3を参照して、第二実施形態における電圧検出手段3の構成例について説明する。
図3に示す電圧検出手段3は、コンパレータ31から構成されている。このコンパレータ31では、基準電圧入力端子30に印加されている基準電圧(例えば5V)と、電源回路2の出力電圧とを比較する。そして、コンパレータ31は、出力電圧が基準電圧よりも高い場合、電源電圧が印加されているとして、コンパレータ31のオープンコレクタ出力をオフにする。一方、出力電圧が基準電圧よりも低い場合には、コンパレータ31は、電源電圧が印加されていないとして、例えばオープンコレクタ出力をオンにする。
【0054】
したがって、コンパレータ31の出力信号をトランジスタ41の制御電極41cへ印加することにより、コンパレータ31が電圧を検出した場合にのみ、シリアルバスから物理層6へ直流電圧を供給する第二経路B(図2参照)を遮断して、電源回路2の出力を電圧変換手段へ供給することができる。
【0055】
[第三実施形態]
次に、図4を参照して、本発明の第三実施形態について説明する。
図4は、第三実施形態のノード100b、特に、そのノード100bを構成するバス電源回路10bの構成を説明するためのブロック図である。図4に示すように、第三実施形態のノード100bは、電圧検出手段及び選択手段として、リレー素子15を設けた構成としてある。
なお、第三実施形態では、第一実施形態と同一の構成成分については同一の符号を付して、その詳細な説明を省略する。
【0056】
リレー素子15の本体15bには、電源回路2から電圧が印加される。したがって、電源回路2に電源電圧が印加されているときには、リレー素子15の本体15bにも電圧が印加される。その結果、電源電圧を供給することによりリレーの接点15aの位置が変位する。このため、この接点15aの変位により、物理層6へ印加される直流電圧源が、内部電源又は外部電源のいずれかに切り替えられる。
【0057】
すなわち、接点15aは、電源電圧が印加されているときには、電源端子81及び91から電力を供給する経路を遮断し、かつ、電源回路2とDC−DCコンバータ5とを接続する。一方、電源電圧が印加されていないときには、電源端子81及び91とDC−DCコンバータ5とを接続する。これにより、内部電源を有するノードでは、他のノードからシリアルバスを介して電力が供給されなくなる。その結果、ネットワーク上で最も高い直流電圧のノードに要求される供給電力量を、本発明のバス電源回路を備えたノードのうち内部電源を有するノードの分だけ低減することができる。
【0058】
上述した実施の形態においては、本発明を特定の条件で構成した例について説明したが、本発明は、種々の変更を行うことができる。例えば、上述した第二実施形態においては、第一経路A(図2参照)は、電源電圧非印加時にも導通していたが、本発明では、非印加時に遮断しても良い。
【0059】
また、上述の実施形態では、二つのコネクタを有する例について説明したが、この発明では、コネクタを少なくとも二つ以上備えていれば良い。したがって、三つ以上のコネクタを設け、それらコネクタ間で直流電圧や信号の中継をするようにしても良い。
【0060】
また、IEEE1394規格のシリアルバスで接続されたネットワークにおいては、全てのノードが本発明のバス電源装置を有することが望ましいが、必ずしも全てのノードが本発明のバス電源装置を備える必要はない。したがって、ネットワーク上の一部分のノードだけが本発明のバス電源装置を備えていても良い。
【0061】
【発明の効果】
以上、詳細に説明したように、本発明によれば、シリアスバスから印加された直流電圧を他のノードへ中継することができるとともに、内部電源を有する場合には、他のノードからの直流電圧を物理層へ印加されないようにすることができる。このため、最も高い直流電圧のノードに要求される供給電力量を、内部電源を有するノードの分だけ低減することができる。
【図面の簡単な説明】
【図1】第一実施形態を説明するためのブロック図である。
【図2】第二実施形態を説明するためのブロック図である。
【図3】第二実施形態における電圧検出手段を説明するためのブロック図である。
【図4】第三実施形態を説明するためのブロック図である。
【図5】IEEE1392規格のシリアルバスにノードを接続した情報ネットワークを示す模式図である。
【図6】従来例を説明するためのブロック図である。
【図7】従来例を説明するためのブロック図である。
【符号の説明】
1 電源電圧入力端子
2 電源回路
3 電圧検出手段
4 セレクタ
5 DC−DCコンバータ
6 物理層
7、11、12、13、14 ダイオード
8 第一コネクタ
9 第二コネクタ
10,10a、10b、10c、10d バス電源回路
15 リレー素子
30 基準電圧入力端子
31 コンパレータ
41 トランジスタ
81、91 電源端子
82、92 信号端子
100、100a〜100d、101〜105 ノード

Claims (2)

  1. ノードの物理層、及び、互いに導通した複数のコネクタを介してこのノードに接続されたシリアルバスを介して次段のノードへ、このノードの電源電圧から電力を供給できるように構成され、
    前記ノードの電源電圧の非供給時に、前記シリアルバスを介して前段のノードから前記物理層へ直流電圧を供給し、
    前記ノードの電源電圧の供給時に、バス電源の電圧に関係なく、前記シリアルバスから前記物理層へ直流電圧を供給する経路を遮断して、前記ノードの電源電圧から前記物理層へ直流電圧を供給するバス電源装置であって、
    前記電源電圧を前記シリアルバス用の直流電圧に変換して出力する電源回路と、
    前記電源回路から出力された直流電圧を、前記物理層用の直流電圧に変換する電圧変換手段と、
    前記電源回路への前記電源電圧の供給の有無を検出する電圧検出手段と、
    前記電源回路の出力に基づく前記シリアルバス用の直流電圧を前記シリアルバスへ加える一方、前記シリアルバスから加えられる直流電圧を前記電源回路へ供給することを防止するダイオードと、
    前記電源回路に、前記電源電圧が供給されていない場合に、前記シリアルバスから印加されている直流電圧を前記電圧変換手段へ供給し、前記電源電圧が供給されている場合には、前記シリアルバスから前記電圧変換手段へ直流電圧を供給する経路を遮断して、前記電源回路の出力を前記電圧変換手段へ供給する選択手段とを備え、
    前記選択手段として、第一電極には前記シリアルバスを介して前段のノードから直流電流が印加され、第二電極は前記電圧変換手段を介して前記物理層に直流電流を供給するよう構成され、前記ダイオードに並列接続されたトランジスタを備えた
    ことを特徴とするバス電源装置。
  2. 前記電圧検出手段として、コンパレータを備えた
    ことを特徴とする請求項1に記載のバス電源装置。
JP29818199A 1999-10-20 1999-10-20 バス電源装置及びノード Expired - Fee Related JP3859406B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29818199A JP3859406B2 (ja) 1999-10-20 1999-10-20 バス電源装置及びノード
US09/690,434 US7010703B1 (en) 1999-10-20 2000-10-18 Bus power-supply device and node

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29818199A JP3859406B2 (ja) 1999-10-20 1999-10-20 バス電源装置及びノード

Publications (2)

Publication Number Publication Date
JP2001119417A JP2001119417A (ja) 2001-04-27
JP3859406B2 true JP3859406B2 (ja) 2006-12-20

Family

ID=17856274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29818199A Expired - Fee Related JP3859406B2 (ja) 1999-10-20 1999-10-20 バス電源装置及びノード

Country Status (2)

Country Link
US (1) US7010703B1 (ja)
JP (1) JP3859406B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765790B1 (ko) * 2006-06-30 2007-10-12 삼성전자주식회사 모바일 기기의 가변 전원공급 장치 및 방법
US9043617B2 (en) * 2008-01-30 2015-05-26 Kyocera Corporation Device incorporating data communication function
DE102013211655B4 (de) * 2013-06-20 2016-01-14 Continental Automotive Gmbh Flexible Stromversorgung für ein Schnittstellenelement
KR102480991B1 (ko) * 2016-05-27 2022-12-26 삼성디스플레이 주식회사 표시장치 및 표시장치를 포함하는 전력 전달 시스템
CN111510308A (zh) * 2020-03-24 2020-08-07 普联技术有限公司 一种数据通信设备及功率共享系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3288114B2 (ja) 1993-04-08 2002-06-04 エヌイーシーマイクロシステム株式会社 マイクロコンピュータ
JPH0869346A (ja) 1994-08-26 1996-03-12 Fuji Xerox Co Ltd メモリ書き換え装置
KR100193737B1 (ko) * 1996-07-19 1999-06-15 윤종용 디스플레이 장치 및 그의 전원공급제어방법
KR100211801B1 (ko) * 1997-03-12 1999-08-02 윤종용 Usb장치의 전원제어장치 및 제어방법
JP3778312B2 (ja) 1997-03-14 2006-05-24 富士通株式会社 バス・コントローラ、電源供給方法、及び、バス・コントローラの電源供給システム
JPH11168493A (ja) 1997-09-24 1999-06-22 Whitaker Corp:The ハブ用電源切替回路及び方法
US6237106B1 (en) * 1997-11-06 2001-05-22 Canon Kabushiki Kaisha Communication apparatus and method, and program in computer readable medium
JPH11259184A (ja) * 1998-03-11 1999-09-24 Nec Shizuoka Ltd 外部インタフェース回路
JP3341679B2 (ja) 1998-06-10 2002-11-05 日本電気株式会社 ネットワーク接続装置の電源切替回路
US6357011B2 (en) * 1998-07-15 2002-03-12 Gateway, Inc. Bus-powered computer peripheral with supplement battery power to overcome bus-power limit
JP2000099217A (ja) * 1998-09-21 2000-04-07 Sony Corp ケーブル装置
US6128743A (en) * 1998-09-28 2000-10-03 Pertech, Inc. Intelligent system and method for universal bus communication and power

Also Published As

Publication number Publication date
US7010703B1 (en) 2006-03-07
JP2001119417A (ja) 2001-04-27

Similar Documents

Publication Publication Date Title
US7359640B2 (en) Optical coupling device and method for bidirectional data communication over a common signal line
US6396391B1 (en) Communications and control network having multiple power supplies
US6151298A (en) Electronic bus system
US20140281079A1 (en) Fault-tolerant loop for a communication bus
JP4642298B2 (ja) 双方向接続ライン用のオプトカプラを備えた電気絶縁装置
JPH08317018A (ja) デイジタル2導体母線データ通信システム用の故障許容出力段
KR101477841B1 (ko) 실행 불가능한 네트워크 디바이스를 바이패스하기 위한 네트워크 인터페이스 장치
CA2275693A1 (en) Electronic bus system
US7562253B1 (en) Segmented protection system and method
US20210250199A1 (en) Monolithic high-voltage transceiver connected to two different supply voltage domains
JP3859406B2 (ja) バス電源装置及びノード
US6603736B1 (en) Communication device for transmitting message signals
JPH0433179B2 (ja)
US5179291A (en) Access unit for local area network
KR102101066B1 (ko) 고장 허용형 전력 네트워크
JPH0813014B2 (ja) モジュール式能動光ファイバカップラユニット及びそのシステム
JP3484513B2 (ja) スイッチング電源装置
US6061220A (en) Power switching circuit of network-connected device
US7535256B2 (en) Cross-level digital signal transmission device
US4535360A (en) Low power wideband switching array element
GB2064918A (en) Data communication systems
JPS62105550A (ja) 回線切換方式
US20150155667A1 (en) Connecting Device, Method for the Operation Thereof, and Bus Communication Device
JPH03254246A (ja) Lan用伝送システム
JPH08163030A (ja) 光通信システム

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040407

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040611

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040702

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees