JP3848784B2 - 給湯燃焼装置 - Google Patents

給湯燃焼装置 Download PDF

Info

Publication number
JP3848784B2
JP3848784B2 JP10195698A JP10195698A JP3848784B2 JP 3848784 B2 JP3848784 B2 JP 3848784B2 JP 10195698 A JP10195698 A JP 10195698A JP 10195698 A JP10195698 A JP 10195698A JP 3848784 B2 JP3848784 B2 JP 3848784B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
temperature
flow rate
undershoot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10195698A
Other languages
English (en)
Other versions
JPH11281159A (ja
Inventor
久恭 渡辺
寿久 斉藤
徹哉 佐藤
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP10195698A priority Critical patent/JP3848784B2/ja
Publication of JPH11281159A publication Critical patent/JPH11281159A/ja
Application granted granted Critical
Publication of JP3848784B2 publication Critical patent/JP3848784B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給湯熱交換器を通る流水をバーナ燃焼により加熱し、その加熱により作り出した湯を所望の給湯場所に給湯する給湯燃焼装置に関するものである。
【0002】
【従来の技術】
図6には出願人が以前に試作した給湯燃焼装置の模式構成が示されている。同図において、給湯熱交換器1の入側には給水通路2が接続され、給湯熱交換器1の出側には給湯通路3が接続されている。そして、給水通路2と給湯通路3間には前記給湯熱交換器1を迂回するバイパス通路4が設けられ、このバイパス通路4には通路の開閉を行う電磁弁5が設けられている。前記給水通路2には給水流量を検出する流量センサFSと給水温度を検出する給水温度センサ6が設けられている。また、給湯熱交換器1の出側には熱交出側温度センサ7が設けられている。また、バイパス通路4と給湯通路3との接続部よりもやや下流側位置には給湯温度センサ8が設けられている。
【0003】
前記給湯熱交換器1はバーナ10の火炎によって加熱されるようになっており、このバーナ10にはガス通路11が接続され、このガス通路11には通路の開閉を行う電磁弁12,13と、バーナ10へのガス供給量を開弁量によって制御する比例弁14が設けられている。
【0004】
この給湯燃焼装置の運転は制御装置15により行われており、この制御装置15にはリモコン9が信号接続されている。
【0005】
リモコン9には電源スイッチ、運転スイッチ、給湯の設定温度を設定する温度設定器や、その給湯設定温度等の各種情報を表示する表示部等が設けられている。
【0006】
制御装置15は、給湯通路3に接続される外部配管の給湯出口側に設けられる給湯栓(図示せず)が開けられて、流量センサFSにより作動流量以上の流量が検出されたときに、燃焼ファン(図示せず)を回転してバーナ10へ燃焼給気を供給し、電磁弁12,13と比例弁14を開けて点火手段(図示せず)を駆動してバーナ10の点着火を行い、給湯温度センサ8で検出される給湯温度がリモコン9で設定される給湯設定温度になるようにバーナ10の燃焼熱量が制御される。この燃焼制御により、給水通路2から給湯熱交換器1に入り込む流水は給湯熱交換器1を通るときに加熱されて湯になり、この湯は給湯通路3を通して所望の給湯場所に導かれる。湯の使用が終了し、給湯栓が閉められることにより、流量センサFSから流水オフ信号が出力され、この信号を受けて制御装置15はガス通路11を遮断し、バーナ10の燃焼を停止し、次の給湯使用に備える。
【0007】
【発明が解決しようとする課題】
この種の給湯燃焼装置にあっては、給湯燃焼の停止後、給湯熱交換器1の保有熱量が滞留している給湯熱交換器1内の湯に伝搬し、給湯熱交換器1の湯温が高くなる後沸き現象が生じ、給湯燃焼の停止後、短時間のうちに再び給湯燃焼が開始されたときに、この給湯熱交換器1内の給湯設定温度よりも高温のオーバーシュートの湯が出湯し、湯の使用者に不快な思いをさせるという問題が生じる。
【0008】
このような問題を解消するために、熱交出側温度センサ7で検出される湯温が予め定めた基準温度よりも高いときには、バイパス通路4の電磁弁5を開け、給湯熱交換器1から出る湯とバイパス通路4を通って出る水とを混合し、給湯熱交換器1から出る湯温を下げて給湯することが考えられる。
【0009】
しかしながら、給湯熱交換器1側から出るオーバーシュートの湯に対し、バイパス通路4側から供給される水の単位時間当たりの流量はオーバーシュートの大きさに拘わらずほぼ一定であるため、オーバーシュートの量が小さいときには、必要以上の過剰の水量が埋められるために、給湯設定温度よりもかなりぬるめのアンダーシュートの湯が給湯されるという問題が生じ、また、オーバーシュートの量が大きい場合には、そのオーバーシュートを解消するのに十分な水量をバイパス通路4側から供給することができず、埋める水量が不足して給湯設定温度よりもかなり高いオーバーシュートの湯が給湯されるという問題があり、給湯設定温度に近い湯を再出湯時に安定供給できないという問題が生じる。
【0010】
特に、図6の鎖線で示すように、風呂の追い焚きを行う追い焚き熱交換器16を前記給湯熱交換器1と一体的に形成し、この給湯熱交換器1と追い焚き熱交換器16を共通のバーナ10で燃焼加熱する、一缶二水路の給湯燃焼装置とした場合には、追い焚き単独運転が行われると、バーナ10により、滞留している給湯熱交換器1内の湯水が沸騰寸前にまで加熱される場合が生じ、このような状態のときに、給湯運転が開始されると、この沸騰寸前の高温の湯が給湯熱交換器1から出湯されることとなり、このとき、電磁弁5を開けてバイパス通路4から水を供給しても、その水量が不足し、かなり高い湯が給湯通路3を通して供給されるという問題が生じる。
【0011】
本発明は上記課題を解決するためになされたものであり、その目的は、給湯使用後の後沸きや、一缶二水路タイプの給湯燃焼装置における追い焚き単独運転等による給湯熱交換器1内の後沸きが生じても、給湯開始時に、これらの後沸きを効果的に解消してほぼ給湯設定温度の安定した湯温を供給開始することが可能な給湯燃焼装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明は上記目的を達成するために、次のような手段を講じている。すなわち、第1の発明は、給湯熱交換器の入口側に給水通路が連通接続され、前記給湯熱交換器の出側には給湯通路が連通接続され、前記給水通路と給湯通路は前記給湯熱交換器を迂回する給水制御用バイパス通路によって連通接続され、前記給湯通路における前記給水制御用バイパス通路の接続部よりも上流側と前記給水制御用バイパス通路との少なくとも一方側に湯と水の混合比を調整する流量制御手段が設けられ、また、給湯熱交換器内の湯温の後沸きの発生を判断する後沸き判断部と、給湯熱交換器内湯温に後沸きが発生していると判断されたときには前記流量制御手段の弁開度を制御し湯と水の混合比を調整して給湯を開始する後沸き解消ミキシング制御部と、湯と水のミキシング湯温を検出する給湯温度センサと、この給湯温度センサのミキシング湯温検出情報に基づきオーバーシュート又はアンダーシュートの発生を監視・記憶するオーバーシュート又はアンダーシュートの記憶部とを有する構成をもって課題を解決する手段としている。
【0013】
また、第2の発明は、給湯熱交換器の入口側に給水通路が連通接続され、前記給湯熱交換器の出側には給湯通路が連通接続され、前記給水通路と給湯通路は前記給湯熱交換器を迂回する給水制御用バイパス通路によって連通接続され、前記給湯通路には前記給水制御用バイパス通路の接続部よりも上流側に第1の流量制御手段が設けられ、前記給水制御用バイパス通路には第2の流量制御手段が設けられており、また、給湯熱交換器内の湯温の後沸きの発生を判断する後沸き判断部と、給湯熱交換器内湯温に後沸きが発生していると判断されたときには前記第1の流量制御手段の弁開度と第2の流量制御手段の弁開度を予め設定される設定弁開度でもって開いて給湯を開始する後沸き解消ミキシング制御部と、前記第1の流量制御手段を通る湯側流量と前記第2の流量制御手段を通るバイパス制御流量とのミキシング湯温を検出する給湯温度センサと、給湯設定温度よりも高温側のオーバーシュートしきい温度のデータが格納されているデータ格納部と、給湯熱交換器内湯温に後沸きが発生していると判断されている状態で給湯が開始される毎に前記給湯温度センサで検出されるミキシング湯温と前記オーバーシュートしきい温度とを比較しミキシング湯温がオーバーシュートしきい温度を上側に越える毎にそのことを記憶するオーバーシュート発生記憶部とを有する構成をもって課題を解決する手段としている。
【0014】
また、第3の発明は、給湯熱交換器の入口側に給水通路が連通接続され、前記給湯熱交換器の出側には給湯通路が連通接続され、前記給水通路と給湯通路は前記給湯熱交換器を迂回する給水制御用バイパス通路によって連通接続され、前記給湯通路には前記給水制御用バイパス通路の接続部よりも上流側に第1の流量制御手段が設けられ、前記給水制御用バイパス通路には第2の流量制御手段が設けられており、また、給湯熱交換器内の湯温の後沸きの発生を判断する後沸き判断部と、給湯熱交換器内湯温に後沸きが発生していると判断されたときには前記第1の流量制御手段の弁開度と第2の流量制御手段の弁開度を予め設定される設定弁開度でもって開いて給湯を開始する後沸き解消ミキシング制御部と、前記第1の流量制御手段を通る湯側流量と前記第2の流量制御手段を通るバイパス制御流量とのミキシング湯温を検出する給湯温度センサと、給湯設定温度よりも低温側のアンダーシュートしきい温度のデータが格納されているデータ格納部と、給湯熱交換器内湯温に後沸きが発生していると判断されている状態で給湯が開始される毎に前記給湯温度センサで検出されるミキシング湯温と前記アンダーシュートしきい温度とを比較しミキシング湯温がアンダーシュートしきい温度を下側に越える毎にそのことを記憶するアンダーシュート発生記憶部とを有する構成をもって課題を解決する手段としている。
【0015】
さらに第4の発明は、前記第2の発明の構成を備えたうえでデータ格納部には給湯設定温度よりも高温側のオーバーシュートしきい温度のデータの他に給湯設定温度よりも低温側のアンダーシュートしきい温度のデータが格納され、給湯熱交換器内湯温に後沸きが発生していると判断されている状態で給湯が開始される毎に前記給湯温度センサで検出されるミキシング湯温と前記アンダーシュートしきい温度とを比較しミキシング湯温がアンダーシュートしきい温度を下側に越える毎にそのことを記憶するアンダーシュート発生記憶部とを有する構成をもって課題を解決する手段としている。
【0016】
さらに第5の発明は、前記第1又は第2又は第4の発明の構成を備えたものにおいて、オーバーシュート発生継続時間が設定され、オーバーシュート発生記憶部はミキシング湯温がオーバーシュートしきい温度を上側に越えている連続時間が前記オーバーシュート発生継続時間に達したときにミキシング湯温がオーバーシュートしきい温度を上側に越えたものとして記憶する構成としたことをもって課題を解決する手段としている。
【0017】
さらに第6の発明は、前記第1又は第3又は第4又は第5の発明の構成を備えたものにおいて、アンダーシュート発生継続時間が設定され、アンダーシュート発生記憶部はミキシング湯温がアンダーシュートしきい温度を下側に越えている連続時間が前記アンダーシュート発生継続時間に達したときにミキシング湯温がアンダーシュートしきい温度を下側に越えたものとして記憶する構成としたことをもって課題を解決する手段としている。
【0018】
さらに第7の発明は、前記第1又は第2又は第4又は第5又は第6の発明の構成を備えたものにおいて、オーバーシュート発生記憶部の記憶データに基づきミキシング湯温がオーバーシュートしきい温度を上側に越えた回数を検出し、その検出値が予め設定されるオーバーシュート設定発生回数に達する毎に給湯通路側に設けられる第1の流量制御手段の設定弁開度を閉方向へシフト変更する設定弁開度更新制御部を備えた構成をもって課題を解決する手段としている。
【0019】
さらに第8の発明は、前記第1又は第3又は第4又は第5又は第6の発明の構成を備えたものにおいて、アンダーシュート発生記憶部の記憶データに基づきミキシング湯温がアンダーシュートしきい温度を下側に越えた回数を検出し、その検出値が予め設定されるアンダーシュート設定発生回数に達する毎に給湯通路側に設けられる第1流量制御手段の設定弁開度を開方向へシフト変更する設定弁開度更新制御部を備えた構成をもって課題を解決する手段としている。
【0020】
さらに第9の発明は、前記第1又は第2又は第4又は第5又は第6又は第7の発明の構成を備えたものにおいて、オーバーシュート発生記憶部の記憶データに基づきミキシング湯温がオーバーシュートしきい温度を上側に越えた回数を検出し、その検出値が予め設定されるオーバーシュート設定発生回数に達する毎に給水制御用バイパス通路に設けられる第2の流量制御手段の設定弁開度を開方向へシフト変更する設定弁開度更新制御部を備えた構成をもって課題を解決する手段としている。
【0021】
さらに第10の発明は、前記第1又は第3又は第4又は第5又は第6又は第8の発明の構成を備えたものにおいて、アンダーシュート発生記憶部の記憶データに基づきミキシング湯温がアンダーシュートしきい温度を下側に越えた回数を検出し、その検出値が予め設定されるアンダーシュート設定発生回数に達する毎に給水制御用バイパス通路に設けられる第2の流量制御手段の設定弁開度を閉方向へシフト変更する設定弁開度更新制御部を備えた構成をもって課題を解決する手段としている。
【0022】
上記構成の本発明において、後沸き判断部により給湯熱交換器内湯温に後沸きが発生していると判断されたときには、後沸き解消ミキシング制御部は第1の流量制御手段と第2の流量制御手段の一方又は両方の弁開度を後沸き解消の設定弁開度でもって開いて給湯に備え、給湯が開始されたときには、給湯熱交換器から出る後沸きを伴った湯側の流量と給水制御用バイパス通路を通るバイパス制御流量とが後沸き解消の流量比でもってミキシングされ、後沸きの解消された湯が給湯先に供給される。
【0023】
本発明では、前記第1の流量制御手段と第2の流量制御手段の一方又は両方が設定弁開度でもって開いて給湯が行われる場合、湯側の流量とバイパス制御流量のミキシングの湯温が検出され、そのミキシング検出湯温がオーバーシュートしきい温度を上側に越えたか、あるいはミキシング検出湯温がアンダーシュートしきい温度を下側に越えたかが検出される。
【0024】
給湯熱交換器内湯温に後沸きが生じているものと判断された状態で給湯が開始される場合に、ミキシング検出湯温がオーバーシュートしきい温度を上側に越えたときにはその回数がオーバーシュート設定発生回数に達したか否かが判断され、オーバーシュート設定発生回数に達したときには、前記第1の流量制御手段と第2の流量制御手段の一方又は両方の設定弁開度が更新変更、つまり、ミキシング検出湯温がオーバーシュートしきい温度を越えない方向に修正変更され、また、同様にミキシング検出湯温がアンダーシュートしきい温度を下側に越えた回数がアンダーシュート設定発生回数に達する毎に第1の流量制御手段と第2の流量制御手段の一方又は両方の設定弁開度が更新変更、すなわち、ミキシング検出湯温がアンダーシュートしきい温度を下側に越えない方向に修正変更される。
【0025】
このことで、たとえ、第1の流量制御手段と第2の流量制御手段の初期の設定弁開度がオーバーシュートやアンダーシュートを解消する最適弁開度からずれていたとしても、給湯の使用を繰り返し行うにつれ、ずれの生じていた設定弁開度は次第に最適な弁開度に修正されていくこととなり、後沸き発生時における給湯開始時のミキシングによる給湯湯温をオーバーシュートやアンダーシュートのない給湯設定温度に近い安定した湯温にして給湯できるものとなる。
【0026】
【発明の実施の形態】
以下、本発明の実施形態例を図面に基づき説明する。図4は本発明に係る給湯燃焼装置の一モデル例を模式構成によって示すものである。本発明の給湯燃焼装置は給湯単能機(給湯機能のみの給湯器)はもとより、二缶二水路タイプの給湯燃焼装置(給湯熱交換器と追い焚き熱交換器が別個独立に設けられて、各熱交換器がそれぞれ別個のバーナにより燃焼加熱されるタイプの風呂と給湯の複合給湯器)や、一缶二水路タイプの給湯燃焼装置(給湯熱交換器と追い焚き熱交換器が一体的に形成され、この一体の給湯熱交換器と追い焚き熱交換器を共通のバーナにより燃焼加熱するタイプの風呂と給湯の複合給湯器)にも適用されるものである。
【0027】
図4において、給湯熱交換器1の入口側に給水通路2が連通接続され、給湯熱交換器1の出側には給湯通路3が連通接続されている。給水通路2と給湯通路3間には前記給湯熱交換器1を迂回する常時バイパス通路17が連通接続されており、さらに、給水通路2には前記常時バイパス通路17との接続位置Aよりも上流側のB位置に給水制御用バイパス通路18の一端側(入口側)が連通接続されており、前記給湯通路3には、前記常時バイパス通路17との接続部Cよりも下流側のD位置に前記給水制御用バイパス通路18の他端側(出口側)が連通接続されている。
【0028】
そして、給湯通路3のCD間には給湯熱交換器1を出る湯と常時バイパス通路17を通る水とを混合した湯側の流量を可変制御する第1の流量制御手段GM1が設けられており、また、前記給水制御用バイパス通路18には、流量の可変制御が可能な閉止機能を備えた第2の流量制御手段GM2が設けられている。これら第1の流量制御手段GM1と第2の流量制御手段GM2は例えばギヤモータやステッピングモータによって開弁量を制御する水量制御手段によって構成されるものであり、この第1の流量制御手段GM1と第2の流量制御手段GM2にはそれぞれ弁の全開位置と全閉位置を検出するホールIC等の弁開度の検出センサ(図示せず)が設けられている。
【0029】
前記給水通路2のAB間には前記給湯熱交換器1の湯と常時バイパス通路17から出る水との合流流量を前記第1の流量制御手段GM1を通る湯側流量Qとして検出する第1の流量センサFS1が設けられており、また、給湯通路3には前記給水制御用バイパス通路18の出口側の接続部Dよりも下流側位置に給水通路2に入水する総流量(全流量)QTを検出する第2の流量センサFS2が設けられている。また、給水通路2には給水温度を検出する給水温度センサ6が設けられ、給湯熱交換器1の出側には給湯熱交換器1から出湯する湯温を検出する熱交出側温度センサ7が設けられ、必要に応じ、給湯熱交換器1の水管通路の途中位置(例えば中間部)に熱交内の湯温を検出する熱交補助温度センサ22が設けられる。また、給湯通路3には、第1の流量制御手段GM1から出る湯と給水制御用バイパス通路18から出る水との混合湯温(ミキシング湯温)を給湯温度TMIXとして検出する給湯温度センサ8が設けられている。
【0030】
給湯燃焼装置を風呂と給湯の複合給湯器として構成する場合は、前記給水制御用バイパス通路18との合流位置Dよりも下流側の給湯通路3から湯張り通路23が分岐接続され、風呂側の追い焚き循環路24を介して給湯の湯を浴槽25に落とし込む構成とする。
【0031】
このような風呂と給湯の複合給湯器として給湯燃焼装置を構成する場合、追い焚き循環路24に介設される追い焚き熱交換器16を前記給湯熱交換器1と別個独立に形成し、給湯熱交換器1と追い焚き熱交換器16を別個独立のバーナにより燃焼加熱する構成とすることにより二缶二水路タイプの複合給湯器となり、また、図4に鎖線で示す如く給湯熱交換器1と追い焚き熱交換器16を一体的に形成し、この一体化した給湯と追い焚きの熱交換器1,16を共通のバーナにより燃焼加熱する構成とすることにより、一缶二水路タイプの複合給湯器が形成される。なお、図4において、26は浴槽25内の湯水を追い焚き循環路24を介して循環させて追い焚きを行うための循環ポンプであり、27は湯張りを行うときに湯張り通路23を開ける注湯電磁弁である。
【0032】
この図4に示すモデル例の装置は制御装置15によってその運転が制御され、この制御装置15には前記図6に示した装置と同様にリモコン9が信号接続され、給湯熱交換器1の加熱はバーナ10により行われるものであり、前記図6に示したものと同様の構成によってバーナ10へのガス供給量を比例弁14の開弁量によって制御するの燃焼系の機構が設けられる。
【0033】
本実施形態例の給湯燃焼装置は給湯熱交換器1に後沸きのオーバーシュートの湯が生じている状態で、給湯運転が開始されるときに、第1の流量制御手段GM1と第2の流量制御手段GM2を後沸き解消の設定弁開度でもって開いて給湯の開始に備え、給湯が開始したときには、それぞれの設定弁開度によって第1の流量制御手段GM1を通る湯側の流量と第2の流量制御手段GM2を通るバイパス制御流量とをミキシングさせて後沸きを解消した湯を給湯させることを第1の特徴とし、さらに、給湯開始時の湯側の流量とバイパス制御流量とのミキシング湯温を実測し、ミキシング検出湯温が後沸き解消の目標温度からずれていたときには、第1の流量制御手段GM1と第2の流量制御手段GM2の設定弁開度のずれを学習によって修正方向にシフト変更し、器具自身によって設定弁開度の初期設定のずれを自動的に修正し、給湯を繰り返し使用していくうちに、第1の流量制御手段GM1と第2の流量制御手段GM2の設定弁開度を最適値に収束修正して給湯熱交換器1から出る後沸きの湯の解消の精度と信頼性を十分に高めるようにしたことを第2の特徴としている。
【0034】
図1はこの本実施形態例の特徴的な制御構成を示すもので、後沸き判断部30と、後沸き解消ミキシング制御部31と、設定弁開度更新制御部32と、オーバーシュート発生記憶部33と、アンダーシュート発生記憶部34と、データ格納部35と、タイマ36とを有して構成されている。
【0035】
後沸き判断部30は、給湯熱交換器1内に後沸きの湯が発生しているか否かを判断する。すなわち、後沸き判断部30には給湯燃焼装置の動作状態の情報として、風呂オン信号(追い焚きオン信号)、風呂オフ信号(追い焚きオフ信号)、給湯オン信号、給湯オフ信号、運転オン信号、運転オフ信号、流水オン信号(流量センサや流水スイッチ等から加えられる流水検出のオン信号)、流水オフ信号、熱交出側温度センサ7で検出される熱交出側温度TOUT、熱交補助温度センサ22で検出される熱交湯温の検出温度TZ1等の信号が加えられており、後沸き判断部30は、予め与えられている給湯燃焼装置の後沸き状態となる動作条件と、これら給湯燃焼装置の動作状態の検出信号を照らし合わせ、給湯熱交換器1内に後沸きが生じているか否かを判断する。
【0036】
本実施形態例では、後沸き判断部30に与えられる後沸き発生を判断するための動作条件として、少なくとも次の3つの条件が与えられている。1つめの条件は、給湯運転が停止されたときである。給湯運転が停止されると、給湯熱交換器1内に保有されている熱量が給湯熱交換器1内に滞留している湯に伝搬し、給湯熱交換器1内の湯温が後沸きにより上昇するので、この条件を満たすときに給湯熱交換器1内に後沸きが発生しているものと判断する。
【0037】
2つめの条件は、一缶二水路の給湯燃焼装置において、追い焚き単独運転が停止したときである。追い焚きの単独運転により、バーナ10により加熱された熱量は、滞留している給湯熱交換器1内の湯に加えられ、給湯熱交換器1内の湯は高温となるので、この条件を満たす場合には後沸きが発生しているものと判断する。
【0038】
3つめの条件は、浴槽への注水又は注湯の運転指令が出されたとき、熱交出側温度センサ7と熱交補助温度センサ22の少なくとも一方が後沸き温度として判断される温度(例えば60℃)以上となっているときである。この場合には、給湯熱交換器1内に後沸きが発生しているものと判断する。
【0039】
後沸き解消ミキシング制御部31はメモリ等の弁開度データ格納部37を装備し、その弁開度データ格納部37に給湯熱交換器1内の後沸きを解消するために必要な第1の流量制御手段GM1と第2の流量制御手段GM2の設定弁開度のデータがそれぞれ格納されている。これらの設定弁開度のデータは、給湯熱交換器1内に最も高温の後沸き(例えば沸騰温100℃の後沸き)が発生したものと仮定されたときに、その後沸きを解消して危険のない温度(例えば50℃以下)の温度に低下するのに要する第1の流量制御手段GM1と第2の流量制御手段GM2のそれぞれの設定弁開度のデータが格納されている。
【0040】
後沸き解消ミキシング制御部31は、後沸き判断部30から給湯熱交換器1内の湯温に後沸きが生じているものとの判断結果をうけたときに、第1の流量制御手段GM1と第2の流量制御手段の弁開度をそれぞれの設定弁開度となるように制御し、第1の流量制御手段GM1 と第2の流量制御手段GM2を設定弁開度でもって開いて給湯の開始に備え、給湯が開始したときには、その設定弁開度でもって第1の流量制御手段GM1 を通る湯側の流量Qと給水制御用バイパス通路18を通るバイパス制御流量QBPとをミキシングさせて後沸きを解消した危険のない温度の湯温にして給湯する。
【0041】
設定弁開度更新制御部32と、オーバーシュート発生記憶部33と、アンダーシュート発生記憶部34と、データ格納部35と、タイマ36との構成部分は前記後沸き解消ミキシング制御部31の弁開度データ格納部37に格納された設定弁開度の値が最適設定弁開度に対してずれが生じているときには学習作用によってそのずれている設定弁開度のデータを正しい値に更新修正するための構成部分を示すものである。
【0042】
第1の流量制御手段GM1 と第2の流量制御手段GM2は、制御モータと弁機構を有して構成されており、制御モータ側の出力軸と弁機溝の弁体側の軸とはスプライン軸状の嵌合構造によって結合されている。すなわち、制御モータの出力軸と弁体側の軸との一方側の外周面には軸方向に伸張する凸状のスプライン状の歯が複数円周方向に等間隔に形成されており、他方側の軸にはそのスプライン状の歯が嵌合する凹状の歯を円周方向に等間隔に形成した嵌合凹穴が形成されており、一方側の軸のスプライン状の歯を他方側の軸の前記嵌合凹穴の凹状の歯に嵌合させることで、制御モータ側の出力軸の回転が弁体の回転に伝達され、この弁体の正逆回転によって弁体を軸方向に往復移動させ、制御モータの回転角度によって弁の開度が制御されるもので、通常、制御モータ側に弁開度の基準位置を検出するホールIC等の弁開度の検出センサーが設けられる。
【0043】
ところが、制御モータ側と弁機溝側に製造組み立ての誤差等があり、弁機溝側の弁体を設定弁開度の回転角度位置とし、制御モータ32側の出力軸をその設定弁開度に対応する回転角度位置にしたとき、一方側の軸のスプライン軸状の凸状の歯と他方側の凹状の歯との間に回転方向の位相ずれが生ずる場合があり、この場合には、スプライン状の凸歯と他方側の軸の凹歯とが位置ずれしているため、制御モータ側の出力軸と弁体の軸とを嵌合することができない状態となる。
【0044】
この場合には、例えば制御モータ側の出力軸を位相のずれ分だけ修正する方向に回転して凸歯と凹歯の位相を合わせた位置で制御モータ側の出力軸と弁機溝側の弁体の軸を嵌合接続することになるので、必然的に、制御モータ側の出力軸の基準弁開度に対応する回転角度位置が前記凸歯と凹歯の位相ずれを修正した分だけずれてしまうこととなる。
【0045】
したがって、この制御モータを基準の弁開度の回転位置から前記弁開度データ格納部37に格納されている設定弁開度までの操作量(制御量)を与えて弁開度を設定弁開度となるように制御しても、流量制御手段GM1、GM2の弁開度は設定弁開度にはならず、実際の弁開度が目標とする設定弁開度からずれてしまうという問題が生じ、これら第1の流量制御手段GM1 と第2の流量制御手段GM2の製造組み立て等の誤差により、第1の流量制御手段GM1 と第2の流量制御手段GM2の後沸き解消の弁解度が弁開度データ格納部37に設定された設定弁開度からずれてしまい、そのずれに応じて湯側の流量Qとバイパス制御流量QBPとのミキシング湯温に許容範囲を越えたオーバーシュートやアンダーシュートが発生して給湯湯温の安定化制御の精度を低下させるという問題が生ずる。
【0046】
本実施形態例ではこのような制御モータ側の出力軸と弁機溝側の弁体の軸との位相ずれに伴う目標弁開度に対する実際の弁開度のずれを生じても、そのずれによる影響をオーバーシュート発生記憶部33と、アンダーシュート発生記憶部34と、設定弁開度更新制御部32とを備えた構成で自動修正するものである。
【0047】
データ格納部35には図2に示すごとく、リモコン9によって設定された給湯設定温度TSPに対してΔTU だけ高いオーバーシュートしきい温度TU のデータと、給湯設定温度TSPよりもΔTL だけ低いアンダーシュートしきい温度TL のデータと、給湯温度センサーで検出される給湯温度(ミキシング湯温)が前記オーバーシュートしきい温度TU を越えたときに、そのオーバーシュートしきい温度TU を連続的に越えるしきい時間としてのオーバーシュート発生継続時間t1 (図2の(b)参照)のデータと、給湯温度センサ8で検出される給湯温度(ミキシング湯温)が前記アンダーシュートしきい温度TL を下側に連続的に越えるしきい時間としてのアンダーシュート発生継続時間t2(図2の(c)参照)との各データが与えられている。
【0048】
オーバーシュート発生記憶部33は前記後沸き解消ミキシング制御部31による後沸き解消のミキシングによる給湯が開始されたときに、給湯温度センサ8からミキシング湯温の検出温度を取り込み、ミキシング湯温にオーバーシュートが発生したか否かを判断し、オーバーシュートが発生したときにはそのことを記憶する。
【0049】
すなわち、オーバーシュート発生記憶部33は比較回路38を内蔵し、比較回路38は、まず、給湯温度センサ8で検出されるミキシング湯温TMIX と前記データ格納部35に格納されているオーバーシュートしきい温度TU とを比較し、ミキシング湯温TMIX がオーバーシュートしきい温度TU を越えたか否かを検出し、ミキシング湯温TMIX がオーバーシュートしきい温度TU を越えたときには、タイマ36を動作し、そのオーバーシュートしきい温度TU を連続的に越えた期間が前記データ格納部35に格納されているオーバーシュート発生継続時間t1 に達したか否かを判断する。
【0050】
すなわち、比較回路38はミキシング湯温TMIX がオーバーシュートしきい温度TU を越えたときにオーバーシュート発生継続時間t1 のタイマ動作をタイマ36に指令し、オーバーシュート発生継続時間t1 のタイムアップ信号がタイマ36から出されるまでミキシング湯温TMIX が連続してオーバーシュートしきい温度TU を越えていたときにはオーバーシュートが発生したことを記憶する。
【0051】
このオーバーシュートを発生したことの記憶は、メモリに時系列的にオーバーシュートが発生したことを記憶してもよく、あるいはカウンタ回路を設け、オーバーシュートが発生する毎にカウンタのカウント値を1個ずつカウントアップ(加算)するようにしてもよい。なお、このオーバーシュートは、前記製造組み立て等の誤差により、第1の流量制御手段GM1 の弁開度が開方向にずれていたり、第2の流量制御手段GM2の弁開度が閉方向にずれていたり、あるいは前記後沸き解消ミキシング制御部31の弁開度データ格納部37に格納された初期データが不適切のときに生ずる。
【0052】
前記アンダーシュート発生記憶部34は給湯熱交換機1内に後沸きが生じているものと判断されている状態で後沸き解消ミキシング制御部31によるミキシングによる給湯が開始されたときに、ミキシング湯温にアンダーシュートが発生したときにはそのことを記憶するものであり、このアンダーシュート発生記憶部34も比較回路39を内蔵する。この比較回路39は給湯温度センサ8で検出されるミキシング湯温TMIX を取り込み、前記データ格納部35に格納されているアンダーシュートしきい温度TL と比較し、ミキシング湯温TMIX がアンダーシュートしきい温度TL を下側に越えたか否かを判断する。
【0053】
そして、ミキシング湯温TMIX がアンダーシュートしきい温度TL を下側に越えたときには、タイマ36を動作し、アンダーシュート発生継続時間t2のタイマ動作を指令する。そして、タイマ36からアンダーシュート発生継続時間t2のタイムアップ信号がタイマ36から出されるまでミキシング湯温がアンダーシュートしきい温度TL を連続的に下回っていたときには、アンダーシュートが発生したものと判断し、アンダーシュートが発生したことを記憶する。このアンダーシュートの発生記憶は、前記オーバーシュート発生記憶部33の場合と同様にメモリ等に時系列的にアンダーシュートの発生が判断される毎に記憶してもよく、あるいはカウンタ回路を設け、アンダーシュートが発生したと判断される毎にカウンタ回路のカウント値を1個ずつカウントアップ(加算)するようにしてもよいものである。
【0054】
なお、このアンダーシュートは、前記第1の流量制御手段GM1 の弁開度が製造組み立ての誤差等により閉方向にずれていたり、第2の流量制御手段GM2の弁開度が同様に製造組み立ての誤差等により開方向にずれていたり、さらには後沸き解消ミキシング制御部31の弁開度データ格納部37に格納される初期設定弁開度の値が不適切の場合、給湯熱交換器1から出る後沸きの湯側の流量に対してミキシングさせるバイパス制御流量QBPの量が過剰になることによって生ずるものである。
【0055】
前記設定弁開度更新制御部32には回数検出部40と、設定弁開度更新部41と、リセット回路42とを有している。回数検出部40には予め設定されるオーバーシュート設定発生回数の値と、アンダーシュート設定発生回数の値とが与えられており、前記オーバーシュート発生記憶部33に記憶されているオーバーシュートの発生回数が前記オーバーシュート設定発生回数に達したか否かを検出し、オーバーシュート設定発生回数に達したときにはその旨の信号を設定弁開度更新部41に加える。
【0056】
同様に、回数検出部40は、アンダーシュート発生記憶部34に記憶されているアンダーシュートの発生回数の情報を取り込み、このアンダーシュート発生回数が予め与えられているアンダーシュート設定発生回数に達したか否かを検出し、アンダーシュート発生記憶部34に記憶されたアンダーシュートの発生回数がアンダーシュート設定発生回数に達したときにはその旨の信号を同様に設定弁開度更新部41に加える。
【0057】
設定弁開度更新部41には設定弁開度の修正値のデータが弁開度シフト量のデータとして与えられている。図3はこの弁開度シフト量の設定例を示すもので、例えば、図3の(a)のグラフのAに示すごとく、一定の値として与えてもよく、あるいは同じく図3の(a)の破線Bで示すごとく、オーバーシュートやアンダーシュートの過剰量に応じて弁開度シフト量を可変させるデータとして与えてもよい。なお、オーバーシュート過剰量は例えば図2の(a)において、ミキシング湯温TMIX のピークPの温度がオーバーシュートしきい温度TUを越えた量の大きさによって表されるものであり、同様に、アンダーシュート過剰量は、同じく図2の(c)においてミキシング湯温の下側のピークP′がアンダーシュートしきい温度TL を下側に越えている量の大きさによって表されるものである。
【0058】
また、弁開度シフト量は、図3の(b)に示すごとく、オーバーシュートやアンダーシュートの過剰量に応じて段階的に可変するデータとして与えてもよいものである。
【0059】
設定弁開度更新部41は、オーバーシュートの発生回数がオーバーシュート設定発生回数に達したことが回数検出部40により検出されたときには、オーバーシュートを解消する方向に、すなわち、第1の流量制御手段GM1 の設定弁開度を予め与えられている弁開度シフト量だけ閉方向にシフト変更し、弁開度データ格納部37に格納されている第1の流量制御手段GM1 の設定弁開度をそのシフト変更された設定弁開度に更新する。同様に、設定弁開度更新部41は、第2の流量制御手段GM2の設定弁開度を予め与えられている弁開度シフト量だけ開方向にシフト変更する。これにより、後沸き解消ミキシング制御部31の弁開度データ格納部37に設定されていた第1の流量制御手段GM1 の設定弁開度は閉方向に、第2の流量制御手段GM2の設定弁開度は開方向にそれぞれ更新される。つまり、弁開度データ格納部37に格納されていた更新前の第1の流量制御手段GM1 と第2の流量制御手段GM2の設定弁開度のデータは弁開度シフト量だけシフトした値に書き換えられるのである。
【0060】
また、設定弁開度更新部41は、アンダーシュートの発生回数がアンダーシュート設定発回数に達したことが回数検出部40により検出されたときには、弁開度データ格納部37に格納されている設定弁開度のデータをアンダーシュートの解消方向にシフト変更する。すなわち、設定弁開度更新部41は、弁開度データ格納部37に設定されている第1の流量制御手段GM1 の設定弁開度を弁開度シフト量だけ開方向に、弁開度データ格納部37に格納されている第2の流量制御手段GM2の設定弁開度を弁開度シフト量だけ閉方向にそれぞれ更新変更する。
【0061】
このように、本実施形態例では後沸き解消ミキシング制御部31は、後沸き判断部30より給湯熱交換器1内の湯温に後沸きが発生しているものと判断されて給湯が開始されるときには、前記設定弁開度更新制御部32により更新されたより適切な弁開度でもって第1の流量制御手段GM1 と第2の流量制御手段GM2の弁開度が設定制御されることとなるので、後沸き解消ミキシング制御部31のミキシングによる給湯開始時の湯温をオーバーシュートやアンダーシュートのない方向に設定制御されることとなるので、後沸き解消の初期給湯時における給湯湯温の安定化をより効果的に図ることが可能となる。
【0062】
なお、リセット回路42は設定弁開度更新部41により弁開度データ格納部37に格納されている第1の流量制御手段GM1 と第2の流量制御手段GM2の設定弁開度が更新されたときには、オーバーシュート発生記憶部33とアンダーシュート発生記憶部34にそれぞれリセット信号を供給し、オーバーシュート発生記憶部33で記憶されていたオーバーシュートの発生回数のデータとアンダーシュート発生記憶部34に記憶されていたアンダーシュートの発生回数の値をそれぞれリセットして零にし、オーバーシュートやアンダーシュートの発生が検出されたときには再びその回数を最初から記憶開始させるものである。
【0063】
このように、本実施形態例では設定弁開度更新制御部32により第1の流量制御手段GM1と第2の流量制御手段GM2の設定弁開度が給湯燃焼装置の使用の経過に伴い、弁開度データ格納部37に格納されている設定弁開度のデータはオーバーシュートやアンダーシュートを解消する方向に順次更新設定されていくので、第1の流量制御手段GM1と第2の流量制御手段GM2の設定弁開度は理想的な最適値に収束していくこととなり、設定弁開度の初期設定値に誤りがあっても、あるいは流量制御手段GM1,GM2の製造組み立て時の誤差等により実際の弁開度と制御目標の弁開度とにずれが生じた場合においても、器具(給湯燃焼装置)自身がそれらの設定弁開度を学習作用により正しい値に更新設定していくので、給湯燃焼装置の繰り返し使用により流量制御手段GM1,GM2の設定弁開度を最適値にすることが可能となり、これにより、後沸き解消の初期給湯時における湯温の精度を高め、危険がなく、かつ、オーバーシュートやアンダーシュートの湯温の変動のない安定した湯温を高信頼性のもとで給湯できるという優れた効果が得られるものである。
【0064】
本実施形態例の給湯燃焼装置は前述したごとく、給湯熱交換器1内に後沸きの湯が発生しているときには、後沸き解消ミキシング制御部31により、後沸きを解消する弁開度でもって第1の流量制御手段GM1と第2の流量制御手段GM2の弁を開いて給湯に備え、給湯が開始されたときにはその弁開度でもって初期給湯時の後沸きを解消し、オーバーシュートやアンダーシュートのない安定した湯を給湯開始する構成としたが、さらに、この初期給湯開始以降のミキシングによる後沸き解消の制御は、後沸きの大きさに応じて第1の流量制御手段GM1と第2の流量制御手段GM2の開度を可変させて湯側の流量Qとバイパス制御流量QBPとの流量比を制御することにより行っており、次にその給湯開始以降のミキシングによる流量比制御の構成を簡単に説明する。
【0065】
この流量比制御の構成は、図5に示すごとく、入力温度検出部28と、目標流量比演算部43と、検出流量比演算部44と、バイパス制御流量検出部45と、湯側流量検出部46とを有して構成されている。
【0066】
入力温度検出部28は、熱交出側温度センサ7で検出される給湯熱交換器1の出側の湯温TOUTを取り込み、第1の流量制御手段GM1に入る湯側温度(給湯熱交換器1を出る湯と常時バイパス通路17を出る水とが混合した湯の温度)を入力温度TKとして直接的又は間接的に検出する。この入力温度TKを直接的に検出する場合には、図4に示すように、常時バイパス通路17の出側Cと第1の流量制御手段GM1の入口との間の給湯通路3に入力温度検出用の温度センサ19を設けて検出すればよいが、この温度センサ19の部品点数を減らして装置コストの低減を図るには、その入力温度TKを間接的に検出する。
【0067】
この入力温度の間接的な検出は、給湯熱交換器1の熱交出側温度温度センサ7で検出される給湯熱交換器1の出側温度TOUTを取り込み、次の演算により求める。
【0068】
すなわち、入力温度検出部28には、給水通路2を通って来る給水が常時バイパス通路17の接続点Aの位置で給湯熱交換器1側に流れる量と常時バイパス通路17側に流れる量との分配率が予め与えられている。例えば、給湯熱交換器1側の分配率がm、常時バイパス通路17側の分配率がnとしたとき、入力温度検出部28は、予め与えられている次の(1)式により入力温度TKを演算により求める。
【0069】
K=TOUT×m+TIN×n・・・・・(1)
【0070】
この(1)式で、例えば給湯熱交換器1側の分配率が70%で、常時バイパス通路側の分配率が30%のときにはmの値として0.7が与えられ、nの値として0.3の値が与えられる。この入力温度検出部28で求められた入力温度TKの情報は目標流量比演算部43に加えられる。
【0071】
ところで、給湯熱交換器1内の後沸きにより、給湯設定温度TSPよりも高温の入力温度TKをもつの流量Qの熱量が給湯設定温度TSPに低下するための放出熱量は給水制御用バイパス通路18を通る流量QBPが給水温度TINから給湯設定温度TSPに上昇するのに要する吸熱熱量と等しい。この熱平衡バランスの関係から、次の(2)式が導かれる。
【0072】
BP/Q=(TK−TSP)/(TSP−TIN)・・・・・(2)
【0073】
この(2)式は入力温度TKの湯側の流量Qと給水温度TINのバイパス制御流量(給水制御用バイパス通路18を通る給水流量)とが混合して給湯設定温度TSPの温度になるための熱量バランスの平衡式であり、左辺のQBP/Qはバイパス制御流量QBPと湯側流量Qとの流量比を表している。また、(2)式の右辺の給湯設定温度TSPと、給水温度TINは一定の値として見なすことができ、右辺の値は給湯熱交換器1内の後沸きの温度によって変化する入力温度TKの値によって変化する。
【0074】
つまり、給湯熱交換器1の後沸きの温度によって入力温度TKが変化し、この入力温度TKに依存する(2)式の右辺の値に一致するように左辺の流量比を調整することにより、湯側の流量Qとバイパス制御流量QBPとが混合した温度は給湯設定温度TSPに等しくなるはずである。
【0075】
本実施形態例ではこの点に着目し、(2)式の右辺をバイパス制御流量QBPと湯側流量Qとの目標流量比WSTとして定義し、(2)式の左辺を検出流量比WDEとして定義している。
【0076】
ST=(TK−TSP)/(TSP−TIN)・・・・・(3)
【0077】
DE=QBP/Q・・・・・(4)
【0078】
目標流量比演算部43には前記(3)式の目標流量比WSTの演算式が解法データとして予め与えられており、目標流量比演算部43は、入力温度検出部28から得られる入力温度TKと、給水温度センサ6から得られる給水温度TINの情報と、リモコンで与えられる給湯設定温度TSPの情報を取り込み、前記(3)式に従い、目標流量比WSTを演算により求め、その演算値を後沸き解消ミキシング制御部31に加える。
【0079】
湯側流量検出部46は前記第1の流量制御手段GM1を通る湯側流量Qを第1の流量センサFS1のセンサ出力を取り込んで検出し、その検出結果を検出流量比演算部44に加える。また、必要に応じ、その湯側流量Qの検出値をバイパス制御流量検出部45に加える。
【0080】
バイパス制御流量検出部45は第2の流量センサFS2で検出されるトータル流量(総流量)QTから第1の流量センサFS1で検出される流量Qを差し引き演算することによりバイパス制御流量QBPを求める。
【0081】
BP=QT−Q・・・・・(5)
【0082】
また、バイパス制御流量検出部45はバイパス制御流量QBPを解法データに従い求める。この解法データは次の(6)式に示す演算式で与えられており、バイパス制御流量検出部45は、入力温度検出部28から加えられる入力温度TKと給湯温度センサ8で検出される給湯温度TMIXと給水温度センサ6で検出される給水温度TINと前記湯側流量検出部46で検出された湯側流量Qのデータをそれぞれ取り込み、次の(6)式に従いバイパス制御流量QBPを演算により求め、その演算結果を検出流量比演算部44に加える。
【0083】
BP=(TK−TIN)・Q/(TMIX−TIN)・・・・・(6)
【0084】
検出流量比演算部44は前記湯側流量検出部46で求められた湯側流量Qとバイパス制御流量検出部45で求められたバイパス制御流量QBPのデータを取り込み、前記(4)式に従い、バイパス制御流量QBPと湯側流量Qとの検出流量比WDEを演算により求め、その演算結果を後沸き解消ミキシング制御部31へ加える。
【0085】
後沸き解消ミキシング制御部31は前記目標流量比WSTと検出流量比WDEを比較し、検出流量比WDEが目標流量比WSTに一致する方向に第1の流量制御手段GM1と第2の流量制御手段GM2を互いに流量の増減方向が逆方向となるように流量制御を行う。より具体的には、目標流量比WSTと検出流量比WDEとの差を求め、K1,K2を係数(ゲイン)として、第1の流量制御手段GM1にはV1=K1(WSP−WDE)の式によって求められる電圧V1を印加し、第2の流量制御手段GM2にはV2=K2(WSP−WDE)の演算により求められる電圧V2を印加して流量制御を行う。つまり、目標流量比WSPと検出流量比WDEとの差に応じた電圧をそれぞれ第1の流量制御手段GM1と第2の流量制御手段GM2に加え、湯側流量Qとバイパス制御流量QBPとの流量の増減方向が逆方向となるようにQBPとQとの流量が制御される。なお、前記係数K1,K2は固定値でもよく、目標流量比WSTと検出流量比WDEとの差(WST−WDE)に応じて可変させてもよい(WSTとWDEとの差の関数としてもよい)。
【0086】
さらに詳説すると、例えば、給湯熱交換器1内の後沸きが大きい場合、すなわち、入力温度TKが高いときには前記(3)式から明らかな如く、目標流量比WSTの値は大きな値となり、この目標流量比WSTに一致させるために検出流量比WDEを大きくする方向に、つまり、(4)式から明らかな如く、QBPを大の方向に、Qを小方向に、すなわち、第1の流量制御手段GM1は閉方向に、第2の制御手段GM2は開方向に制御される。
【0087】
そして、給湯熱交換器1内の後沸きの湯温が下がるにつれ、入力温度TKの温度が低下して行き、目標流量比WSTは徐々に小さくなり、これに伴い、この目標流量比WSTに一致させるために、検出流量比も徐々に小さくなる方向に、つまり(4)式から明らかな如く、バイパス制御流量QBPを小さくする方向に、湯側流量Qを大きくする方向に、すなわち、第1の流量制御手段GM1は開方向に、第2の流量制御手段GM2は閉方向にそれぞれ制御されるのである。
【0088】
上記流量比制御の制御構成によれば、給湯熱交換器1内の後沸きの湯を解消する給湯運転の開始時には、給水流量Qの給水温度を給湯設定温度TSPに高めるフィードフォワード熱量のみによって給湯熱交換器1を加熱するので、給水通路2から給湯熱交換器1へ新たに入る水は給湯設定温度TSPの湯に加熱されることとなり、また、給湯熱交換器1内に生じている後沸きの湯は給湯熱交換器1から出るときにその温度が熱交出側温度センサ7によりいち早く検出されて第1の流量制御手段GM1に入る入力温度TKが検出され、その入力温度が給湯設定温度になるための湯側流量Qとバイパス制御流量QBPとの目標流量比WSTに一致する方向に湯側流量Qとバイパス制御流量QBPとの検出流量比WDEが制御されるので、給湯熱交換器1内の後沸き温度の如何に拘わらず、湯側の流量Qが給湯設定温度TSPとなるように湯と水の混合割合が制御され、給湯熱交換器1内の後沸きの影響を解消し、給湯設定温度に近い湯を安定に給湯できるという画期的な効果を奏することができる。
【0089】
このように、本実施形態例においては、給湯熱交換器1から出る後沸き湯温を解消するミキシング動作時には、湯側流量Qに対するフィードフォワード熱量(流量Qを給水温度TINから給湯設定温度TSPに高めるのに要する理論熱量)を与えるようにしており、この流量Qに対するフィードフォワード熱量は総流量QTに対するフィードフォワード熱量(総流量QTを給水温度TINから給湯設定温度に高めるのに要する理論熱量)よりも小さいので、給湯熱交換器1から後沸きの湯が出終わった後には総流量QTを給湯設定温度にする必要熱量よりも少ない不足の熱量となり、このため、第2の流量制御手段GM2は閉方向の動作となって給水制御用バイパス通路18を閉止する結果、給湯熱交換器1内の後沸き湯温が解消されたときには迅速にミキシングによる流量比制御から総流量制御へ移行することができる。
【0090】
しかも、第2の流量制御手段GM2が閉止されたときには湯側の流量Qは総流量QTに一致するので、流量Qに対するフィードフォワード熱量と総流量QTに対するフィードフォワード熱量が等しくなり、第2の流量制御手段GM2が開から閉に切り換わるときのフィードフォワード熱量の変動が殆どなく、これにより、給湯湯温の変動を起こさせることなく、ミキシングによる流量比制御からフィードフォワード熱量とフィードバック熱量を併用した比例制御による定常運転の総流量制御へ湯温の安定を保って円滑に移行することが可能となる。
【0091】
本実施形態例では、前述したごとく、図1に示す構成によって、第1の流量制御手段GM1と第2の流量制御手段GM2の製造組み立ての誤差等により、弁開度の基準位置に対応する弁開度と、実際の弁開度とにずれが生じていたとしても、そのずれが学習作用により自動的に修正されるので、図5に示す構成によって、第1の流量制御手段GM1と第2の流量制御手段GM2の開度制御による湯側流量Qとバイパス制御流量QBPとの流量比制御による後沸き解消のミキシング動作を行う場合においても、流量制御手段GM1、GM2の制御目標弁開度と実際の弁開度とがずれなく一致するようになるので、流量比制御の制御精度も高まり流量比制御により、後沸き解消を効果的に行うことが可能となり、後沸きを解消して給湯設定温度に近い安定した湯を給湯できるという効果が得られるものである。
【0092】
なお、本発明は上記実施形態例に限定されることはなく、さまざまな実施の形態を取りうる。例えば、上記実施形態例では、主に一缶二水路タイプの追い焚き機能と給湯機能を備えた給湯燃焼装置を対象にして説明したが、本発明は二缶二水路タイプの追い焚き機能と給湯機能を備えた給湯燃焼装置や、給湯機能のみの給湯燃焼装置にも適用されるものであり、さらには、給湯機能と暖房機能を備えた給湯燃焼装置等の給湯機能を備えた燃焼式の各種の複合装置にも適用されるものである。
【0093】
また、上記実施形態例の装置システムでは、常時バイパス通路17を設けたが、この常時バイパス通路17は省略してもよく、また、常時バイパス通路17は複数設けたものでもよい。さらに、第2の流量センサFS2は、給水制御用バイパス通路18の出口側接続部Dと湯張り通路23の接続部との間の給湯通路3に設けたが、図4の鎖線で示すように、この第2の流量センサFS2は湯張り通路23の接続部よりも下流側の給湯通路に設けることもある。
【0094】
さらに、本発明の給湯燃焼装置は給湯熱交換器1を熱源とする湯側の流量を制御する第1の流量制御手段GM1とバイパス制御流量QBPを制御する第2の流量制御手段GM2を備え、この湯側の流量とバイパス制御流量とのミキシング湯温を検出する給湯温度センサ8を備えた構成をもつシステムのものであればよく、必ずしも給湯燃焼装置のシステム構成は図4に示すものに限定されるものではない。
【0095】
さらに、上記実施形態例では設定弁開度更新制御部32により、第1の流量制御手段GM1と第2の流量制御手段GM2の設定弁開度を更新するようにしたが、第1の流量制御手段GM1と第2の流量制御手段GM2の一方の流量制御手段の設定弁開度を更新するようにしてもよい。
【0096】
さらに、上記実施形態例では、オーバーシュート発生記憶部33とアンダーシュート発生記憶部34をともに設けたが、オーバーシュート発生記憶部33とアンダーシュート発生記憶部34のいずれか一方のみを設けた構成とすることもできる。この場合は、例えば、オーバーシュート発生記憶部33のみを設けた場合には、オーバーシュートの発生の回数がオーバーシュート設定発生回数に達する毎にそのオーバーシュートを解消する方向に第1の流量制御手段GM1と第2の流量制御手段GM2の一方又は両方の設定弁開度を更新するようにすればよい。また、アンダーシュート発生記憶部34のみを設けた場合には、アンダーシュート発生回数がアンダーシュート設定発生回数に達する毎に第1の流量制御手段GM1と第2の流量制御手段GM2の一方又は両方の設定弁開度を更新するようにすればよい。
【0097】
さらに、本実施形態例ではオーバーシュート発生記憶部33によりオーバーシュートの発生を記憶する場合には、給湯温度センサ8で検出されるミキシング湯温TMIX がオーバーシュートしきい温度TU を連続的にオーバーシュート発生継続時間t1 だけ継続したときにオーバーシュートが発生したものと判断してそのことを記憶させたが、オーバーシュート発生継続時間t1 を省略し、ミキシング湯温TMIX がオーバーシュートしきい温度TU を上側に越えたときには直ちにオーバーシュートが発生したものと判断してそのことを記憶させるようにしてもよい。
【0098】
同様に、アンダーシュート発生記憶部34においても、アンダーシュート発生継続時間t2を省略し、給湯温度センサ8で検出されるミキシング湯温がアンダーシュートしきい温度TL を下側に越えたときには直ちにアンダーシュートが発生したものと判断してそのことを記憶させるようにしてもよい。
【0099】
このように、オーバーシュート発生継続時間t1 やアンダーシュート発生継続時間t2による判断を省略することによりタイマ36を省略できる等の制御回路の構成の簡易化を図ることが可能となる。ただ、本実施形態例のごとく、オーバーシュート発生継続時間t1 とアンダーシュート発生継続時間t2の判断を設けることにより、ミキシング湯温が何らかの突発的な原因で瞬間的にオーバーシュートしきい温度TU やアンダーシュートしきい温度TL を越えたときには、この異常現象をオーバーシュートやアンダーシュートの発生回数から除外できるので、オーバーシュートやアンダーシュートの発生回数のカウント値の信頼性をより高めることができるという効果が得られる。
【0100】
さらに、上記実施形態例では、湯と水の混合比(混合割合)を、第1の流量制御手段GM1と第2の流量制御手段GM2とを共に制御して行ったが、もちろん、第1の流量制御手段GM1と第2の流量制御手段GM2のいずれか一方のみを制御して行ってもよいものである。
【0101】
【発明の効果】
本発明は給湯熱交換器内湯温に後沸きが発生していると判断されている状態で給湯が開始されたときに、湯側の流量とバイパス制御流量の流量とのミキシングによる湯温がオーバーシュートしきい温度を上側に越えたときには、そのことを記憶するようにしているので、そのオーバーシュート発生の回数が多い場合には第1の流量制御手段と第2の流量制御手段の一方又は両方の設定弁開度にずれが生じていて適切な値でないことが分かり、設定弁開度を修正する判断を正確に行うことが可能となる。
【0102】
同様に、給湯熱交換器内湯温に後沸きの発生が判断されている状態で給湯が開始されたときの湯側の流量とバイパス制御流量とのミキシングの湯温がアンダーシュートしきい温度を下側に越えたときにアンダーシュートが発生したものと判断してそのことを記憶する構成としたので、そのアンダーシュートの発生回数が多い場合には第1の流量制御手段と第2の流量制御手段の一方又は両方の設定弁開度にずれが生じているものと判断してその設定弁開度を正しい値に修正する判断を正確に行うことができるという効果が得られる。
【0103】
これらオーバーシュートの発生やアンダーシュートの発生を記憶する場合、ミキシング湯温がオーバーシュートしきい温度を上側に越えたときには直ちにオーバーシュートが発生したものと判断せずに、予め設定されるオーバーシュート発生継続時間だけ連続的にオーバーシュートしきい温度を越えていたときにオーバーシュートが発生したものと判断してこれを記憶する構成とすることにより、そのオーバーシュート発生の検出に際し、ノイズ等によりミキシング湯温が突発的にオーバーシュートしきい温度を越えたような異常現象を除外することができるので、オーバーシュートの発生の判断をより正確に行うことが可能となる。同様に、アンダーシュートの発生を記憶する場合においても、ミキシング湯温がアンダーシュート発生継続時間だけ連続的にアンダーシュートしきい温度を下側に越えていたときにアンダーシュートが発生したものと判断して記憶させるようにすることで、より正確にアンダーシュートの発生を判断してこれを記憶することが可能となる。
【0104】
さらに、本発明においては、オーバーシュート発生記憶部によって記憶されるオーバーシュートの発生回数がオーバーシュート設定発生回数に達する毎にそのオーバーシュートを解消する方向に第1の流量制御手段と第2の流量制御手段の一方又は両方の設定弁開度を更新変更するように構成したので、第1の流量制御手段や第2の流量制御手段の設定弁開度がオーバーシュートの方向にずれて初期設定されていたとしても、この設定弁開度のずれはオーバーシュートの発生回数がオーバーシュート設定発生回数に達する毎にそのオーバーシュートの発生を解消する方向に更新変更されていくので、器具自身の学習効果により、前記設定弁開度を最適値に収束設定できることとなり、これにより、給湯熱交換器内に後沸きが生じている状態で給湯が開始されたときに、オーバーシュートを確実に解消した安定した湯温の給湯開始が可能となる。
【0105】
同様に、アンダーシュート発生記憶部で記憶されたアンダーシュートの発生回数がアンダーシュート設定発生回数に達する毎に第1の流量制御手段と第2の流量制御手段の一方又は両方の設定弁開度をアンダーシュートを解消する方向に更新する構成としたことにより、第1の流量制御手段や第2の流量制御手段の設定弁開度の初期設定値がアンダーシュートの発生方向にずれていたとしても、アンダーシュートの発生回数がアンダーシュート設定発生回数に達する毎にその設定弁開度がアンダーシュートを解消する方向に順次修正されて更新されるので、器具自身の学習作用により、第1の流量制御手段と第2の流量制御手段の一方又は両方の設定弁開度は最適値に収束設定されることとなり、同様に、給湯熱交換器内に後沸きが発生している状態で給湯が開始されたときの湯側の流量とバイパス制御流量とのミキシング湯温に大きなアンダーシュートが生じない安定した湯温にして給湯を開始することが可能となるものである。
【0106】
上記のごとく、第1の流量制御手段と第2の流量制御手段の一方又は両方の設定弁開度が給湯の使用によって正しい値に修正されて更新されるので、季節によって、給水温度が変更するような場合においても、その給水温度の変更に応じてミキシング湯温がオーバーシュートやアンダーシュートが発生しない設定弁開度の値に自動的に修正して行くことができるという効果が得られる。第1の流量制御手段と第2の流量制御手段の設定弁開度を固定の値とした場合には、夏季等においては、給水温度が高くなるのでミキシング湯温にオーバーシュートが発生しやすくなり、その逆に、冬季においては、給水温度が低くなるのでミキシング湯温にアンダーシュートが発生しやすくなるが、本発明では、給水温度が高くなってオーバーシュートが発生した場合にはそのオーバーシュートを解消する方向に設定弁開度が更新されることとなり、また、冬季等において、ミキシング湯温にアンダーシュートが発生するようになった場合には、そのアンダーシュートの発生を解消する方向に設定弁開度が修正されて更新されるので、アンダーシュートの発生を抑制することができることとなる。このように、本発明は、季節の変化に伴う給水温度の変化に対しても、オーバーシュートやアンダーシュートの発生を抑制する方向に第1の流量制御手段と第2の流量制御手段の一方又は両方の設定弁開度が自動的に修正されて更新されるので、季節の変化に伴う給水温度の変化に起因したミキシング湯温のオーバーシュートやアンダーシュートの発生を抑制できるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施形態例の要部構成を示すブロック図である。
【図2】本実施形態例における給湯開始時のオーバーシュートやアンダーシュートの発生記憶の例を示す説明図である。
【図3】本実施形態例における第1の流量制御手段と第2の流量制御手段の設定弁開度のシフト変更のデータの設定例を示す説明図である。
【図4】本実施形態例における給湯燃焼装置のシステム構成図である。
【図5】給湯熱交換器内に後沸きが発生している状態で給湯が開始された以降の後沸き解消の制御構成のブロック図である。
【図6】出願人が先に試作した給湯燃焼装置の説明図である。
【符号の説明】
1 給湯熱交換器
7 熱交出側温度センサ
30 後沸き判断部
31 後沸き解消ミキシング制御部
32 設定弁開度更新制御部
33 オーバーシュート発生記憶部
34 アンダーシュート発生記憶部
35 データ格納部
41 設定弁開度更新部
GM1 第1の流量制御手段
GM2 第2の流量制御手段

Claims (10)

  1. 給湯熱交換器の入口側に給水通路が連通接続され、前記給湯熱交換器の出側には給湯通路が連通接続され、前記給水通路と給湯通路は前記給湯熱交換器を迂回する給水制御用バイパス通路によって連通接続され、前記給湯通路における前記給水制御用バイパス通路の接続部よりも上流側と前記給水制御用バイパス通路との少なくとも一方側に湯と水の混合比を調整する流量制御手段が設けられ、また、給湯熱交換器内の湯温の後沸きの発生を判断する後沸き判断部と、給湯熱交換器内湯温に後沸きが発生していると判断されたときには前記流量制御手段の弁開度を制御し湯と水の混合比を調整して給湯を開始する後沸き解消ミキシング制御部と、湯と水のミキシング湯温を検出する給湯温度センサと、この給湯温度センサのミキシング湯温検出情報に基づきオーバーシュート又はアンダーシュートの発生を監視・記憶するオーバーシュート又はアンダーシュートの記憶部とを有することを特徴とする給湯燃焼装置。
  2. 給湯熱交換器の入口側に給水通路が連通接続され、前記給湯熱交換器の出側には給湯通路が連通接続され、前記給水通路と給湯通路は前記給湯熱交換器を迂回する給水制御用バイパス通路によって連通接続され、前記給湯通路には前記給水制御用バイパス通路の接続部よりも上流側に第1の流量制御手段が設けられ、前記給水制御用バイパス通路には第2の流量制御手段が設けられており、第1の流量制御手段の弁開度と第2の流量制御手段の弁開度を予め設定される設定弁開度でもって開いて給湯を開始する後沸き解消ミキシング制御部と、前記第1の流量制御手段を通る湯側流量と前記第2の流量制御手段を通るバイパス制御流量とのミキシング湯温を検出する給湯温度センサと、給湯設定温度よりも高温側のオーバーシュートしきい温度のデータが格納されているデータ格納部と、給湯熱交換器内湯温に後沸きが発生していると判断されている状態で給湯が開始される毎に前記給湯温度センサで検出されるミキシング湯温と前記オーバーシュートしきい温度とを比較しミキシング湯温がオーバーシュートしきい温度を上側に越える毎にそのことを記憶するオーバーシュート発生記憶部とを有することを特徴とする給湯燃焼装置。
  3. 給湯熱交換器の入口側に給水通路が連通接続され、前記給湯熱交換器の出側には給湯通路が連通接続され、前記給水通路と給湯通路は前記給湯熱交換器を迂回する給水制御用バイパス通路によって連通接続され、前記給湯通路には前記給水制御用バイパス通路の接続部よりも上流側に第1の流量制御手段が設けられ、前記給水制御用バイパス通路には第2の流量制御手段が設けられており、また、給湯熱交換器内の湯温の後沸きの発生を判断する後沸き判断部と、給湯熱交換器内湯温に後沸きが発生していると判断されたときには前記第1の流量制御手段の弁開度と第2の流量制御手段の弁開度を予め設定される設定弁開度でもって開いて給湯を開始する後沸き解消ミキシング制御部と、前記第1の流量制御手段を通る湯側流量と前記第2の流量制御手段を通るバイパス制御流量とのミキシング湯温を検出する給湯温度センサと、給湯設定温度よりも低温側のアンダーシュートしきい温度のデータが格納されているデータ格納部と、給湯熱交換器内湯温に後沸きが発生していると判断されている状態で給湯が開始される毎に前記給湯温度センサで検出されるミキシング湯温と前記アンダーシュートしきい温度とを比較しミキシング湯温がアンダーシュートしきい温度を下側に越える毎にそのことを記憶するアンダーシュート発生記憶部とを有することを特徴とする給湯燃焼装置。
  4. データ格納部には給湯設定温度よりも高温側のオーバーシュートしきい温度のデータの他に給湯設定温度よりも低温側のアンダーシュートしきい温度のデータが格納され、給湯熱交換器内湯温に後沸きが発生していると判断されている状態で給湯が開始される毎に前記給湯温度センサで検出されるミキシング湯温と前記アンダーシュートしきい温度とを比較しミキシング湯温がアンダーシュートしきい温度を下側に越える毎にそのことを記憶するアンダーシュート発生記憶部とを有することを特徴とする請求項2記載の給湯燃焼装置。
  5. オーバーシュート発生継続時間が設定され、オーバーシュート発生記憶部はミキシング湯温がオーバーシュートしきい温度を上側に越えている連続時間が前記オーバーシュート発生継続時間に達したときにミキシング湯温がオーバーシュートしきい温度を上側に越えたものとして記憶する構成とした請求項1又は請求項2又は請求項4記載の給湯燃焼装置。
  6. アンダーシュート発生継続時間が設定され、アンダーシュート発生記憶部はミキシング湯温がアンダーシュートしきい温度を下側に越えている連続時間が前記アンダーシュート発生継続時間に達したときにミキシング湯温がアンダーシュートしきい温度を下側に越えたものとして記憶する構成とした請求項1又は請求項3又は請求項4又は請求項5記載の給湯燃焼装置。
  7. オーバーシュート発生記憶部の記憶データに基づきミキシング湯温がオーバーシュートしきい温度を上側に越えた回数を検出し、その検出値が予め設定されるオーバーシュート設定発生回数に達する毎に給湯通路側に設けられる第1の流量制御手段の設定弁開度を閉方向へシフト変更する設定弁開度更新制御部を備えた請求項1又は請求項2又は請求項4又は請求項5又は請求項6記載の給湯燃焼装置。
  8. アンダーシュート発生記憶部の記憶データに基づきミキシング湯温がアンダーシュートしきい温度を下側に越えた回数を検出し、その検出値が予め設定されるアンダーシュート設定発生回数に達する毎に給湯通路側に設けられる第1の流量制御手段の設定弁開度を開方向へシフト変更する設定弁開度更新制御部を備えた請求項1又は請求項3又は請求項4又は請求項5又は請求項6記載の給湯燃焼装置。
  9. オーバーシュート発生記憶部の記憶データに基づきミキシング湯温がオーバーシュートしきい温度を上側に越えた回数を検出し、その検出値が予め設定されるオーバーシュート設定発生回数に達する毎に給水制御用バイパス通路に設けられる第2の流量制御手段の設定弁開度を開方向へシフト変更する設定弁開度更新制御部を備えた請求項1又は請求項2又は請求項4又は請求項5又は請求項6又は請求項7記載の給湯燃焼装置。
  10. アンダーシュート発生記憶部の記憶データに基づきミキシング湯温がアンダーシュートしきい温度を下側に越えた回数を検出し、その検出値が予め設定されるアンダーシュート設定発生回数に達する毎に給水制御用バイパス通路に設けられる第2の流量制御手段の設定弁開度を閉方向へシフト変更する設定弁開度更新制御部を備えた請求項1又は請求項3又は請求項4又は請求項5又は請求項6又は請求項8記載の給湯燃焼装置。
JP10195698A 1998-03-30 1998-03-30 給湯燃焼装置 Expired - Fee Related JP3848784B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10195698A JP3848784B2 (ja) 1998-03-30 1998-03-30 給湯燃焼装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10195698A JP3848784B2 (ja) 1998-03-30 1998-03-30 給湯燃焼装置

Publications (2)

Publication Number Publication Date
JPH11281159A JPH11281159A (ja) 1999-10-15
JP3848784B2 true JP3848784B2 (ja) 2006-11-22

Family

ID=14314336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10195698A Expired - Fee Related JP3848784B2 (ja) 1998-03-30 1998-03-30 給湯燃焼装置

Country Status (1)

Country Link
JP (1) JP3848784B2 (ja)

Also Published As

Publication number Publication date
JPH11281159A (ja) 1999-10-15

Similar Documents

Publication Publication Date Title
JP3848784B2 (ja) 給湯燃焼装置
JP6341000B2 (ja) 給湯装置
JP3872864B2 (ja) 給湯燃焼装置
JP3859811B2 (ja) 給湯燃焼装置
JP3792347B2 (ja) 給湯燃焼装置
JP2820583B2 (ja) 給湯器の温度制御装置
JP3792365B2 (ja) バイパス路付き給湯装置
JP3067498B2 (ja) 給湯器
JPH0268449A (ja) バイパスミキシング式給湯器
JP3908330B2 (ja) 給湯燃焼装置
JP3308349B2 (ja) 給湯器における水量制御弁の初期流水量補正設定方法
JP3674118B2 (ja) 給湯器のバイパス混水装置
JP3346110B2 (ja) 燃焼制御装置
JP3922795B2 (ja) 湯張り機能付き給湯器
JP6848265B2 (ja) 温水調温装置
JP3911319B2 (ja) 燃焼装置
JPH102609A (ja) 給湯器
JP3300150B2 (ja) 燃焼装置およびその燃焼能力更新方法
JPH0271050A (ja) 給湯器の制御装置
JP3097430B2 (ja) 給湯器
JP3271830B2 (ja) 給湯器およびその水量制御弁の初期流水量設定方法
JPH07219647A (ja) 給湯器
JP3756997B2 (ja) 給湯器およびその再出湯時における燃焼制御方法
JPH10300212A (ja) 給湯燃焼装置
JPH10300222A (ja) 給湯燃焼装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees