JP3836719B2 - レベル変換回路 - Google Patents

レベル変換回路 Download PDF

Info

Publication number
JP3836719B2
JP3836719B2 JP2001388907A JP2001388907A JP3836719B2 JP 3836719 B2 JP3836719 B2 JP 3836719B2 JP 2001388907 A JP2001388907 A JP 2001388907A JP 2001388907 A JP2001388907 A JP 2001388907A JP 3836719 B2 JP3836719 B2 JP 3836719B2
Authority
JP
Japan
Prior art keywords
terminal
voltage
power supply
level
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001388907A
Other languages
English (en)
Other versions
JP2003188710A (ja
JP2003188710A5 (ja
Inventor
浩 渡辺
Original Assignee
日本テキサス・インスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本テキサス・インスツルメンツ株式会社 filed Critical 日本テキサス・インスツルメンツ株式会社
Priority to JP2001388907A priority Critical patent/JP3836719B2/ja
Priority to US10/321,319 priority patent/US6717456B2/en
Publication of JP2003188710A publication Critical patent/JP2003188710A/ja
Publication of JP2003188710A5 publication Critical patent/JP2003188710A5/ja
Application granted granted Critical
Publication of JP3836719B2 publication Critical patent/JP3836719B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018592Coupling arrangements; Interface arrangements using field effect transistors only with a bidirectional operation

Description

【0001】
【発明の属する技術分野】
本発明はレベル変換回路の技術分野にかかり、特に、双方向のレベル変換回路に関する。
【0002】
【従来の技術】
電子機器システムでは、ICの集積化が進み、それに伴い、電源電圧の低電圧化が進んでいる。例えば、従来では5V単一電源で動作していたシステムでも、新しいLSIが採用されると、3.3Vや2.5V等の低電圧電源が必要になって来ている。更に近年の実際のシステムでは、既存のICやシステムとインターフェイスをとるために、複数の電源電圧が混在した状態が一般的になっている。このようなシステムでは5Vの信号を3.3V等の低電圧の信号にレベル変換したり、その逆に、3.3V等の低電圧の信号を5Vにレベル変換する必要がある。
【0003】
このようなレベル変換の方法は色々あり、また、レベル変換専用のロジックICも存在している。
【0004】
図3の符号101は、従来技術のロジックICの内部回路のうち、NチャネルMOSトランジスタから成るパストランジスタ102を使用したレベル変換回路の例を示している。
【0005】
このレベル変換回路101では、パストランジスタ102のゲート端子がダイオード103を介して電源電圧線Cに接続されており、電源電圧線Cから印加される電源電圧VCCによってパストランジスタ102がオン状態にある。ソース端子から見たゲート端子の電圧をゲート電圧Vtnとすると、ソース端子であるポートBの電圧VBは、ドレイン端子であるポートAの電圧VAの大きさにかかわらず、ゲート端子の電圧Vs0よりもゲート電圧(閾値電圧)Vtnだけ電圧降下した電圧となる。
【0006】
即ち、ポートAの電圧VAがポートBの電圧VBよりも高い限り、ポートBの電圧VBは(ゲート端子の電圧Vs0−ゲート電圧Vtn)の大きさに制限される。
【0007】
例えば、Vtn=1.0Vであるとし、ポートAの電圧VAをレベル変換してVB=3.3Vの信号を生成する場合には、ゲート端子の電圧Vs0を4.3Vにすれば、ポート端子Aの電圧が3.3V以上であれば、ポートBから3.3Vの電圧が出力される。従って、バスのインターフェースとして5Vと3.3Vの両方の電圧に対応しなければならない場合でも、パストランジスタ102を導通させておくことで両方の電圧に対応することができる。
【0008】
他方、ゲート端子の電圧Vs0をGNDレベルにし、パストランジスタ102を遮断させることで、ポートAからポートBへの信号伝達を遮断できるので、バスの活線挿抜機能を実現するためにも有効となる。パストランジスタ102の導通抵抗を小さくすることでポートAからポートBへの信号遅延時間は無視できるほどにすることができる。
【0009】
上記のレベル変換回路101は、高いレベルから低いレベルへのレベル変換は可能であるが、低いレベルから高いレベルへのレベル変換には対応していない。バスのインターフェースとして利用する場合、双方向のレベル変換を行いたい場合も多い。
【0010】
図4の符号111は、それを実現するレベル変換回路の例であり、ポートAがプルアップ抵抗115によって高電圧の電源電圧端子Dにプルアップされている他は、図3のレベル変換回路101と同じ構成である。
【0011】
このレベル変換回路111でも、パストランジスタ102のゲート端子の電圧をVs0とすると、ポートBの電圧VBがVs0−Vtn以上の大きさになるとパストランジスタ102はオフ状態になり、その結果、ポートAには、プルアップ抵抗115を介して高電源電圧VCCHが印加される。高電源電圧VCCHが5.0Vであり、ポートBの電圧VBが3.3Vである場合、ポートAの電圧VAは5.0Vとなるから、3.3Vの低電圧の信号が5.0Vの高電圧の信号にレベル変換されたことになる。
【0012】
このレベル変換回路111では、ポートA、B間の双方向にレベル変換が可能であるが、以下のような欠点を有している。
【0013】
(1)ポートBの電圧VBがポートAに伝達され、その結果、ポートAの電圧VAがローレベルからハイレベルに変化する場合、電圧VAの大きさが、Vs0−Vtnよりも大きくなった時点で、その電圧変化は、プルアップ抵抗115の抵抗値の大きさとポートAの負荷容量の大きさによって定まる時定数で制限され、変化が遅くなる。従って、高い周波数の信号に追従することができない。
【0014】
(2)ポートAの電圧VAがローレベルにあると、プルアップ抵抗115に大きな電流が流れ続けてしまう。
【0015】
(3)プルアップ抵抗115はレベル変換回路111の外付け部品であるため、余分な部品を必要とし、ボード面積も余分に必要となる。
【0016】
【発明が解決しようとする課題】
本発明は上記従来技術の欠点を解消するために創作されたものであり、その目的は、高い周波数の信号でも双方向にレベル変換が可能で、省電力、省スペースのレベル変換回路を提供することにある。
【0017】
【課題を解決するための手段】
上記課題を解決するために、本発明のレベル変換回路は、第1の論理レベルの信号が印加される第1の端子と、上記第1の論理レベルよりも小さな論理レベルである第2の論理レベルの信号が印加される第2の端子と、上記第1の端子と上記第2の端子との間に接続され、上記第1の端子と上記第2の端子との間に信号経路を形成するためのトランジスタと、上記第1の論理レベルに対応する電源電圧が供給される電源端子と上記第1の端子との間に接続され、上記第1の端子の論理レベルに応じて導通する第1のスイッチ回路と、上記第1の論理レベルに対応する電源電圧が供給される電源端子と上記第1の端子との間に接続され、上記第1の端子の倫理レベルに応じて上記第1のスイッチ回路と共に所定の期間だけ導通する第2のスイッチ回路とを有し、上記第1の端子から上記第2の端子の向き又は上記第2の端子から上記第1の端子の向きに論理レベルの異なる信号を伝播可能である。
本発明においては、上記第1のスイッチ回路の導通時の抵抗値が上記第2のスイッチ回路の導通時の抵抗値よりも大きいことが好ましく、更には、上記第1の端子の論理レベルの変化に応じて上記第2のスイッチ回路を一時的に導通させるためのパルス信号を生成するパルス生成回路を有することが好ましい。
また、本発明においては、上記トランジスタと上記第1及び第2のスイッチ回路とがそれぞれMOSトランジスタで構成されることが好ましく、更には、上記トランジスタがnMOSトランジスタで構成され、上記nMOSトランジスタのゲート端子に上記第2の論理レベルに応じた電源電圧よりも当該nMOSトランジスタの閾値電圧分だけ高い電圧が印加されることが好ましい。
更には、2つの入力端子が上記第1の端子とイネーブル信号印加端子とにそれぞれ接続されたNAND回路と、上記第1の論理レベルに対応する電源電圧が供給される電源端子と基準電圧が供給される電源端子との間に直列に接続されたダイオードと抵抗素子とで構成される電圧供給回路とを有し、上記第1及び第2のスイッチ回路がそれぞれ第1及び第2のpMOSトランジスタで構成され、上記パルス生成回路が上記第1の論理レベルに対応する電源電圧が供給される電源端子と上記NAND回路の出力端子との間に直列に接続された抵抗素子とキャパシタとで構成され、上記第1のpMOSトランジスタのゲート端子が上記NAND回路の出力端子に接続され、上記第2のpMOSトランジスタのゲート端子が上記パルス生成回路の抵抗素子とキャパシタとの接続中点に接続され、上記nMOSトランジスタのゲート端子が上記電圧供給回路のダイオードと抵抗素子との接続中点に接続されることが好ましい。
【0018】
本発明は上記のように構成されており、基準電位をグランド電位と同じ電位であるローレベルの信号とすると、第1及び第2の論理レベルに応じた電源電圧は正電位又は負電位となり、第1、第2の端子は、それぞれ論理レベルの異なるハイレベルとローレベルからなる2値の信号の伝達経路となる。
【0019】
第1の端子と第2の端子との間にはトランジスタが設けられており、トランジスタをオフさせると両端子間が遮断され、オンすると接続される。
【0020】
上記トランジスタがMOSトランジスタである場合は、ソース端子を低電圧側の第2の端子に接続し、ドレイン端子を高電圧側の第1の端子に接続し、ゲート端子にソース端子を基準として閾電圧以上の電圧が印加されるように構成すると、ドレイン端子の電圧はソース端子の電圧に追随して変化するので、ソース端子に第2の論理レベルの信号が印加されたときに、ドレイン端子にはそれよりも高い論理レベルである第1の論理レベルの信号が現われるようにすることができる。
【0021】
第2の端子の電位を基準電位から第2の論理レベルに応じた電源電圧に変化させることで、第1の端子の電位を基準電位から第1の論理レベルに応じた電源電圧に変化させる場合は、第1及び第2のスイッチ回路に供給する電源電圧を第1の論理レベルに応じた電源電圧以上の大きさの電位に設定しておくと、第1の端子は第1の論理レベルに応じた電源電圧の電位まで変化する。この場合、第1の端子の電位が変化し始めるときに、第2のスイッチ回路を所定期間導通させると、第1の端子に電源電圧から大電流が供給されるので、第1の端子に接続された負荷容量が素早く充電され、変化の早い電圧波形を得ることができる。
【0022】
それとは逆に、第2の端子の電位を第2の論理レベルに応じた電源電圧から基準電位に変化させることで、第1の端子の電位を第1の論理レベルに応じた電源電圧から基準電位に変化させる場合は、第2のスイッチ回路をオフさせておくことで、第2の端子の電位を変化させる回路の負担を減少させることができる。
【0023】
【発明の実施の形態】
図1の符号2は、本発明の一例のレベル変換回路を示している。
このレベル変換回路2は、NチャネルMOSトランジスタから成るパストランジスタ12と、ダイオード13と、抵抗素子14と、バッファ回路23と、パルス生成回路24と、主スイッチ回路21と、副スイッチ回路22とを有している。
【0024】
ダイオード13のアノード端子は、電源電圧端子Cに接続され、カソード端子は抵抗素子14の一端に接続されている。この抵抗素子14の他端はグラウンド電位に接続されており、従って、ダイオード13と抵抗素子14は直列接続され、その直列接続回路が源源電圧端子Cとグラウンド電位との間に挿入されている。
【0025】
パストランジスタ12のゲート端子は、ダイオード13と抵抗素子14とが接続された部分、即ちダイオード13のカソード端子に接続されている。電源電圧端子Cには電源電圧VCCHが印加されており、ダイオード13の導通電圧をVDとすると、パストランジスタ12のゲート端子には、VCCH−VDの電圧が印加される。
【0026】
パストランジスタ12のドレイン端子とソース端子はそれぞれ第1のポートであるポートAと、第2のポートであるポートBに接続されている。
【0027】
主及び副スイッチ回路21、22は、一端が、それぞれ電源電圧端子Cに接続され、他端がポートAに接続されている。
【0028】
バッファ回路23の入力端子も、ポートAに接続されている。バッファ回路23の出力端子は、主スイッチ回路21に直結されると共に、パルス生成回路24を介して副スイッチ回路22に接続されている。
【0029】
バッファ回路23は入力された信号の電圧の大きさを変更せず、インピーダンス変換して出力する。従って、パルス生成回路24と主スイッチ回路21には、ポートAの電圧VAと同じ大きさの電圧が入力される。
【0030】
主及び副スイッチ回路21、22は、主スイッチ素子28と副スイッチ素子29をそれぞれ有している。主及び副スイッチ素子28、29は、入力される電圧がローレベルのときにオフし、ローレベルよりも大きい所定電圧でオンするように構成されている。
【0031】
例えば、ポートAが入力側、ポートBが出力側であり、ポートAの電圧VAがローレベルにあるときには、主及び副スイッチ素子28、29は両方ともオフ状態にある。パストランジスタ12のゲート端子に印加される電圧は、パストランジスタ12の閾電圧よりも大きいため、この状態ではパストランジスタ12はオンしており、パストランジスタ12によってポートBはポートAに接続され、グラウンド電位になる。即ち、ポートAの電圧VAがローレベルのときは、ポートBの電圧VBもローレベルとなる。
【0032】
それとは逆に、ポートBが入力側、ポートAが出力側であり、ポートBの電圧VBがローレベルであるときもパストランジスタ12はオンし、その結果、ポートAの電圧VAはローレベルとなる。このときも主及び副スイッチ素子28、29は両方ともオフ状態である。
【0033】
次に、ポートBが入力側、ポートAが出力側であり、ポートBの電圧VBがローレベルにある状態からハイレベルに変化する場合を説明する。
【0034】
ここで、ポートA側のハイレベルの電圧(第1の電圧)と、ポートB側のハイレベルの電圧(第2の電圧)は、共に正電圧であり、ポートA側のハイレベルの電圧の方がポートB側のハイレベルの電圧よりも高いものとする。
【0035】
また、ポートA側のハイレベルの電圧は、この実施例では電源電圧端子Cに印加される電源電圧VCCHと同じ大きさであり、例えば、電源電圧VCCH及びポートA側のハイレベルの電圧は5Vである。
【0036】
それに対し、ポートB側のハイレベルの電圧は、ポートA側の側のハイレベルの電圧よりも低く、例えば3.3Vである。
【0037】
要するに、ハイレベルにあるときのポートA,Bのレベルをそれぞれ、“ハイレベルA”,“ハイレベルB”とすると、
(ハイレベルAの電圧) > (ハイレベルBの電圧)
であり、パストランジスタ12のゲート端子の電圧Vs0は、パストランジスタ12の閾電圧をVtnとすると、Vs0=ハイレベルBの電圧+Vtn の電圧が印加される。
【0038】
ポートBの電圧VBがローレベルからハイレベルBに上昇する場合、パストランジスタ12のドレイン端子の電圧、即ちポートAの電圧VAは、ソース端子の電圧、即ちポートBの電圧VBの上昇と共に上昇する。
【0039】
上昇中のポートAの電圧VAは、バッファ回路23を介して主スイッチ回路21に直接入力されており、ポートAの電圧VAがローレベルを超え、ハイレベルBの電圧以下の所定電圧値に達すると、主スイッチ素子28がオンする。
【0040】
ポートAの電圧VAは、バッファ回路23を介してパルス生成回路24にも入力されている。
【0041】
このパルス生成回路24はワンショットパルスジェネレータであり、入力される電圧が主スイッチ素子28をオンさせるまで上昇すると、副スイッチ素子29をオンさせるパルス電圧を出力する。
【0042】
従って、ポートAの電圧VAが上昇するときには、主スイッチ素子28と副スイッチ素子29は同時にオンする。
【0043】
主及び副スイッチ回路28、28内には、それぞれ主及び副スイッチ素子28、29と直列接続された主及び副抵抗素子26、27が設けられており、電源電圧端子CとポートAとの間は、直列接続回路によって接続されている。
【0044】
従って、主及び副スイッチ回路28、29が両方とも同時に導通した状態では、ポートAは、主及び副スイッチ回路28、29の両方によって電源電圧端子Cに接続されるため、ポートAには、電源電圧端子Cから主抵抗素子26を通って流れる主電流I1と、副抵抗素子27を通って流れる副電流I2の両方が供給される。
【0045】
その結果、ポートAに接続されている負荷容量が主電流I1と副電流I2とによって充電されるため、ポートAの電圧VAは急速に上昇し、ポートBの電圧VBの大きさを超え、ハイレベルAの電圧に速やかに到達する。
【0046】
パルス生成回路24内には時定数回路が設けられており、パルス生成回路24は、副スイッチ素子29を導通させる電圧を出力した後、一定時間が経過しすると、副スイッチ素子29をオフさせる。
【0047】
このとき、ポートAの電圧VAは既にハイレベルAの大きさに到達しており、バッファ回路23からはポートAの電圧VAと同じ大きさの電圧が出力され続けているため、主スイッチ素子28はオン状態を維持する。
【0048】
この状態では、ポートAは、主スイッチ回路21によって電源電圧端子Cに接続されており、電源電圧端子Cから印加される電源電圧VCCHによってポートAのハイレベルAが維持される。ポートAの電圧VAがハイレベルAである場合には、主抵抗素子26の両端の電位差はゼロであり、主抵抗素子26には電流は流れない。
【0049】
次に、ポートBがハイレベルBにある状態からローレベルに変化する場合を説明する。
【0050】
ポートBがハイレベルBにあり、ポートAがハイレベルAで安定している状態では、副スイッチ回路22はオフしており、主スイッチ回路21だけがオン状態にある。
【0051】
ポートBの電圧VBが低下し始めると、それに伴い、ポートAの電圧VAも低下し始めるが、ポートAの電圧VAがハイレベルB以下の所定電圧値に到達するまでは、主スイッチ回路21がオン状態を維持する。
【0052】
その結果、ポートAの電圧VAが低下し始めることにより、主抵抗素子26の両端に電位差が生じ、主抵抗素子26に主電流I1が流れ始める。また、ポートAの電圧VAの低下により、負荷容量が放電を開始するため、その放電電流と主抵抗素子26に流れる主電流I1とは、パストランジスタ12を通って、ポートBを駆動する回路に流入する。
【0053】
主抵抗素子26の抵抗値は、副抵抗素子27の抵抗値よりも大きく設定されているため、主抵抗素子26に流れる主電流I1は、副電流I2に比べて無視できるほど微少である。従って、ポートBを駆動する回路は負荷容量の放電電流を扱うだけで済み、流駆動能力が低くてもポートAの電圧VAは速やかに低下する。
【0054】
ポートAの電圧VAが低下し、主スイッチ素子28がオフすると、主電流I1は流れなくなるため、ポートAは一層速やかにローレベルになる。
【0055】
次に、ポートAが入力側、ポートBが出力側であり、ポートAの電圧VAがローレベルからハイレベルAに変化する場合を説明する。
【0056】
ポートAがローレベルからハイレベルAに変化する場合は、ポートAの電圧VAが所定電圧以上に上昇したときに、主及び副スイッチ素子28、29が同時に導通し、ポートAは主及び副スイッチ回路28、29の両方によって電源電圧端子Cに接続される。従って、ポートAには、主及び副抵抗素子26、27を通って流れる主及び副電流I1、I2の両方が供給され、電圧上昇が加速される。
【0057】
パルス生成回路24により、一定時間が経過した後、副スイッチ素子29がオフされる。このときにはポートAは既にハイレベルAに到達している。
【0058】
ポートAの電圧VAがハイレベルAからローレベルに変化するときは、ポートBの電圧VBは、ポートAの電圧VAに追随する。
【0059】
図2の符号3は、図1のレベル変換回路2を具体化したレベル変換回路であり、主及び副スイッチ回路21、22を、PチャネルMOSトランジスタで構成し、主及び副スイッチ素子28、29のスイッチ機能をトランジスタのオン/オフで行わせ、主及び副抵抗素子26、27の電流制限機能を、MOSトランジスタの内部抵抗に行わせている。
【0060】
また、バッファ回路23はNAND素子33で構成し、その一方の入力端子をポートAに接続し、他方の入力端子をEN端子に接続し、EN端子にハイレベルBの電圧を印加しておけば、ポートAの電圧が反転して出力される。
【0061】
この場合、ポートAの電圧VAがローレベルからハイレベルAに上昇するとき、又はハイレベルAからローレベルに低下するときには、NAND素子33の閾電圧を超えた時点で、NAND素子33の出力電圧は、ハイレベルAとローレベルとの間で反転する。
【0062】
主及び副スイッチ素子28、29はPチャネルMOSトランジスタであるからNAND素子33からローレベルの電圧が出力されたときに導通する。
【0063】
パルス生成回路24は、時定数抵抗34とコンデンサ35の直列接続回路によって構成されており、その直列接続回路の両端のうち、時定数抵抗34側が電源電圧端子Dに接続され、電源電圧VCCHが印加されている。コンデンサ35側の端子はNAND素子33の出力端子に接続されている。
【0064】
NAND素子33の出力端子は、主スイッチ回路21のPチャネルMOSトランジスタ31のゲート端子に直結されると共に、コンデンサ35と時定数抵抗34の直列接続回路のコンデンサ35側の一端に接続されている。
【0065】
コンデンサ35と時定数抵抗34とが接続された接続点を符号Mで表すと、NAND素子33の出力端子の電圧がハイレベルAからローレベルに変化した場合に、主スイッチ回路21のPチャネルMOSトランジスタ31のゲート端子の電圧と、接続点Mの電圧は、瞬時にローレベルになる。
【0066】
従って、主及び副スイッチ回路21、22の両方のPチャネルMOSトランジスタ31、32は同時にオンし、その後、時定数抵抗34を通った電流でコンデンサ35が充電され、接続点Mの電圧が上昇し、副スイッチ回路22のPチャネルMOSトランジスタ32がオン状態を維持できなくなると、主スイッチ回路21のPチャネルMOSトランジスタ31はオンを維持した状態で、副スイッチ回路22のPチャネルMOSトランジスタ32がオフする。
【0067】
主スイッチ回路21のPチャネルMOSトランジスタ31には小面積のトランジスタが用いられており、内部抵抗が大きくなっている。副スイッチ回路22のPチャネルMOSトランジスタ32は、大面積のトランジスタが用いられており、内部抵抗が小さくなっている。従って、主及び副スイッチ回路21、22の両方のPチャネルMOSトランジスタ31、32が導通した状態では、主として副スイッチ回路22のPチャネルMOSトランジスタ32に電流が流れ、そのMOSトランジスタ32がオフした後は、ほとんど電流は流れなくなる。
【0068】
図4は、このレベル変換回路3のポートBを入力側、ポートAを出力側とし、低い電圧の信号を高い電圧の信号に変換した場合の電圧VA、VBの波形変化を示すグラフである。出力側であるポートAの電圧VAは、入力側であるポートBの電圧VBにの電圧波形に対し、ほぼ完全に追従している。
【0069】
図5は、それとは逆に、ポートAを入力側とし、ポートBを出力側として高い電圧を低い電圧に変換した場合の電圧VA、VBの波形変化である。この場合、EN端子にローレベルの信号を印加し、主及び副スイッチ回路21、22をオフさせておいても、波形に変化はない。
【0070】
なお、上記はローレベルがグラウンド電位、ハイレベルA、B及び電源電圧VCC、VCCHが正電圧の場合について説明したが、ハイレベルA、B及び電源電圧VCC、VCCHが負電圧の場合についても本発明は含まれる。その場合は、
(ハイレベルAの電圧) < (ハイレベルBの電圧) < (グラウンド電位)
である。
【0071】
また、上記例では、パストランジスタ12や主及び副スイッチ回路21,22にMOSトランジスタを使用した場合について説明したが、本発明はバイポーラトランジスタの他、種々のスイッチ素子を使用することも可能である。
【0072】
【発明の効果】
省電力、省スペースの回路で双方向のレベル変換が可能になる。
【図面の簡単な説明】
【図1】本発明の一例のレベル変換回路の回路ブロック図
【図2】そのブロック図を具体化した場合のレベル変換回路の例
【図3】従来技術の片方向レベル変換回路
【図4】従来技術の両方向レベル変換回路
【図5】本発明のレベル変換回路の電圧波形を示すグラフ(高電圧側のポートが入力側の場合)
【図6】本発明のレベル変換回路の電圧波形を示すグラフ(低電圧側のポートが入力側の場合)
【符号の説明】
A……第1のポート
B……第2のポート
2、3……レベル変換回路
12……パストランジスタ
21……主スイッチ回路
22……副スイッチ回路

Claims (6)

  1. 第1の論理レベルの信号が印加される第1の端子と、
    上記第1の論理レベルよりも小さな論理レベルである第2の論理レベルの信号が印加される第2の端子と、
    上記第1の端子と上記第2の端子との間に接続され、上記第1の端子と上記第2の端子との間に信号経路を形成するためのトランジスタと、
    上記第1の論理レベルに対応する電源電圧が供給される電源端子と上記第1の端子との間に接続され、上記第1の端子の論理レベルに応じて導通する第1のスイッチ回路と、
    上記第1の論理レベルに対応する電源電圧が供給される電源端子と上記第1の端子との間に接続され、上記第1の端子の倫理レベルに応じて上記第1のスイッチ回路と共に所定の期間だけ導通する第2のスイッチ回路と、
    を有し、
    上記第1の端子から上記第2の端子の向き又は上記第2の端子から上記第1の端子の向きに論理レベルの異なる信号を伝播可能なレベル変換回路。
  2. 上記第1のスイッチ回路の導通時の抵抗値が上記第2のスイッチ回路の導通時の抵抗値よりも大きい請求項1に記載のレベル変換回路。
  3. 上記第1の端子の論理レベルの変化に応じて上記第2のスイッチ回路を一時的に導通させるためのパルス信号を生成するパルス生成回路を有する請求項2に記載のレベル変換回路。
  4. 上記トランジスタと上記第1及び第2のスイッチ回路とがそれぞれMOSトランジスタで構成される請求項3に記載のレベル変換回路。
  5. 上記トランジスタがnMOSトランジスタで構成され、上記nMOSトランジスタのゲート端子に上記第2の論理レベルに応じた電源電圧よりも当該nMOSトランジスタの閾値電圧分だけ高い電圧が印加される請求項4に記載のレベル変換回路。
  6. 2つの入力端子が上記第1の端子とイネーブル信号印加端子とにそれぞれ接続されたNAND回路と、上記第1の論理レベルに対応する電源電圧が供給される電源端子と基準電圧が供給される電源端子との間に直列に接続されたダイオードと抵抗素子とで構成される電圧供給回路とを有し、
    上記第1及び第2のスイッチ回路がそれぞれ第1及び第2のpMOSトランジスタで構成され、
    上記パルス生成回路が上記第1の論理レベルに対応する電源電圧が供給される電源端子と上記NAND回路の出力端子との間に直列に接続された抵抗素子とキャパシタとで構成され、
    上記第1のpMOSトランジスタのゲート端子が上記NAND回路の出力端子に接続され、上記第2のpMOSトランジスタのゲート端子が上記パルス生成回路の抵抗素子とキャパシタとの接続中点に接続され、上記nMOSトランジスタのゲート端子が上記電圧供給回路のダイオードと抵抗素子との接続中点に接続される請求項5に記載のレベル変換回路。
JP2001388907A 2001-12-21 2001-12-21 レベル変換回路 Expired - Fee Related JP3836719B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001388907A JP3836719B2 (ja) 2001-12-21 2001-12-21 レベル変換回路
US10/321,319 US6717456B2 (en) 2001-12-21 2002-12-17 Level conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001388907A JP3836719B2 (ja) 2001-12-21 2001-12-21 レベル変換回路

Publications (3)

Publication Number Publication Date
JP2003188710A JP2003188710A (ja) 2003-07-04
JP2003188710A5 JP2003188710A5 (ja) 2005-06-30
JP3836719B2 true JP3836719B2 (ja) 2006-10-25

Family

ID=19188217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001388907A Expired - Fee Related JP3836719B2 (ja) 2001-12-21 2001-12-21 レベル変換回路

Country Status (2)

Country Link
US (1) US6717456B2 (ja)
JP (1) JP3836719B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3635466B2 (ja) * 2002-09-30 2005-04-06 日本テキサス・インスツルメンツ株式会社 レベルシフト回路
US6954100B2 (en) * 2003-09-12 2005-10-11 Freescale Semiconductor, Inc. Level shifter
US7667519B2 (en) * 2005-05-23 2010-02-23 Texas Instruments Incorporated Biasing circuit for pass transistor for voltage level translator circuit
TWM327076U (en) * 2007-08-24 2008-02-11 Inventec Appliances Corp Switch circuit
JP2009296119A (ja) * 2008-06-03 2009-12-17 Toshiba Corp 双方向バッファ回路及び信号レベル変換回路
JP2010199640A (ja) 2009-02-20 2010-09-09 Toshiba Corp 信号レベル変換回路
JP2011119979A (ja) * 2009-12-03 2011-06-16 Toshiba Corp レベルシフト回路
JP6290081B2 (ja) * 2011-09-15 2018-03-07 フリウルケム、ソシエタ、ペル、アチオニFriulchem Spa 動物への経口投与用組成物、その製造方法およびその使用
JP2014239300A (ja) * 2013-06-06 2014-12-18 株式会社東芝 バススイッチ回路
US11101789B2 (en) 2019-12-19 2021-08-24 Rockwell Automation Technologies, Inc. Systems and methods for providing bi-directional signal level shifting
CN111669168A (zh) * 2020-06-18 2020-09-15 烽火通信科技股份有限公司 一种高速电平转换电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2555380B1 (fr) * 1983-11-18 1986-02-21 Efcis Circuit de translation de niveau logique
FR2811131A1 (fr) * 2000-06-30 2002-01-04 St Microelectronics Sa Dispositif de controle d'alimentation dans un circuit integre comprenant des elements de memoire non volatile electriquement programmable
US6320408B1 (en) * 2001-03-02 2001-11-20 Pericom Semiconductor Corp. Dual-sided undershoot-isolating bus switch

Also Published As

Publication number Publication date
US20030132794A1 (en) 2003-07-17
US6717456B2 (en) 2004-04-06
JP2003188710A (ja) 2003-07-04

Similar Documents

Publication Publication Date Title
JP3435007B2 (ja) 低電圧技術による高い電圧の振れを出力するバッファ
US7649384B2 (en) High-voltage tolerant output driver
US6225844B1 (en) Output buffer circuit that can be stably operated at low slew rate
US8754679B2 (en) Low current power-on reset circuit and method
KR20010049227A (ko) 레벨조정회로 및 이를 포함하는 데이터 출력회로
US6791391B2 (en) Level shifting circuit
US6285209B1 (en) Interface circuit and input buffer integrated circuit including the same
JP5690341B2 (ja) 選択的にac結合又はdc結合されるように適合される集積回路
US6670841B2 (en) Level shifting circuit
JP7429089B2 (ja) 過渡事象の影響を受けないレベルシフタ
JP3836719B2 (ja) レベル変換回路
KR100535346B1 (ko) 반도체 집적회로장치
US6259299B1 (en) CMOS level shift circuit for integrated circuits
JP2002198791A (ja) 電源電圧以外の電圧を使用する集積回路用の出力ドライバ
JPH04229714A (ja) バッファを有する集積回路
JPH09172368A (ja) 半導体出力回路
JP2002208849A (ja) 誘導性負荷駆動回路
KR20040002722A (ko) 레벨 시프터, 반도체 집적 회로 및 정보 처리 시스템
JP3400294B2 (ja) プル・アップ回路及び半導体装置
US6833749B2 (en) System and method for obtaining hysteresis through body substrate control
KR20030052231A (ko) 입출력 버퍼 회로
US6118311A (en) Output circuit capable of suppressing bounce effect
JPH07105709B2 (ja) 電圧変換回路
JP2010045522A (ja) 半導体装置
TWI222273B (en) Semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041022

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3836719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees