JP3835822B2 - 無線周波数信号を発生させる方法および装置 - Google Patents

無線周波数信号を発生させる方法および装置 Download PDF

Info

Publication number
JP3835822B2
JP3835822B2 JP51354498A JP51354498A JP3835822B2 JP 3835822 B2 JP3835822 B2 JP 3835822B2 JP 51354498 A JP51354498 A JP 51354498A JP 51354498 A JP51354498 A JP 51354498A JP 3835822 B2 JP3835822 B2 JP 3835822B2
Authority
JP
Japan
Prior art keywords
signal
digital signal
unit
voltage switching
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP51354498A
Other languages
English (en)
Other versions
JP2001503210A (ja
Inventor
リチャード バージャー ヘルバーグ,ラルス
Original Assignee
テレフォンアクチーボラゲット エル エム エリクソン(パブル)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフォンアクチーボラゲット エル エム エリクソン(パブル) filed Critical テレフォンアクチーボラゲット エル エム エリクソン(パブル)
Publication of JP2001503210A publication Critical patent/JP2001503210A/ja
Application granted granted Critical
Publication of JP3835822B2 publication Critical patent/JP3835822B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/06Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/331Sigma delta modulation being used in an amplifying circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Amplifiers (AREA)

Description

技術分野
本発明は、低周波数または中間周波数の情報信号を無線周波数信号まで変調および電力増幅するにあたって、広範囲の周波数帯において高線形性および高効率性を同時に実現した装置に関する。より一般的には、本発明はM−進ディジタル信号、つまりMが2以上の整数として、M個の異なるディスクリートな信号値を有する信号を変調および電力増幅させるための構成に関する。
更に、本発明はこのような構成に適用される方法にも関する。
背景技術
従来の無線周波数信号の電力増幅においては、原則的に高効率性と高線形性のうちいずれかを選択する必要があった。例えば、C級増幅器は高効率性を実現するが、広帯域における線形性は不充分であり、A級増幅器は比較的線形性が高いが効率が低い。
異なる搬送波上に変調された複数の情報信号を1つの増幅器によって同時に増幅する場合、または例えばQAM(横軸振幅変調)等の線形変調方式を使用する場合、増幅過程で入来の信号成分の位相および振幅位置が全て保持されることが必須であるため、非常に高い線形性を有する電力増幅器が必要である。さもなければ、信号成分間の相互変調が生じる可能性および/または増幅された総合信号のスペクトルが広がり、他のチャネルで送信される信号との干渉を生じる可能性がある。上記の高線形性要件が課される装置の例として、複数の狭帯域チャネルの同時電力増幅に適用される増幅器や多数のCDMA(符号分割多元接続)チャネルが重畳された搬送波を増幅する目的を有する電力増幅器等がある。
D.P.Myerは、A Multicarrier Feed-Forward Amplifier Design, Microwave Journal, October 1994, pp. 78-88で、広帯域幅線形電力増幅器の実現方法について検討した。入力信号をフォワードフィード法により電力増幅器へ供給することで、特定の非線形性を補償することができる。
Linear Transceiver Architectures, 1988 IEEE Vehicular Technology Conference, pp. 478-484において、A.Bateman等は、デカルト式フィードバックやLINC(非線形成分による線形増幅)原理の全適応性前置歪を利用して高線形性の電力増幅器を得ることができることを開示する。
Linear Modulators Based on RF Synthesis: Realization and Analysis, IEEE Transactions on Circuits and Systems - I: Fundamental Theory and Applications, vol. 42, no. 6, July 1995において、K.Y.Chan等は無線周波数合成によりQPSK(正方位相シフトキー)変調無線信号を作成する方法について検討した。全ての方法はLINC原理を更に発展させたいわゆるCALLUM(結合アナログロックループユニバーサル変調)原理を利用するものである。
V.F.Dias等は、Sigma-Delta Modulators for High-Resolution and Wide-Band A/D Converter Applications, Microelectronics Journal, 25, 1994, pp. 253-277において、シングルビット型、マルチビット型およびカスケード型シグマ・デルタ変調器の広帯域適用例を示す。
米国特許第5,401,953号からシングルおよび指数無線周波数変調においてシグマ・デルタ変調器を使用すること、すなわち4相分割信号成分の無線周波数変調が公知である。欧州特許第1426560号も、入力信号を指数的に変調するためにシグマ・デルタ変調器を使用する方法を開示する。
Complex-Signal Sigma-Delta Modulators for Quadrature Bandpass A/D Conversion, Microelectronics Journal, Vol. 27, No. 6, 1996, pp. 505-524において、V.da Fonte Diasは複合シグマ・デルタ変調器により実現可能な優れた雑音フィルタを記述する。これらの変調器は、直流電圧に対して非対称な雑音伝送関数を可能にする。その結果、この種の変調器において、低位および高位のカスケードトポロジーの設計方法が非常に簡単になる。
K.Cardwell等によるProgress in UWB Generation with Linear Silicon Switches, Optically Activated Switching III, SPIE, vol. 1873, 1993, pp. 238-248は、LASS(光作動シリコンスイッチ)を用いて超帯域幅レーダパルスを発生する方法を開示する。
パルスレーザ、光学遅延装置および光伝導スイッチを使用して超短波電磁パルスを得る2つの異なる方法がR.Mason等によるHigh Speed, High Resolution Analogue-to-Digital Conversion using a Hybrid Electro-Optic Approach, 1995 IEEE International Symposium on Circuits and Systems, pp. 704-707および米国特許第5,401,953号に開示されている。
高信頼性で長寿命のシリコン光伝導スイッチは、A.RosenによるLong Lifetime Silicon Photoconductive Semiconductor Switches, Optically Activated Switching III, SPIE, Vol. 1873, 1993, pp. 27-38から公知である。
光作動式スイッチが使用される他の分野の例として、核融合炉用のプラズマ発生、X線放射の検出やパルスレーダ方式における広帯域高電力パルスの発生等が挙げられる。
発明の開示
本発明は、アナログまたはディジタル、単一または2つの信号成分に4相分割された一般情報信号のパルス整形および電力増幅を行う装置および方法を提供する。ここで提案する解決策は、広い周波数帯にわたって高い線形性および効率を実現する。
オーバーサンプリングおよび雑音フィルタ処理により、アナログ回路の線形性の要求とアナログ回路間の同一性の要求を下げられるため、シグマ・デルタ変調で広いダイナミックレンジに亘ってDA変換およびAD変換が実現可能である。更に、解決策として使用されるアンチエイリアスフィルタは比較的簡単にでき、解決策は集積回路に適する。しかし、現在のところ、この方法により無線周波数信号を直接合成できるほど高速の回路は存在しない。
米国特許第5,401,953号が教示する解決策は、低域単ビットシグマ・デルタ変調器を従来の電力増幅器と組合せて無線周波数信号を作成する。
R.Mason等のHigh Speed, High Resolution Analogue-to-Digital Conversion using a Hybrid Electro-Optic Approach, 1995 IEEE International Symposium on Circuits and Systems, pp. 704-707による解決策は、パルスレーザ、光遅延装置および光伝導スイッチを用いて高周波数電磁パルスを発生させる方法を含む。
しかし、シグマ・デルタ変調情報信号をパルス整形し、そのパルス整形された情報信号で制御された電圧供給スイッチにより電力増幅する方法は現在に至るまで開示されていない。
したがって、本発明の目的は、電離放射線に対して感受性または反応性を有する導電素子を含むスイッチユニットを用いて非常に効果的にディジタル入力信号の線形パルス整形および電力増幅を実現することである。
シグマ・デルタ変調により、容易にパルス整形可能で電力増幅器の非線形性に影響されないディジタル信号を得ることができる。シグマ・デルタ変調器は任意のアナログまたはディジタル情報信号から多数の信号値を発生することができる。
発明の第一実施形態では、入来の情報信号をシグマ・デルタ変調して、M個のディスクリートな信号値を取ることができるディジタル信号を作成する。次にディジタル信号は混合増幅部において電圧切替情報搬送信号に変調され、それから信号のスペクトルの所望の部分をフィルタ処理により抜き出す。ディジタル信号の情報内容に従い、M個のスイッチを制御し、ディジタル信号から電圧切替信号を得る。各スイッチは固有の電源電圧および全スイッチ共通の出力に接続される。あるスイッチが閉じると、そのスイッチの電源電圧が出力に供給される。スイッチは、一度には1つのスイッチのみ閉まるように制御される。電圧切替情報搬送信号はスイッチに共通する出力の電圧変化からなる。この発明の実施形態は下記の請求項1に記載する要件を特徴とする。
本発明の第二の実施形態によると、各信号成分のシグマ・デルタ変調により、2つの4相分割情報信号成分から2つのディジタル信号を作成する。ディジタル信号はM個のディスクリートな信号値を取ることができる。ディジタル信号は2つの混合増幅ユニットにより電圧切替情報搬送信号に変換し、その後情報搬送信号は下流の総和ユニットで総和され、総和信号が作成される。最後に、フィルタ処理により総和信号からスペクトルの所望の部分を得る。電圧切替信号は上記と同様に、各ディジタル信号の情報内容に従いM個のスイッチを制御することでディジタル信号から作成する。この実施形態は下記の請求項2に記載する要件を特徴とする。
本発明の第三の実施形態によると、シグマ・デルタ変調により、入来の情報信号から2つの4相分割情報信号成分を作成する。ディジタル信号はM個のディスクリートな信号値を取ることができる。2つの混合増幅ユニットにより電圧切替情報搬送信号でディジタル信号に対応する電圧切り替え情報搬送信号を作成し、その情報搬送信号は下流の総和ユニットで総和され、総和信号が作成される。フィルタ処理により総和信号からスペクトルの所望の部分を得る。電圧切替信号は上記の第一実施形態と同様に、M個のスイッチを使用することでディジタル信号から作成する。この実施形態は下記の請求項3に記載する要件を特徴とする。
本発明は、入来の情報信号のパルス整形および電力増幅方法にも関する。この方法によれば、シグマ・デルタ変調により情報信号をM個のディスクリートな信号値を含むディジタル信号として再構成する。例えばn=2logMで示すnビットのワードを、例えばいわゆるハダマードシーケンス等の特定のシンボルシーケンスと掛ける。2進の局所発振信号0,1]もハダマードシーケンスの簡単な例である。しかし、周期的に繰り返されるシンボルシーケンスであれば良い。シンボルシーケンスに含まれるシンボルもm進であっても良い。すなわち、各シンボルはm個のディスクリートな値の内1つを取ることができる。
掛算処理の結果得られる信号は復号され、該当する値に従ってM個のスイッチの内の特定のスイッチまで制御または誘導される。各スイッチはスイッチ特有の電源電圧および全スイッチに共通する出力に接続される。あるスイッチが閉じられると、そのスイッチの電源電圧が出力に供給される。スイッチは、一度には1つのスイッチのみ閉じるように制御される。電圧切替情報搬送信号はスイッチに共通する出力の電圧変化からなる。帯域通過フィルタ処理により、情報搬送信号からスペクトルの所望の部分を抜き出す。この方法は下記の請求項12に記載する要件を特徴とする。
入来の情報信号をパルス整形および電力増幅する本発明による第二の方法では、シグマ・デルタ変調により情報搬送信号をディジタル信号を再構成する。この場合、ディジタル信号はM個のディスクリートな信号値を取ることができる。そのディジタル信号は復号され、該当する値に従い特定のパルス発生器に導かれ、そのパルス発生器から特定長のパルスが供給される。パルスは電離放射線に変換され、異なる成分に分割される。各成分は個別の遅延素子を通過し、各遅延素子は異なる大きさの信号遅延をもたらす。次いで、電離放射線のパルスはM個のパルス列に合成され、これらのパルス列はディジタル信号と特定のシンボルシーケンスの積の信号を表わす。電離放射線の各パルス列は特定の導電素子に入射し、その導電性は素子に入射する電離放射線の量に依存する。電離放射線が入射すると、各導電素子は全導電素子に共通する出力にその素子特有の電源電圧を供給する。導電素子は各時点において1つの素子のみが導電性を有するように放射線を制御する。この方法は下記の請求項14に記載する要件を特徴とする。
本発明による入来の情報信号をパルス整形および電力増幅する第三の方法では、2本の4相分割情報信号成分をシグマ・デルタ変調して2本のM進ディジタル信号、すなわちM個の異なるディスクリートな信号値を取れる信号を作成する。ディジタル信号は別々に混合増幅されるが、アップミックス時には同一のシンボルシーケンスを使用する。しかし、第二ディジタル信号は、第一ディジタル信号をアップミックスするために使用されるシンボルシーケンスに対して周期の4分の1だけずれたシンボルシーケンスとミックスされる。上記の内いずれかの方法により電離放射線およびM個の導電素子を使用するスイッチユニットにより電圧切替信号を作成する。アップミックスおよび電圧切替された信号を総和して、総和信号を得て、その総和信号をフィルタ処理することで所望の電力信号を得る。この方法は下記の請求項15に記載の要件を特徴とする。
入来の情報信号をパルス整形および電力増幅する本発明の第四の方法では、情報信号はシグマ・デルタ復調により2つの4相成分に分割され、この成分は上述の方法と同様にして混合、増幅、合成およりフィルタリングされる。この第四の方法は下記の請求項16に記載の要件を特徴とする。
本発明の方式および方法は、現在のMCPA解決案の課題と、効率性および線形性についての従来の線形変調システムの課題を、後者を犠牲にして前者を実現する形ではなく、その反対に後者を犠牲にすることもなく、解決する。シグマ・デルタ変調処理の際にオーバーサンプリングおよび雑音フィルタリングを行うことにより、出力信号の高線形性を実現し、同時にスイッチ技術による非線型電力増幅器の使用を可能にする。
シグマ・デルタ変調およびスイッチによる増幅を用いて情報信号をパルス整形および電力増幅させることで、高電力信号の合成を避けることができる。これにより、大型の電力合成器を使用せずに無線信号を作成することが可能になる。更に、入力する信号成分の位相や振幅を一致させる必要がなく、入来の情報信号のための回路構成は比較的簡単で済む。マイクロ波領域で無線信号を発生させるときにおいてもマイクロ波の構成を避けることができることで回路を更に簡単にすることができる。
本発明に従ってシグマ・デルタ変調器を用いてパルス整形および電力増幅することで、入来する成分のトリミングを不要とする。また、構成は非常に高い電圧および電力に合わせることができる。増幅器は、出力電力が高いにも係らず、帯域幅が広い。増幅器の帯域幅が広いため、伝送フィルタについての要件が比較的緩やかである。スイッチユニットの光スイッチは完全な逆方向隔離と最小限のジッタを有する。
4相分割情報信号が別々にシグマ・デルタ変調と混合と増幅される解決策やシグマ・デルタ変調器が4相分割ディジタル信号を発生させる解決策は、容易に実施することが可能である。しかし、入力される信号成分、すなわちIチャネルとQチャネルとの間を位相および振幅を正確に一致させる必要がある。
本発明は、多数ビットシグマ・デルタ変調器と多数レベル電力増幅器を組合せることで、オーバーサンプリングと回路の複雑化とを調和させることを可能とする。
更に本発明は同一の搬送波に複数のCDMAチャネルを重畳させることを可能とし、特定の周波数帯において複数の狭帯搬送波を同時に増幅させることを可能とする。
更に、本発明の方法は非常に高いダイナミックレンジが得られるため、高い波高率PFを有するOFDM信号、すなわち最高波高電力Ppと平均効果キャップトPとの比が大きな信号はを効果的に増幅させることができる。
最後に、本発明の方法はMCPA適用技術のために小型、安価かつ簡単な回路方式を提供する。
図面の説明
図1は従来のディジタル入力信号のシグマ・デルタ変調器の概略ブロック図である。
図2はより古い従来のアナログ入力信号のシグマ・デルタ変調器の概略ブロック図である。
図3には正弦信号を供給した4レベルシグマ・デルタ変調器の出力信号の例を示す。
図4は提案の方法の第一実施形態による一般情報信号をパルス整形および電力増幅する構成を示す概略ブロック図である。
図5は図4の混合増幅部420の第一変更例を示す回路図である。
図6は図4の混合増幅部420の第二変更例を示す回路図である。
図7a〜7cには図5および6において最も重要である3つの信号の信号振幅が時間的に変動する例を図示する。
図8は図4の混合増幅部420の第三変更例を示す回路図である。
図9a〜9cには図8において最も重要である3つの信号の信号振幅が時間的に変動する例を図示する。
図10は図4の混合増幅部420の第四変更例を示す回路図である。
図11は提案の方法の第二実施形態による一般情報信号をパルス整形および電力増幅する構成を示す概略ブロック図である。
図12は図11の混合増幅部11420の回路図である。
図13a〜13dには図12において最も重要な3つの信号の信号振幅が時間的に変動する例を図示する。
図14は提案の方法の第三実施形態による4相信号成分に分割された一般情報信号をパルス整形および電力増幅する構成を示す概略ブロック図である。
図15は提案の方法の第四実施形態による一般情報信号をパルス整形および電力増幅された4相信号成分に分割する構成を示す概略ブロック図である。
図16は提案の方法の第五実施形態による4相信号成分に分割された一般情報信号をパルス整形および電力増幅する構成を示す概略ブロック図である。
図17は提案の方法の第四実施形態による一般情報信号をパルス整形および電力増幅された4相信号成分に分割する構成を示す概略ブロック図である。
これより、発明の好ましい実施例と添付の図面を参照して本発明をより詳細に説明する。
好適な実施形態の詳細な説明
図1は、入来のディジタル信号XDがシグマ・デルタ変調器で変調され、ディジタル出力信号Yが作成作成される通常の方法を示す概略ブロック図である。ここで、ディジタル出力信号Yが2進信号であること、すなわち2つの異なる信号値、例えば1と−1を取ることができるとする。しかし、出力信号Yは都合により実質的には多数のビットを含むことができ、そのため2つ以上の信号値を取ることができるとも言うことができる。総和器110が入来の信号XDと出力信号Yとの間の差信号eを作成する。この差信号eは透過関数Hを有するディジタルフィルタ120でフィルタされ、フィルタされた信号h(e)が得られる。この信号h(e)はクロックCK量子化器130において基準レベルと比較される。フィルタされた信号h(e)が基準レベルより大きければ、量子化器130は例えば1等の第一ディジタル信号を供給し、フィルタされた信号h(e)が基準レベルより小さければ、量子化器130は例えば−1等の第二ディジタル信号を供給する。原則的に、基準レベルは出力信号Yの最も近い2つの可能な信号値の算術平均値に設定される。このため、出力信号YのM個の可能な信号値のアルファベットを含む場合、M−1個の基準レベルが必要となる。よって、出力信号Yが2値信号で、シンボル1および−1を含む場合、基準レベルは0に設定される。
図2は入来のアナログ信号XAがシグマ・デルタ変調器で変調され、2進式でもあるディジタル出力信号Yが作成される通常の方法を示す概略ブロック図である。入来の信号XAとディジタル出力信号Yのアナログ対応信号YAとの間の差信号eは総和器210により決定される。この差信号eは透過関数Hを有するアナログフィルタによりフィルタされ、フィルタ信号h(e)が作成作成される。フィルタ信号h(e)はクロックCK比較器230において電圧レベル0Vと比較される。フィルタ信号h(e)が0レベルより大きければ、比較器230は例えば1等の第一ディジタル信号を供給し、フィルタ信号h(e)が0レベルより低ければ、比較器230は例えば−1等の第二ディジタル信号を供給する。しかし、アナログの場合では、特定の解像度を得るためにより低い標本化率が必要となるため、出力信号Yは好ましくは1ビット以上を含む。出力信号YはクロックCKDA変換機240で対応するアナログ信号YAに変換され、総和器210に戻される。DA変換機240と比較器230との同期性を保障するべく、これらのユニット230、240は同一のクロック信号CKで制御される。
シグマ・デルタ変換機の透過関数
Figure 0003835822
(式中、X=XDまたはXA)は、低域通過特性を有するので、望む出力信号Yのスペクトルは出力信号を低域フィルタすることで得られる。しかし、透過関数
Figure 0003835822
を有する量子化雑音e=X−Yを出力信号Yの有用周波数スペクトル外に効果的に移動させることができるため、無線における実用例のうち、過半数ではディジタルフィルタ120の透過関数Hは好ましくは帯域通過関数である。
図3にはアナログ正弦信号X(t)=2u sin(2πt/T)、すなわち振幅2u、周期Tの信号が供給された、可能な出力信号値が4つ(3u、1u、−1u、−3u)あるシグマ・デルタ変調器からの出力信号の例を示す。この例では、シグマ・デルタ変調器の標本化頻度は正弦信号より48倍高く設定されており、オーバーサンプリング率は24となる。その結果、入力信号X(t)の1周期を表わすために、出力信号Y(t)の標本値を48個取る。統計的には、入力信号X(t)が第一基準レベル0より大きく、第二基準レベル2uより小さいとき、出力信号Y(t)は1uの値を取ることが最も多く、入力信号X(t)が基準レベル2uより大きいとき、出力信号Y(t)は3uの値を取ることが最も多い。出力信号Y(t)は、入力信号X(t)および最も近い先行の出力信号Y(t−1)の値双方に依存する。一般的には、出力信号Y(t)は、標本値から標本値に移るに従って、2つの隣接する信号値の間をランダムに交互移動する。入力信号X(t)が0にほぼ等しいとき、出力信号Y(t)は値1uと−1uの間をランダムに移動する。同様に、入力信号X(t)が2にほぼ等しいとき、出力信号Y(t)はランダムに1uと3uの間を移動し、入力信号X(t)が−2にほぼ等しいとき、ランダムに−1uと−3uの間を移動する。しかし、図3から明らかなように、さらに大きなランダム変動が起きることもある。
図4は、本発明の構成の第一実施形態の概要を示すブロック図である。この構成は、先ずシグマ・デルタ変調器410で情報信号XIFを処理することで入来の情報信号XIFをパルス整形し、電力増幅する。シグマ・デルタ変調器410は、成分フィルタ120および220が帯域フィルタ特性を有するいわゆる帯域通過型変調器であっても、成分フィルタ120および220が低域フィルタ特性を有するいわゆる低域通過型変調器であっても良い。情報信号XIFがディジタルであるかアナログであるかによって、シグマ・デルタ変調器410は図1に示すようにディジタルであっても、図2に示すようにアナログであっても良い。シグマ・デルタ変調器410の出力からは、M進ディジタル出力信号Y、すなわちM個の個別の値を取ることができる信号が送られる。ディジタル信号Yは毎秒fS回標本化される情報信号XIFの一形式を表わす。ディジタル信号Yは混合部421、復号部422およびスイッチ部423を含む混合増幅部420によって受信される。ディジタル信号Yは、混合部421において所定のシンボルシーケンスBによりアップミックスされ、無線周波数信号RFを作成する。シンボルシーケンスBのシンボルタイミングfBは標本化頻度fSのn倍となるように,すなわちfB=nfSとなるように選択される。この選択の結果、エイリアシング歪でのナイキスト周波数における無線周波数信号RFのスペクトルの繰り返しは、ナイキスト周波数下の対応する信号スペクトルの丁度上にエイリアスされ、有用な信号を退化させない。
無線周波数信号RFは、復号部422によりスイッチ部423のある入力に制御される。スイッチ部423において、フィルタ部430でフィルタリングされる電圧切替情報搬送信号Pが作成される。ユニット430の電圧切替信号Pから所望の周波数帯が抽出される。フィルタ部430は、好ましくは中央周波数fOが帯域通過フィルタ部423の出力で供給される帯域通過フィルタを有する。シンボルシーケンスBのシンボル率fBのより大きい倍数、すなわちm>nを中心とする信号スペクトルが望ましい場合、この倍数に対応する中央周波数fO、すなわちfO=mfBを選択する。例えば音声の場合等、電圧切替信号Pが低周波数のみを含むとき、フィルタ部430が適切な帯域幅の低域通過フィルタであっても良い。
図5は図4に示す混合増幅部420の第一変更例の回路図である。2進ディジタル入力信号Yが混合部421により受信され、信号Yは乗算器5100でビットシーケンスBに掛けられる。これは、例えば排他的論理和ゲートXORにより実施することができる。乗算処理により、無線周波数信号RFが作成される。ビットシーケンスBは符号シーケンス発生器5110で作成され、有利的にはハダマードシーケンス、例えば[1,0]が連続するループで繰り返されるものである。しかし、ビットシーケンスBは中断されずに繰り返されるM進シンボルの選択された組み合わせから成るものであれば良い。
混合部421は更に符号シーケンス発生器5110およびシグマ・デルタ変調器410に同期信号CLを送るクロックパルス発生器5120も含む。同期信号CLは、シグマ・デルタ変調器410と符号シーケンス発生器5110の動作が同期することを保障する。
無線周波数信号RFは、無線周波数信号RFが例えば1等の第一の値を有するときスイッチ部423の第一入力端に送られ、例えば0等の第二の値を有するとき第二入力端に送られるように、復号部422で制御される。2進式の場合、無線周波数信号RFを反転させてスイッチ部423の第二入力端に供給するインバータ5200により復号化を行うことができる。
無線周波数信号RFが信号値1を有するとき、スイッチ部423において電離放射線5310を発生させる第一ユニットが作動し、無線周波数信号RFが信号値0を有するとき、インバータ5200は電離放射線5320を発生させる第二ユニットを作動させる信号を送出する。この混合増幅部420の変更例では、電離放射線は可視周波数領域の電磁波からなり、ユニット5310および5320はそれぞれレーザユニットまたは発光ダイオード等の他の発光手段である。発光ユニット5310と5320は作動時にそれぞれ光信号o1とo2を発生し、これらの信号は光学伝送媒体を介して導電素子5330および5340に送信される。この際、伝送媒体として光ファイバが最適であるが、各信号o1およびo2を送信する媒体として、空気、プリズムまたはガラスロッドも適切である。導電素子5330および5340は、導電性が入射する光の量に依存する物質からなり、換言すれば、導電素子は光伝導スイッチである。これらスイッチはトランジスタ、サイリスタまたはダイオードであっても良い。光伝導スイッチの活性部は、好ましくはガリウム砒素GaAs、金ドープシリコンAu/Si10-6または銅ドープシリコンCu/Si10-6を含有する基板からなる。所望の再結合時間、そして間接的に光伝導スイッチのオンとオフ時間は、スイッチの基板の不純物の量を変えることで調節できる。
第一の光伝導スイッチ5330は正の電源電圧+Uおよび出力に接続される。第二の光伝導スイッチ5340は、絶対値が好ましくは正の電源電圧+Uと等しい負の電源電圧−Uおよび第一光伝導スイッチと同一の出力に接続される。第一光伝導スイッチ5330に光o1が入射すると、その電源電圧+Uが出力に供給され、第二光伝導スイッチ5340に光o2が入射すると、その電源電圧−Uが出力に供給される。無線周波数信号RFは、一度に一方の光伝導スイッチのみが閉まるように復号される。この結果、電圧切替情報搬送信号Pは、光伝導スイッチ5330、5340の共通出力の電圧変動として読み出すことができる。
電離放射線は、X線波長の電磁放射線であっても、電位ブリッジ上を加速させた自由電子であっても良い。X線伝播には空気等の気体が適しており、電子線の伝播媒体として真空空間が最適である。電子線やX線波長の電離放射線に対して、活性部が禁止帯の比較的大きな物質からなる導電素子を選択する。このような物質の例として、ダイヤモンドや炭化シリコンSiC等がある。導電素子の禁止帯がより大きければ、暗電流がより低くなり、その結果電圧切替情報搬送信号Pの雑音レベルがより低くなる。しかし、導電素子の禁止帯が大きいほど、供給される光子のエネルギーが高い必要がある。勿論、従来からの光伝導素子もX線や電子線によって制御することができる。いわゆる光クエンチングを利用する導電素子も、電離放射線のあらゆる種類に適用可能である。光クエンチングは導電素子により高い再結合率を誘発させ、それにより従来の光伝導スイッチより早くスイッチを開けることを可能とする。
図6は図4の混合増幅部420の第二の変更例を示す回路図である。混合部421で2進信号Yを取り入れ、掛算器6100においてビットシーケンスBと掛け合わせる。この掛算処理によって、図5を参照して説明したとおり、無線信号RFが作成される。ビットシーケンスBは、クロックパルス発生器6120からの同期信号CLによりクロックされる符号シーケンス発生器6110により作成される。同期信号CLは、シグマ・デルタ変調器410と符号シーケンス発生器6110との同期性を図るために、シグマ・デルタ変調器410にも送信される。
無線周波数信号RFは復号部422の光信号セレクタ6210に供給される。無線周波数信号RFが、例えば1等の第一の値を取るとき、第一の光信号o1として、一定の光信号Oが例えばレーザ等の発光ユニット6200からスイッチ部423の第一光伝導スイッチ6310に送られ、無線周波数信号RFが例えば0等の第二の値を取るとき、光信号Oは第二の光信号o2として第二の光伝導スイッチ6210に送られる。光信号セレクタ6210が光信号Oを制御できる比率は原則的に光信号Oの電力に反比例するため、光信号Oの電力がなるべく低いことが好ましい。光伝導スイッチ6310、6320が受ける光のパワーは比較的大きい。その結果、高速のデータ通信でパルス整形やスイッチングを行う場合、スイッチ部423は、それぞれが光伝導スイッチ6310および6320に送出される前に、光信号o1およびo2を増幅する光増幅器をも含むことが好ましい。
図7aは、図4〜6の2進ディジタル信号Yの信号振幅Y(nTS)が時間tにより変動する様子を示す。内在する情報信号は毎秒1/TS回標本化されることとすると、連続する2つの標本の間にはTS秒の間隔がある。図面の横軸に沿って、時間tではなく、標本化間隔を示すパラメータnを示す。図面は、2進信号Y(nTS)をnTSの関数として示す。この例において信号Y(nTS)は1または0のどちらかの値を取る。
図7bには、図5の符号シーケンス発生器5120および図6の符号シーケンス発生器6120のビットシーケンスを示す。このビットシーケンスBは、ディジタル信号Yより遥かに高いビットレートを有する。この例では、ビットシーケンスBのビットレートをfS×10とし、これは実質上適当な値の下限にほぼ相当する。この場合には、ビットシーケンスBは図面の縦軸で示す値0と1を交互に取る。
図7cには、図4〜6の電圧切替情報搬送信号Pを示す。この図面は信号P(t)を時間tの関数として示す。電圧切替信号P(t)の振幅は電源電圧+Uおよび−Uの絶対値Uに対応し、位相はディジタル信号Yの値1/0により制御される。ディジタル信号Yの値が0のとき、電圧切替信号P(t)はビットシーケンスBと等しく、ディジタル信号Yの値が1のとき、電圧切替信号P(t)はビットシーケンスBの反転信号である。
図8は、図4の混合増幅部420の第三変更例の回路図であり、この例ではディジタル入力信号Yは4進である。すなわち、信号は四つの異なるディスクリート信号値を取ることができる。ディジタル信号Yは混合部421で受信され、ビットシーケンスBに掛け合わされ、無線周波数情報搬送信号RFが作成される。掛算は一方の因数がディジタル信号Yからの2ビットワードy1、y2であり、他方の因数がビットシーケンスBからのビットとして、掛算器5100により行われる。その結果、情報搬送信号RFは復号部422の4つの出力e1〜e4の内1つを作動させる2つの2進ビットrf1、rf2として表わされる。情報搬送信号RFが第一の値となるとき、例えばrf1rf2=00の場合、信号が第一出力端e1に供給され、情報搬送信号RFが第二の値となるとき、例えばrf1rf2=01の場合、信号が第二出力端e2に供給され、情報搬送信号RFが第三の値となるとき、例えばrf1rf2=10の場合、信号が第三出力端e3に供給され、情報搬送信号RFが第四の値となるとき、例えばrf1rf2=11の場合、信号が第四出力端e4に供給される。
出力端e1〜e4の信号はスイッチ部423の発光ユニット8310〜8340により光エネルギーo1〜o4に変換される。各光信号o1〜o4は導電性がスイッチに入射する光の量に依存する特定の光伝導スイッチ8310〜8340に入射する。全ての光伝導スイッチ8350〜8380は、それらのスイッチに共通する出力に接続される。第一スイッチ8350は第一正電源電圧+Uにも接続され、第二スイッチ8360は第一負電源電圧−Uに接続され、第三スイッチ8370は第一正電源電圧+Uより高い第二正電源電圧+3Uに接続され、第四スイッチ8380は第一負電源電圧−Uより低い第二負電源電圧−3Uに接続される。光伝導スイッチ8350〜8380に光パルスo1〜o4を入射すると、各電圧源+U、−U、+3Uおよび−3Uは無線周波数信号RF=rf1rf2の変動に従い共通出力に電力を供給する。その結果、スイッチ部423の出力として、ディジタル入力信号Yの情報内容に沿った情報内容を有する情報搬送電圧切替信号Pが供給される。
混合部421は符号シーケンス発生器8110およびシグマ・デルタ変調器410宛に同期信号CLを発生するクロックパルス発生器8120をも含む。同期信号CLは、シグマ・デルタ変調器410と符号シーケンス発生器8110が同期して作動することを保障する。
勿論、光信号o1〜o4も上記のような電離放射線、すなわちX線または電子線からなるものであっても良い。この場合では、光伝導スイッチ8350〜8380は、禁止帯が光伝導素子のものより大きい導電素子と置換しても良い。
図9aは図8の4進ディジタル入力信号Yの信号振幅Y(nTS)と標本化間隔nの関係の例を図解的に表わす。内在する情報信号は、この場合においても毎秒1/TS回標本化されることとする。信号Y(nTS)は4つの異なる信号値y12=00、01、10または11を取ることができる。
図9bには図8の符号シーケンス発生器8110からのビットシーケンスBを示す。ビットシーケンスBのビットレートはディジタル入力信号Yのビットレートより遥かに高く、その振幅は1と0の値を交互に取る。図面では、縦軸に振幅B(t)を示し、横軸に時間tを示す。
図9cには図8の電圧切替情報搬送信号Pが時間tによってどのように変化するか示す。電圧切替信号P(t)の振幅は各電源電圧+U、−U、3U、−3Uの絶対値Uおよび3Uの間で変動し、位相はディジタル信号Yの極性により決定される。ディジタル信号Yが正である場合、すなわち最下位ビットが00または10である場合、電圧切替信号P(t)の位相はビットシーケンスB(t)の位相と一致し、ディジタル信号Y(nTS)が負である場合、すなわち最下位ビットが01または11である場合、電圧切替信号P(t)はビットシーケンスB(t)と反対の位相を有する。また、ディジタル信号Y(nTS)の値が00または01である場合、電圧スイッチ信号P(t)は第一振幅Uを有し、ディジタル入力信号Y(nTS)の値が10または11である場合、電圧切替信号P(t)は第二振幅3Uを有する。これにより、ディジタル信号Y(nTS)の4位置アルファベット00、01、10、11は電圧切替信号P(t)では2つの異なる振幅レベルUおよび3Uと2つの異なる位相位置0°および180°との組合せにより表現される。
図10は図4の混合増幅部420の第四変更例を示す回路図であり、ディジタル入力信号YはM進であり、すなわちM個のディスクリートな信号値を有する。信号Yは混合部421で受信され、ビットシーケンスBと掛け合わされ、無線周波数情報搬送信号RF=rf1、rf2、...rfnが作成される。掛算は、一方の因数がnビットのワードy1、y2、...ynからなり(この場合n=2logM)、他方の因数がビットシーケンスBからのビットである。その結果、情報搬送信号RFは復号部422のM個の出力e1〜e2の内の1つを作動するn個の2進ビットrf1、rf2、...、rfnとして表現される。情報搬送信号RFが例えばrf1、...rf2=0、...0のように第一の値である場合、第一の出力端e1に信号が供給され、情報搬送信号RFが例えばrf1、...rf2=1、...1のようにn番目の値である場合、M番目の出力端eMに信号が供給される。復号部422の他のM−2出力は全て情報搬送信号RFのnビットの中間M−2組合せにより供給する。
出力端e1〜eMの信号はスイッチ部423の発光ユニット10310〜10315により光エネルギーに変換される。各光信号は、導電性がスイッチに入射する光の量とスイッチの物理的寸法により決定される特定の光伝導スイッチ10320〜10325に入射する。全ての光伝導スイッチ10320〜10325は共通の出力に接続される。更に、各スイッチは特有の電源電圧に接続される。そして、第一スイッチ10320は第一正電源電圧+Uに接続され、第二スイッチ8360は第一負電源電圧−Uに接続され、同様にして各スイッチは対応する電源に接続され、最後にM−1番目のスイッチ10324はM/2正電源電圧+(M−1)Uに接続され、M番目のスイッチ10325はM/2負電源電圧−(M−1)Uに接続される。光導電スイッチ10320〜10325に光パルスが入射するとき、電圧源+U、−U、+3U、...、+(M−1)U、−(M−1)Uが共通の出力端に無線周波数信号RF=rf1rf2...rfnの変化と同期して電力を供給する。その結果、情報内容がスイッチ部423の出力端のディジタル入力信号Yの情報内容に相当する情報搬送電圧切替信号Pを供給する。
すなわち、ディジタル入力信号YのM個の異なる信号値のアルファベットは電圧スイッチ信号P(t)ではM/2個の異なる振幅レベルU、3U、5U、...、(M−1)Uと2つの異なる位相位置0°および180°との組合せからなる。例えば、振幅レベルはi=1、2、...、M/2の場合、級数(2i−1)Uのような関係を示しても良い。しかし、例えば入力信号の統計的特性を利用して他の振幅レベルの分布も可能である。
本実施形態の混合部421は、符号シーケンス発生器10110およびシグマ・デルタ変調器410に同期信号CLを送出するクロックパルス発生器10120をも含む。同期信号CLは、シグマ・デルタ変調器410と符号シーケンス発生器10110が同期して作動することを保障する。
勿論、光信号は、上記の電離放射線、すなわちX線や電子線に置換しても良い。これらの場合、光伝導スイッチ10320〜10325は、禁止帯が光伝導素子の禁止帯より大きい導電素子で置換しても良い。
図11は発明の第二の実施形態の構成を示すブロック図である。この構成では、入来の情報信号XIFを先ずシグマ・デルタ変調器11410で処理した後に情報信号XIFを無線周波数変調し、電力増幅する。シグマ・デルタ変更器11410はいわゆる帯域通過型または低域通過方であっても良い。シグマ・デルタ変調器11410は、情報信号XIFがディジタル式かアナログ式かにより、図1に示すようにディジタル式であっても、図2に示すようにアナログ式のどちらであっても良い。シグマ・デルタ変調器の出力には、M進のディジタル出力信号Yが供給される。ディジタル信号Yは毎秒fS回標本化される情報信号XIFの形式である。復号部11422、混合部11421およびスイッチ部11423を含む混合増幅部11420でディジタル信号Yを受信する。
復号部11422は、ディジタル信号Yの該当する値により、ディジタル信号Yを混合部11421のM個の混合装置の内1つに導く。
ディジタル信号Yは、混合部11421における信号分割、遅延および合成により、無線周波数情報搬送信号RFとされる。遅延および合成は、第一実施形態においてディジタル信号Yを特定のビットシーケンスBと掛け合わせた結果に相当する結果を出す。
無線周波数信号RFは、スイッチ部11423により、フィルタ部11430でフィルタリングされる電圧切替情報搬送信号Pに増幅される。フィルタ部11430において、情報搬送信号Pから帯域制限電力信号PBPが抜き出される。
図12には、2進ディジタル信号Y、すなわち2つの異なるディスクリートな信号値を取ることができる信号の場合における図11の混合増幅部11420の回路の一例を示す。ディジタル信号Yが第一の値、例えば1であるとき、復号部11422はディジタル信号Yを混合部11421の第一パルスエミッタ12110に導き、ディジタル信号Yが第二の値、例えば0であるとき、第二パルスエミッタ12120に導く。この2進の例では、混合部11421の第二パルスエミッタ12120にディジタル信号Yの反転の結果を供給するインバータ12200により復号処理を行うことができる。
混合部11421のパルスエミッタ12110、12120が入力信号1を受信するとき、特定長の正パルスを発生する。その後、再度入力信号1を受信するまでパルスエミッタは不活性となる。パルスが発生するためには、2つの入来の1の間の時間がディジタル信号Yのシンボル時間TSより長い必要がある。パルスエミッタ12110、12120はそれぞれ別々の発光ユニット12130と12140に出力信号を供給し、これによりパルスを長さの等しい光パルスo1、o2に変換する。光パルスo1、o2はスプリッタ12150、12160により複数の成分に分割され、これらの成分は例えば光ファイバ12170〜12177等の光伝送媒体を介して合成部12180、12190に伝送され、そこで成分は合成光信号c1およびc2に戻す。光ファイバ12170、12173の1つの配置例では、各ファイバが互いに異なる長さを有し、そのため光パルスを異なる時間遅延させる。光パルスが同時に複数の光ファイバ12170〜12173に入射するとき、そのパルスは第一のファイバ12170からは第一の時点で射出し、第二のファイバ12171からは僅かに遅く第二の時点で射出し、第三のファイバ12172からは更に遅く第三の時点で射出し、第四のファイバ12173からは更に遅く第四の時点で射出する。
図13aには図12の復号ユニット11422の2進ディジタル入力信号Y(nTS)の例を示す。この例では正信号により表現される、特定のシンボル時間TSを有する第一の2進シンボル1が受信されると、第一パルスエミッタ12110がパルスを発生する。図13bには、第一レーザユニット12130においてパルスエミッタ12110からのパルスから作成された特定長toの第一光るパルスo1を示す。光パルスo1は、第一スプリッタ12150において互いに異なる長さを有する4本の光ファイバ12170〜12173により伝送される4つの同等のパルスに分割される。パルスの第一成分は第一の時点で第一ファイバ12170を介して第一合成ユニット12180に到着する。この成分はスイッチ部11423の第一光伝導スイッチ12310に入射する第三の合成光信号c1の第一部分を作成する。光パルスがスイッチ12310に到達すると、スイッチが閉まり、スイッチユニットの出力に第三の電源電圧+Uが供給される。この電圧+Uは図13dに示す電圧切替情報搬送信号P(t)の第一部分を作成する。
光パルスo1の第一成分が終了すると、光パルスの第二成分が第二光ファイバ12171を介して第二合成ユニット12190に到着する。この第二成分はスイッチユニット11423の第二光伝導スイッチ12320に入射する第二合成光信号c2の第一部分となる。スイッチ12320に光パルスが当たると、スイッチ12320が閉まり、スイッチユニット11423の出力に第二電源電圧−Uが供給される。この電圧−Uは電圧切替情報搬送信号P(t)の第二部分となる。
電圧切替情報搬送信号P(t)の残部は同様に、ディジタル信号Y(nTS)の第二2進シンボル0のシンボル時間TSの残り時間において第三光ファイバ12172および第四光ファイバ12173により作成される。
第二パルスエミッタ12120はパルスを発生し、この例ではゼロレベルで表わす、第一シンボル1と同じシンボル時間TXを有する第二2進シンボル0が受信される。このパルスは第二レーザユニット12140で、長さtoが第一光パルスo1の長さと等しい、図13cに示す第二光パルスo2に変換される。光パルスo2は第二スプリッタ12160において4つの同等のパルスに分割され、これらのパルスは長さが互いに異なる4本の光ファイバ12174〜12177を介して伝送される。第一パルス成分は第一時点に第一ファイバ12174を介して第二合成ユニット12190に到着する。
この第一成分は第二光伝導スイッチ12320に入射する第二合成光信号c2の一部を作成する。スイッチ12320に光パルスが当たると、スイッチ12310が閉まり、スイッチユニット11423の出力に第二電源電圧−Uが供給される。光パルスo2の第一成分が終了すると、光パルスの第二成分が第二光ファイバ12175を介して第一合成ユニット12180に到着する。この第二成分は第一光伝導スイッチ12310に入射する第一合成光信号c1の一部を作成する。スイッチ12310に光パルスが当たると、スイッチ12310が再度閉まり、第一電源電圧+Uがスイッチユニット11423の出力に供給される。電圧切替情報搬送信号P(t)の残部は同様にして第二2進シンボル0のシンボル時間TSの残り時間において第三光ファイバ12176および第四光ファイバ12177により作成される。
このようにして、ディジタル信号Yのアルファベットの第二2進シンボル0は、電圧切替情報搬送信号P(t)において、ディジタル信号Yのアルファベットの第一2進シンボル1の位相反転コピーとして表現される。
光ファイバに代わる遅延素子として、光信号o1、o2を例えば1つまたは複数のプリズム等、長さが互いに異なる複数の経路を経て、他の適切な伝送媒体を利用しても良い。
本実施形態では、発光ユニット、スプリッタ、合成ユニットおよび個別のスイッチの数はディジタル信号Yの可能信号値の数と等しい。そのため、ディジタル信号アルファベットがM個のシンボルを有する場合、M個の発光ユニット、M個のスプリッタ、M個の合成ユニットおよびM個の個別スイッチが必要である。切替電圧および/または切替レートが高く、スイッチが十分に冷える時間を得るためにスイッチを交互に使用する必要があるとき、M個以上のスイッチ、例えば2M個のスイッチを使用することもできる。この変更例では、一対のスイッチを並列に制御するが、一方のスイッチのみ電圧を接続させる。そのため、個別スイッチの数はM個である。
光信号セレクタを使用することにより、発光ユニットの数を1つにすることができる。この発光ユニットを、M個の異なるスプリッタへのディジタル信号Yの値に従い、図6について説明したように制御する。
勿論、光信号も上述したような電離放射線とすることもできる。例えば、電離放射線はX線または電子線であっても良い。そして、この場合には、光スイッチ12310、12320を主にそれぞれX線周波数または自由電子の電磁エネルギーに反応する導電素子で構成し、発光ユニットをそれぞれX線管または電子銃とし、遅延素子を各放射線の種類に適応する伝送媒体を含む素子とする。
図14は発明によるパルス整形電力増幅方式の第三実施形態を示すブロック図である。例えばIチャネルでの内在情報信号の第一4相分割情報信号成分を示す第一信号XIが第一シグマ・デルタ変調器14010により受信され、例えばQチャネルでの同一の内在情報信号の第二4相分割情報信号成分を示す第二信号XQが第二シグマ・デルタ変調器14020により受信される。第一シグマ・デルタ変調器14010は第一入来信号XIを変調して第一ディジタル信号YIを得て、第二シグマ・デルタ変調器14020は第二入来信号XQを変調して第二ディジタル信号YQを得る。ディジタル信号YIとYQはインターリーブして供給する。すなわち、第一ディジタル信号YIが信号値を有するとき、第二ディジタル信号YQをゼロとし、逆の場合も同様にする。入力信号XIおよびXQがディジタルかアナログかにより、各シグマ・デルタ変調器14010および14020は図1に示すようにディジタル式であっても、図2に示すようにアナログ式であっても良い。また、シグマ・デルタ変調器14010および14020は、低域通過型または帯域通過型のいずれであっても良い。
ディジタル信号YI、YQはそれぞれ図4と図11に示す第一または第二実施形態による混合増幅部14030または14040によって処理する。しかし、第二混合増幅部14040はディジタル信号Yをアップミックスするために自身のシンボルシーケンスを使用せず、シンボルシーケンスBを第一混合増幅部14030から取り、位相移動部14040により90°位相を移動させた信号Bπ/2を使用する。また、システムを同期させるため、同期信号CLが第一混合増幅部14030から第二混合増幅部14040およびシグマ・デルタ変調器14010、14020に送出される。
第一混合増強部14030は第一電圧切替信号PIを、第二混合増幅部14040は第二電圧切替信号PQを、総和部14060に供給し、そこで電圧切替信号PIおよびPQが総和され、総和信号PIQを作成する。
総和信号PIQはフィルタ部14070でフィルタリングされ、それにより所望の信号スペクトルが抜き出され、帯域制限信号PIQ-BPを作成する。好ましくは、帯域通過フィルタ14070の中央周波数fOはシンボルシーケンスBのシンボルレートの半分fB/2に等しく、この中央周波数fOを中心とする信号スペクトルが帯域通過フィルタ部14070の出力に供給される。例えばm>nとするときm等の、シンボルレートfBのシンボルシーケンスBのより高い倍数を中心とする信号スペクトルを得たい場合、この倍数に相当する中央周波数fO、すなわちfO=mfBを選択する。
図15は本発明の第四実施形態による入来の情報信号Xをパルス整形および電力増幅するためのブロック図である。シグマ・デルタ変調器15010が情報信号Xを変調し、第一YIおよび第二YQの4相分割ディジタル信号成分を得る。ディジタル信号YI、YQはインターリーブして供給される。すなわち、第一ディジタル信号YIが信号値を有するとき、第二ディジタル信号YQをゼロとし、逆の場合も同様にする。入力信号Xがディジタルであるかアナログであるかにより、シグマ・デルタ変調器15010はディジタル式であっても、アナログ式であっても良い。また、シグマ・デルタ変調器15010は、低域通過型または帯域通過型のいずれであっても良い。
ディジタル信号YI、YQはそれぞれ図4と図11に示す第一または第二実施形態による混合増幅部15020または15030によって処理する。しかし、第二混合増幅部15030は自身のシンボルシーケンスを使用せず、シンボルシーケンスBを第一混合増幅部15020から取り、位相移動部15040により90°位相を移動させた信号Bπ/2を使用する。また、システムを同期させるため、同期信号CLが第一混合増幅部15020から第二混合増幅部15030およびシグマ・デルタ変調器15020に送出される。
第一混合増幅部15020は第一電圧切替信号PIを、第二混合増幅部15030は第二電圧切替信号PQを、総和部15050に供給し、そこで電圧切替信号PIおよびPQが総和され、総和信号PIQを作成する。総和信号PIQはフィルタ部15060でフィルタリングされ、それにより所望の信号スペクトルが抜き出され、図14について説明したように、帯域制限信号PIQ-BPを作成する。
ディジタル信号YI、YQはインターリーブされ、時間的に交互するように表現されるため、混合増幅部15020、15030のスイッチユニットは複数ある必要はない。つまり、スイッチユニット15020および15030は交互に作動しても良い。結果的に、第一PIおよび第二PQ電圧切替信号をそれぞれ表現する電圧パルスを交互に発生させるように同一のスイッチユニットを使用することができる。勿論、これは上記の図14に対する解決策にも適用可能である。
図16には本発明によるパルス整形電力増幅方式の第五実施形態を示す。この実施例においては、2本の入来の信号XIおよびXQがインタリーブされていることを前提とする。第一信号XIは内在する情報信号の、例えばIチャネル等の第一の4相分割情報信号成分であることとし、第二信号XQは内在する情報信号の、例えばQチャネル等の第二の4相分割情報信号成分であることとする。第一信号XIは第一シグマ・デルタ変調器16010により受信され、第二信号XQは第二シグマ・デルタ変調器16020により受信される。
第一シグマ・デルタ変調器16010は第一ディジタル信号YIを発生し、第二シグマ・デルタ変調器16020は第二ディジタル信号YQを発生する。また、発明の第一および第二実施形態に従い、ディジタル信号YIおよびYQはインタリーブされた状態で混合増幅部16030に供給される。これらの変調器が混合増幅部16030と同期して作動することを保障するために、混合増幅部16030からシグマ・デルタ変調器16010、16020に同期信号CLを送る。
混合増幅部16030はフィルタ部16040でフィルタリングされる2本のインタリーブされた電圧切替信号PI、PQを供給する。信号のフィルタ処理により、特定の信号スペクトルを含む帯域制限信号Piq-bpを得る。
図17は本発明によるパルス整形電力増幅方式の第六実施形態を示すブロック図である。入来の信号Xはシグマ・デルタ変調器17010において変調され、第一YIおよび第二YQの4相分割ディジタル信号成分を作成する。ディジタル信号YI、YQは、第一または第二実施形態に従いインタリーブされた状態で混合増幅部17020に供給される。システム全体が同期して作動することを図るため、混合増幅部17020からシグマ・デルタ変調器17010へ同期信号CLを送る。
混合増幅部17020はフィルタ部17030でフィルタリングされる2本の電圧切替信号PIおよびPQを供給する。これらの信号をフィルタ処理することにより、特定の信号スペクトルを含む帯域制限信号PIQ-BPを得る。

Claims (11)

  1. 情報信号(XIF)からディジタル信号(Y)を作成するシグマ・デルタ変調器、ディジタル信号(Y)から電圧切替情報搬送信号(P)を作成する混合増幅部および電圧切替情報搬送信号(P)から帯域制限信号(PBP)を作成するフィルタリング部を含み、
    ディジタル信号(Y)が4以上であるM個のディスクリートな信号値を有し、
    前記混合増幅部が、それぞれ異なる電圧を有する電圧源に入力部が接続されるとともに共通の出力部を有するM個のスイッチを有し、ディジタル信号(Y)にビットシーケンスを乗算して生成された無線周波信号(RF)の信号値に対応するいずれかのスイッチをオンしてスイッチの前記共通出力部から電圧切替情報搬送信号(P)を出力することを特徴とする情報信号(XIF)をパルス整形および電力増幅するための装置。
  2. 第一の情報信号成分(XI)から第一のディジタル信号(YI)を作成する第一のシグマ・デルタ変調器、第二の情報信号成分(XQ)から第二のディジタル信号(YQ)を作成する第二のシグマ・デルタ変調器、該第一のディジタル信号(YI)から第一の電圧切替情報搬送信号(PI)を作成する第一の混合増幅部、該第二のディジタル信号(YQ)から第二の電圧切替情報搬送信号(PQ)を作成する第二の混合増幅部、該第一の混合増幅部で作成される第一のビットシーケンス(B)から、該第一のビットシーケンス(B)に対して位相がずれている第二のビットシーケンス(Bπ/2)を作成し、該第二の混合増幅部に送出する移相部、該第一の電圧切替情報搬送信号(PI)および該第二の電圧切替情報搬送信号(PQ)から総和信号(PIQ)を作成する総和部、および該総和信号(PIQ)から帯域制限信号(PIQ-PB)を作成するフィルタリング部を含み、
    前記第一のディジタル信号(Y I )および前記第二のディジタル信号(Y Q )が、それぞれ4以上であるM個のディスクリートな信号値を有し、
    前記第一の混合増幅部が、それぞれ異なる電圧を有する電圧源に入力部が接続されるとともに共通の第一の出力部を有するM個のスイッチを有し、前記第一のディジタル信号(Y I )にビットシーケンスを乗算して生成された無線周波信号の信号値に対応するいずれかのスイッチをオンして前記共通の第一の出力部から前記第一の電圧切替情報搬送信号(P I )を出力し、
    前記第二の混合増幅部が、それぞれ異なる電圧を有する電圧源に入力部が接続されるとともに共通の第二の出力部を有するM個のスイッチを有し、前記第二のディジタル信号(Y Q )にビットシーケンスを乗算して生成された無線周波信号の信号値に対応するいずれかのスイッチをオンして前記共通の第二の出力部から前記第二の電圧切替情報搬送信号(P Q )を出力することを特徴とする2本の4相分割情報信号成分(XIおよびXQ)をパルス整形および電力増幅するための装置。
  3. 情報信号(X)から第一の4相分割ディジタル信号成分(YI)および第二の4相分割ディジタル信号成分(YQ)を作成するシグマ・デルタ変調器、第一のディジタル信号成分(YI)から第一の電圧切替情報搬送信号(PI)を作成する第一の混合増幅部、第二のディジタル信号成分(YQ)から第二の電圧切替情報搬送信号(PQ)を作成する第二の混合増幅部、該第一の混合増幅部で作成される第一のビットシーケンス(B)から、該第一のビットシーケンス(B)に対して位相がずれている第二のビットシーケンス(Bπ/2)を作成し、該第二の混合増幅部に送出する移相部、該第一の電圧切替情報搬送信号(PI)および該第二の電圧切替情報搬送信号(PQ)から総和信号(PIQ)を作成する総和部、および該総和信号(PIQ)から帯域制限信号(PIQ-PB)を作成するフィルタリング部を含み、
    前記第一のディジタル信号成分(Y I )および前記第二のディジタル信号成分(Y Q )が、それぞれ4以上であるM個のディスクリートな信号値を有し、
    前記第一の混合増幅部が、それぞれ異なる電圧を有する電圧源に入力部が接続されるとともに共通の第一の出力部を有するM個のスイッチを有し、前記第一のディジタル信号成分(Y I )にビットシーケンスを乗算して生成された無線周波信号の信号値に対応するいずれかのスイッチをオンして前記共通の第一の出力部から前記第一の電圧切替情報搬送信号(P I )を出力し、
    前記第二の混合増幅部が、それぞれ異なる電圧を有する電圧源に入力部が接続されるとともに共通の第二の出力部を有するM個のスイッチを有し、前記第二のディジタル信号成分(Y Q )にビットシーケンスを乗算して生成された無線周波信号の信号値に対応するいずれかのスイッチをオンして前記共通の第二の出力部から前記第二の電圧切替情報搬送信号(P Q )を出力することを特徴とする情報信号(X)をパルス整形および電力増幅するための装置。
  4. 前記M個のスイッチが、その導電性が入射する電離放射線の量に依存する導電素子であることを特徴とする請求項1、請求項2または請求項3のいずれか一項に記載の装置。
  5. 前記導電素子が光伝導素子であることを特徴とする請求項4に記載の装置。
  6. 前記光伝導素子が、その導電性が電離放射線による影響を受けるトランジスタ、サイリスタまたはダイオードであることを特徴とする請求項5に記載の装置。
  7. 前記光伝導素子が、ガリウム砒素からなることを特徴とする請求項5に記載の装置。
  8. 前記光伝導素子が、金ドープシリコンからなることを特徴とする請求項5に記載の装置。
  9. 前記光伝導素子が、銅ドープシリコンからなることを特徴とする請求項5に記載の装置。
  10. 前記導電素子が、主にX線に感受性を有する、すなわち素子の導電性は入射するX線波長の電磁エネルギーの量に依存することを特徴とする請求項5に記載の装置。
  11. 前記導電素子の導電性が、該導電素子において複数の自由キャリアを発生させる、該導電素子に入射する各自由電子により影響を受けること、すなわち導電素子が電子線により制御可能であることを特徴とする請求項4に記載の装置。
JP51354498A 1996-09-06 1997-08-26 無線周波数信号を発生させる方法および装置 Expired - Lifetime JP3835822B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9603256-0 1996-09-06
SE9603256A SE507373C2 (sv) 1996-09-06 1996-09-06 Anordning och metod för pulsformning och effektförstärkning
PCT/SE1997/001409 WO1998011683A1 (en) 1996-09-06 1997-08-26 Arrangements and methods for generating a radio frequency signal

Publications (2)

Publication Number Publication Date
JP2001503210A JP2001503210A (ja) 2001-03-06
JP3835822B2 true JP3835822B2 (ja) 2006-10-18

Family

ID=20403802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51354498A Expired - Lifetime JP3835822B2 (ja) 1996-09-06 1997-08-26 無線周波数信号を発生させる方法および装置

Country Status (11)

Country Link
US (1) US6094458A (ja)
EP (1) EP0914728B1 (ja)
JP (1) JP3835822B2 (ja)
KR (1) KR20000035813A (ja)
CN (1) CN1127820C (ja)
AU (1) AU740623B2 (ja)
CA (1) CA2262511C (ja)
DE (1) DE69731535T2 (ja)
SE (1) SE507373C2 (ja)
TW (1) TW342562B (ja)
WO (1) WO1998011683A1 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2319930B (en) * 1996-11-27 2001-05-16 Sony Uk Ltd Storage and transmission of one-bit data
GB2328353B (en) * 1997-08-16 2002-10-02 Nec Technologies GSM mobile receiver
US6330289B1 (en) * 1998-10-16 2001-12-11 Nortel Networks Limited System for improving base station amplifier performance
US6611567B1 (en) * 1999-01-29 2003-08-26 Agere Systems, Inc. Method and apparatus for pulse shaping
ES2273470T3 (es) * 1999-11-18 2007-05-01 Telefonaktiebolaget Lm Ericsson (Publ) Metodo y aparato para generar una señal de rf.
DE60124451T2 (de) 2000-05-30 2007-03-15 Matsushita Electric Industrial Co., Ltd., Kadoma Quadraturmodulator
US7248628B2 (en) * 2001-03-02 2007-07-24 Shaeffer Derek K Method and apparatus for a programmable filter
SE520530C2 (sv) * 2001-04-26 2003-07-22 Ericsson Telefon Ab L M Linjäriserad omkopplarbaserad effektförstärkare
DE10121855A1 (de) * 2001-05-04 2003-02-13 Atmel Germany Gmbh Verfahren zur Übertragung von Daten
EP1298811A1 (fr) * 2001-09-27 2003-04-02 STMicroelectronics S.A. Procédé et dispositif de détection des impulsions d'un signal incident impulsionnel du type à bande ultra large
US7535100B2 (en) * 2002-07-12 2009-05-19 The United States Of America As Represented By The Secretary Of The Navy Wafer bonding of thinned electronic materials and circuits to high performance substrates
US7116726B2 (en) * 2002-08-12 2006-10-03 Cubic Corporation Method and apparatus for transferring multiple symbol streams at low bit-error rates in a narrowband channel
US7173980B2 (en) * 2002-09-20 2007-02-06 Ditrans Ip, Inc. Complex-IF digital receiver
US6816008B2 (en) * 2002-12-31 2004-11-09 Alion Science And Technology Corporation Quasi-linear multi-state digital modulation through non-linear amplifier arrays
US7064697B2 (en) * 2003-01-29 2006-06-20 The University Of Connecticut Photonic sigma delta analog-to-digital conversation employing dual heterojunction thyristors
US20040156421A1 (en) * 2003-02-10 2004-08-12 Hirohisa Yamaguchi Coding and receiver structure for ultra wide band communications
US7388899B2 (en) * 2003-03-10 2008-06-17 Texas Instruments Incorporated Spreading code structure for ultra wide band communications
US6873280B2 (en) * 2003-06-12 2005-03-29 Northrop Grumman Corporation Conversion employing delta-sigma modulation
US7236747B1 (en) * 2003-06-18 2007-06-26 Samsung Electronics Co., Ltd. (SAIT) Increasing OFDM transmit power via reduction in pilot tone
US7190288B2 (en) * 2003-06-27 2007-03-13 Northrop Grumman Corp. Look-up table delta-sigma conversion
JP4050241B2 (ja) * 2004-03-02 2008-02-20 シャープ株式会社 送信装置及び受信装置
KR100810322B1 (ko) 2004-10-29 2008-03-07 삼성전자주식회사 이동 통신용 고효율 전력 증폭 장치 및 방법
US20060115005A1 (en) * 2004-11-26 2006-06-01 Technoconcepts, Inc. Direct conversion delta-sigma transmitter
US7236112B2 (en) * 2005-01-21 2007-06-26 Technoconcepts, Inc. Self-tuning output digital filter for direct conversion delta-sigma transmitter
US7965157B2 (en) 2005-07-20 2011-06-21 National University Of Singapore Cancellation of anti-resonance in resonators
US7729445B2 (en) * 2006-09-27 2010-06-01 Intel Corporation Digital outphasing transmitter architecture
KR100924172B1 (ko) * 2006-12-08 2009-10-28 한국전자통신연구원 가변 대역폭 무선채널 측정 방법 및 이를 위한 송수신장치
EP2043258A1 (en) * 2007-09-28 2009-04-01 Alcatel-Lucent Deutschland AG A method for signal amplification, a switched mode amplifier system, a base station and a communication network therefor
WO2009060526A1 (ja) * 2007-11-08 2009-05-14 Fujitsu Limited コヒーレント光受信機
KR101603231B1 (ko) * 2009-12-16 2016-03-14 한국전자통신연구원 밴드 패스 델타 시그마 신호 송신기
US9419721B2 (en) * 2013-03-15 2016-08-16 Lawrence Livermore National Security, Llc Wide bandgap matrix switcher, amplifier and oscillator
US9893679B2 (en) * 2013-03-15 2018-02-13 Lawrence Livermore National Security, Llc High frequency modulation circuits based on photoconductive wide bandgap switches
US9253864B2 (en) * 2013-08-30 2016-02-02 General Electric Company Apparatus and methods to control an electron beam of an X-ray tube
KR101949803B1 (ko) 2013-11-19 2019-02-20 삼성전자주식회사 스펙트럼 효율 개선을 위한 펄스 정형 회로 및 펄스 정형 회로를 포함하는 온오프 키잉 송신기
CN104639119B (zh) * 2014-12-24 2017-09-01 中国计量科学研究院 一种交流量子电压波形合成方法
RU2620725C2 (ru) * 2015-06-11 2017-05-29 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Устройство для формирования имитостойких нелинейных рекуррентных последовательностей
TR201804106T1 (tr) * 2016-01-28 2018-04-24 Aselsan Elektronik Sanayi Ve Ticaret Anonim Sirketi Ssb modülasyon i̇le paralel manyeti̇k rezonans görüntüleme i̇çi̇n tamamen sayisal çok kanalli rf veri̇ci̇
US11108403B2 (en) 2017-04-13 2021-08-31 Rohde & Schwarz Gmbh & Co. Kg Device and method for efficient digital-analog conversion
US10177776B1 (en) * 2017-08-04 2019-01-08 Mitsubishi Electric Research Laboratories, Inc. Noise mitigating quantizer for reducing nonlinear distortion in digital signal transmission
US11032112B2 (en) * 2019-10-18 2021-06-08 Motorola Solutions, Inc. Multi-carrier crest factor reduction

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2653959B1 (fr) * 1989-11-02 1994-05-20 Matra Communication Procede et dispositif de modulation numerique a composantes en phase et en quadrature.
NL9001360A (nl) * 1990-06-15 1992-01-02 Philips Nv Zender bevattende een elektronische inrichting voor het opwekken van een gemoduleerd draaggolfsignaal.
NL9001359A (nl) * 1990-06-15 1992-01-02 Philips Nv Elektronische inrichting voor het ontvangen van een gemoduleerd draaggolfsignaal.
US5530722A (en) * 1992-10-27 1996-06-25 Ericsson Ge Mobile Communications Inc. Quadrature modulator with integrated distributed RC filters
FI107855B (fi) * 1993-09-10 2001-10-15 Nokia Mobile Phones Ltd Vt-signaalin demodulointi sigma-delta-muuntimella
US5401953A (en) * 1993-09-23 1995-03-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optically-switched submillimeter-wave oscillator and radiator having a switch-to-switch propagation delay
FI98020C (fi) * 1995-06-06 1997-03-25 Nokia Mobile Phones Ltd Digitaalisen signaalin modulointimenetelmä ja modulaattori
US5617058A (en) * 1995-11-13 1997-04-01 Apogee Technology, Inc. Digital signal processing for linearization of small input signals to a tri-state power switch
US5821891A (en) * 1996-12-26 1998-10-13 Nokia Mobile Phones, Ltd. Second order demodulator for sigma-delta digital to analog converter

Also Published As

Publication number Publication date
SE9603256D0 (sv) 1996-09-06
WO1998011683A1 (en) 1998-03-19
DE69731535D1 (de) 2004-12-16
US6094458A (en) 2000-07-25
AU4140297A (en) 1998-04-02
SE9603256L (sv) 1998-03-07
EP0914728A1 (en) 1999-05-12
TW342562B (en) 1998-10-11
KR20000035813A (ko) 2000-06-26
CA2262511A1 (en) 1998-03-19
SE507373C2 (sv) 1998-05-18
CN1127820C (zh) 2003-11-12
AU740623B2 (en) 2001-11-08
EP0914728B1 (en) 2004-11-10
CA2262511C (en) 2005-04-05
JP2001503210A (ja) 2001-03-06
DE69731535T2 (de) 2005-11-24
CN1229546A (zh) 1999-09-22

Similar Documents

Publication Publication Date Title
JP3835822B2 (ja) 無線周波数信号を発生させる方法および装置
CA3101786C (en) Digital-to-analog converter and generation of high-bandwidth analog signals
JP6229795B2 (ja) 信号生成装置及び信号生成方法
US6735398B1 (en) Generating methods for single and multi-channel wideband optical analog pulse positioned waveforms
JP4280422B2 (ja) 制限包絡線ディジタル通信送信システムとその方法
JPS59135958A (ja) 16qam変調器
US6462679B1 (en) Method and apparatus for modulating a signal
EP3014798A2 (en) An optical orthogonal frequency division multiplexing (o-ofdm) system with pulse-width modulation (pwm) dimming
JP2006527546A (ja) 高速d/a変換器
JPH11266225A (ja) 符号語を識別する方法
EP1314288A2 (en) Constrained-envelope transmitter and method therefor
Banaszek et al. Structured optical receivers for efficient deep-space communication
US5612973A (en) System employing dissipative pseudorandom dynamics for communications and measurement
CN112352389B (zh) 光学数据传输系统及方法
Ohhata et al. 10-Gb/s optical transceiver using the Yuen 2000 encryption protocol
EP3907950B1 (en) Distribution shaping method, distribution shaping terminating method, distribution shaping encoder, distribution shaping decoder, and transmission system
US11233523B1 (en) Digital-to-analog conversion with sign modulation
Civelli et al. Practical implementation of sequence selection for nonlinear probabilistic shaping
US5579337A (en) System employing dissipative pseudorandom dynamics and selective feedback for communications and measurement
US7289048B2 (en) Duo-binary encoder and optical duo-binary transmission apparatus using the same
da Silva et al. Experimental Characterization of $10\times 8$ GBd DP-1024QAM Transmission with 8-bit DACs and Intradyne Detection
EP2533421A1 (en) A method for amplification of a signal using a multi-level modulator, and an amplifying device therefor
CN110609673B (zh) 一种基于toad环的真随机数发生器
US8526829B1 (en) System, method and apparatus for clockless PPM optical communications
Ricketts Analog limitations for high-speed digital radios: Where the bits stop working

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060222

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term