JP3835140B2 - エンジンの空燃比制御装置 - Google Patents

エンジンの空燃比制御装置 Download PDF

Info

Publication number
JP3835140B2
JP3835140B2 JP2000261241A JP2000261241A JP3835140B2 JP 3835140 B2 JP3835140 B2 JP 3835140B2 JP 2000261241 A JP2000261241 A JP 2000261241A JP 2000261241 A JP2000261241 A JP 2000261241A JP 3835140 B2 JP3835140 B2 JP 3835140B2
Authority
JP
Japan
Prior art keywords
amount
oxygen
catalyst
fuel ratio
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000261241A
Other languages
English (en)
Other versions
JP2002070611A (ja
Inventor
靖二 石塚
秀明 高橋
禎明 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000261241A priority Critical patent/JP3835140B2/ja
Priority to EP01119941A priority patent/EP1184555B1/en
Priority to DE60116554T priority patent/DE60116554T2/de
Priority to US09/931,773 priority patent/US6766640B2/en
Publication of JP2002070611A publication Critical patent/JP2002070611A/ja
Application granted granted Critical
Publication of JP3835140B2 publication Critical patent/JP3835140B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/16Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【産業上の利用分野】
本発明は、エンジンの空燃比制御装置に関し、特に、排気通路にNOxトラップ触媒を備えたエンジンの空燃比制御装置に関する。
【0002】
【従来の技術】
触媒内空燃比がリーン空燃比のときに排気中のNOx(窒素酸化物)を吸収し、理論空燃比又はリッチ空燃比のときに吸収したNOxを放出、還元するNOx吸収触媒を排気通路に備えたエンジンが知られている。
【0003】
このようなNOx吸収触媒を備えたエンジンにおいては、リーン運転時にエンジンから排出されるNOxはNOx吸収触媒に吸収されるのであるが、NOx吸収触媒が吸収可能なNOx量には制限があるため、NOxの吸収量が増大した場合にはこれを放出させ還元処理することが必要となる。
【0004】
そこで、一般には、吸収されているNOxの推定量が所定値を超えた場合は、所定時間エンジンの空燃比をリッチ側にシフトさせる等して触媒内空燃比を理論空燃比ないしリッチ空燃比に制御し、NOx吸収触媒に吸収されているNOxを放出、還元処理することが行われている。
【0005】
そして、特開2000−54824号に開示された技術では、NOx吸収触媒に吸収されているNOx量を高精度に推定するため、NOx吸収触媒の上流に酸素ストレージ機能を有する排気浄化触媒を備えたものにおいて、排気浄化触媒にストレージされている酸素量に基づいて推定したNOx量を補正することを開示している。
【0006】
【発明が解決しようとしている問題点】
ところで、NOxトラップ触媒内にトラップされたNOxを適切に放出、還元するためには、過不足のない量の還元剤をNOxトラップ触媒に供給する必要があり、このためには、NOxトラップ触媒の上流に設けられた排気浄化触媒にストレージされている酸素量のみならず、NOxトラップ触媒自体にストレージされている酸素量を考慮しなければならない。
【0007】
つまり、NOxラップ触媒内のNOxを放出、還元する場合に、エンジンの空燃比をリッチにしてNOxトラップ触媒に還元剤を供給するが、排気浄化触媒及びNOxトラップ触媒にストレージされている酸素量に対して、還元剤の量が不足していれば、NOxトラップ触媒内の雰囲気を狙った空燃比にすることができず、この結果、NOxの放出、還元率が低下してしまい、次回以降にトラップできるNOx量が減少してしまう。また、排気浄化触媒及びNOxラップ触媒にストレージされている酸素量に対して、還元剤の量が過剰であれば、NOxトラップ触媒内が必要以上の還元雰囲気となってしまい、COやHCの放出量が増加してしまう。
【0008】
そして、排気浄化触媒やNOxトラップ触媒にストレージされている酸素量は、放出還元処理前のリーン運転時間の変化や、運転条件の変化に大きく影響されることから、放出還元処理の際、過不足のない還元剤量を供給するためには、こうした諸条件を勘案して、排気浄化触媒やNOxトラップ触媒にストレージされている酸素量を高精度に演算することが必要である。
【0009】
本発明は、かかる技術的課題を鑑みてなされたものであり、NOxの浄化処理時において過不足のない量の還元剤を供給可能として高いNOxの放出・還元率を実現すると共に、大気中に放出されるCO、HCの増加を防止することを目的とする。
【0010】
【問題点を解決するための手段】
第1の発明は、排気通路に、空燃比に応じて酸素のストレージあるいは放出を行う第1触媒と、前記第1触媒の下流に設けられ、空燃比に応じてNOxのトラップあるいは放出還元を行う第2触媒と、を備えたエンジンに用いられる空燃比制御装置において、前記第2触媒にトラップされているNOxを放出させる場合に前記エンジンの空燃比をリッチ化する手段と、前記リッチ化による還元剤供給量を前記2つの触媒にストレージされている酸素量が多いほど多くする手段と、を備えたことを特徴とするものである。
【0011】
第2の発明は、第1の発明において、前記2つの触媒にストレージされている酸素量を演算する手段を備え、前記リッチ化による還元剤供給量を前記2つの触媒にストレージされている酸素量に応じた量とすることを特徴とするものである。
【0012】
第3の発明は、第1の発明において、前記リッチ化による還元剤供給量を、前記2つの触媒にストレージされている酸素量が多いほど、また前記第2触媒にトラップされているNOx量が多いほど多くすることを特徴とするものである。
【0013】
第4の発明は、第3の発明において、前記2つの触媒にストレージされている酸素量を演算する手段と、前記第2触媒にトラップされているNOx量を演算する手段と、を備え、前記リッチ化による還元剤供給量を前記2つの触媒にストレージされている酸素量に前記第2触媒にトラップされているNOx量を足した量に応じた量とすることを特徴とするものである。
【0014】
第5の発明は、第1から第4の発明において、前記2つの触媒に流入する酸素量を演算する手段と、前記2つの触媒に既にストレージされている酸素量に基づき2つの触媒の酸素ストレージ率を演算する手段と、を備え、前記2つの触媒にストレージされている酸素量の変化量を、前記2つの触媒に流入する酸素量に前記酸素ストレージ率を乗じて演算し、前記変化量を前記既にストレージされている酸素量に加えることで、新たにストレージされている酸素量を演算することを特徴とするものである。
【0015】
第6の発明は、第1から第4の発明において、前記2つの触媒にストレージされている酸素量を、貴金属にストレージされる高速成分と酸素ストレージ材にストレージされる低速成分とに分けて演算することを特徴とするものである。
【0016】
【作用及び効果】
したがって、本発明に係る空燃比制御装置では、NOxトラップ触媒にトラップされているNOx量が多くなってくると、トラップされているNOxを放出させるべくエンジンの運転空燃比をリッチ側に一時的にシフトさせるが(リッチスパイク)、このリッチスパイクによって供給される還元剤の量はNOxトラップ触媒及びその上流に設けられている第1触媒にストレージされている酸素量が多いほど多く設定される(第1、第2の発明)。
【0017】
還元剤供給量をこのようにNOxトラップ触媒及びその上流側触媒のストレージ酸素量に応じた量とするのは、それら触媒にはリーン運転時あるいはフューエルカット時に酸素がストレージされているため、NOxトラップ触媒にトラップされているNOxに対応する量の還元剤を供給するだけではそれら触媒から放出されてくる酸素によって触媒内空燃比がリーン側にシフトしてしまい、トラップされているNOxの放出が十分に行われなくなるからである。
【0018】
本発明を適用した場合、NOxトラップ触媒及び上流側触媒にストレージされている酸素量を考慮して供給する還元剤量が決定されるので、放出されてくる酸素に対抗して触媒内空燃比を理論空燃比ないしリッチ空燃比に保持することができ、NOxトラップ触媒にトラップされていたNOxを良好に放出させ、還元浄化することができる。
【0019】
また、トラップされているNOx量が多くなれば、それを浄化するのに必要な還元剤の量も多くなるので、第3、第4の発明のように、NOxトラップ触媒にトラップされているNOx量も考慮して供給する還元剤の量を決定すれば、さらに良好にNOxを浄化することができる。
【0020】
触媒にストレージされている酸素量の変化量は、例えば、触媒に流入する酸素量に触媒の酸素ストレージ率を乗じることによって求めることができる(第5の発明)。このとき、酸素のストレージ率は触媒に既にストレージされている酸素量が多いほど低下するので、酸素ストレージ率は既にストレージされている酸素量に応じた値とする。これにより、ストレージされている酸素量の変化量を正確に演算することができ、触媒から放出されてくる酸素量に抗して触媒内空燃比をストイキないしリッチに保持するのに必要十分な還元剤の量を正確に求めることができる。
【0021】
あるいは、触媒にストレージされている酸素量の演算は、実際の特性に合わせて貴金属にストレージされる高速成分と酸素ストレージ材にストレージされる低速成分とに分けて演算するようにしてもよい(第6の発明)。これにより、触媒にストレージされている酸素量をさらに正確に演算することができる。
【0022】
【発明の実施の形態】
以下、添付図面に基づき本発明の実施の形態について説明する。
【0023】
図1は、本発明の空燃比制御装置が適用されるエンジンシステムの概略構成を示したものである。エンジン1の吸気通路5にはスロットル弁2が介装されており、エンジン1にはスロットル弁2で調節された空気が吸入される。この吸入空気と燃料噴射弁3から噴射される燃料とが混合して混合気が形成される。燃料噴射弁3はここでは吸気ポート内に燃料を噴射するものであるが、エンジン1の燃焼室内に直接燃料を噴射するものであっても良い。
【0024】
燃焼室内の混合気は点火プラグ4による火花点火によって着火燃焼し、燃焼排気は排気通路9に介装された第1触媒21、第2触媒22、第3触媒23で浄化された後に大気中に排出される。
【0025】
第1触媒21は始動時にエンジン1から排出されるHC、COを除去し、排気浄化性能を向上させるための三元触媒であり、早期に活性温度に到達し得るようエンジン1の近傍に設けられる。第2触媒22は触媒内空燃比がリーン空燃比であるときに排気中のNOxをトラップし、理論空燃比(ストイキ)又はリッチであるときにトラップしたNOxを放出し、三元触媒層で還元処理する触媒である(以下、「NOxトラップ触媒」という)。第1触媒21、第2触媒22は触媒内空燃比がリーンのときに酸素をストレージし、理論空燃比ないしリッチのときにそのストレージした酸素を放出する酸素ストレージ能力を有する。
【0026】
一方、NOxトラップ触媒22の下流に設けられる第3触媒23は三元触媒であり、NOxトラップ触媒22のNOx放出時の還元性能を補助するものである。
【0027】
燃料噴射弁3による噴射時期、噴射量、点火プラグ4による点火時期等を制御するコントロールユニット6はマイクロプロセッサ、メモリ、入出力インターフェース等で構成される。コントロールユニット6は、各種センサからの検出信号に基づく演算処理により、燃料噴射弁3に対して燃料噴射信号(噴射パルス信号)と噴射タイミングを出力し、点火プラグ4に対しては点火信号を出力する。
【0028】
燃料噴射信号の演算においては、運転条件に応じて目標空燃比が決定され、目標空燃比の混合気が形成されるように燃料噴射量(噴射パルス幅)演算されるが、低回転、低負荷域の目標空燃比として理論空燃比よりもリーンである空燃比が設定される構成となっている。
【0029】
各種センサとしては、エンジン1の吸入空気流量を検出するエアフローメータ7、スロットル弁2の開度を検出するスロットル開度センサ8、第1触媒21の上流に配置されエンジン1の排気空燃比を検出する第1空燃比センサ10、NOxトラップ触媒22と第3触媒23の間に配置され排気空燃比を検出する第2空燃比センサ11、エンジン1の回転速度を検出するクランク角センサ14、エンジン1の冷却水温を検出する水温センサ12等が設けられる。
【0030】
空燃比センサ10、11は、排気中の酸素濃度に基づいて排気空燃比を検出するセンサである。空燃比センサ10、11は、理論空燃比のみを検出するストイキセンサであってもよいし、排気空燃比を広域に検出できる広域空燃比センサであっても良い。
【0031】
コントロールユニット6は、通常は、第1空燃比センサ10で検出される排気空燃比を目標とする空燃比に近づけるように、燃料噴射量を補正するための空燃比フィードバック補正係数αを、例えば比例積分制御等により設定する。
【0032】
一方、エンジン1がリーン空燃比で運転された場合や、フューエルカット等でリーンな排気ガスが排出された場合の排気中のNOxはNOxトラップ触媒22にトラップされる。NOxトラップ触媒22のNOxトラップ容量は予め決まっており、NOxトラップ率はトラップされているNOxの量が増大するほど低くなってしまうので、トラップされているNOx量が増大した場合には触媒内雰囲気を理論空燃比ないしリッチに制御し、トラップされているNOxを放出浄化処理する。
【0033】
しかし、NOx放出浄化処理する場合に、第1空燃比センサ10で検出される排気空燃比を目標とする触媒内空燃比に近づけるように制御するだけでは、触媒21、22にストレージされていた酸素が放出されて触媒22内の空燃比が目標とする触媒内空燃比よりもリーン側にシフトしてしまい、触媒22内に必要な還元剤を確保できないことから、NOxを十分に放出、還元処理できなくなってしまう。トラップされたNOxが十分放出されないと、結果として次回以降にトラップできるNOx量が減少してしまう。また、第2空燃比センサ11で検出される排気空燃比を目標とする触媒内空燃比に近づけるように制御するだけでは、触媒22内にも酸素がストレージされていることから、触媒22内の雰囲気を目標とする触媒内空燃比に一致させることができない。
【0034】
そこで、この実施形態では、エンジン1の目標空燃比を一時的にリッチ空燃比に制御(リッチスパイク)する際に、供給する還元剤の量(リッチスパイク量)を触媒21及び22の両方にストレージされている酸素量に応じた量とすることで、トラップされたNOxを十分に放出還元されるようにすると共に、触媒21、22にストレージされている酸素量をNOx放出還元処理前の諸条件を勘案して高精度に演算する。
【0035】
図2は、コントローラ6が行うNOx放出還元処理の内容を示したフローチャートである。
【0036】
これについて説明すると、まず、ステップS1ではリーン運転の成立を示すフラグFLEANが「1」か否かを判別することでリーン排気ガスの発生を検知する。フラグFLEANは例えば第1の空燃比センサ10の出力がリーン化した場合に「1」にセットされる。そして、フラグFLEANが「1」になるとステップS2に進み、NOxトラップ触媒22にトラップされているNOxの量TRPNOxの演算が行われる。
【0037】
NOx量TRPNOxの演算は具体的には図3に示すフローに従って行われる。演算においては、まず、エアフローメータ7の出力に基づき吸入空気量Qaが演算され(ステップS11)、クランク角センサ14、スロットル開度センサ8の出力に基づきエンジン回転速度、エンジン負荷が演算される(ステップS12)。そして、演算されたエンジン回転速度、負荷に基づき例えば図4に示すようなマップを参照することによってエンジンが排出する排気中のNOx濃度EONOxが演算される(ステップS13)。
【0038】
ステップS14ではNOx濃度EONOxと吸入空気量Qa、定数K1(変換定数)、さらに諸条件(例えば、温度、触媒の劣化、現在のトラップNOx量)に応じて変化するNOxトラップ率KNOxCPを演算し、これらを積算して現在のトラップNOx量T RPNOx(=TRPNOx+EONOx×K1×KNOxCP)を演算する。
【0039】
図2に戻り、ステップS3では触媒21、22にストレージされている酸素量OSCCNTの演算が行われる。ストレージされている酸素量OSCCNTの演算は具体的には図5に示すフローに従って行われる。これによると、まず、エアフローメータ7の出力に基づき吸入空気量Qaが演算され(ステップS15)、運転されている空燃比TFAが読み込まれる(ステップS16)。空燃比は空燃比センサ10で直接検出したものでも、目標とする空燃比何れであっても良い。
【0040】
そして、ステップS17では触媒21、22に流入する酸素量FLWO2が計算される。流入酸素量FLWO2は吸入空気量Qaと空燃比TFAと変換定数K2に基づきより求められる(FLWO2=Qa×(23−23×TFA)×K2)。ステップS18では、触媒21及び22に新たにストレージされる合計の酸素量(ストレージされている酸素量の変化量)DOSCNTが演算される(ステップS18)。ここで変化量DOSCNTは触媒21、22に流入する酸素量FLWO2に触媒21、22へのストレージ率KOSCAPを掛けることで演算される。
【0041】
触媒21、22の酸素ストレージ率KOSCAPはリーン運転開始時より、既にストレージされている酸素量に対して図6に示すような特性を有する。すなわち、ストレージ率は図6に示す特性図の傾きで表され、ある酸素量までは流入酸素量に対して高いストレージ率を示し、それ以降は低いストレージ率となり、ある程度の酸素量でストレージ率はほぼゼロとなる特性を有する。なお、この特性は触媒温度、劣化などの諸条件で補正するようにしても良い。例えば、触媒温度が低く触媒がまだ活性化していない場合や触媒が劣化している場合にはストレージ率を小側に補正する。
【0042】
実際の演算では、ストレージ率の大きい領域と小さい領域に分けて演算し、ストレージされている酸素量が所定値O2RPD小さいときはストレージ率KOSCAPをTRK1とし、所定値O2RPD以上の場合はストレージ率KOSCAPをTRK2(<TRK1)とする。このように2つの領域に分けることでストレージ率をほぼ正確に近似することができ、ストレージされている酸素量を精度良く求めることができる。
【0043】
以上のようにしてストレージされている酸素量の変化量DOSCNTが演算されたら、このストレージされている酸素量の変化量DOSCNTを前回演算時ストレージされている酸素量OSCCNTに加えたものを新たなストレージされている酸素量OSCCNT(=OSCCNT+DOSCNT)とする(ステップS19)。
【0044】
図2に戻り、ステップS4では、触媒21及び22にストレージされている合計の酸素量OSCCNTに対応したリッチスパイク量を与えるために、ストレージされている酸素量OSCCNTに対し定数K3を乗じることによって必要リッチ量RICHF(=OSCCNT×K3)が演算される。
【0045】
ステップS5では、リッチスパイク開始条件が成立したか否かがフラグFRSPKの値に基づき判定される。ここでフラグFRSPKは、リーン運転禁止の条件や、触媒22にトラップされたNOx量(TRPNOx)がある値に達した場合に「1」にセットされる。判定の結果、リッチスパイク開始条件が成立している場合はステップS6に進む。
【0046】
ステップS6では、空燃比補正係数にリッチ分αskが出力され、空燃比がリッチ化される。ステップS7では、リッチ化が始まってからこれまでに供給されたリッチ量(還元剤量)RHCNT(=RHCNT+Qa×αsk×K5、K5:定数))が演算される。ステップS8ではステップS7で演算した供給リッチ量RHCNTとステップS4で演算した必要リッチ量RICHFとの比較を行い、供給リッチ量RHCNTが必要リッチ量RICHFに達してない場合はリッチ化の空燃比補正係数αskをそのまま保持し、供給リッチ量RHCNTが必要リッチ量RICHFに達した場合はステップS9へ進んでリッチスパイクを終了し、フラグFRSPKに「0」をセットする。
【0047】
ステップS10では各カウンタ(RICHF、OSCCNT、TRPNOx、RHCNT)をクリアし、通常の空燃比制御に復帰する。
【0048】
したがって、上記NOx放出還元処理によれば、触媒21、22ストレージされている酸素量が、酸素ストレージ率の大きい領域と小さい領域に分けて演算されるので(ステップS18)、リーン運転時の空燃比や時間の変化に対しても精度良くストレージされている酸素量を推定できる。
【0049】
そして、NOx放出浄化処理時、触媒22から放出されるNOxの放出率は触媒21、22にストレージされている酸素量に影響を受けることになるが、このストレージされている酸素量に見合ったリッチスパイク量が与えられるので(ステップS4、S6からS8)、NOxトラップ触媒22内が目標とする空燃比、例えば理論空燃比又はリッチ空燃比に保持され、トラップされていたNOxを良好に放出させることができる。供給されたHC、COは放出されたNOxの浄化に用いられ、HC、COの供給量、排出量も最小限に抑えることができる。
【0050】
なお、上記処理では、必要リッチ量RICHFは触媒21、22ストレージされている酸素量に応じた値としているが(ステップS4)、NOxの浄化に必要な還元剤量はトラップNOx量にも比例することから触媒22のトラップNOx量TRPNOxも考慮してリッチスパイク量を演算するようにしても良い。この場合、ステップS4で演算される必要リッチ量RICHFを、ストレージされている酸素量OSCCNTに対し定数K3を乗じて得られる値にトラップNOx量TRPNOxに定数K4を乗じて得られる値を加えた値(RICHF=OSCCNT×K3+TRPNOx×K4)とすればよい。
【0051】
次に第2の実施形態について説明する。
【0052】
この実施形態は触媒21、22ストレージされている酸素量OSCCNTの演算方法が先の実施形態と異なる。すなわち、触媒21、22にストレージされている酸素量は触媒の貴金属(Pt、Rh、Pd等)にストレージ/放出される高速成分と触媒の酸素ストレージ材にストレージ/放出される低速成分とに分けることができ、低速成分は高速成分に比べて多くの酸素をストレージ/放出することができるがそのストレージ/放出速度は高速成分に比べて遅いという特性を有しているという点に着目してストレージされている酸素量の演算を行う。
【0053】
具体的には、リーン運転等の酸素ストレージ時には、まず、高速成分に優先して酸素がストレージされ、その後、高速成分が最大容量に達して酸素をストレージしきれない状態になったら低速成分に酸素がストレージされ始めるとして高速成分及び低速成分を演算する。そして、これら高速成分と低速成分の和としてストレージ酸素量を求める。
【0054】
図7は、触媒21ストレージされている酸素量OSCCNT1を演算するためのメインルーチンの内容を示したものである。図5に示した演算ルーチンに代えてコントローラ6において実行される。
【0055】
これによると、まず、エンジン1の各種運転パラメータとして、冷却水温センサ12、クランク角センサ14、エアフローメータ7の出力が読み込まれる(ステップS21)。
【0056】
ステップS22では後述する過剰酸素量O2INを演算するためのサブルーチン(図8)が実行されて触媒21に流入する排気中の過剰酸素量O2INが演算される。ステップS23では後述する高速成分HO2を演算するためのサブルーチン(図9)が実行され、過剰酸素量O2INに基づき高速成分HO2及び高速成分HO2でストレージされずに溢れるオーバーフロー分OVERFLOWが演算される。
【0057】
ステップS24では、ステップS23で演算されたオーバーフロー分OVERFLOWに基づき触媒21に流入する排気中の過剰酸素量O2INが全て高速成分HO2でストレージされたか否か判断される。そして、過剰酸素量O2INが高速成分で完全にストレージされた場合(OVERFLOW=0)はステップS26へ進み、そうでない場合はステップS25へ進んで後述する低速成分LO2を演算するためのサブルーチン(図10)が実行される。
【0058】
ステップS26では以上のようにして演算された高速成分HO2と低速成分LO2が足し合わされ、触媒21ストレージされている酸素量OSCCNT1が演算される(OSCCNT1=HO2+LO2)。
【0059】
図8は、触媒21に流入する排気の過剰酸素量O2INを演算するためのサブルーチンの内容を示す。このサブルーチンでは触媒上流の空燃比とエンジン1の吸入空気量に基づき触媒21に流入する排気の過剰過剰量O2INが演算される。
【0060】
これによると、まず、ステップ31で第1の空燃比センサ10の出力とエアフローメータ7の出力が読み込まれる。ステップS32では読み込まれた第1の空燃比センサ10の出力を所定の変換テーブルを用いて空燃比に変換し、触媒21に流入する排気の過剰酸素濃度を演算する。ここで過剰酸素濃度とは理論空燃比時の酸素濃度を基準とした相対的な濃度であり、排気が理論空燃比でゼロ、リッチで負、リーンで正の値をとる。
【0061】
ステップS33ではエアフローメータ7の出力を所定の変換テーブルを用いて吸入空気量に変換し、ステップS34ではステップS33で演算した吸入空気量にステップS32で演算した過剰酸素濃度を乗じて触媒21に流入する排気の過剰酸素量O2INを演算する。過剰酸素濃度が上記特性を有することから、過剰酸素量O2INは、触媒21に流入する排気が理論空燃比のときゼロ、リッチのとき負、リーンのとき正の値をとる。
【0062】
また、図9は高速成分HO2を演算するためのサブルーチンの内容を示す。このサブルーチンでは触媒21に流入する排気の過剰酸素量O2INに基づき高速成分HO2の演算が行われる。
【0063】
これによると、まず、ステップS41では、次式(1)、HO2 = HO2z + O2IN ・・・・・(1)
HO2z:高速成分HO2の前回値により高速成分HO2が演算される。
【0064】
ステップS42では、その値が高速成分の最大容量HO2MAXを超えていないかが判断される。そして、高速成分HO2が最大容量HO2MAX以上になっている場合はステップS43に進み、高速成分HO2にストレージされずに溢れ出るオーバーフロー分(過剰量)OVERFLOWが次式(2)、OVERFLOW = HO2 − HO2MAX ・・・・・(2)
により演算され、さらに、高速成分HO2が最大容量HO2MAXに制限される。高速成分HO2が最大容量HO2MAX以上となって高速成分HO2から溢れ出たオーバーフロー分OVERFLOWは低速成分LO2でストレージされる。
【0065】
一方、高速成分HO2が最大容量HO2MAXよりも小さいときは、触媒21に流入した排気の酸素過不足量O2INは全て高速成分HO2にストレージされるので、ステップS44に進んでオーバーフロー分OVERFLOWにはゼロが設定される。
【0066】
また、図10は低速成分LO2を演算するためのサブルーチンの内容を示す。このサブルーチンでは高速成分HO2から溢れ出たオーバーフロー分OVERFLOWに基づき低速成分LO2が演算される。
【0067】
これによると、ステップS51では低速成分LO2が次式(3)、LO2 = LO2z + OVERFLOW × B ・・・・・(3)
LO2z:低速成分LO2の前回値B:低速成分の酸素ストレージ放出率により演算される。低速成分の酸素ストレージ放出率Bは1以下の正の値に設定されるが、実際にはストレージと放出とで異なる特性を有し、また、実際のストレージ放出率は触媒温度、低速成分LO2等の影響を受けるので、ストレージ率と放出率をそれぞれ分離して可変に設定するようにしても良い。その場合、オーバーフロー分OVERFLOWが正であるとき、酸素が過剰であり、このときの酸素ストレージ率Bは、例えば、触媒温度が高いほど、また低速成分LO2が小さいほど大きな値に設定される。
【0068】
ステップS52では、高速成分HO2の演算時と同様に、演算された低速成分LO2がその最大容量LO2MAXを超えていないか判断される。最大容量LO2MAXを超えている場合はステップS53に進み、低速成分LO2が最大容量LO2MAXに制限される。そして、低速成分LO2から溢れる酸素過不足量O2OUTが、次式(4)、O2OUT = LO2 − LO2MAX ・・・・・(4)
により演算される。この酸素過不足量は、そのまま下流の触媒22へ流出する。
【0069】
以上のようにして触媒21ストレージされている酸素量OSCCNT1を演算したら、同様にして触媒22ストレージされている酸素量OSCCNT2についても高速成分と低速成分に分けて演算し(フローチャート省略)、触媒21ストレージされている酸素量OSCCNT1と触媒22ストレージされている酸素量OSCCNT2とを足し合わせたものをストレージされている酸素量OSCCNTとする。ここで、触媒22に流入する排気の過剰酸素量O2INは、図10のステップS53で求めた酸素過不足量O2OUTを用いることで触媒22ストレージされている酸素量OSCCNT2を求めることができる。
【0070】
したがって、本実施形態においては、ストレージされている酸素量OSCCNTが実際の特性に合わせて高速成分HO2と低速成分LO2とに分けて演算されるので、触媒21、22にストレージされている酸素量OSCCNTをさらに正確に演算することができる。これにより、ストレージされている酸素量に見合ったリッチスパイク量をより正確に与えることが可能となり、NOxトラップ触媒にトラップされているNOxを良好に放出還元させるとともに、大気中に放出されるCO、HCの増加を防止することができる。
【0071】
なお、上記実施形態の本発明が適用される構成の例を示したものに過ぎず、本発明の範囲がかかる構成に限定されることを示すものではない。例えば、トラップNOx量、ストレージされている酸素量の演算方法はここで示した方法でなくても良く、排気浄化装置の構成も少なくともNOxトラップ触媒とその上流に酸素ストレージ作用を有する触媒を備えたものであれば良い。
【0072】
また、第1の実施形態では、ストレージされている酸素量の演算を触媒21、22でまとめて演算しているが、触媒21と触媒22とで分けてストレージされている酸素量を演算するようにしてもよい。このよう別々に演算すればストレージされている酸素量の演算精度が更に向上し、NOx浄化に過不足のないリッチスパイク量を更に正確に供給することができる。
【図面の簡単な説明】
【図1】本発明に係る空燃比制御装置を備えたエンジンのシステム構成図である。
【図2】空燃比制御の内容を説明するためのフローチャートである。
【図3】トラップNOx量の演算処理の内容を説明するためのフローチャートである。
【図4】NOx濃度を演算するためのマップの一例である。
【図5】ストレージされている酸素量の演算処理の内容を説明するためのフローチャートである。
【図6】酸素ストレージ率の特性を示した図である。
【図7】ストレージされている酸素量の演算処理の別の例(第2の実施形態)の内容を説明するためのフローチャートである。
【図8】排気の過剰酸素量の演算処理の内容を説明するためのフローチャートである。
【図9】高速成分の演算処理の内容を説明するためのフローチャートである。
【図10】低速成分の演算処理の内容を説明するためのフローチャートである。
【符号の説明】
1 エンジン
2 スロットル弁
3 燃料噴射弁
4 点火プラグ
5 吸気通路
6 コントローラ
7 エアフローメータ
8 スロットル開度センサ
9 排気通路
10、11 空燃比センサ
12 冷却水温センサ
14 クランク角センサ
21 第1触媒
22 第2触媒(NOxトラップ触媒)
23 第3触媒

Claims (6)

  1. 排気通路に、空燃比に応じて酸素のストレージあるいは放出を行う第1触媒と、前記第1触媒の下流に設けられ、空燃比に応じてNOxのトラップあるいは放出還元を行う第2触媒と、を備えたエンジンに用いられる空燃比制御装置において、前記第2触媒にトラップされているNOxを放出させる場合に前記エンジンの空燃比をリッチ化する手段と、前記リッチ化による還元剤供給量を前記2つの触媒にストレージされている酸素量が多いほど多くする手段と、を備えたことを特徴とするエンジンの空燃比制御装置。
  2. 前記2つの触媒にストレージされている酸素量を演算する手段を備え、前記リッチ化による還元剤供給量を前記2つの触媒にストレージされている酸素量に応じた量とすることを特徴とする請求項1に記載のエンジンの空燃比制御装置。
  3. 前記リッチ化による還元剤供給量を、前記2つの触媒にストレージされている酸素量が多いほど、また前記第2触媒にトラップされているNOx量が多いほど多くすることを特徴とする請求項1に記載のエンジン空燃比制御装置。
  4. 前記2つの触媒にストレージされている酸素量を演算する手段と、前記第2触媒にトラップされているNOx量を演算する手段と、を備え、前記リッチ化による還元剤供給量を前記2つの触媒にストレージされている酸素量に前記第2触媒にトラップされているNOx量を足した量に応じた量とすることを特徴とする請求項3に記載のエンジンの空燃比制御装置。
  5. 前記2つの触媒に流入する酸素量を演算する手段と、前記2つの触媒に既にストレージされている酸素量に基づき2つの触媒の酸素ストレージ率を演算する手段と、を備え、前記2つの触媒にストレージされている酸素量の変化量を、前記2つの触媒に流入する酸素量に前記酸素ストレージ率を乗じて演算し、前記変化量を前記既にストレージされている酸素量に加えることで、新たにストレージされている酸素量を演算することを特徴とする請求項1から4のいずれかひとつに記載のエンジン空燃比制御装置。
  6. 前記2つの触媒にストレージされている酸素量を、貴金属にストレージされる高速成分と酸素ストレージ材にストレージされる低速成分とに分けて演算することを特徴とする請求項1から4のいずれかひとつに記載のエンジン空燃比制御装置。
JP2000261241A 2000-08-30 2000-08-30 エンジンの空燃比制御装置 Expired - Lifetime JP3835140B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000261241A JP3835140B2 (ja) 2000-08-30 2000-08-30 エンジンの空燃比制御装置
EP01119941A EP1184555B1 (en) 2000-08-30 2001-08-17 Engine exhaust purification device
DE60116554T DE60116554T2 (de) 2000-08-30 2001-08-17 Abgasreinigungsvorrichtung für eine Brennkraftmaschine
US09/931,773 US6766640B2 (en) 2000-08-30 2001-08-20 Engine exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000261241A JP3835140B2 (ja) 2000-08-30 2000-08-30 エンジンの空燃比制御装置

Publications (2)

Publication Number Publication Date
JP2002070611A JP2002070611A (ja) 2002-03-08
JP3835140B2 true JP3835140B2 (ja) 2006-10-18

Family

ID=18749119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000261241A Expired - Lifetime JP3835140B2 (ja) 2000-08-30 2000-08-30 エンジンの空燃比制御装置

Country Status (4)

Country Link
US (1) US6766640B2 (ja)
EP (1) EP1184555B1 (ja)
JP (1) JP3835140B2 (ja)
DE (1) DE60116554T2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039708A1 (de) * 2000-08-14 2002-03-07 Bosch Gmbh Robert Verfahren und Modell zur Modellierung einer Ausspeicherphase eines Stickoxid-Speicherkatalysators
US6993899B2 (en) * 2001-06-20 2006-02-07 Ford Global Technologies, Llc System and method for controlling catalyst storage capacity
US6453661B1 (en) * 2001-06-20 2002-09-24 Ford Global Technologies, Inc. System and method for determining target oxygen storage in an automotive catalyst
JP3972748B2 (ja) * 2002-07-03 2007-09-05 トヨタ自動車株式会社 内燃機関の排気浄化装置
JPWO2004097200A1 (ja) 2003-04-30 2006-07-13 株式会社日立製作所 内燃機関の制御装置
DE10337873A1 (de) 2003-08-18 2005-04-21 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
DE102004021372B4 (de) * 2004-04-30 2014-05-28 Robert Bosch Gmbh Verfahren zum Dosieren eines Reagenzmittels zur Reinigung des Abgases von Brennkraftmaschinen und Vorrichtung zur Durchführung des Verfahrens
JP4645543B2 (ja) * 2006-07-13 2011-03-09 株式会社デンソー 内燃機関用排ガス浄化装置
JP4759496B2 (ja) * 2006-11-24 2011-08-31 本田技研工業株式会社 内燃機関の排ガス浄化装置
US8474243B2 (en) * 2006-12-22 2013-07-02 Cummins, Inc. System for controlling regeneration of an adsorber
JP5104323B2 (ja) * 2008-01-10 2012-12-19 日産自動車株式会社 エンジンの空燃比制御装置及び空燃比制御方法
JP4877246B2 (ja) * 2008-02-28 2012-02-15 トヨタ自動車株式会社 内燃機関の空燃比制御装置
US20120042636A1 (en) * 2009-03-19 2012-02-23 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
JP6244626B2 (ja) * 2012-12-26 2017-12-13 日産自動車株式会社 ディーゼルエンジンの排気後処理装置
DE102014204682A1 (de) * 2014-03-13 2015-10-01 Umicore Ag & Co. Kg Katalysatorsystem zur Reduzierung von Schadgasen aus Benzinverbrennungsmotoren
GB2557479B (en) * 2015-08-05 2020-12-30 Cummins Emission Solutions Inc Oxygen correction for engine-out NOX estimates using a NOX sensor of an aftertreatment system
JP7047742B2 (ja) * 2018-12-12 2022-04-05 株式会社デンソー 状態推定装置
EP4219256A4 (en) 2020-09-25 2023-11-29 Nissan Motor Co., Ltd. VEHICLE CONTROL METHOD AND VEHICLE CONTROL DEVICE
CN112539113B (zh) * 2020-11-30 2023-01-06 潍柴动力股份有限公司 一种空气系统控制方法及装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69822382T2 (de) 1997-08-21 2004-07-29 Nissan Motor Co., Ltd., Yokohama Abgasreinigungssystem für eine Brennkraftmaschine
JP3446582B2 (ja) * 1998-01-14 2003-09-16 日産自動車株式会社 エンジンの排気浄化装置
DE19801625A1 (de) * 1998-01-17 1999-07-22 Bosch Gmbh Robert Diagnose eines NOx-Speicherkatalysators beim Betrieb von Verbrennungsmotoren
DE19801626B4 (de) * 1998-01-17 2010-08-12 Robert Bosch Gmbh Diagnose eines NOx-Speicherkatalysators beim Betrieb von Verbrennungsmotoren
JP3663896B2 (ja) * 1998-03-18 2005-06-22 日産自動車株式会社 エンジンの排気浄化装置
DE19816175A1 (de) * 1998-04-14 1999-10-21 Degussa Verfahren zur Überprüfung der Funktionstüchtigkeit eines Stickoxid-Speicherkatalysators
EP0965734B1 (de) * 1998-06-20 2004-10-20 Dr.Ing. h.c.F. Porsche Aktiengesellschaft Regelstrategie für einen NOx-Speicher
JP3478135B2 (ja) 1998-08-06 2003-12-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
US6336320B1 (en) * 1998-07-10 2002-01-08 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an internal combustion engine
US6289672B1 (en) * 1998-07-21 2001-09-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an internal combustion engine
JP3572961B2 (ja) * 1998-10-16 2004-10-06 日産自動車株式会社 エンジンの排気浄化装置
EP0997617A1 (de) * 1998-10-28 2000-05-03 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Verfahren zur Regeneration einer Stickoxidfalle im Abgassystem eines Verbrennungsmotors sowie Vorrichtung zur Durchführung des Verfahrens
JP3649034B2 (ja) * 1999-03-25 2005-05-18 日産自動車株式会社 エンジンの排気浄化装置
JP3536764B2 (ja) * 2000-02-14 2004-06-14 日産自動車株式会社 エンジンの排気浄化装置
US6308697B1 (en) * 2000-03-17 2001-10-30 Ford Global Technologies, Inc. Method for improved air-fuel ratio control in engines
US6427437B1 (en) * 2000-03-17 2002-08-06 Ford Global Technologies, Inc. Method for improved performance of an engine emission control system
US6327847B1 (en) * 2000-03-17 2001-12-11 Ford Global Technologies, Inc. Method for improved performance of a vehicle
US6418711B1 (en) * 2000-08-29 2002-07-16 Ford Global Technologies, Inc. Method and apparatus for estimating lean NOx trap capacity

Also Published As

Publication number Publication date
US6766640B2 (en) 2004-07-27
DE60116554D1 (de) 2006-04-06
JP2002070611A (ja) 2002-03-08
US20020023432A1 (en) 2002-02-28
EP1184555B1 (en) 2006-01-11
DE60116554T2 (de) 2006-11-16
EP1184555A2 (en) 2002-03-06
EP1184555A3 (en) 2003-11-12

Similar Documents

Publication Publication Date Title
JP3835140B2 (ja) エンジンの空燃比制御装置
JP3572961B2 (ja) エンジンの排気浄化装置
JP3528739B2 (ja) エンジンの排気浄化装置
JP3709655B2 (ja) 内燃機関の排気浄化装置
JP4314636B2 (ja) 内燃機関の空燃比制御装置
JP3759567B2 (ja) 触媒劣化状態検出装置
US6564544B2 (en) Engine exhaust purification arrangement
JP3606211B2 (ja) エンジンの排気浄化装置
JP4389141B2 (ja) 内燃機関の排気浄化装置
JP3750351B2 (ja) 内燃機関の排気浄化装置
JP4031887B2 (ja) エンジンの空燃比制御装置および方法
JP4492776B2 (ja) 内燃機関の排気浄化装置
JP4608758B2 (ja) 内燃機関の空燃比制御装置
JP2000130221A (ja) 内燃機関の燃料噴射制御装置
JPH1162666A (ja) 内燃機関の排気浄化装置
JP3937487B2 (ja) 内燃機関の排気浄化装置
JP2004060613A (ja) 内燃機関の空燃比制御装置
JP3449174B2 (ja) 内燃機関の排気浄化装置
JP3892061B2 (ja) 希薄燃焼機関の空燃比制御装置
JP4666542B2 (ja) 内燃機関の排気浄化制御装置
JP3454177B2 (ja) 内燃機関の排気浄化装置
JP4269279B2 (ja) 内燃機関の制御装置
JP4211426B2 (ja) 内燃機関の排気ガス浄化装置
JP3988425B2 (ja) 内燃機関の排出ガス浄化制御装置
JP4075643B2 (ja) エンジンの排気浄化装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

R150 Certificate of patent or registration of utility model

Ref document number: 3835140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140804

Year of fee payment: 8

EXPY Cancellation because of completion of term