JP3834749B2 - サーモグラフィを用いた構造物調査・診断装置及びサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法並びに構造物調査・診断システム - Google Patents

サーモグラフィを用いた構造物調査・診断装置及びサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法並びに構造物調査・診断システム Download PDF

Info

Publication number
JP3834749B2
JP3834749B2 JP2001334918A JP2001334918A JP3834749B2 JP 3834749 B2 JP3834749 B2 JP 3834749B2 JP 2001334918 A JP2001334918 A JP 2001334918A JP 2001334918 A JP2001334918 A JP 2001334918A JP 3834749 B2 JP3834749 B2 JP 3834749B2
Authority
JP
Japan
Prior art keywords
concrete
steel
thermal image
thermography
concrete structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001334918A
Other languages
English (en)
Other versions
JP2003139731A (ja
Inventor
昇 小川
雄二 塚本
英吉 大下
Original Assignee
Nec三栄株式会社
英吉 大下
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec三栄株式会社, 英吉 大下 filed Critical Nec三栄株式会社
Priority to JP2001334918A priority Critical patent/JP3834749B2/ja
Publication of JP2003139731A publication Critical patent/JP2003139731A/ja
Application granted granted Critical
Publication of JP3834749B2 publication Critical patent/JP3834749B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Description

【0001】
本発明はサーモグラフィ装置で撮像した熱画像データを介して、コンクリート内の腐食した鉄筋或は鉄骨の有無とその度合及び位置並びにコンクリート内のひび割れを検知する様に成したサーモグラフィを用いた構造物調査・診断装置及びサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法並びに構造物調査・診断システムに関する。
【0002】
【従来の技術】
従来から、ビルディングやトンネル、切通しの傾斜面等の土木建築物に用いられるコンクリートの劣化時の剥離、亀裂、空洞等の診断には種々の方法が用いられている。
例えば、超音波、放射線、レーダ波、音響信号等をコンクリートの被測定面に照射し、その反射波を電気信号に変換して可視化させる超音波法、放射線透過法、レーダ法、アコーステック・エミッション(AE)法等が知られている。
又、赤外線を用いて被測定物の表面温度を赤外線放射温度計で測定し、熱画像をLCD等の表示装置に表示させる様にしたサーモグラフィ装置もよく知られている。
【0003】
通常サーモグラフィ装置は、放射温度計に走査機能を付加したもので走査方法には機械的走査方法と2次元アレイを用いた電気的走査方法が用いられている。
【0004】
上記した各種の被測定物の診断方法ではサーモグラフィ装置の小型化が図られ携帯にも便利で土木建築現場で多用され、例えば「昭和60年第10号、赤外線技術「赤外計測によるコンクリート剥離の検出」新井他」等にタイルの剥離状態の計測方法等が記載されプラント等の各種設備や構造物の監視診断等に応用研究が進められている。
【0005】
【発明が解決しようとする課題】
上述のサーモグラフィ装置による従来のコンクリート構造物の劣化或は耐久性診断では例えば鉄筋コンクリート(Reinforced Concrete:以下RCと記す)造り或は鉄骨鉄筋コンクリート(Steel Reinforced Concrete:以下SRCと記す)造りの主に壁面、(例えば、磁器タイル)の浮きや空洞の測定のみに留まっていた。即ち、RC造り、或はSRC造りの建物躯体内の鉄筋や鉄骨の位置(コンクリートの被り厚さ)や腐食の有無、コンクリートのひび割れ状態を検知する様に成したものは未だ提案されていない。
【0006】
一方、鉄筋或は鉄骨の腐食位置や部位の測定を非破壊試験方法で行なう従来方法は、主に、腐食位置と非腐食位置との微量な電位差を測定する自然電位法が知られている。
【0007】
この自然電位法は被りコンクリート厚(鉄筋或は鉄骨位置からコンクリート部表面までの距離)が水で飽和されているという仮定の基に於ける水の通電性を利用し、腐食部位と非腐食部位の微量な電位差を測定するものであり測定精度に大きな問題があった。
【0008】
また、コンクリート内のひび割れ等の診断は、主に打音や目視によるため、例えば、高層建築物の様に診断者が近づくことが出来ず、打音や目視が出来ない箇所では調査・診断が不可能であった。
【0009】
更に、鉄筋或は鉄骨の位置を測定する非破壊試験方法としては前記した入射波と反射波の位相差から鉄筋位置等を求めるAE法やレーダ法があるがコンクリート内部にひび割れや大きな空洞があると、これら部位で反射を生じて測定精度を劣化させる課題があった。
【0010】
本発明は叙上の課題を解消するために成されたもので、発明が解決しようとする課題はサーモグラフィ装置でRC造り或はSRC造りのコンクリート構造物の劣化度及び耐久性能の調査・診断に於いてコンクリート内部の鉄筋或は鉄骨の腐食の有無及び度合、それらのコンクリート表面からの位置及びコンクリートへのひび割れ度合や位置を測定可能なサーモグラフィを用いた構造物調査・診断装置及びサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法並びに構造物調査・診断システムを得ようとするものである。
【0011】
【課題を解決するための手段】
請求項1に係わる本発明は、コンクリート構造物の表面を時々刻々に撮像して熱画像情報並びに熱画像履歴情報を得ることでコンクリート構造物の欠陥を検知するサーモグラフィを用いた構造物調査・診断装置であって、コンクリート構造物内の鉄筋或は鉄骨に熱を加える加熱手段と、加熱手段により加熱された鉄筋或いは鉄骨から熱伝導によって変動するコンクリート表面の熱画像情報並びに熱画像履歴情報に基づいて、鉄筋或いは鉄骨及びコンクリートの熱伝導解析を熱伝導方程式に基づく逆解析を行なうことで該鉄筋或いは鉄骨及び該コンクリートの欠陥を同時に得る熱伝導解析手段と、を具備したことを特徴とするサーモグラフィを用いた構造物調査・診断装置としたものである。
【0012】
請求項2に係わる本発明は、鉄筋或いは鉄骨の欠陥が、鉄筋或いは鉄骨の腐食の有無及び腐食の程度並びにその位置であることを特徴とする請求項1記載のサーモグラフィを用いた構造物調査・診断装置としたものである。
【0013】
請求項3に係わる本発明は、コンクリート又は鉄筋或いは鉄骨に生じた欠陥が、コンクリート構造物のひび割れ、空洞、剥離並びに鉄筋或は鉄骨との剥離状態であることを特徴とする請求項1又は請求項2記載のサーモグラフィを用いた構造物調査・診断装置としたものである。
【0014】
請求項4に係わる本発明は、コンクリート構造物の表面を時々刻々に撮像して熱画像情報並びに熱画像履歴情報を得ることで該コンクリート構造物の欠陥を検知するサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法であって、コンクリート構造物内の鉄筋或いは鉄骨に熱を加える加熱プロセスと、この加熱プロセスにより加熱された鉄筋或いは鉄骨からの熱伝導によって変動するコンクリート表面の熱画像情報並びに熱画像履歴情報に基づいて、鉄筋或いは鉄骨及びコンクリートの熱伝導解析を熱伝導方程式に基づく逆解析を行なうことで、鉄筋或いは鉄骨及び該コンクリートの欠陥を同時に得る熱伝導解析プロセスとより成ることを特徴とするサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法としたものである。
【0015】
請求項5に係わる本発明は、鉄筋或いは鉄骨の欠陥は、鉄筋或は鉄骨の腐食の有無又は腐食の程度並びにその位置を検知することを特徴とする請求項4記載のサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法
としたものである。
【0016】
請求項6に係わる発明は、コンクリート構造物の表面を時々刻々に撮像して熱画像情報並びに熱画像履歴情報を得ることでコンクリート構造物の欠陥を調査、或は診断する構造物調査・診断システムであって、コンクリート構造物中の鉄筋或は鉄骨を加熱する加熱システムと、加熱システムにより加熱した鉄筋或いは鉄骨から熱伝導によって変動するコンクリート表面の熱画像情報並びに熱画像履歴情報に基づいて鉄筋或いは鉄骨及びコンクリートの熱伝導解析を熱伝導方程式に基づく逆解析を行なうことで、鉄筋或いは鉄骨及びコンクリートの欠陥部位を同時に得る熱伝導解析システムと、を有することを特徴とする構造物調査・診断システムとしたものである。
【0017】
斯かる、請求項1乃至請求項6に係わるサーモグラフィを用いた構造物調査・診断装置及びサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法並びに構造物調査・診断システムによればコンクリート構造物中の金属物体、例えば鉄筋や鉄骨の腐食状態は腐食領域で熱伝導率が大幅に低下することで非腐食部分より低温となる部分を検出することで腐食或は非腐食度合及びその有無を高精度に検出可能となる。
【0018】
又、コンクリート表面から鉄筋までのコンクリートの被り厚さ(鉄筋位置)も熱画像の時間履歴に基づく熱伝導率の解析から高精度に検出することが出来る。
【0019】
更に、コンクリートのひび割れ箇所に於いては、ひび割れ箇所や鉄筋とコンクリート間の隙間には空気や水が存在することで熱伝導率や熱容量はひび割れのないコンクリートに比べ小さいためひび割れ箇所は高温部となるのでこの高温部を検出することでひび割れや空隙部分を検出することが可能となる。
【0020】
【発明の実施の形態】
以下、本発明 1 形態例によってコンクリート構造物等の被測定物をサーモグラフィ装置で取得した熱画像情報に基づいてコンクリート構造物中の鉄筋或は鉄骨等の金属物体の腐食状態(腐食度合及び腐食の有無):腐食位置(コンクリート被り厚さ)並びにコンクリート内のひび割れ位置及び性状を検知するサーモグラフィを用いた構造物調査・診断装置及びサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法並びに構造物調査・診断システム
を図面によって詳記する。
【0021】
図1は本発明のサーモグラフィを用いた構造物調査・診断装置及びサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法並びに構造物調査・診断システムの原理構成を示す模式図を示すものである。
【0022】
図1に於いて、被測定物1としてはコンクリート構造物の如き建物躯体を考える。この建物躯体内のコンクリートにはRC造り、或はSRC造りの金属物体2である鉄筋或は鉄骨等が例えば、配筋図にしたがって配筋されている。
【0023】
上述のコンクリート構造物1中に配筋された鉄筋2が図1に示す様に非腐食部2aと腐食部2bと、鉄筋の存在しない領域2c部分より成り、コンクリート構造物1にひび割れ部分8を有しているものとする。
【0024】
では加熱手段6で加熱した鉄筋2をサーモグラフィ装置5により、コンクリート構造物1の表面の所定領域をX及びY軸方向に所定の時間間隔毎に走査撮像した熱画像データDH をコンピュータ(CPU)7aを介し記憶手段としての例えばフレームメモリ7dに格納し、これら格納データを基に加熱した鉄筋を熱源としてコンクリート中に伝達される熱伝導解析を行なうことでコンクリートの被り厚(鉄筋2からコンクリート構造物1の表面までの位置)Tを同定すると共に、鉄筋2の腐食の有無或はその度合並びにひび割れの発生度合その位置を測定可能と成したものである。
【0025】
以下、本発明の1形態例を図2乃至図4を用いて説明する。
【0026】
図2に於いて、サーモグラフィ装置5はX−Y走査部3と放射温度計4で構成される。X−Y走査部3内には例えば被測定物であるコンクリート構造物1の表面の所定領域をX軸及びY軸方向に走査する垂直走査鏡3aと水平走査鏡3bを有し、これら垂直及び水平走査鏡3a及び3bはガルバノアクチェータ等で機械的にY−Y軸及びX−X軸方向に走査される。垂直走査鏡3a及び水平走査鏡3bを介して得られた赤外光はレンズ等の光学系3cを経て赤外検出器3dに入射する。これらX−Y走査部3の赤外検出器3dは単素子からなる1次元アレイでなく、電気的にX及びY軸方向に走査可能な2次元アレイであってもよい。この場合は機械的走査でなく電気的にX軸及びY軸方向の走査が成される。
【0027】
赤外検出器3dに入射した赤外光は電気信号に変換され、増幅器4aを介して増幅された後に信号処理部4bで各種の信号処理を施した後にLCD等の表示部4cに赤外線画像を温度に対応した色で表示する熱画像を出力する。
尚、信号処理部4bからの出力は熱伝導解析手段7を構成するCPU7aのインタフェース7bにも供給されている。
【0028】
熱伝導解析手段7内にはCPU7aを有し、このCPU7aは通常のROM及びRAM7c等の記憶手段の他に記憶容量の大きいビデオメモリ、或はフィールドメモリ7d等の記憶手段を有し、バス7gにはCRT等の表示装置7eやキーボード7f等の操作部が接続されている。
【0029】
以下、図2に示したサーモグラフィ装置5によって、コンクリート構造物内の鉄筋や鉄骨の腐食の有無及び腐食の度合及びコンクリート内のひび割れ部やひび割れ位置を検知する場合の動作を図3の熱画像データを基に説明する。
【0030】
図3(a)〜(c)は簡単な試験体に対する本発明の適用例を示す熱画像を示すもので、試験体としては図3(d)に示す如き略長方形状のコンクリートブロック内に非腐食部2aより成る鉄筋2と腐食した鉄筋2bを2本並設し、手前側の腐食した鉄筋2(2b)の左半分は研摩して非腐食部2aとなし右半分はそのままにした腐食部2bとしたブロックに成型し、平面部に鉄筋2に到る0.3mmφの透孔を模擬的ひび割れ8として形成した。尚コンクリートの被り厚T=50mmとした。
【0031】
本例では鉄筋2に加熱手段6を介して所定の熱を加える。加熱方法としては適宜方法をとることが出来る。コンクリート構造物等では配筋図を参照してコンクリートの数箇所をはつり取りして鉄筋を剥き出した後に電流を流すこと又はヒータであぶる等で強制加熱することで鉄筋2を熱源として、所定の時間間隔で被測定物としてのコンクリート構造物1のコンクリート表面をサーモグラフィ装置5で走査して熱画像データを取得する。
【0032】
図3(a)は強制加熱を行なう前のコンクリート構造物1の平面側から視たサーモグラフィ装置の撮像による初期熱画像を示している。この初期熱画像では図3(d)に示された鉄筋2を見ることは出来ない。実際の鉄筋位置と鉄筋の非腐食部2aと腐食部2bの部位を楕円状の破線で囲って示している。
【0033】
図3(b)は鉄筋2に加熱手段6を介して加熱を行ない、この鉄筋2に加えた熱を熱源として、鉄筋2を介してコンクリート構造体1の表面に熱が伝達し、所定時間経過時の図3(d)に示すコンクリート構造物1の平面側からのサーモグラフィ装置5により、図3(a)位置と同一領域を撮像した場合の熱画像を示している。
【0034】
図3(b)の熱画像を見ると、上側の鉄筋2の非腐食部2aでは赤から黄色(25.2℃〜24.3℃)の温度で示され、下側の鉄筋2の研摩した非腐食部2aで赤色(25.2℃〜24.9℃)の温度で示す状態として表され、腐食部2bでは緑色から空色(24.0℃〜22.8℃)の温度で示されている。
【0035】
このことは、次の様に考えることが出来る。鉄筋2の腐食部2bでは熱伝導が殆ど無く、逆に非腐食部2aでは腐食部2bに比べて遥かに大きい熱伝導率を有しているため、熱源である鉄筋2からコンクリート部に伝達される非腐食部2aでの熱伝導率は大きく、腐食部2bでの熱伝導率は小さい。従って、コンクリート構造物1の表面の温度は或る所定時間経過時の熱画像に於いて、腐食部は低温を示し、非腐食部は高温を示すので鉄筋中の温度及び温度の高低勾配から腐食部2bと非腐食部2aの有無を視覚的に容易に見分けることが可能となる。
【0036】
この場合、互に隣接する腐食部2bと非腐食部2aがあった時に非腐食部2aの鉄筋からの熱がコンクリートに伝達する際にコンクリート内に3次元的に熱を伝達させ、腐食部2bの表面コンクリート温度も変化するが、これらはコンクリートの温度解析によって、これらの影響を除いた熱画像を映出することが可能である。
【0037】
又、図1及び図2に示した様にコンクリート構造物1の鉄筋2に鉄筋2が存在しない領域2cも当然考えられる。
【0038】
この様な鉄筋が存在しない領域2cでは腐食部2bと同じ様に温度が上昇せず低温を示すため、鉄筋2の腐食部2bであるか、鉄筋2の存在しない領域2cであるのかの判別がつかない場合が生ずる可能性がある。
【0039】
この場合は鉄筋の存在しない領域2cには熱源が存在しないことにより近傍のコンクリートからの熱伝導のみの影響を受けるため、その領域におけるコンクリート温度は低い値となる。従って、サーモグラフィ装置5により精度良い温度測定を行なうことによって、後述すると同じ解析手法により統一的に評価可能となる。
【0040】
更に、鉄筋2の腐食部2bは鉄筋2の存在しない領域2cのコンクリート部に比べて熱伝導率は大きいこと及び鉄筋2の非腐食部2aでは熱を与えた後に短時間でコンクリート部へ熱伝導することに対し、腐食部2bでは遅れて熱伝導するので、これら時間の履歴を所定時間毎に同一領域の熱画像データを取得して、時間毎の熱画像データを解析すること並びに、加熱後の放置状態では非腐食部2aは急激に温度低下が生ずるが腐食部2bではそれほど低下しない点等の時間の履歴を考慮した熱画像解析によって、非腐食部2aと腐食部2bとコンクリート部の有無状態を統一的に評価することが可能となる。
【0041】
さらに、実際のコンクリート構造物1においては、基本的にコンクリートを数箇所をはつり取りし、鉄筋2を剥き出しにした後に強制加熱する。鉄筋2は、配筋図に沿って配筋されていると仮定すると、コンクリートの表面温度が上昇しない箇所においては腐食部2bとなる可能性がある。しかし、配筋図通りに配筋されていないとすると、鉄筋2の腐食部2bか或は鉄筋が存在しない領域2cになるもので、その際には、その箇所の鉄筋の有無を非破壊検査にて実施し、鉄筋が存在する場合には鉄筋の腐食、鉄筋が存在しない場合には配筋図通りではないとい様な検査を行なう様にしてもよい。この場合でも信頼性の向上が図れる。
【0042】
次に、鉄筋2の腐食度合は熱伝導率との間で高い相関関係があるため熱画像履歴とそれに基づく後述する熱伝導解析によって鉄筋2の腐食領域の熱伝導率を求め、それによって鉄筋の腐食度合を測定する様にすればよい。この場合、鉄筋腐食部と腐食度合の相関性を求めるため鉄筋位置、腐食領域、度合等をパラメータとしたデータを用いることになる。
【0043】
次にコンクリート構造物1中のひび割れ8について、図3(c)の熱画像を基に説明する。
【0044】
図3(c)の熱画像では図3(d)に示す様に鉄筋2に達する透孔を模擬的ひび割れとしたが、このひび割れ8箇所では、空気或は水分が存在しており、それらの熱伝導率はコンクリート部(コンクリートの熱伝導率≒0.9w/mk)に比べて非常に小さい(空気の熱伝導率≒0.0241w/mk、水の熱伝導率≒0.63w/mk)が、このひび割れ8部分では加熱した鉄筋2(鉄の熱伝導率≒75.36w/mk)を介してひび割れ8部分の空気或は水への熱伝達の影響を受け易い。
【0045】
更に、単位体積ボリュームのひび割れ8部分に存在する空気や水の温度を1℃上昇させるために必要な熱量はコンクリートの場合に比べて遥かに小さいため、ひび割れ8部分に水分が存在していたとしてもひび割れ8部分は非常に小さな熱量で温度が短時間に上昇する。
【0046】
従って、コンクリート内のひび割れ8部分での熱伝導率はコンクリート部(ひび割れていない箇所)10に比べて非常に大きく、高温(図3(c)ではひび割れ8部分の温度は赤色から黄色(25.7℃〜24.8℃)の高温であるのに対し、コンクリート10部分の温度は低温で空色から藍色(図3(c)ではコンクリート10部分の24.2℃〜23.3℃)となり、この温度差及び温度勾配によってひび割れ8位置をコンクリート構造物1の表面からサーモグラフィ装置を介して可視化することが可能となる。
【0047】
次に鉄筋位置(コンクリート被り厚さT)を同定する方法を図2のブロック図及び図4のフローチャートを用いて説明する。
【0048】
先ず、図2に示すサーモグラフィ装置5によって、被測定物であるコンクリート構造物1の表面の所定領域をX軸及びY軸方向に走査して、熱伝導解析手段7のCPU7aを介してフレームメモリ7d内に取り込む(第1ステップST1 )。
【0049】
第2ステップST2 ではコンクリート構造物の配筋図を基に鉄筋の一部をはつり取って露出した鉄筋2部分より加熱手段6を介して強制加熱する。
【0050】
第3ステップST3 ではCPU7aは所定時間経過したか否かを判断する。
この間、鉄筋に強制加熱を与えることによって、熱伝導率の違いから鉄筋2に熱伝導が発生し、その後コンクリート10の内部への熱伝導が発生する。時間の経過とともに、この現象は強制加熱を与えた鉄筋2の熱源(経過時間がゼロ時点)が徐々にコンクリート10の内部に存在する鉄筋網全域に広がるとともに、それに追随してコンクリート10内部への熱伝導およびコンクリート10表面への熱伝導に進展することになる。
【0051】
コンクリート2の表面温度は、強制加熱による鉄筋2の熱伝導(熱源の拡散)と熱源である鉄筋2からコンクリート10への熱伝導およびコンクリート10の内部の熱伝導によって決定される。その決定的要因は、コンクリート10の熱的物性値(熱伝導率、比熱等)が任意位置において同じであるとすれば、時間と鉄筋2への強制加熱量(熱伝導方程式中の発熱量Q:既知量)および鉄筋位置(発熱位置:未知量)である。
【0052】
従って、第3ステップST3 後に第4ステップST4 の如く、サーモグラフィ装置5を介し、コンクリート構造物の表面の初期撮像領域と同一領域を所定時間間隔で撮像した複数の熱画像データを取得し、夫々をフレームメモリ7d内に格納する。
【0053】
第5ステップST5 ではCPU7aは所定回数の撮像が終了したか否かを判断して、第6ステップST6 に進められる。
【0054】
第6ステップST6 では3次元熱伝導解析手段を介してフレームメモリ7dに格納された熱画像データの同時刻における所定領域内のコンクリート構造物1の表面の時刻履歴温度及び操作用のキーボード7fを介して入力される。コンクリート及び鉄筋の熱伝導率、コンクリートの熱伝達率、コンクリート及び鉄筋の比熱、外気温度等の熱的物性値を入力データ11としてCPU7aに供給することで時間と空間領域において定義される下式(1)に示す3次元熱伝導方程式によって3次元熱伝導解析(逆解析)が行なわれ、第7ステップST7 に示す様に鉄筋2の位置(被り厚さT)の同定が終了する。
【0055】
以下に3次元熱伝導に関する偏微分方程式を示す。
Figure 0003834749
上式において
Figure 0003834749
又、上記した、ひび割れ8箇所の表面温度はコンクリート表面温度よりも高く、サーモグラフィ装置5により既知量であるため、3次元熱伝導解析にひび割れ8の存在(空気の存在)を入力することによって統一的に評価可能となる。
【0056】
【発明の効果】
本発明のサーモグラフィを用いた構造物調査・診断装置及びサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法並びに構造物調査・診断システムによればコンクリート構造物中の金属物体、例えば鉄筋や鉄骨の腐食状態は腐食領域で熱伝導率が大幅に低下することで非腐食部分より低温となる部分を検出することで腐食或は非腐食度合及びその有無を高精度に検出可能となる。
【0057】
又、コンクリート表面から鉄筋までのコンクリートの被り厚さ(鉄筋位置)も熱画像の時間履歴に基づく熱伝導率の解析から高精度に検出することが出来る。
【0058】
更に、コンクリートのひび割れ箇所に於いては、ひび割れ箇所や鉄筋とコンクリート間の隙間には空気や水が存在することで熱伝導率はひび割れのないコンクリートに比べ小さいがひび割れ箇所は高温部となるのでこの高温部を検出することでひび割れや空隙部分を検出することが可能となる。
【0059】
本発明によれば従来の鉄筋腐食や鉄筋位置の非破壊測定或は目視等によるひび割れ診断は診断者が診断対称箇所に直接手を触れなければないないため高層階では診断が困難であったが、縦横無尽に配置されている鉄筋の熱伝導性の良さを利用した本手法では、高層階においても容易に診断可能である。
又建物建造時に予め本システムを導入することにより、大規模な劣化診断や耐久性診断を行なう必要が無いため診断等に係る費用の削減が期待される。
更に鉄筋への強制加熱を行なうことにより、壁面の浮き(磁器タイル等)や磁器タイル等の亀裂が現状の手法(単に、自然環境下でのサーモグラフィ装置の撮像)よりも精度良く測定可能である。
【図面の簡単な説明】
【図1】本発明の原理構成を示す模式図である。
【図2】本発明のサーモグラフィ装置及びその測定方法を示すブロック図である。
【図3】本発明のサーモグラフィ装置によって撮像した熱画像を示す図である。
【図4】本発明のサーモグラフィ装置の鉄筋位置同定時のフローチャートである。
【符号の説明】
1‥‥被測定物(コンクリート構造物)、2‥‥金属物体(鉄筋、鉄骨)、2a‥‥非腐食部、2b‥‥腐食部、2c‥‥鉄筋の存在しない領域、3‥‥X−Y走査部、4‥‥放射温度計、7‥‥熱伝導解析手段、7a‥‥コンピュータ(CPU)、7d‥‥フレームメモリ、8‥‥ひび割れ、10‥‥コンクリート

Claims (6)

  1. コンクリート構造物の表面を時々刻々に撮像して熱画像情報並びに熱画像履歴情報を得ることで該コンクリート構造物の欠陥を検知するサーモグラフィを用いた構造物調査・診断装置であって、
    上記コンクリート構造物内の鉄筋或は鉄骨に熱を加える加熱手段と、
    上記加熱手段により加熱された上記鉄筋或いは鉄骨から熱伝導によって変動するコンクリート表面の上記熱画像情報並びに上記熱画像履歴情報に基づいて、鉄筋或いは鉄骨及び該コンクリートの熱伝導解析を熱伝導方程式に基づく逆解析を行なうことで該鉄筋或いは鉄骨及び該コンクリートの欠陥を同時に得る熱伝導解析手段と、
    を具備したことを特徴とするサーモグラフィを用いた構造物調査・診断装置。
  2. 上記鉄筋或いは鉄骨の欠陥が、該鉄筋或いは鉄骨の腐食の有無及び腐食の程度並びにその位置であることを特徴とする請求項1記載のサーモグラフィを用いた構造物調査・診断装置。
  3. 上記コンクリート又は上記鉄筋或いは鉄骨に生じた欠陥が、該コンクリート構造物のひび割れ、空洞、剥離並びに該鉄筋或は鉄骨との剥離状態であることを特徴とする請求項1又は請求項2記載のサーモグラフィを用いた構造物調査・診断装置。
  4. コンクリート構造物の表面を時々刻々に撮像して熱画像情報並びに熱画像履歴情報を得ることで該コンクリート構造物の欠陥を検知するサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法であって、
    上記コンクリート構造物内の鉄筋或いは鉄骨に熱を加える加熱プロセスと、
    上記加熱プロセスにより加熱された上記鉄筋或いは鉄骨からの熱伝導によって変動するコンクリート表面の上記熱画像情報並びに上記熱画像履歴情報に基づいて、鉄筋或いは鉄骨及び上記コンクリートの熱伝導解析を熱伝導方程式に基づく逆解析を行なうことで、該鉄筋或いは鉄骨及び該コンクリートの欠陥を同時に得る熱伝導解析プロセスと
    より成ることを特徴とするサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法。
  5. 上記鉄筋或いは鉄骨の欠陥は、該鉄筋或は鉄骨の腐食の有無又は腐食の程度並びにその位置を検知することを特徴とする請求項4記載のサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法。
  6. コンクリート構造物の表面を時々刻々に撮像して熱画像情報並びに熱画像履歴情報を得ることで該コンクリート構造物の欠陥を調査、或は診断する構造物調査・診断システムであって、
    上記コンクリート構造物中の鉄筋或は鉄骨を加熱する加熱システムと、
    上記加熱システムにより加熱した上記鉄筋或いは鉄骨から熱伝導によって変動するコンクリート表面の上記熱画像情報並びに上記熱画像履歴情報に基づいて、該鉄筋或いは鉄骨及び該コンクリートの熱伝導解析を熱伝導方程式に基ずく逆解析を行なうことで、該鉄筋或いは鉄骨及び該コンクリートの欠陥部位を同時に得る熱伝導解析システムと
    を有することを特徴とする構造物調査・診断システム。
JP2001334918A 2001-10-31 2001-10-31 サーモグラフィを用いた構造物調査・診断装置及びサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法並びに構造物調査・診断システム Expired - Fee Related JP3834749B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334918A JP3834749B2 (ja) 2001-10-31 2001-10-31 サーモグラフィを用いた構造物調査・診断装置及びサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法並びに構造物調査・診断システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334918A JP3834749B2 (ja) 2001-10-31 2001-10-31 サーモグラフィを用いた構造物調査・診断装置及びサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法並びに構造物調査・診断システム

Publications (2)

Publication Number Publication Date
JP2003139731A JP2003139731A (ja) 2003-05-14
JP3834749B2 true JP3834749B2 (ja) 2006-10-18

Family

ID=19149972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334918A Expired - Fee Related JP3834749B2 (ja) 2001-10-31 2001-10-31 サーモグラフィを用いた構造物調査・診断装置及びサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法並びに構造物調査・診断システム

Country Status (1)

Country Link
JP (1) JP3834749B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206487A (ja) * 2013-04-15 2014-10-30 英吉 大下 鉄筋コンクリート診断方法及び鉄筋コンクリート診断装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100887426B1 (ko) 2007-04-18 2009-03-09 한국건설기술연구원 합성구조 접합면의 고온조건 부착슬립 변형 측정방법 및 그장치
CN101609057B (zh) * 2009-07-15 2011-08-03 河海大学 普通混凝土导热系数随龄期发展预测模型的构建方法
FR2955178B1 (fr) * 2010-01-08 2013-01-18 Bouygues Travaux Publics Procede de mesure de la corrosion d'un element metallique dans un ouvrage en beton
JP6097664B2 (ja) * 2013-09-12 2017-03-15 住友大阪セメント株式会社 セメント硬化体の劣化状態分析方法
CN103743776A (zh) * 2014-01-02 2014-04-23 四川省建筑科学研究院 基于感应加热和红外热像的混凝土内钢筋检测方法
JP6413058B2 (ja) * 2014-06-20 2018-10-31 西日本高速道路エンジニアリング四国株式会社 コンクリート構造物のはく落予測診断方法
CN104101621A (zh) * 2014-07-18 2014-10-15 青岛理工大学 核电牺牲混凝土高温熔蚀简易试验装置及方法
JP2016191696A (ja) * 2015-03-31 2016-11-10 英吉 大下 鉄筋コンクリートの鉄筋腐食性状評価方法
JP2016191697A (ja) * 2015-03-31 2016-11-10 英吉 大下 アスファルト混合物で舗装した鉄筋コンクリート床板の鉄筋の腐食性状評価方法
JP6709713B2 (ja) * 2016-10-19 2020-06-17 鹿島建設株式会社 コンクリート構造物の浮き及び剥離の検査方法及びコンクリート構造物の修復方法
JP6907951B2 (ja) 2018-01-11 2021-07-21 トヨタ自動車株式会社 ヒートシンクの検査方法、検査装置及び生産方法、生産システム
JP7209270B2 (ja) * 2019-02-06 2023-01-20 パナソニックIpマネジメント株式会社 厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置
RU2728488C1 (ru) * 2019-11-19 2020-07-29 Федеральное государственное бюджетное образовательное учреждение высшего образования Новосибирский государственный архитектурно-строительный университет (Сибстрин) Способ проведения косвенного температурного контроля бетонной смеси при изготовлении железобетонных конструкций с использованием инфракрасной пирометрии

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206487A (ja) * 2013-04-15 2014-10-30 英吉 大下 鉄筋コンクリート診断方法及び鉄筋コンクリート診断装置

Also Published As

Publication number Publication date
JP2003139731A (ja) 2003-05-14

Similar Documents

Publication Publication Date Title
JP3834749B2 (ja) サーモグラフィを用いた構造物調査・診断装置及びサーモグラフィ装置による鉄筋・鉄骨コンクリート構造物の測定方法並びに構造物調査・診断システム
Sirca Jr et al. Infrared thermography for detecting defects in concrete structures
US6730912B2 (en) Method and apparatus for detecting normal cracks using infrared thermal imaging
CN107655971B (zh) 一种混凝土结构表面及内部损伤精细建模方法
Farahani et al. A railway tunnel structural monitoring methodology proposal for predictive maintenance
US20080144049A1 (en) Method and apparatus for thermographic nondestructive evaluation of an object
Choi et al. Integrated visualization for reinforced concrete using ultrasonic tomography and image-based 3-D reconstruction
Ai et al. Experimental and numerical study on the fracture characteristics of concrete under uniaxial compression
Sharma et al. Structural health monitoring using image processing techniques-a review
Lorenzi et al. Application of ultrasonic pulse velocity to detect concrete flaws
Yu et al. Laboratory validation of in-pipe pulsed thermography in the rapid assessment of external pipe wall thinning in buried metallic utilities
Ibarra-Castanedo et al. Automatic algorithm for quantitative pulsed phase thermography calculations
JP2005291743A (ja) 補強板によって補強されたコンクリートの欠陥検出方法および装置
JP3940335B2 (ja) 欠陥検査方法およびその装置
JP2855366B2 (ja) 壁面等の剥離診断方法
JP4097079B2 (ja) 欠陥検査方法およびその装置
JP4517044B2 (ja) 欠陥検査方法およびその装置
JP4097083B2 (ja) コンクリートの充填不良検査方法および装置
CN114487012A (zh) 一种土体表面裂隙发育预判方法
JP5736719B2 (ja) 超音波検査方法及び超音波検査装置
JPH05180776A (ja) 掘削面の調査システム
Omidi et al. Integration of active thermography and ground penetrating radar for the detection and evaluation of delamination in concrete slabs
De Andrade et al. Nondestructive techniques for detection of delamination in ceramic tile: a laboratory comparison between IR thermal cameras and laser Doppler vibrometers
JP4098558B2 (ja) コンクリート吹付法面の劣化診断方法
Klysz et al. Evaluation of cover concrete by coupling some non-destructive techniques—Contribution of in-situ measurements

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Ref document number: 3834749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees