JP3825730B2 - 強磁性トンネル接合素子、磁気メモリ、及び強磁性トンネル接合素子の製造方法 - Google Patents

強磁性トンネル接合素子、磁気メモリ、及び強磁性トンネル接合素子の製造方法 Download PDF

Info

Publication number
JP3825730B2
JP3825730B2 JP2002268660A JP2002268660A JP3825730B2 JP 3825730 B2 JP3825730 B2 JP 3825730B2 JP 2002268660 A JP2002268660 A JP 2002268660A JP 2002268660 A JP2002268660 A JP 2002268660A JP 3825730 B2 JP3825730 B2 JP 3825730B2
Authority
JP
Japan
Prior art keywords
layer
ferromagnetic
magnetic
oxygen
mtj element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002268660A
Other languages
English (en)
Other versions
JP2004111467A (ja
Inventor
好昭 斉藤
浩一郎 猪俣
展規 手束
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002268660A priority Critical patent/JP3825730B2/ja
Publication of JP2004111467A publication Critical patent/JP2004111467A/ja
Application granted granted Critical
Publication of JP3825730B2 publication Critical patent/JP3825730B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、強磁性トンネル接合素子、それを用いた磁気メモリ、及び強磁性トンネル接合素子の製造方法に関する。
【0002】
【従来の技術】
磁気抵抗効果素子は、例えば、一対の強磁性層を非磁性層を介して積層した構造を有している。これら磁気抵抗効果素子のうち、非磁性層をAlOxのような誘電体からなるトンネルバリア層とした強磁性トンネル接合素子(或いは「MTJ素子」;Magnetic Tunnel Junction element)によると、比較的高い磁気抵抗変化率(以下、MR比という)を実現することができる。
【0003】
磁気抵抗効果素子は様々な用途への応用が可能であり、磁気ランダムアクセスメモリ(以下、MRAMという)はその主要な用途の1つである。MRAMでは、一方の強磁性層に隣接してIrMnやPtMnなどからなる反強磁性層を設けた磁気抵抗効果素子を利用している。このような構造によると、他方の強磁性層は或る磁場を印加した際に磁化の向きを変化させ得るフリー層として振舞うのに対し、反強磁性層に隣接した強磁性層は上記磁場印加の際に磁化の向きを維持するピン層として振舞うようになる。MRAMでは、フリー層の磁化の向きに対応して情報“0”及び“1”の記憶を行う。
【0004】
ところで、MRAMで磁気抵抗効果素子としてMTJ素子を利用すると、その高いMR比により、大きな出力電圧が得られると考えられている。しかしながら、現状では、MRAMでMTJ素子を使用しても、期待通りの特性を実現できていない。以下に、その理由を説明する。
【0005】
MRAMでは、例えば、メモリセルを選択するための素子などとしてMOSトランジスタを使用している。通常、MOSトランジスタを作製するプロセスの最終工程では、ゲート中のダングリングボンドを除去するために、水素ガス中、約370℃以上の温度で1乃至2時間程度のアニールを行う。ところが、従来のMTJ素子は、300乃至330℃程度の熱処理に供すると、そのMR比が著しく低下する。その結果、完成したMRAMにおけるMTJ素子のMR比は極めて低い値となる。
【0006】
このような問題を解決するために幾つかの提案が為されている。
例えば、Al23からなるトンネルバリア層とその上に形成するCoFeからなるピン層との間にFe−FeOx層を介在させることが提案されている。この技術によると、380℃までのアニールに供しても高いMR比を維持することができる。(非特許文献1を参照のこと。)
また、CoFeからなるピン層上に形成したAl層をラジカル酸化に供し、その後、熱処理を施すことによりAlOxからなるトンネルバリア層を形成することが提案されている。この方法によると、CoFeからなるピン層の表面はラジカル酸化により酸化され、このCoFeの酸化物はMnがトンネルバリア層に至るのを防ぐ役割を果たす。この技術によると、熱処理温度が350℃である場合にMR比が最大となる。(非特許文献2を参照のこと。)
しかしながら、これらMTJ素子は、ほぼ最大のMR比が得られる熱処理温度の範囲が極めて狭い。アニール時の基板温度の面内ばらつきは10乃至20℃程度であるので、それらMTJ素子をMRAMで利用すると、MTJ素子間でMR比が大きくばらつくこととなる。しかも、後者の技術に係るMTJ素子では、上記の通り、MR比が最大となる熱処理温度は350℃と低いので、アニール時の基板温度の面内ばらつきを抑制できたとしても、高いMR比を実現することはできない。
【0007】
熱処理によるMR比の低下を抑制する他の技術として、Mnを含有した反強磁性層上に形成するピン層を、絶縁層またはアモルファス磁性層とそれを挟持した一対の強磁性層とで構成することが提案されている。この絶縁層またはアモルファス磁性層は、Mnの拡散を防止する拡散防止層として機能し、熱処理時におけるMnの拡散に起因したMR比の低下を抑制する。また、一対の強磁性層のうち拡散防止層に対して反強磁性層側に配置するものは、拡散防止層の挿入によりピン層の磁化が外部磁場印加により反転し易くなるのを抑制する役割を果たす。さらに、他方の強磁性層は、拡散防止層の挿入によりスピントンネル特性が劣化するのを抑制する役割を果たす。このような構造を採用することにより、300℃を超える熱処理によってMTJ素子の特性が劣化するのを抑制可能となる。(特許文献1を参照のこと。)
しかしながら、拡散防止層として絶縁層を用いた場合には、高いMR比を実現する上で不利であり、また、それを挟持する強磁性層間の磁気的結合が弱くなり易い。また、アモルファス磁性層は、絶縁層に比べ、拡散防止層としての機能が劣る傾向にある。
【0008】
【非特許文献1】
「ジャーナル・オブ・アプライド・フィジックス(Journal of Applied Physics)」,2001年,第89巻,第11号,p.6665−6667
【0009】
【非特許文献2】
「日本応用磁気学会誌」,2002年,第26巻,第6号,p.839−842
【0010】
【特許文献1】
特開2002−158381号公報
【0011】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑みてなされたものであり、高い温度で熱処理を行った場合にも高いMR比を維持し得る強磁性トンネル接合素子及びその製造方法並びにそれを用いた磁気メモリを提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の第1の側面によると、第1反強磁性層と、強磁性を示すとともに磁場印加の際に磁化の向きが変化し得るフリー層と、前記第1反強磁性層と前記フリー層との間に介在し且つ強磁性を示すとともに前記磁場印加の際に磁化の向きが維持される第1ピン層と、前記フリー層と前記第1ピン層との間に介在した第1トンネルバリア層とを具備し、前記第1ピン層は、第1及び第2強磁性金属層と、前記第1及び第2強磁性金属層間に介在し且つ磁性金属材料の結晶粒を含み前記結晶粒間の粒界に酸素及び窒素の少なくとも一方の元素が局在した第1磁性中間層とを具備したことを特徴とする強磁性トンネル接合素子が提供される。
【0013】
本発明の第2の側面によると、第1反強磁性層と、強磁性を示すとともに磁場印加の際に磁化の向きが変化し得るフリー層と、前記第1反強磁性層と前記フリー層との間に介在し且つ強磁性を示すとともに前記磁場印加の際に磁化の向きが維持される第1ピン層と、前記フリー層と前記第1ピン層との間に介在した第1トンネルバリア層とを具備し、前記第1ピン層は、第1及び第2強磁性金属層と、前記第1及び第2強磁性金属層間に介在し且つ磁性金属材料の結晶粒を含み前記結晶粒間の粒界に酸素及び窒素の少なくとも一方の元素が局在した第1磁性中間層とを具備し、前記第1強磁性金属層の構成材料と前記第2強磁性金属層の構成材料と前記第1磁性中間層の前記磁性金属材料とは同一であることを特徴とする強磁性トンネル接合素子が提供される。
【0014】
本発明の第3の側面によると、互いに交差した第1及び第2配線と、前記第1及び第2配線の交差部またはその近傍に位置したメモリセルとを具備し、前記メモリセルは第1または第2の側面に係る強磁性トンネル接合素子を含んだことを特徴とする磁気メモリが提供される。
【0015】
本発明の第4の側面によると、反強磁性層を形成する工程と、前記反強磁性層上に第1強磁性金属層を形成する工程と、酸素及び窒素の少なくとも一方を含有した雰囲気中、前記第1強磁性金属層を50℃以下の温度で放置して、磁性金属材料の結晶粒と前記結晶粒間の粒界に局在した酸素及び窒素の少なくとも一方の元素とを含有した磁性中間層を前記第1強磁性金属層の表面に形成する工程と、前記磁性中間層上に第2強磁性金属層を形成する工程と、前記第2強磁性金属層上にトンネルバリア層を形成する工程と、前記トンネルバリア層上に第3強磁性金属層を形成する工程とを含んだことを特徴とする強磁性トンネル接合素子の製造方法が提供される。
【0016】
本発明の第5の側面によると、第1強磁性層を形成する工程と、前記第1強磁性層上にトンネルバリア層を形成する工程と、前記トンネルバリア層上に第2強磁性層を形成する工程と、酸素及び窒素の少なくとも一方を含有した雰囲気中、前記第2強磁性金属層を50℃以下の温度で放置して、磁性金属材料の結晶粒と前記結晶粒間の粒界に局在した酸素及び窒素の少なくとも一方の元素とを含有した磁性中間層を前記第2強磁性金属層の表面に形成する工程と、前記磁性中間層上に第3強磁性層を形成する工程と、前記第3強磁性層上に反強磁性層を形成する工程とを含んだことを特徴とする強磁性トンネル接合素子の製造方法が提供される。
【0017】
ここで、用語「磁性金属材料」は、磁性を示す金属または合金を意味する。また、或る領域中に酸素及び窒素の少なくとも一方の元素が「局在」していることは、その領域中に酸素及び/または窒素が存在し且つ他の領域中には酸素及び/または窒素は存在していないこと、及び、その領域中に酸素及び/または窒素がより高い濃度で存在し且つ他の領域中には酸素及び/または窒素がより低い濃度で存在していることを包含する。したがって、磁性中間層中で、酸素及び/または窒素は、上記結晶粒中に存在せずに上記粒界のみに存在していてもよく、或いは、上記結晶粒に比べ上記粒界においてより高い濃度で存在していてもよい。なお、第1及び第2ピン層などの構造及び組成(構成元素)は、透過電子顕微鏡(TEM)やエネルギー分散性X線回折(EDXD)を利用して調べることができる。
【0018】
第4及び第5の側面において、磁性中間層は、磁性金属材料の結晶粒とそれら結晶粒間の粒界に局在した酸素及び窒素の少なくとも一方の元素とを含有していてもよい。また、第4及び第5の側面に係る方法で製造する強磁性トンネル接合素子は、第1反強磁性層と、強磁性を示すとともに磁場印加の際に磁化の向きが変化し得るフリー層と、第1反強磁性層とフリー層との間に介在し且つ強磁性を示すとともに上記磁場印加の際に磁化の向きが維持される第1ピン層と、フリー層と第1ピン層との間に介在した第1トンネルバリア層とを具備し得る。第4及び第5の側面に係る方法において、第1及び第2強磁性金属層と磁性中間層との積層体は、例えば、第1ピン層の少なくとも一部として用いられる。
【0019】
第1乃至第5の側面において、強磁性トンネル接合素子は、第1反強磁性層との間にフリー層を介在させて設けられた第2反強磁性層と、第2反強磁性層とフリー層との間に介在し且つ強磁性を示すとともに上記磁場印加の際に磁化の向きが維持される第2ピン層と、フリー層と第2ピン層との間に介在した第2トンネルバリア層とをさらに具備していてもよい。この場合、第2ピン層は、第3及び第4強磁性金属層と、第3及び第4強磁性金属層間に介在し且つ磁性金属材料の結晶粒を含みそれら結晶粒間の粒界に酸素及び窒素の少なくとも一方の元素が局在した第2磁性中間層とを具備していてもよい。
【0020】
第3及び第4強磁性金属層のうち第2磁性中間層の下地として供せられたものの構成材料と第2磁性中間層が含有する磁性金属材料の構成材料とは同一であってもよい。また、第3強磁性金属層の構成材料と第4強磁性金属層の構成材料と第2磁性中間層の磁性金属材料とは同一であってもよい。
【0021】
第1乃至第4の側面において、第1反強磁性層はマンガンを含有していてもよい。また、第2反強磁性層もマンガンを含有していてもよい。
【0022】
【発明の実施の形態】
以下、本発明の実施形態について、図面を参照しながら説明する。なお、各図において、同様または類似する機能を有する構成要素には同一の参照符号を付し、重複する説明は省略する。
【0023】
図1は、本発明の第1の実施形態に係るMTJ素子を概略的に示す断面図である。図1に示すMTJ素子1は、強磁性1重トンネル接合素子である。このMTJ素子1は、反強磁性層11、それに対向したフリー層12、反強磁性層11とフリー層12との間に介在したピン層13、及びフリー層12とピン層13との間に介在したトンネルバリア層14を備えている。
【0024】
ピン層13は、互いに対向した一対の強磁性金属層13aと、それらの間に介在した磁性中間層13bとを備えている。この磁性中間層13bは、磁性金属材料の結晶粒とそれら粒界に局在した酸素及び/または窒素とを含有している。
【0025】
さて、本実施形態に係るMTJ素子1は、高温で熱処理を行った場合にも高いMR比を維持することができる。理論に束縛されることを望む訳ではないが、これは、以下の理由によると考えられる。なお、ここでは、一例として、反強磁性層11の材料としてIrMnを、トンネルバリア層14の材料としてAlOxを、強磁性金属層13aの材料としてCoFeを、磁性中間層13bの材料としてCoFeOxをそれぞれ使用することとする。
【0026】
ピン層13が磁性中間層13bを備えていない場合、MTJ素子1を熱処理に供すると、反強磁性層11に含まれるMnはピン層13中へと拡散する。ピン層13中で、Mnは、主としてCoFe結晶の粒界を経路として移動し、最終的にはトンネルバリア層14へと達する。トンネルバリア層14へと到達したMnはAlOxと反応して、例えばAl−O−Mn結合を形成する。その結果、トンネルバリア層14中に欠陥が生じ、MTJ素子1のMR比が低下する。
【0027】
本実施形態では、上記の通り、ピン層13は磁性中間層13bを備えている。Mnの酸素及び/または窒素に対する反応性は、CoやFeの酸素及び/または窒素に対する反応性よりも遥かに高い。磁性中間層13bはMnとの反応性に富んだ酸素及び/または窒素を含有しているため、熱処理の際、反強磁性層11からピン層13中へと拡散したMnは酸素及び/または窒素と結合を形成し、そこに束縛される。また、磁性中間層13b中で酸素及び/または窒素と結合を形成したMnは、酸素及び/または窒素と結合を形成していないMnが移動可能な経路を塞ぐ役割を果たす。そのため、本実施形態によると、反強磁性層11に含まれるMnがピン層13を経由してトンネルバリア層14へと到達するのを防止することができる。
【0028】
ところで、多くの場合、AlOxには酸素欠損が存在しているため、磁性中間層13bとトンネルバリア層14とが接触していると、磁性中間層13b中の酸素及び/または窒素はトンネルバリア層14中に吸収され易い。磁性中間層13b中の酸素及び/または窒素がトンネルバリア層14中に吸収されると、先に説明した磁性中間層13bの機能が著しく低下する。
【0029】
これに対し、本実施形態では、磁性中間層13bとトンネルバリア層14との間に強磁性金属層13aを介在させるため、磁性中間層13b中の酸素及び/または窒素がトンネルバリア層14中に吸収されるのを抑制することができる。なお、磁性中間層13bから強磁性金属層13a中へと酸素及び/または窒素が拡散し得るが、強磁性金属層13a中に拡散した酸素及び/または窒素は、磁性中間層13b中で果たしたのと同様の役割を果たし得る。したがって、本実施形態によると、反強磁性層11に含まれるMnがピン層13を経由してトンネルバリア層14へと到達するのを防止する効果が、磁性中間層13b中の酸素及び/または窒素がトンネルバリア層14中に吸収されることに起因して損なわれるのを抑制することができる。
【0030】
また、磁性中間層13bと反強磁性層11とが接触していると、磁性中間層13b中の酸素及び/または窒素は反強磁性層11中に吸収され易い。磁性中間層13b中の酸素及び/または窒素が反強磁性層11中に吸収されると、先に説明した磁性中間層13bの機能が著しく低下する。しかも、反強磁性層11は、酸素及び/または窒素を吸収すると、その反強磁性が著しく低下する。この反強磁性層11の特性劣化は、MTJ素子1のMR比低下を招く。
【0031】
本実施形態では、磁性中間層13bと反強磁性層11との間に強磁性金属層13aを介在させる。このような構造を採用すると、先に説明したのと同様の理由により、反強磁性層11に含まれるMnがピン層13を経由してトンネルバリア層14へと到達するのを防止する効果並びに反強磁性層11の特性が、磁性中間層13b中の酸素及び/または窒素が反強磁性層11中に吸収されることに起因して損なわれるのを抑制することができる。
【0032】
また、本実施形態では、上記の通り、磁性中間層13b中に磁性金属材料の結晶粒を生じさせるとともに、その結晶粒界に酸素及び/または窒素を局在させる。そのため、磁性中間層13bは、それを挟持する強磁性層13a間の磁気的結合を妨げない。したがって、磁性中間層13bを設けることによるピン層13の特性劣化は殆どない。
【0033】
加えて、磁性中間層13b中の結晶粒は磁性金属材料を主成分としているので、中間層として絶縁層を使用した場合に比べ、高いMR比を実現するうえで有利である。
【0034】
このように、本実施形態では、ピン層13中に、磁性金属材料の結晶粒とそれらの結晶粒界に局在した酸素及び/または窒素とを含有した磁性中間層13bを設ける。加えて、本実施形態では、磁性中間層13bと反強磁性層11との間及び磁性中間層13bとトンネルバリア層14との間の双方に強磁性金属層13aを介在させる。これにより、高温で熱処理を行ったとしても、トンネルバリア層14中での欠陥の生成及び反強磁性層11の特性劣化などを防止することができ、高いMR比を維持可能となる。
【0035】
なお、この効果は、強磁性金属層13aと磁性中間層13bとの界面で結晶粒界が不連続である場合にさらに顕著となる。これは、上記界面での結晶粒界の不連続性に起因して、磁性中間層13b中の酸素及び/または窒素の強磁性金属層13a中への拡散が生じ難くなるためである。このような結晶粒界の不連続性は、強磁性金属層13a及び磁性中間層13bの成膜条件を適宜設定することにより生じさせることができる。
【0036】
また、本実施形態では、上記の通り、磁性中間層13b中の酸素及び/または窒素は、熱処理により反強磁性層11から磁性中間層13b中へと拡散したMnなどの元素と結合する。加えて、本実施形態では、一対の強磁性層13aで磁性中間層13bを挟んでいるため、Mnなどの元素と結合した酸素及び/または窒素の磁性中間層13bから反強磁性層11やトンネルバリア層14中への拡散は生じ難い。したがって、磁性中間層13b中で酸素及び/または窒素が結晶粒界に局在した構造は、MTJ素子1に熱処理を施した後でも維持され得る。
【0037】
次に、本発明の第2の実施形態について説明する。
図2は、本発明の第2の実施形態に係るMTJ素子を概略的に示す断面図である。図2に示すMTJ素子1は、強磁性2重トンネル接合素子である。このMTJ素子1は、一対の反強磁性層11,21、それらの間に介在したフリー層12、反強磁性層11とフリー層12との間に介在したピン層13、反強磁性層21とフリー層12との間に介在したピン層23、フリー層12とピン層13との間に介在したトンネルバリア層14、及びフリー層12とピン層23との間に介在したトンネルバリア層24を備えている。
【0038】
ピン層13,23は、それぞれ、互いに対向した一対の強磁性金属層13aと、それらの間に介在した磁性中間層13bとを備えている。これら磁性中間層13bは、磁性金属材料と酸素及び/または窒素とを含有している。
【0039】
第1の実施形態で説明したのと同様に、このような構造を採用した場合でも、高温での熱処理によるMR比の低下を抑制することができる。また、より高いMR比を実現するうえで、強磁性2重トンネル接合素子は、強磁性1重トンネル接合素子に比べて有利である。したがって、第2の実施形態によると、第1の実施形態に比べ、高温での熱処理後におけるMR比を高めることができる。
【0040】
次に、本発明の第3の実施形態について説明する。
図3は、本発明の第3の実施形態に係るMTJ素子を概略的に示す断面図である。図3に示すMTJ素子1は、ピン層13が3つの強磁性金属層13aとそれらの間に介在した一対の磁性中間層13bとを備えていること以外は、図1に示すMTJ素子1と同様の構造を有している。
【0041】
このような構造では、図1に示す構造に比べ、強磁性金属層13aと磁性中間層13bとの界面の数が多い。そのため、第3の実施形態によると、第1の実施形態に比べ、磁性中間層13b中の酸素及び/または窒素がトンネルバリア層14や反強磁性層11中に吸収されるのをより効果的に抑制することができる。
【0042】
次に、本発明の第4の実施形態について説明する。
図4は、本発明の第4の実施形態に係るMTJ素子を概略的に示す断面図である。図4に示すMTJ素子1は、ピン層13,23のそれぞれが3つの強磁性金属層13aとそれらの間に介在した一対の磁性中間層13bとを備えていること以外は、図2に示すMTJ素子1と同様の構造を有している。
【0043】
このような構造では、図2に示す構造に比べ、強磁性金属層13aと磁性中間層13bとの界面の数が多い。そのため、第4の実施形態によると、第2の実施形態に比べ、磁性中間層13b中の酸素及び/または窒素がトンネルバリア層14,24や反強磁性層11,21中に吸収されるのをより効果的に抑制することができる。
【0044】
上述した第1乃至第4の実施形態において、反強磁性層11,21の材料としては、例えば、Fe−Mn、Pt−Mn、Pt−Cr−Mn、Ni−Mn、及びIr−Mnなどの合金やNiOなどを使用することができる。
【0045】
フリー層12には、一軸磁気異方性が付与されている。フリー層12は、単層構造を有していてもよく、或いは、多層構造を有していてもよい。すなわち、フリー層12は、単一の強磁性層であってもよい。或いは、例えば強磁性層/非磁性層/強磁性層で表される三層構造や強磁性層/非磁性層/強磁性層/非磁性層/強磁性層で表される五層構造のように、複数の強磁性層の隣り合う2つの間に非磁性層を介在させた多層構造を有していてもよい。フリー層12に多層構造を採用する場合、それら強磁性層間で、組成は同一であってもよく、或いは、互いに異なっていてもよい。
【0046】
なお、MRAMを高集積化するうえではMTJ素子1の寸法を小さくすることが有効であるが、この場合、書き込み時の消費電力の増大並びにそれに伴い配線のエレクトロマイグレーションを生じることがある。フリー層12に多層構造を採用すると、MTJ素子1の寸法を小さくした場合であっても、書き込み時の消費電力の増大や配線のエレクトロマイグレーションが生じるのを抑制できる。しかも、フリー層12に多層構造を採用すると、MTJ素子1の寸法を小さくした場合であっても、スピンのモーメントに関して十分な熱安定性を維持することができる。
【0047】
フリー層12の強磁性層に使用可能な材料としては、例えば、Fe、Co、Ni、それらの合金、及び、NiMnSb系、PtMnSb系、Co2MnGe系などのホイスラー合金等を挙げることができる。また、フリー層12の非磁性層に使用可能な材料としては、例えば、Cu、Au、Ru、Ir、Rh、及びAgなどを挙げることができる。
【0048】
フリー層12の強磁性層の膜厚は、超常磁性にならない程度に厚い必要があり、0.4nm以上であることが好ましい。また、フリー層12の強磁性層の膜厚が過剰に厚いと、大きなスイッチング磁場が必要となる。したがって、フリー層12の強磁性層の膜厚は、2.5nm以下であることが好ましい。
【0049】
ピン層13,23は、それぞれ、互いに対向した複数の強磁性金属層13aと、それらの隣り合う2つの間に介在した磁性中間層13bとを備えている。また、ピン層13,23には、一方向磁気異方性が付与されている。なお、第1乃至第4の実施形態では、ピン層13,23のそれぞれに含まれる磁性中間層13bの数を1または2とし且つ強磁性金属層13aの数を2または3としたが、磁性中間層13bの数を3以上とするとともに、それに応じて、強磁性金属層13aの数を4以上としてもよい。また、強磁性金属層13aや磁性中間層13bの数は、ピン層13とピン層23との間で互いに等しくてもよく、或いは、互いに異なっていてもよい。
【0050】
強磁性金属層13aの材料としては、例えば、フリー層12の強磁性層に関して例示した材料などを使用することができる。ピン層13,23に含まれる強磁性金属層13aの組成は、互いに等しくてもよく、或いは、互いに異なっていてもよい。
【0051】
強磁性金属層13aの膜厚は、典型的には、0.5nm乃至5nmの範囲内にある。ピン層13,23に含まれる強磁性金属層13aの膜厚は、互いに等しくてもよく、或いは、互いに異なっていてもよい。
【0052】
磁性中間層13bは、磁性金属材料の結晶粒と結晶粒界に局在した酸素及び/または窒素とを含有している。この磁性金属材料としては、例えば、フリー層12の強磁性層に関して例示した材料などを使用することができる。磁性中間層13bの膜厚は、典型的には、0.3nm乃至3nmの範囲内にある。
【0053】
ピン層13,23のそれぞれにおいて、強磁性金属層13aの構成元素と磁性中間層13bに含まれる磁性金属材料の構成元素とは同一であってもよい。この場合、製造プロセスを簡略化することができる。また、ピン層13,23のそれぞれにおいて、強磁性金属層13aと磁性中間層13bとは明確な境界を有していなくてもよい。これは、例えば、熱処理などにより、それらの間で構成元素の拡散を生じ得るためである。
【0054】
トンネルバリア層14,24の材料としては、例えば、Al23、SiO2、MgO、AlN、AlON、GaO、Bi23、SrTiO2、及びAlLaO3などの誘電体或いは絶縁体を使用することができる。これら誘電体或いは絶縁体には、酸素欠損や窒素欠損が存在していても構わない。トンネルバリア層14,24の膜厚は、MTJ素子1の面積などに応じて適宜設定する。トンネルバリア層14,24の膜厚は、3nm以下であることが好ましい。
【0055】
第1乃至第4の実施形態に係るMTJ素子1は、下地層や保護層をさらに備えていてもよい。また、図1乃至図4において、図中、上側及び下側の何れを下地層側としてもよい。
【0056】
第1乃至第4の実施形態に係るMTJ素子1は、例えば、基板の一主面に設けられた下地層上に各種薄膜を順次成膜することにより得られる。これら、薄膜は、各種スパッタリング法、蒸着法、及び分子線エピタキシャル法などの気相堆積法や、気相堆積と酸化や窒化などとを組み合わせた方法を用いて形成することができる。
【0057】
基板の材料としては、例えば、Si、SiO2、Al23、スピネル、及びAlNなどを挙げることができる。また、下地層や保護層としては、例えば、Ta、Ti、Pt、Pd、及びAuなどを含有した層や、Ti/Pt、Ta/Pt、Ti/Pd、Ta/Pd、及びTa/Ruなどで表される積層膜を使用することができる。
【0058】
第1乃至第4の実施形態に係るMTJ素子1では、上記の通り、磁性中間層13b中で、磁性金属材料が結晶粒を形成していること、及び、それらが形成する粒界に酸素及び/または窒素が局在していることが重要である。このような構造は、例えば、磁性金属材料の薄膜を自然酸化及び/または窒化することにより得られるが、酸化及び/または窒化が過剰に進行すると中間層13bの磁性が劣化する。
【0059】
この酸化及び/または窒化が過剰に進行するのを防止するためには、磁性金属材料の薄膜は基板温度を50℃以下,典型的には室温程度,として自然酸化及び/または窒化することが望ましい。かかる温度条件のもとでは、磁性金属材料薄膜の自然酸化及び/または窒化は比較的穏やかに進行するため、雰囲気中の酸素及び/または窒素濃度や磁性金属材料を酸素及び/または窒素雰囲気に晒す時間を適宜設定することにより、酸化及び/または窒化が過剰に進行するのを防止することができる。例えば、上記の基板温度のもとでは、酸素及び/または窒素を含み且つ減圧した雰囲気に磁性金属材料薄膜を晒す時間を数秒乃至数分程度以下とすれば、酸化及び/または窒化を適度に進行させることができる。
【0060】
なお、強磁性金属層13aと磁性中間層13bとを交互に積層することによりピン層13,23を形成する上記方法は、ピン層13,23中における磁性中間層13bの膜厚方向の位置,換言すれば、強磁性金属層13a及び磁性中間層13bの膜厚,などを高い精度で制御可能である。
【0061】
次に、本発明の第5の実施形態について説明する。
図5(a)は、本発明の第5の実施形態に係るMRAMを概略的に示す斜視図である。また、図5(b)は、図5(a)に示すMRAMの断面図である。
【0062】
図5(a),(b)に示すMRAMは、一主面に半導体領域を有する基板31を備えている。基板31の表面領域中には不純物拡散層であるソース・ドレイン領域32が互いに離間して設けられている。基板31上には絶縁膜33が設けられており、この絶縁膜33中にはゲート電極を兼ねた読み出し用のワード線34が埋め込まれている。なお、絶縁膜33のゲート電極34と基板31との間に位置した部分はゲート絶縁膜として機能する。このMRAMでは、上記のように構成されたトランジスタ35がマトリクス状に配列している。
【0063】
トランジスタ35のソース・ドレイン領域32の一方にはコンタクト36を介して下地配線37が接続されている。下地配線37上には例えば第1の実施形態に係るMTJ素子1が形成されている。これらMTJ素子1はトランジスタ35に対応してマトリクス状に配列しており、それぞれのメモリセルは1つのMTJ素子1と1つのトランジスタ35とで構成されている。
【0064】
MTJ素子1の下方には、MTJ素子1から電気的に絶縁され且つ読み出し用のワード線34に対して略平行に延在した書き込み用のワード線38が設けられている。また、MTJ素子1の上方には、MTJ素子1を介して下地配線37に電気的に接続され且つワード線38に対して略直交するように延在したビット線39が設けられている。
【0065】
図5(a),(b)に示すMRAMは、以上のように構成されている。なお、このMRAMは、図示しないが、参照セルやワード線34,38及びビット線39を選択するためのデコーダやセンスアンプなどをさらに備えている。
【0066】
このMRAMに情報を書き込む際、或るMTJ素子1に対向した1本のワード線38と1本のビット線39とに書き込み電流を流し、それにより発生する合成磁場を上記のMTJ素子1に作用させる。そのMTJ素子1のフリー層12は、ビット線39に流した電流の向きに応じて、その磁化の向きを反転させるか或いは維持する。このようにして、情報の書き込みを行う。
【0067】
また、このMRAMから情報を読み出す際、或るMTJ素子1に対向したビット線39を選択するとともに、そのMTJ素子1に対応したワード線34に所定の電圧を印加して先のMTJ素子1に接続されたトランジスタ35を導通状態とする。MTJ素子1の抵抗値はフリー層12の磁化の向きとピン層13の磁化の向きとが等しい場合と逆である場合とで異なるので、この状態でビット線39と下部電極37との間を流れる電流をセンスアンプにより検出することにより、上記のMTJ素子1が記憶している情報を読み出すことができる。
【0068】
次に、本発明の第6の実施形態について説明する。
図6は、本発明の第6の実施形態に係るMRAMを概略的に示す斜視図である。図6に示すMRAMでは、第1の実施形態に係るMTJ素子1とダイオード41とが、互いに略直交したワード線42とビット線43との間で直列接続されている。このMRAMでは、それぞれのメモリセルは、1つのMTJ素子1と1つのダイオード41とで構成されている。また、ワード線42には選択用のトランジスタ44が接続されており、ビット線43には選択用のトランジスタ45を介してセンスアンプ46が接続されている。
【0069】
このMRAMに情報を書き込む際、或るMTJ素子1に対向した1本のワード線42と1本のビット線43とに書き込み電流を流し、それにより発生する合成磁場を上記のMTJ素子1に作用させる。また、このMRAMから情報を読み出す際、或るMTJ素子1に対向したワード線42とビット線43とを選択し、それらの間を流れる電流をセンスアンプ46により検出する。なお、このMRAMでは、それぞれのMTJ素子1はダイオード41を介してビット線43に接続されているので、不所望な電流の回り込みを防止することができる。
【0070】
次に、本発明の第7の実施形態について説明する。
図7は、本発明の第7の実施形態に係るMRAMを概略的に示す斜視図である。図7に示すMRAMは、ダイオード41が設けられていないこと以外は図6に示すMRAMと同様の構造を有している。すなわち、このMRAMでは、それぞれのメモリセルは、トランジスタやダイオードなどのスイッチング素子を備えておらず、1つのMTJ素子1のみで構成されている。そのため、読み出し時に1本のワード線42と1本のビット線43とを選択すると、それらの交差部に位置したMTJ素子1だけでなく、他のMTJ素子1にも電流が流れ得る。
【0071】
したがって、読み出しの際には、まず、或るワード線42とビット線43との組を選択し、それらの間に電圧を印加する。このとき、それらの間を流れる電流をセンスアンプ46により検出する。次いで、先のワード線42とビット線43とに挟まれたMTJ素子1に情報“0”または“1”を書き込み、再度、先のワード線42とビット線43との間に電圧を印加して、それらの間を流れる電流をセンスアンプ46により検出する。そのMTJ素子1が記憶していた情報は、情報“0”または“1”を書き込む前後での電流値の差に対応しているので、このようにして読み出し(破壊読み出し)を行うことができる。
【0072】
上述した第5乃至第7の実施形態に係るMRAMでは、第1の実施形態に係るMTJ素子1を使用している。そのため、それぞれのMTJ素子1のMR比は十分に高い。したがって、これらMRAMによると、大きな出力電圧が得られる。
【0073】
第5乃至第7の実施形態に係るMRAMには様々な修飾や変形が可能である。以下、図8及び図9を参照しながら説明する。
【0074】
図8(a),(b)は、図5(a),(b)に示すMRAMを修飾した例を概略的に示す断面図である。図9(a),(b)は、図5(a),(b)に示すMRAMを変形及び修飾した例を概略的に示す断面図である。
【0075】
図8(a),(b)に示すMRAMは、ビット線39及びワード線38がMTJ素子1側で開口したU字型断面を有する磁性被覆48,49でそれぞれ被覆されていること以外は図5(a),(b)に示すMRAMと同様の構造を有している。このような構造を採用すると、MTJ素子1に対して電流磁場を効果的に作用させることができる。例えば、図8(a),(b)に示す構造を採用すると、図5(a),(b)に示す構造を採用した場合に比べ、電流に対する実効的な磁場の強さの比である磁場効率を2乃至5倍程度に高めることができる。そのため、より小さな電流で書き込みが可能となり、したがって、書き込み時の消費電力や配線疲労を低減することができる。また、このような構造を採用すると、選択していないMTJ素子1に漏れ磁界が作用することは殆どない。そのため、高集積化した場合でも、クロストークの発生を十分に防止可能となる。
【0076】
図9(a),(b)に示すMRAMでは、ワード線38は書き込み用と読み出し用とを兼ねており、ビット線39は書き込み用である。また、このMRAMでは、ゲート電極34と電気的に接続され且つビット線39と略平行な方向に延在した配線(図示せず)が、読み出し用のビット線として設けられている。さらに、このMRAMでは、図8(a),(b)に示すMRAMと同様に、ビット線39及びワード線38がMTJ素子1側で開口したU字型断面を有する磁性被覆48,49でそれぞれ被覆されている。このような構造を採用した場合も、図8(a),(b)に示す構造を採用した場合と同様の効果が得られる。
【0077】
以上、第5乃至第7の実施形態に係るMRAMは様々な修飾や変形が可能であることについて説明したが、第1の実施形態に係るMTJ素子1は他の構造を有するMRAMで使用してもよい。また、第5乃至第7の実施形態では第1の実施形態に係るMTJ素子1を使用したが、第2乃至第4の実施形態に係るMTJ素子1を使用してもよい。さらに、第5乃至第7の実施形態ではMTJ素子1をMRAMで利用したが、上記のMTJ素子1は磁気ヘッドやそれを搭載した磁気再生装置或いは磁気記録再生装置並びに磁気センサなどにも利用可能である。
【0078】
【実施例】
以下、本発明の実施例について説明する。
(実施例1)
図10は、本発明の実施例1に係るMTJ素子を概略的に示す断面図である。このMTJ素子1は、Si基板61上に、図示しないSiO2層、厚さ10nmのTa層62、厚さ10nmのNiFe層63、厚さ3nmのCoFe層12、厚さ1.4nmのAlOx層14、厚さ3nmのCoFe層13a、厚さ1nmの酸素含有CoFe層13b、厚さ3nmのCoFe層13a、厚さ15nmのIrMn層11、厚さ15nmのNiFe層64、厚さ10nmのTa層65、及び図示しないSiO2層を順次積層した構造を有している。なお、Ta層62,65はアモルファスであり、NiFe層63,64、CoFe層12,13a、酸素含有CoFe層13b、及びIrMn層11は結晶質である。また、このMTJ素子1の接合面積は0.1mm×0.1mmである。
【0079】
これら薄膜は、何れもマグネトロンスパッタリング装置中、基板温度を室温とし、約150Oeの磁場を印加しながら、メタルマスクを用いて成膜した。
【0080】
具体的には、Ta層62,65、NiFe層63,64、CoFe層12,13aは、スパッタリングターゲットとしてTaターゲット、NiFeターゲット、CoFeターゲットをそれぞれ使用し、到達真空度を3×10-5Pa以下、Arガス圧を1.4Pa、投入電力を7.4×10-1W/cm2として成膜した。
【0081】
IrMn層11は、スパッタリングターゲットとしてIrMnターゲットを使用し、到達真空度を3×10-5Pa以下、Arガス圧を1.4Pa、投入電力を4.9×10-1W/cm2として成膜した。
【0082】
AlOx層14は、スパッタリングターゲットとしてAlターゲットを使用するとともに、到達真空度を3×10-5Pa以下、Arガス圧を1.4Pa、投入電力を7.4×10-1W/cm2としてAl層を成膜し、次いで、このAl層を酸化することにより形成した。
【0083】
酸素含有CoFe層13bは、厚さ2ÅのCoFe層の成膜とそのCoFe層への酸化の供給とのサイクルを5回繰り返すことにより形成した。なお、CoFeOx層13bを形成するためのCoFe層の成膜に際しては、スパッタリングターゲットとしてCoFeターゲットを使用するとともに、到達真空度を3×10-5Pa以下、Arガス圧を1.4Pa、投入電力を2.5×10-1W/cm2とした。また、それぞれのCoFe層への酸素の供給は、1sccmの流量でO2を10秒間流し、さらに30秒間保持することにより行った。
【0084】
上記の方法で複数のMTJ素子1を作製し、これらMTJ素子1について熱処理温度と熱処理後のMR比との関係を調べた。なお、これら熱処理は、1×10-5Pa以下の真空度とした雰囲気中、1.5kOeの磁場を印加しながら、100乃至400℃の温度範囲内で1時間行った。
【0085】
図11は、本発明の実施例1に係るMTJ素子1について得られた熱処理温度とMR比との関係を示すグラフである。図中、横軸は熱処理温度を示し、縦軸は熱処理後のMR比を示している。
【0086】
図11に示すように、本実施例に係るMTJ素子1は、熱処理温度が約360乃至約380℃の範囲内でほぼ一定のMR比を示す。したがって、本実施例に係るMTJ素子1を利用すれば、それぞれのMTJ素子のMR比が高く且つMTJ素子間でMR比のばらつきが小さいMRAMを実現することができる。
【0087】
次に、上記の方法で作製したMTJ素子1のピン層13について、熱処理を行う前の構造及び組成をTEM及びEDXDなどを利用して調べた。その結果を、図12乃至図19に示す。
【0088】
図12は、実施例1に係るMTJ素子1について得られた断面TEM像を概略的に示す図である。また、図13乃至図19は、実施例1に係るMTJ素子1の酸素含有CoFe層13bについて得られたEDXDによる測定結果を示すグラフである。なお、図12において、参照番号66,67はSiO2層を示し、参照番号68は結晶粒界を示している。また、図13乃至図19は、図12に示す断面の位置A乃至GについてEDXDによる測定を行うことにより得られたデータを示している(位置A乃至Gのそれぞれの中心間距離は4nmである)。
【0089】
図12に示すように、粒界68は、Ta層65とNiFe層64との界面からピン層13とAlOx層14との界面までの領域内ではそれらの積層方向に連続し、同様に、Ta層62とNiFe層63との界面からフリー層12とAlOx層14との界面までの領域内でもそれらの積層方向に連続している。但し、AlOx層14よりも上方の領域の粒界68と、AlOx層14よりも下方の領域の粒界68との多くは不連続である。また、粒界68の面内方向の間隔は数10nmである。
【0090】
図15に示すデータと図13,図14及び図16乃至図19に示すデータとの比較から明らかなように、位置Cでは、位置A,B及びD乃至Gに比べ、酸素濃度がより高い。また、図12に示すように、位置A,B及びD乃至Gは結晶粒内にあり、位置Cは粒界68上にある。以上から、本実施例に係るMTJ素子1の酸素含有CoFe層13bでは、粒界68に酸素が局在していることが確認された。なお、図13,図14及び図16乃至図19に示すデータでも酸素濃度はゼロではないが、これは、主として、AlOx層14に含まれる酸素が検出されたためである。
【0091】
また、同様の測定を、一対のCoFe層13aに対応した位置でも行った。その結果、ピン層13は酸素含有CoFe層13bを一対のCoFe層13aで挟んだ構造を有していることが確認された。
【0092】
次に、上記の方法で作製したMTJ素子1のピン層13について、375℃での熱処理を行った後の構造及び組成をTEM及びEDXDなどを利用して調べた。その結果、熱処理前と同様の構造が維持されていることが確認された。
【0093】
(実施例2)
図20は、本発明の実施例2に係るMTJ素子を概略的に示す断面図である。このMTJ素子1は、熱酸化Si基板71上に、厚さ30nmのTa層72、厚さ5nmのRu層73、厚さ10nmのIrMn層11、厚さ3nmのCoFe層74、厚さ1nmのRu層75、厚さ2nmのCoFe層13a、厚さ0.8nmの酸素含有CoFe層13b’、厚さ2nmのCoFe層13a、厚さ1.2nmのAlOx層14、厚さ2nmのCoFeNi層12、厚さ5nmのRu層76、厚さ100nmのTa層77、及び図示しないSiO2層を順次積層した構造を有している。また、このMTJ素子1の接合面積は4μm×4μmである。
【0094】
これら薄膜は、何れもマグネトロンスパッタリング装置中、基板温度を室温とし、約150Oeの磁場を印加しながら成膜した。また、これら薄膜の積層体は、フォトリソグラフィ技術とイオンミリング技術とを用いてパターニングした。なお、Ru層76とTa層77とは、それらの下方に位置した層をパターニングする際のハードマスクとして用いた。
【0095】
上記薄膜は、具体的には以下の方法により成膜した。
Ta層72,77及びCoFe層13a,74は、実施例1でTa層62,65に関して説明したのと同様の方法により成膜した。また、IrMn層11及びAlOx層14も、実施例1で説明したのと同様の方法により成膜した。
【0096】
酸素含有CoFe層13b’は、厚さ4ÅのCoFe層の成膜とそのCoFe層への酸素の供給とのサイクルを2回繰り返すことにより形成した。なお、CoFeOx層13b’を形成するためのCoFe層の成膜に際しては、スパッタリングターゲットとしてCoFeターゲットを使用するとともに、到達真空度を3×10-5Pa以下、Arガス圧を1.4Pa、投入電力を2.5×10-1W/cm2とした。また、それぞれのCoFe層への酸素の供給は、1sccmの流量でO2を60秒間流し、さらに100秒間保持することにより行った。
【0097】
上記の方法で作製したMTJ素子1のピン層13について、熱処理前と375℃での熱処理後との双方で、その構造及び組成をTEM及びEDXDなどを利用して調べた。その結果、熱処理前及び熱処理後の双方において、ピン層13は、酸素を含有したCoFe層13b’を一対のCoFe層13aで挟んだ構造を有していること、及び、酸素含有CoFe層13b中でCoFeは結晶粒の状態で存在しており、酸素はCoFe結晶粒の粒界に局在していることが分かった。
【0098】
また、上記の方法で複数のMTJ素子1を作製し、これらMTJ素子1について熱処理温度と熱処理後のMR比との関係を調べた。なお、これら熱処理は、1×10-5Pa以下の真空度とした雰囲気中、1.5kOeの磁場を印加しながら、100乃至400℃の温度範囲内で1時間行った。
【0099】
(実施例3)
図21は、本発明の実施例3に係るMTJ素子を概略的に示す断面図である。このMTJ素子1は、熱酸化Si基板71上に、厚さ30nmのTa層72、厚さ5nmのRu層73、厚さ10nmのIrMn層11、厚さ2nmのCoFe層13a、厚さ0.8nmの酸素含有CoFe層13b’、厚さ2nmのCoFe層13a、厚さ1.2nmのAlOx層14、厚さ2nmのCoFeNi層12、厚さ1.2nmのAlOx層24、厚さ2nmのCoFe層13a、厚さ0.8nmの酸素含有CoFe層13b’、厚さ2nmのCoFe層13a、厚さ10nmのIrMn層21、厚さ5nmのRu層76、厚さ100nmのTa層77、及び図示しないSiO2層を順次積層した構造を有している。また、このMTJ素子1の接合面積は4μm×4μmである。なお、これら薄膜の成膜及びパターニングは、実施例2で説明したのと同様の方法により行った。
【0100】
上記の方法で作製したMTJ素子1のピン層13,23について、熱処理前と375℃での熱処理後との双方で、その構造及び組成をTEM及びEDXDなどを利用して調べた。その結果、熱処理前及び熱処理後の双方において、ピン層13,23は、酸素を含有したCoFe層13b’を一対のCoFe層13aで挟んだ構造を有していること、及び、酸素含有CoFe層13b’中でCoFeは結晶粒の状態で存在しており、酸素はCoFe結晶粒の粒界に局在していることが分かった。
【0101】
また、上記の方法で複数のMTJ素子1を作製し、これらMTJ素子1について熱処理温度と熱処理後のMR比との関係を調べた。なお、これら熱処理は、1×10-5Pa以下の真空度とした雰囲気中、1.5kOeの磁場を印加しながら、100乃至400℃の温度範囲内で1時間行った。
【0102】
図22は、本発明の実施例2及び実施例3に係るMTJ素子1について得られた熱処理温度とMR比との関係を示すグラフである。また、図23は、本発明の実施例3に係るMTJ素子1と従来技術に係るMTJ素子とについて得られた熱処理温度とMR比との関係を示すグラフである。図中、横軸は熱処理温度を示し、縦軸は熱処理後のMR比を示している。
【0103】
なお、曲線102は実施例2に係るMTJ素子1について得られたデータを示し、曲線103は実施例3に係るMTJ素子1について得られたデータを示している。また、曲線111は上記の非特許文献1に記載されていたデータを示し、曲線112は上記の非特許文献2に記載されていたデータを示している。
【0104】
図23に示すように、非特許文献1に記載のMTJ素子では、熱処理温度を380℃程度とした場合にMR比が最大となるが、その最大値は35%程度と低い。しかも、このMTJ素子では、MR比がほぼ最大値となる熱処理温度の範囲は極めて狭い。そのため、このMTJ素子をMRAMで利用した場合、高いMR比が得られないだけでなく、MTJ素子間でMR比が大きくばらつくこととなる。
【0105】
また、図23に示すように、非特許文献2に記載のMTJ素子では、MR比の最大値は40%を超えるが、MR比がほぼ最大値となる熱処理温度の範囲は極めて狭い。しかも、その最大値が得られる熱処理温度は350℃程度と低い。そのため、約370℃以上の温度でアニールを行った場合、それぞれのMTJ素子でMR比は著しく低い値となる。
【0106】
これに対し、実施例2及び実施例3に係るMTJ素子1は、図22及び図23に示すように、熱処理温度が約360乃至約380℃の範囲内でほぼ一定のMR比を示す。したがって、これら実施例に係るMTJ素子1を利用すれば、それぞれのMTJ素子のMR比が高く且つMTJ素子間でMR比のばらつきが小さいMRAMを実現することができる。
【0107】
なお、実施例1乃至実施例3に係るMTJ素子1は、一度、約360乃至約380℃の範囲内で熱処理すると、再度熱処理を行っても、そのMR比は殆ど変化しない。すなわち、実施例1乃至実施例3に係るMTJ素子1は、再度の熱処理に対して高い安定性を示す。
【0108】
図24は、実施例3に係るMTJ素子1を370℃で熱処理することにより生じるMR比の熱処理温度依存性を示すグラフである。図中、横軸は、実施例3に係るMTJ素子1を370℃で熱処理した後に行った熱処理温度を示している。また、縦軸は、再度の熱処理後のMR比を示している。
【0109】
図24に示すように、実施例3に係るMTJ素子1は、一度、370℃で熱処理すると、再度、約380℃以下の温度範囲内で熱処理を行っても、そのMR比は殆ど変化しない。そのため、MRAMの製造プロセス中で熱処理を複数回行ったとしても、それら熱処理を約380℃以下の温度範囲内で行えば、それぞれのMTJ素子のMR比の低下やMTJ素子間でのMR比のばらつきを生ずることはない。
【0110】
【発明の効果】
以上説明したように、本発明によると、高い温度で熱処理を行った場合にも高いMR比を維持し得る強磁性トンネル接合素子及びその製造方法並びにそれを用いた磁気メモリが提供される。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係るMTJ素子を概略的に示す断面図。
【図2】本発明の第2の実施形態に係るMTJ素子を概略的に示す断面図。
【図3】本発明の第3の実施形態に係るMTJ素子を概略的に示す断面図。
【図4】本発明の第4の実施形態に係るMTJ素子を概略的に示す断面図。
【図5】(a)は本発明の第5の実施形態に係るMRAMを概略的に示す斜視図、(b)は(a)に示すMRAMの断面図。
【図6】本発明の第6の実施形態に係るMRAMを概略的に示す斜視図。
【図7】本発明の第7の実施形態に係るMRAMを概略的に示す斜視図。
【図8】(a),(b)は、図5(a),(b)に示すMRAMを修飾した例を概略的に示す断面図。
【図9】(a),(b)は、図5(a),(b)に示すMRAMを変形及び修飾した例を概略的に示す断面図。
【図10】本発明の実施例1に係るMTJ素子を概略的に示す断面図。
【図11】本発明の実施例1に係るMTJ素子について得られた熱処理温度とMR比との関係を示すグラフ。
【図12】本発明の実施例1に係るMTJ素子について得られた断面TEM像を概略的に示す図。
【図13】本発明の実施例1に係るMTJ素子の酸素含有CoFe層について得られたEDXDによる測定結果を示すグラフ。
【図14】本発明の実施例1に係るMTJ素子の酸素含有CoFe層について得られたEDXDによる測定結果を示すグラフ。
【図15】本発明の実施例1に係るMTJ素子の酸素含有CoFe層について得られたEDXDによる測定結果を示すグラフ。
【図16】本発明の実施例1に係るMTJ素子の酸素含有CoFe層について得られたEDXDによる測定結果を示すグラフ。
【図17】本発明の実施例1に係るMTJ素子の酸素含有CoFe層について得られたEDXDによる測定結果を示すグラフ。
【図18】本発明の実施例1に係るMTJ素子の酸素含有CoFe層について得られたEDXDによる測定結果を示すグラフ。
【図19】本発明の実施例1に係るMTJ素子の酸素含有CoFe層について得られたEDXDによる測定結果を示すグラフ。
【図20】本発明の実施例2に係るMTJ素子を概略的に示す断面図。
【図21】本発明の実施例3に係るMTJ素子を概略的に示す断面図。
【図22】本発明の実施例2及び実施例3に係るMTJ素子について得られた熱処理温度とMR比との関係を示すグラフ。
【図23】本発明の実施例3に係るMTJ素子と従来技術に係るMTJ素子とについて得られた熱処理温度とMR比との関係を示すグラフ。
【図24】実施例3に係るMTJ素子を370℃で熱処理することにより生じるMR比の熱処理温度依存性を示すグラフ。
【符号の説明】
1…MTJ素子
11,21…反強磁性層
12…フリー層
13,23…ピン層
13a…強磁性金属層
13b,13b’…磁性中間層
14,24…トンネルバリア層
31,61,71…基板
32…ソース・ドレイン領域
33…絶縁膜
34…ゲート電極またはワード線
35,44,45…トランジスタ
36…コンタクト
37…下地配線
38,42…ワード線
39,43…ビット線
41…ダイオード
46…センスアンプ
48,49…磁性被覆
62,65,72,77…Ta層
63,64…NiFe層
66,67…SiO2
68…結晶粒界
73,75,76…Ru層
74…CoFe層
102,103,111,112…曲線

Claims (7)

  1. 第1反強磁性層と、強磁性を示すとともに磁場印加の際に磁化の向きが変化し得るフリー層と、前記第1反強磁性層と前記フリー層との間に介在し且つ強磁性を示すとともに前記磁場印加の際に磁化の向きが維持される第1ピン層と、前記フリー層と前記第1ピン層との間に介在した第1トンネルバリア層とを具備し、
    前記第1ピン層は、第1及び第2強磁性金属層と、前記第1及び第2強磁性金属層間に介在し且つ磁性金属材料の結晶粒を含み前記結晶粒間の粒界に酸素及び窒素の少なくとも一方の元素が局在した第1磁性中間層とを具備したことを特徴とする強磁性トンネル接合素子。
  2. 第1反強磁性層と、強磁性を示すとともに磁場印加の際に磁化の向きが変化し得るフリー層と、前記第1反強磁性層と前記フリー層との間に介在し且つ強磁性を示すとともに前記磁場印加の際に磁化の向きが維持される第1ピン層と、前記フリー層と前記第1ピン層との間に介在した第1トンネルバリア層とを具備し、
    前記第1ピン層は、第1及び第2強磁性金属層と、前記第1及び第2強磁性金属層間に介在し且つ磁性金属材料の結晶粒を含み前記結晶粒間の粒界に酸素及び窒素の少なくとも一方の元素が局在した第1磁性中間層とを具備し、
    前記第1強磁性金属層の構成材料と前記第2強磁性金属層の構成材料と前記第1磁性中間層の前記磁性金属材料とは同一であることを特徴とする強磁性トンネル接合素子。
  3. 前記第1反強磁性層はマンガンを含有したことを特徴とする請求項1または請求項2に記載の強磁性トンネル接合素子。
  4. 前記第1反強磁性層との間に前記フリー層を介在させて設けられた第2反強磁性層と、前記第2反強磁性層と前記フリー層との間に介在し且つ強磁性を示すとともに前記磁場印加の際に磁化の向きが維持される第2ピン層と、前記フリー層と前記第2ピン層との間に介在した第2トンネルバリア層とをさらに具備し、
    前記第2ピン層は、第3及び第4強磁性金属層と、前記第3及び第4強磁性金属層間に介在し且つ磁性金属材料の結晶粒を含み前記結晶粒間の粒界に酸素及び窒素の少なくとも一方の元素が局在した第2磁性中間層とを具備したことを特徴とする請求項1乃至請求項3のいずれか1項に記載の強磁性トンネル接合素子。
  5. 互いに交差した第1及び第2配線と、前記第1及び第2配線の交差部またはその近傍に位置したメモリセルとを具備し、前記メモリセルは請求項1乃至請求項4の何れか1項に記載の強磁性トンネル接合素子を含んだことを特徴とする磁気メモリ。
  6. 反強磁性層を形成する工程と、
    前記反強磁性層上に第1強磁性金属層を形成する工程と、
    酸素及び窒素の少なくとも一方を含有した雰囲気中、前記第1強磁性金属層を50℃以下の温度で放置して、磁性金属材料の結晶粒と前記結晶粒間の粒界に局在した酸素及び窒素の少なくとも一方の元素とを含有した磁性中間層を前記第1強磁性金属層の表面に形成する工程と、
    前記磁性中間層上に第2強磁性金属層を形成する工程と、
    前記第2強磁性金属層上にトンネルバリア層を形成する工程と、
    前記トンネルバリア層上に第3強磁性金属層を形成する工程とを含んだことを特徴とする強磁性トンネル接合素子の製造方法。
  7. 第1強磁性層を形成する工程と、
    前記第1強磁性層上にトンネルバリア層を形成する工程と、
    前記トンネルバリア層上に第2強磁性層を形成する工程と、
    酸素及び窒素の少なくとも一方を含有した雰囲気中、前記第2強磁性金属層を50℃以下の温度で放置して、磁性金属材料の結晶粒と前記結晶粒間の粒界に局在した酸素及び窒素の少なくとも一方の元素とを含有した磁性中間層を前記第2強磁性金属層の表面に形成する工程と、
    前記磁性中間層上に第3強磁性層を形成する工程と、
    前記第3強磁性層上に反強磁性層を形成する工程とを含んだことを特徴とする強磁性トンネル接合素子の製造方法。
JP2002268660A 2002-09-13 2002-09-13 強磁性トンネル接合素子、磁気メモリ、及び強磁性トンネル接合素子の製造方法 Expired - Fee Related JP3825730B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002268660A JP3825730B2 (ja) 2002-09-13 2002-09-13 強磁性トンネル接合素子、磁気メモリ、及び強磁性トンネル接合素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002268660A JP3825730B2 (ja) 2002-09-13 2002-09-13 強磁性トンネル接合素子、磁気メモリ、及び強磁性トンネル接合素子の製造方法

Publications (2)

Publication Number Publication Date
JP2004111467A JP2004111467A (ja) 2004-04-08
JP3825730B2 true JP3825730B2 (ja) 2006-09-27

Family

ID=32266825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002268660A Expired - Fee Related JP3825730B2 (ja) 2002-09-13 2002-09-13 強磁性トンネル接合素子、磁気メモリ、及び強磁性トンネル接合素子の製造方法

Country Status (1)

Country Link
JP (1) JP3825730B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067866B2 (en) * 2003-03-31 2006-06-27 Applied Spintronics Technology, Inc. MRAM architecture and a method and system for fabricating MRAM memories utilizing the architecture
CN112635652B (zh) * 2019-10-08 2023-05-26 上海磁宇信息科技有限公司 磁性随机存储器的磁性隧道结结构
CN112652702B (zh) * 2019-10-10 2023-12-22 上海磁宇信息科技有限公司 磁性随机存储器的磁性隧道结结构

Also Published As

Publication number Publication date
JP2004111467A (ja) 2004-04-08

Similar Documents

Publication Publication Date Title
US20210234092A1 (en) Reduction of Barrier Resistance X Area (RA) Product and Protection of Perpendicular Magnetic Anisotropy (PMA) for Magnetic Device Applications
JP3576111B2 (ja) 磁気抵抗効果素子
JP4423658B2 (ja) 磁気抵抗素子及びその製造方法
US7692902B2 (en) Tunnel magnetoresistance effect device, and a portable personal device
US7379280B2 (en) Magnetic tunnel magneto-resistance device and magnetic memory using the same
US7026671B2 (en) Magnetoresistive effect element, magnetic memory device and manufacturing method of magnetoresistive effect element and magnetic memory device
JP5665707B2 (ja) 磁気抵抗効果素子、磁気メモリ及び磁気抵抗効果素子の製造方法
US20070076471A1 (en) Storage element and memory
JP3931876B2 (ja) 磁気抵抗デバイス及びその製造方法
KR20080029852A (ko) 자기저항 효과 소자 및 자기저항 랜덤 액세스 메모리
KR20070082558A (ko) 자기 저항 효과 소자, 자기 헤드, 및 자기 기록/재생 장치
KR20080054343A (ko) 기억 소자 및 메모리
JP2007180470A (ja) 磁気抵抗効果素子、磁気ヘッド、磁気記憶装置、および磁気メモリ装置
JP3593472B2 (ja) 磁気素子とそれを用いた磁気メモリおよび磁気センサ
JP2007048790A (ja) 記憶素子及びメモリ
JP2007158369A (ja) 磁気抵抗デバイス及びその製造方法
JP3472207B2 (ja) 磁気抵抗効果素子の製造方法
JP3473016B2 (ja) 強磁性トンネル接合素子と磁気ヘッドと磁気メモリ
JP2008091551A (ja) 磁気抵抗効果素子、磁気記憶装置、および磁気メモリ装置
JP2007027493A (ja) 磁気抵抗効果素子およびその製造方法
JP4039656B2 (ja) 交換結合素子及び交換結合素子の製造方法
JP2009170926A (ja) 強磁性トンネル接合素子およびその製造方法
JP2004063592A (ja) 磁気抵抗効果素子および磁気メモリ装置
JP3825730B2 (ja) 強磁性トンネル接合素子、磁気メモリ、及び強磁性トンネル接合素子の製造方法
JP3872962B2 (ja) 磁気抵抗効果素子及び磁気記憶装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees