JP3818951B2 - データ配列変換装置およびそれを用いた表示制御装置ならびにデータ配列変換方法 - Google Patents

データ配列変換装置およびそれを用いた表示制御装置ならびにデータ配列変換方法 Download PDF

Info

Publication number
JP3818951B2
JP3818951B2 JP2002294116A JP2002294116A JP3818951B2 JP 3818951 B2 JP3818951 B2 JP 3818951B2 JP 2002294116 A JP2002294116 A JP 2002294116A JP 2002294116 A JP2002294116 A JP 2002294116A JP 3818951 B2 JP3818951 B2 JP 3818951B2
Authority
JP
Japan
Prior art keywords
data
pixel
pixel data
image
address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002294116A
Other languages
English (en)
Other versions
JP2004062130A (ja
Inventor
高士 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eizo Nanao Corp
Original Assignee
Eizo Nanao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eizo Nanao Corp filed Critical Eizo Nanao Corp
Priority to JP2002294116A priority Critical patent/JP3818951B2/ja
Publication of JP2004062130A publication Critical patent/JP2004062130A/ja
Application granted granted Critical
Publication of JP3818951B2 publication Critical patent/JP3818951B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば画像を表示する表示デバイスが縦長状態および横長状態のいずれにも配置可能に構成される場合に、表示デバイスがいずれの配置状態であっても画素の並びが同じになる画像を表示させる際に好適に用いられるデータ配列変換装置およびそれを用いた表示制御装置ならびにデータ配列変換方法に関する。
【0002】
【従来の技術】
画像を表示する表示デバイスの中には、表示面に垂直な角変位軸線まわりに90度角変位自在であって、縦横が互いに逆転する縦長配置状態および横長配置状態に配置可能に構成された表示デバイスがある。この表示デバイスでは、縦長配置状態で縦長の画面に画像を表示するポートレート表示と、横長配置状態で横長の画面に画像を表示するランドスケープ表示との両方の表示が可能である。このような表示デバイスに画像を表示するためには、その走査方向が単一方向のみであるので、縦長状態と横長状態とで走査方向に並ぶ画素データの順序を変更して、表示デバイスに与える画像データを変換する表示制御装置が必要である。
【0003】
従来の表示制御装置では、ソフトウェアを用いて表示デバイスに与える画像データを変換している。たとえばコンピュータで表示制御装置を構成し、画像データを変換するプログラムをコンピュータで動作させることによって、表示デバイスのいずれか一方の配置状態に適合している画像データを、他方の配置状態に適合した画像データに変換して表示デバイスに与えている。たとえば横長配置状態に適合した入力画像を表す入力画像データが与えられた場合、表示デバイスが縦長配置状態にあるとき、表示制御装置は、入力画像を90度角変位させた画像を表す画像データに変換して表示デバイスに与える(たとえば特許文献1参照)。
【0004】
画像データの変換とは、画像データを予め定められる規則に従って変換した変換画像データを作成する処理であり、具体的には表示デバイスの主走査方向および副走査方向に従って行列状に配列される複数の画素データにおいて、各画素データの主走査方向に並ぶ順と副走査方向に並ぶ順とを互いに逆転する処理である。
【0005】
【特許文献1】
特開平11−185032号公報
【0006】
【発明が解決しようとする課題】
上述した従来の表示制御装置は、コンピュータで構成されているため、画像データを変換するプログラムを実行しているときに、画像データを変換するプログラムと他のプログラムとを並列して実行する場合がある。この場合、表示制御装置を構成するコンピュータが複数のプログラムを並列して実行するため、画像データの変換処理および他のプログラムの処理速度が低下するとともに、処理動作が不安定になるおそれがある。また、表示制御装置を構成するコンピュータのプログラム処理能力などの動作環境などによっても、画像データの変換処理が不安定になるおそれがある。
【0007】
画像データの変換処理が不安定になると、縦長配置状態および横長配置状態に適合した画像を良好に表示することができない場合がある。また、表示制御装置がプログラムを実行して変換された画像データを作成するので、表示デバイスの配置状態に適合した画像データを表示するまでに時間がかかるという問題がある。
【0008】
また、複数の画素データから成る画像データにかかわらず、複数の個別データが行列状に配列されて成る集合データにおいて、個別データの配列を予め定められる規則に従って配列変換して、変換集合データを作成する場合であっても、上述する表示制御装置と同様の問題がある。
【0009】
したがって、本発明の目的は、複数の個別データから成る集合データにおいて、予め定められる規則に従って配列変換する場合に、高速でかつ安定して変換集合データを作成することができるデータ配列変換装置およびデータ配列変換方法を提供することである。
【0010】
また本発明の他の目的は、縦長配置状態および横長配置状態の2つの配置状態が可能な表示デバイスに対して、表示デバイスがいずれの配置状態であっても、画像の向きが同じになる画像データを高速でかつ安定して与えることができる表示制御装置を提供することである。
【0011】
【課題を解決するための手段】
本発明は、複数の個別データを行列状に配列して成る集合データに基づいて、前記個別データの配列位置を予め定める規則に従って変換して成る変換集合データを作成するデータ配列変換装置であって、
(a)データを格納するための最小の格納領域が形成される最小格納部を複数有し、前記最小格納部ごとのデータ量単位でデータの書込みおよび読出しが行なわれる記憶手段と、
(b)前記個別データ単位で予め定める行列順序に従って入力された集合データを、前記記憶手段における前記データ量単位に区分し、区分たデータを前記記憶手段のアドレスを指定して書込むことによって中間データを作成する第1の配列変換手段であって、
(b1)入力される集合データを行列方向に並ぶ予め定める数の個別データから成る複数の個別データ群から成る仮想行列データと仮定し、この仮想行列データを構成する各個別データ群の配列位置を、前記予め定める規則に従って変換して得られる仮想変換行列データを仮定した場合、データを書込むときに指定する最小格納部のアドレスは、データを最小格納部のアドレス順に従って読出したとき、読出されるデータが対応する個別データ群の並び順が、前記仮想変換行列データにおける行列順序になるようなアドレスであり、
(b2)個別データ群に相当する複数の個別データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分し、前記区分したデータを最小格納部ごとに書込み、前記区分したデータを書込むときに指定する最小格納部のアドレスは、前記区分したデータを最小格納部のアドレス順で読み出したとき、読出し順に読出した複数の前記区分したデータを合わせることで個別データおよび個別データ群を復元可能となるようなアドレスである第1の配列変換手段と、
(c)前記記憶手段からアドレス順に従って前記データ量単位で前記区分したデータを読出し、復元すべき個別データ分の前記区分したデータがそろってから個別データに復元し、さらに個別データ群に含まれる個別データがすべてそろってから個別データ群を構成し、この個別データ群を構成する各個別データの配列位置を、前記予め定める規則に従って変換してから、復元した個別データを行列順序で出力することによって前記変換集合データを作成する第2の配列変換手段とを備えることを特徴とするデータ配列変換装置である。
【0012】
本発明に従えば、集合データを構成する複数の個別データが予め定める行列順序に従って個別データ単位で入力されると、第1の配列変換手段によって、入力された個別データが、記憶手段に対してデータの書込みおよび読出しを行う際のデータ量単位に区分される。この区分されたデータは、順番にそれぞれ記憶手段の指定されたアドレスに書込まれ、中間データが作成される。
【0013】
書込み時に順次指定されるアドレスは、所定の規則に従って指定されるものである。具体的には、まず入力された集合データを、行列方向に並ぶ予め定める数の個別データから成る個別データ群に区分し、この個別データ群を行列の1つの要素と考え、この個別データ群が複数個行列状に配列されて成る仮想行列データを仮定する。さらに、この仮想行列データを構成する複数の個別データ群の配列位置を、前記予め定める規則に従って変換して得られる仮想変換行列データを仮定する。上記の所定の規則とは、記憶手段からデータをアドレス順、たとえばアドレスが順次増加する順序で読み出したときに、読み出したデータが対応する個別データ群の並び順が、上記の仮想変換行列データにおける行列順序になるようなアドレスを指定することである。このようなアドレスを指定してデータを書込むことによって作成された中間データは、上記の仮想変換行列データに相当するものである。
【0014】
上述のようにして第1の配列変換手段によって記憶手段に書込まれたデータは、第2の配列変換手段によって、アドレス順にデータ量単位で読み出される。読み出されたデータは、復元すべき個別データ分のデータがそろってから個別データに復元される。さらに、個別データ群に含まれる個別データがすべてそろってから、その個別データ群が構成され、この個別データ群を構成する各個別データの配列位置が、前記予め定める規則に従って変換される。これは、記憶手段に書込まれた段階では、個別データ群単位での配列位置は変換されているが、個別データ群内での各個別データの配列位置は変換されていないからである。このように、個別データ群内での配列位置が変換されてから、復元された個別データは行列順序で出力される。これによって、前記変換集合データを作成することができる。
【0015】
たとえば行列順序とは、データが行方向にm個、列方向にn個並ぶ場合、行方向にi番目でかつ列方向にj番目のデータをx(i,j)とすると、データx(i,j)が、x(1,1),x(2,1)…,x(m−1,1),x(m,1),x(1,2),x(2,2)…,x(m−1,n),x(m,n)と進み、ある行の行方向に沿って一方から他方に進んだ後、列方向に一段移動し、次の行について行方向に沿って一方から他方に進む順序である。
【0016】
第1の配列変換手段は、個別データ群に相当する複数の個別データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分して、区分したデータで記憶手段に対するデータの書込みを行う。これによって記憶手段の各アドレスに対応する最小格納部の格納領域のデータ容量と、区分された記憶されるべきデータのデータ量とを等しくすることができ、最小格納部の格納領域ごとにデータが記憶されない空領域をなくして、最小格納部の格納領域をデータで充たすことができる。これによって限られた記憶手段の記憶容量に対して、記憶可能なデータ量を増やすことができる。
【0017】
この記憶手段におけるデータ量単位は、複数のビットで構成されるものであり、いわゆるワードと呼ばれるものである。ワードを構成するビット数は、任意の数であり、たとえば記憶手段の構成内容およびデータの転送レートを考慮して決定される。
【0018】
このデータ量単位に区分されるデータは、個別データおよび個別データ群のデータ量とは相関関係がないので、個別データおよび個別データ群のデータ量と、記憶手段におけるデータ量単位とを任意に選択することができる。これによって生産性および経済性に応じて個別データおよび個別データ群のデータ量を、記憶手段とは無関係に設定することができる。
【0019】
またデータ配列変換装置は、データ量単位に区分したデータごとにアドレスを指定するので、個別データごとにアドレスを指定する場合に比べて、アドレスを指定する回数を少なくすることができる。また記憶手段のアドレス順に従って読出されるように、アドレスが指定されてデータが書込まれるので、記憶手段からデータを読出すときに、アドレス順に順番にデータを読出すことができる。
【0020】
また第1の配列変換手段および第2の配列変換手段はハードウェアによって実現されるので、ソフトウェアに比べて入力画像データの変換動作を安定させ、かつ高速で行うことができる。
【0021】
また本発明は、縦横が互いに逆転する第1および第2配置状態に配置可能な表示デバイスに、当該表示デバイスの主走査方向および副走査方向に従って行列状に配列される複数の画素データから成る画像データを与えて表示させるとともに、第1および第2配置状態のどちらの配置状態であっても同じ向きで画像が表示されるように、第1配置状態に適合して配列された第1の画像データが与えられた場合、
第1配置状態の前記表示デバイスに画像データを適合させるときは、画素データの配列位置を変更することなく第1の画像データをそのまま前記表示デバイスに与え、
第2配置状態の前記表示デバイスに画像データを適合させるときは、第1の画像データを第2配置状態に適合するように画素データの主走査方向および副走査方向の配列位置を予め定められる規則に従って変更した第2の画像データに変換して前記表示デバイスに与える表示制御装置であって、
(a)データを格納するための最小の格納領域が形成される最小格納部を複数有し、前記最小格納部ごとのデータ量単位でデータの書込みおよび読出しが行われる記憶手段と、
(b)前記画素データ単位で予め定める行列順序に従って、入力された第1の画像データを前記記憶手段におけるデータ量単位に区分し、区分たデータを前記記憶手段のアドレスを指定して書込むことによって、中間画像データを作成する第1の配列変換手段であって、
(b1)入力される第1の画像データを、主走査方向にM個並び、副走査方向にN個並ぶM×N(M+N>2、ただしMおよびNは自然数)個の画素データから成る複数の画素データ群から成る仮想行列データと仮定し、この仮想行列データを構成する各画素データ群の配列位置を、前記予め定める規則に従って変換して得られる仮想変換行列データを仮定した場合、データを書込むときに指定する最小格納部のアドレスは、最小格納部ごとにデータをアドレス順で読出したとき、読出されるデータが対応する画素データ群の並び順が、前記仮想変換行列データにおける行列順序になるようなアドレスであり、
(b2)画素データ群に相当する複数の画素データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分し、前記区分したデータを最小格納部ごとに書込み、前記区分したデータを書込むときに指定する最小格納部のアドレスは、前記区分したデータを最小格納部のアドレス順で読み出したとき、読出し順に読出した複数の前記区分したデータを合わせることで画素データおよび画素データ群を復元可能となるようなアドレスである第1の配列変換手段と、
(c)前記記憶手段からアドレス順に従って前記データ量単位で前記区分したデータを読出し、復元すべき画素データ分の前記区分したデータがそろってから画素データに復元し、さらに画素データ群に含まれる画素データがすべてそろってから、画素データ群を構成し、この画素データ群を構成する各画素データの配列位置を、前記予め定める規則に従って変換してから、復元した画素データを行列順序で出力することによって前記第2の画像データを作成する第2の配列変換手段とを備えることを特徴とする表示制御装置である。
【0022】
本発明に従えば、第1配置状態に適合して配列された第1の画像データが与えられ、第1配置状態の表示デバイスに画像データを適合させるときには、第1の画像データをそのまま表示デバイスに与え、第2配置状態の表示デバイスに画像データを適合させるときには、第1の画像データを第2配置状態に適合する第2の画像データに変換して表示デバイスに与える。
【0023】
第1の画像データを第2の画像データに変換する場合、画像データを構成する複数の画像データが予め定める行列順序に従って画像データ単位で入力されると、第1の配列変換手段によって、入力された画像データが、記憶手段に対してデータの書込みおよび読出しを行う際のデータ量単位に区分される。この区分されたデータは、順番にそれぞれ記憶手段の指定されたアドレスに書込まれ、中間画像データが作成される。
【0024】
書込み時に順次指定されるアドレスは、所定の規則に従って指定されるものである。具体的には、まず入力された画像データを、行列方向に並ぶ予め定める数の画素データから成る画素データ群に区分し、この画素データ群を行列の1つの要素と考え、この画素データ群が複数個行列状に配列されて成る仮想行列データを仮定する。さらに、この仮想行列データを構成する複数の画素データ群の配列位置を、前記予め定める規則に従って変換して得られる仮想変換行列データを仮定する。上記の所定の規則とは、記憶手段からデータをアドレス順、たとえばアドレスが順次増加する順序で読み出したときに、読み出したデータが対応する画素データ群の並び順が、上記の仮想変換行列データにおける行列順序になるようなアドレスを指定することである。このようなアドレスを指定してデータを書込むことによって作成された中間画像データは、上記の仮想変換行列データに相当するものである。
【0025】
上述のようにして第1の配列変換手段によって記憶手段に書込まれたデータは、第2の配列変換手段によって、アドレス順にデータ量単位で読み出される。読み出されたデータは、復元すべき画素データ分のデータがそろってから画素データに復元される。さらに、画素データ群に含まれる画素データがすべてそろってから、その画素データ群が構成され、この画素データ群を構成する各画素データの配列位置が、前記予め定める規則に従って変換される。これは、記憶手段に書込まれた段階では、画素データ群単位での配列位置は変換されているが、画素データ群内での各画素データの配列位置は変換されていないからである。このように、画素データ群内での配列位置が変換されてから、復元された画素データは行列順序で出力される。これによって、前記変換画像データを作成することができる。
【0026】
たとえば行列順序とは、データが主走査方向にm個、副走査方向にn個並ぶ場合、主走査方向にi番目でかつ副走査方向にj番目のデータをx(i,j)とすると、データx(i,j)が、x(1,1),x(2,1)…,x(m−1,1),x(m,1),x(1,2),x(2,2)…,x(m−1,n),x(m,n)と進み、ある行の行方向に沿って一方から他方に進んだ後、列方向に一段移動し、次の行について行方向に沿って一方から他方に進む順序である。
【0027】
第1の配列変換手段は、画素データ群に相当する複数の画素データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分して、区分したデータで記憶手段に対するデータの書込みを行う。これによって記憶手段の各アドレスに対応する最小格納部の格納領域データ容量と、区分された記憶されるべきデータのデータ量とを等しくすることができ、最小格納部の格納領域ごとにデータが記憶されない空き領域をなくすことができる。これによって限られた記憶手段の記憶容量に対して、記憶可能なデータ量を増やすことができる。
【0028】
この記憶手段におけるデータ量単位は、複数のビットで構成されるものであり、いわゆるワードと呼ばれるものである。ワードを構成するビット数は、任意の数であり、たとえば記憶手段の構成内容およびデータの転送レートを考慮して決定される。
【0029】
このデータ量単位に区分されるデータは、画素データおよび画素データ群のデータ量とは、相関関係がなく無関係に設定されるので、画素データおよび画素データ群のデータ量を任意に選択することができる。これによって生産性および経済性に応じて画素データおよび画素データ群のデータ量を、記憶手段とは無関係に設定することができる。
【0030】
また表示制御装置は、データ量単位に区分したデータごとにアドレスを指定するので、画素データごとにアドレスを指定する場合に比べて、アドレスを指定する回数を少なくすることができる。また記憶手段のアドレス順に従って読出されるように、アドレスが指定されてデータが書込まれるので、記憶手段からデータを読出すときに、アドレス順に順番にデータを読出すことができる。
【0031】
また第1の配列変換手段および第2の配列変換手段はハードウェアによって実現されるので、ソフトウェアに比べて入力画像データの変換動作を安定させ、かつ高速で行うことができる。
【0032】
表示制御装置は、上述するように表示制御装置が予め定められる規則に従って入力画像データを変換することによって、入力される第1の画像データに対して、画素データの行方向および列方向の配列位置が90度角変位した第2の画像データを作成することができる。したがって第1配置状態にある表示デバイスが表示デバイスを見る視認者に対して相対的に角変位方向一方に90度角変位して、表示デバイスが第2配置状態となる場合に、第1の画像データに対して角変位方向他方に90度角変位するように第2の画像データを変換することによって、第2配置状態に表示デバイスがあるときであっても、第2配置状態に適合した画像を表示デバイスに表示させることができる。
【0033】
たとえば表示制御装置は、表示デバイスおよび画像データ生成装置の外部に設けられてもよい。具体的には、表示制御装置は、ケーブルなどの画像データを伝送する伝送体が着脱可能に装着される入口側ポートおよび出口側ポートと、記憶手段と、第1および第2の配列変換手段とを有する。画像データ生成装置に接続される第1の伝送体が入口側ポートに接続される。また表示デバイスに接続される第2の伝送体が出口側ポートに接続される。第1の配列変換手段は、第1の伝送体を介して、画像データ生成装置から出力される画像データを取得する。また第2の配列変換手段は、第2の伝送体を介して、変換した画像データを表示デバイスに与える。
【0034】
これによって表示制御装置は、画像データ生成装置と表示デバイスとの間に各伝送体によって着脱自在に連結される。したがって特別な画像データ生成装置および表示デバイスを必要とせずに、既存の画像データ生成装置および表示デバイスを用いて、表示デバイスの配置状態に応じた画像を表示することができる。
【0035】
また表示制御装置は、画像データ生成装置に内蔵されてもよい。この場合、表示制御装置は、画像データ生成装置に設けられる記憶手段を併用してもよい。すなわち表示制御装置は、第1および第2の配列変換手段と、画像データ生成装置に既設の記憶手段とを含んで構成される。表示制御装置は、第1および第2の配列変換手段とを含む配列変換体を備えていてもよ。たとえば配列変換体は、1つの集積回路によって実現することも可能である。
【0036】
具体的には、配列変換体は、画像を生成するためにコンピュータに接続されるビデオカードに設けられるビデオチップまたはコンピュータのマザーボードに設けられるビデオチップであってもよい。この場合、ビデオカードおよびマザーボードに既設の記憶手段を活用することによって、配列変換体には、別途記憶手段を設ける必要がなく、配列変換体を安価に実現することができる。
【0037】
またたとえば表示制御装置は、表示デバイスに内蔵されてもよい。表示デバイスの配置状態を検出する配置状態検出手段が、表示デバイスに設けられる場合、表示制御装置は、配置状態検出手段が検出した表示デバイスの配置状態を取得して表示デバイスに与える画像データの配列変換を行う。表示制御装置が表示デバイスに内蔵されることによって、配置状態検出手段が検出する表示デバイスの配置状態を容易に取得することができる。また配置状態検出手段は、表示デバイスに設けられる場合には、表示デバイスの外部に設けられる場合に比べて、表示デバイスの配置状態を確実に検出することができる。
【0038】
また本発明は、縦横が互いに逆転する第1および第2配置状態に配置可能な表示デバイスに、当該表示デバイスの主走査方向および副走査方向に従って行列状に配列される複数の画素データから成る画像データを与えて表示させるとともに、第1および第2配置状態のどちらの配置状態であっても同じ向きで画像が表示されるように、第1配置状態に適合して配列された第1の画像データが与えられた場合、
第1配置状態の前記表示デバイスに画像データを適合させるときは、画素データの配列位置を変更することなく第1の画像データをそのまま前記表示デバイスに与え、
第2配置状態の前記表示デバイスに画像データを適合させるときは、第1の画像データを第2配置状態に適合するように画素データの主走査方向および副走査方向の配列位置を予め定められる規則に従って変更した第2の画像データに変換して前記表示デバイスに与える表示制御装置であって、
(a)データを格納するための最小の格納領域が形成される最小格納部を複数有し、前記最小格納部ごとのデータ量単位でデータの書込みおよび読出しが行われる記憶手段と、
(b)前記画素データ単位で予め定められる行列順序に従って、入力された第1の画像データのうち、主走査方向にM個並び、副走査方向にN個並ぶM×N(M+N>2、ただしMおよびNは自然数)個の画素データから成る画素データ群単位のデータを、前記記憶手段におけるデータ量単位に区分し、区分されたデータを前記記憶手段のアドレスを指定して書込むことによって、中間画像データを作成する第1の配列変換手段であって、
(b1)入力される第1の画像データを、複数の前記画素データ群から成る仮想行列データと仮定し、この仮想行列データを構成する前記各画素データ群の配列位置を、前記予め定める規則に従って変換して得られる仮想変換行列データを仮定した場合、データを書込むときに指定する最小格納部のアドレスは、最小格納部ごとにデータをアドレス順で読出したとき、読出されるデータが対応する画素データ群の並び順が、前記仮想変換行列データにおける行列順序になるようなアドレスであり、
(b2)画素データ群に相当する複数の画素データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分し、前記区分したデータを最小格納部ごとに書込み、前記区分したデータを書込むときに指定する最小格納部のアドレスは、前記区分したデータを最小格納部のアドレス順で読み出したとき、読出し順に読出した複数の前記区分したデータを合わせることで画素データおよび画素データ群を復元可能となるようなアドレスである第1の配列変換手段と、
(c)前記記憶手段からアドレス順に従って前記データ量単位で前記区分したデータを読出し、復元すべきM×N個の画素データに復元し、画素データ群を構成する各画素データの配列位置を、前記予め定める規則に従って変換してから、復元した画素データを行列順序で出力することによって前記第2の画像データを作成する第2の配列変換手段とを備えることを特徴とする表示制御装置である。
【0039】
本発明に従えば、第1配置状態に適合して配列された第1の画像データが与えられ、第1配置状態の表示デバイスに第1の画像データを適合させるときには、第1の画像データをそのまま表示デバイスに与え、第2配置状態の表示デバイスに第1の画像データを適合させるときには、第1の画像データを第2配置状態に適合する第2の画像データに変換して表示デバイスに与える。
【0040】
第1の画像データを第2の画像データに変換する場合、画像データを構成する複数の画素データが予め定める行列順序に従って画素データ単位で入力されると、第1の配列変換手段によって、入力された画像データを行列方向に並ぶ予め定める数の画素データから成る画素データ群が、記憶手段に対してデータの書込みおよび読出しを行う際のデータ量単位に区分される。この区分されたデータは、順番にそれぞれ記憶手段の指定されたアドレスに書込まれ、中間画像データが作成される。
【0041】
書込み時に順次指定されるアドレスは、所定の規則に従って指定されるものである。具体的には、まず入力された画像データを前記画素データ群に区分し、この画素データ群を行列の1つの要素と考え、この画素データ群が複数個行列状に配列されて成る仮想行列データを仮定する。さらに、この仮想行列データを構成する複数の画素データ群を、前記予め定める規則に従ってその配列位置を変換して得られる仮想変換行列データを仮定する。上記の所定の規則とは、記憶手段からデータをアドレス順、たとえばアドレスが順次増加する順序で読み出したときに、読み出したデータが対応する画素データ群の並び順が、上記の仮想変換行列データにおける行列順序になるようなアドレスを指定することである。このようなアドレスを指定してデータを書込むことによって作成された中間画像データは、上記の仮想変換行列データに相当するものである。
【0042】
上述のようにして第1の配列変換手段によって記憶手段に書込まれたデータは、第2の配列変換手段によって、アドレス順にデータ量単位で読み出される。読み出されたデータは、復元すべき画素データのデータがそろってから、画素データに復元される。さらに、画素データ群に含まれる画素データがすべてそろってから、その画素データ群が構成され、この画素データ群を構成する各画素データの配列位置が、前記予め定める規則に従って変換される。これは、記憶手段に書込まれた段階では、画素データ群単位での配列位置は変換されているが、画素データ群内での各画素データの配列位置は変換されていないからである。このように、画素データ群内での配列位置が変換されてから、復元された画素データは行列順序で出力される。これによって、前記変換画像データを作成することができる。
【0043】
たとえば行列順序とは、データが主走査方向にm個、副走査方向にn個並ぶ場合、主走査方向にi番目でかつ副走査方向にj番目のデータをx(i,j)とすると、データx(i,j)が、x(1,1),x(2,1)…,x(m−1,1),x(m,1),x(1,2),x(2,2)…,x(m−1,n),x(m,n)と進み、ある行の行方向に沿って一方から他方に進んだ後、列方向に一段移動し、次の行について行方向に沿って一方から他方に進む順序である。
【0044】
第1の配列変換手段は、画素データ群に相当する複数の画素データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分して、区分したデータで記憶手段に対するデータの書込みを行う。これによって記憶手段の各アドレスに対応する最小格納部の格納域のデータ容量と、区分された記憶されるべきデータのデータ量とを等しくすることができ、最小格納部の格納領域ごとにデータが記憶されない空き領域をなくすことができる。これによって限られた記憶手段の記憶容量に対して、記憶可能なデータ量を増やすことができる。
【0045】
この記憶手段におけるデータ量単位は、複数のビットで構成されるものであり、いわゆるワードと呼ばれるものである。ワードを構成するビット数は、任意の数であり、たとえば記憶手段の構成内容およびデータの転送レートを考慮して決定される。
【0046】
また記憶手段のアドレス順に従って読出されるように、アドレスが指定されてデータが書込まれるので、記憶手段からデータを読出すときに、アドレス順に順番にデータを読出すことができる。
【0047】
また第1の配列変換手段および第2の配列変換手段はハードウェアによって実現されるので、ソフトウェアに比べて入力画像データの変換動作を安定させ、かつ高速で行うことができる。
【0048】
表示制御装置は、上述するように表示制御装置が予め定められる規則に従って入力画像データを変換することによって、入力される第1の画像データに対して、画素データの行方向および列方向の配列位置が90度角変位した第2の画像データを作成することができる。したがって第1表示状態にある表示デバイスが表示デバイスを見る視認者に対して相対的に角変位方向一方に90度角変位した場合に、第1の画像データに対して角変位方向他方に90度角変位するように第2の画像データを変換することによって、第2配置状態に表示デバイスがあるときであっても、第2配置状態に適合した画像を表示デバイスに表示させることができる。
【0049】
また本発明は、前記第2の配列変換手段による前記記憶手段からのデータの読出しは、前記記憶手段におけるデータ量単位のデータを予め定める数連続して読出すバーストリード転送であることを特徴とする。
【0050】
本発明に従えば、記憶手段から予め定める数連続してデータが読出されるので、記憶手段からデータ読出しに費やされる時間を短くすることができ、単位時間あたりの処理量を大きくすることができる。
【0051】
また本発明は、前記第1の配列変換手段は、順次入力される第1の画像データに関して、順次入力されてくる第1の画像データと、前記記憶手段の前記入力されてくる第1の画像データに対応する箇所に記憶された第1の画像データとを比較し、前記入力されてくる第1の画像データのうち変更された画像部分のデータを抽出し、変更された画像部分のデータを前記記憶手段へ書込む比較部をさらに備えることを特徴とする。
【0052】
本発明に従えば、比較手段によって、変更された画像部分の画素データを比較し、変更された画像部分の画素データを記憶手段に書込む。変更された画像部分の画素データのみを変更するだけで、後に入力された第1の画像データを形成することができ、記憶手段に画像データを構成するすべての画素データを書込む必要がない。これによって記憶手段に書込まれるデータ量を少なくすることができる。
【0053】
また本発明は、前記比較部は、前記入力されてくる第1の画像データと、前記記憶手段の前記入力されてくる第1の画像データに対応する箇所に記憶された第1の画像データとの特徴部分を抽出した識別コードをそれぞれ生成し、前記入力されてくる第1の画像データと、前記記憶手段の前記入力されてくる第1の画像データに対応する箇所に記憶された第1の画像データの識別コード同士を比較することを特徴とする。
【0054】
本発明に従えば、第1の画像データの特徴を表す識別コードによって、入力されてくる第1の画像データと、前記記憶手段の前記入力されてくる第1の画像データに対応する箇所に記憶された第1の画像データとの特徴部分を比較するので、第1の画像データを直接比較する場合に比べて、データ量を小さくすることができ、より短時間でデータの比較を行うことができる。
また本発明は、画素データのデータ量と、記憶手段の最小格納部のデータ量とが異なることを特徴とする。
本発明に従えば、画素データのデータ量と、最小格納部の記憶容量とが一致しない場合であっても、最小格納部に画素データが記憶されずに空の記憶領域が生じることが防がれ、記憶手段の記憶容量に対して無駄なくデータを記憶させることができ、少ない記憶容量の記憶手段を用いることができる。これによって表示制御装置を安価に実現することができる。また画素データ群に相当するデータを記憶手段の所定の最小格納部に書込むことによって、画素データごとに所定の最小格納部に書込む場合に比べて、アドレスの設定を容易にすることができる。
また本発明は、画素データ群のデータ量は、記憶手段の最小格納部のデータ量が整数倍となるように設定されることを特徴とする。
本発明に従えば、画素データ群のデータ量が、記憶手段の最小格納部のデータ量のL倍である場合、記憶手段のL個の最小格納部からそれぞれ区分されたデータを読出したときに、画素データ群に含まれる画素データ分のデータが既にそろっている状態となる。これによってL個の最小格納部からデータを取出すことで、画素データ群が分割されることなく、アドレスを指定することが容易となる。
また本発明は、第1の画像データのうち主走査方向1ライン分の画素データをそれぞれ格納し、第1の画像データを第1の配列変換手段に入力する入力ラインメモリと、
第2の画像データの主走査方向1ライン分の画素データをそれぞれ格納し、第2の配列変換手段から第2の画像データが入力される出力ラインメモリとをさらに備え、
入力ラインメモリの数がu個であり、出力ラインメモリの数がt個である場合に、前記画素データ群は、主捜査方向にt個、副走査方向にu個並ぶ複数の画素データから成ることを特徴とする。
本発明に従えば、第1の配列変換手段が、入力ラインメモリの数と出力ラインメモリの数とに応じて設定した画素データ群を、入力ラインメモリから取出すことによって、取出した画素データ群毎に出力ラインメモリに取入れることができ、画素データの配列変換を容易に行うことができる。
また本発明は、第2の配列変換手段は、復元した各画素データ群を、主捜査方向に2個並び、副走査方向に2個並ぶ回転画素データ群を作成し、作成した回転画素データ群ごとに前記予め定める規則に従って変換することを特徴とする。
本発明に従えば、2×2の回転画素データ群は、角変位する最小の単位であり、画素データ単位で行うので、より簡単な構成で実現することができ、また処理速度を速くすることができる。また画素データ群を格納するアドレスを制御するアドレス制御処理と回転画素データ群を構成する各画素データを回転させる処理との間で、画素データ単位の相関関係がなく、独立して行うことができる。これによって用いられる記憶手段の制限をなくし、記憶手段の選択肢を増やすことができる。
【0055】
また本発明は、複数の個別データを行列状に配列して成る集合データに基づいて、前記個別データの配列位置を予め定める規則に従って変換して成る変換集合データを作成するデータ配列変換方法であって、
(a)データを格納するための最小の格納領域が形成される最小格納部を複数有し、前記最小格納部ごとのデータ量単位でデータの書込みおよび読出しが行なわれる記憶手段に、前記個別データ単位で予め定める行列順序に従って入力された集合データを、前記記憶手段における前記データ量単位に区分し、区分たデータを前記記憶手段のアドレスを指定して書込むことによって中間データを作成する第1の配列変換工程であって、
(a1)入力される集合データを行列方向に並ぶ予め定める数の個別データから成る複数の個別データ群から成る仮想行列データと仮定し、この仮想行列データを構成する各個別データ群の配列位置を、前記予め定める規則に従って変換して得られる仮想変換行列データを仮定した場合、データを書込むときに指定する最小格納部のアドレスは、データを最小格納部のアドレス順に従って読出したとき、読出されるデータが対応する個別データ群の並び順が、前記仮想変換行列データにおける行列順序になるようなアドレスであり、
(a2)個別データ群に相当する複数の個別データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分し、前記区分したデータを最小格納部ごとに書込み、前記区分したデータを書込むときに指定する最小格納部のアドレスは、前記区分したデータを最小格納部のアドレス順で読み出したとき、読出し順に読出した複数の前記区分したデータを合わせることで個別データおよび個別データ群を復元可能となるようなアドレスである第1の配列変換工程と、
(b)前記記憶手段からアドレス順に従って前記データ量単位でデータを読出し、復元すべき個別データ分の前記区分したデータがそろってから個別データに復元し、さらに個別データ群に含まれる個別データがすべてそろってから個別データ群を構成し、この個別データ群を構成する各個別データの配列位置を、前記予め定める規則に従って変換してから、復元した個別データを行列順序で出力することによって前記変換集合データを作成する第2の配列変換工程とを備えることを特徴とするデータ配列変換方法である。
【0056】
本発明に従えば、集合データを構成する複数の個別データが予め定める行列順序に従って個別データ単位で入力されると、第1の配列変換工程によって、入力された個別データを、記憶手段に対してデータの書込みおよび読出しを行う際のデータ量単位に区分する。この区分したデータを、順番にそれぞれ記憶手段の指定するアドレスに書込み、記憶手段に区分したデータの集まりである中間データを作成する。
【0057】
書込み時に順次指定するアドレスは、所定の規則に従って指定する。具体的には、まず入力された集合データを、行列方向に並ぶ予め定める数の個別データから成る個別データ群に区分し、この個別データ群を行列の1つの要素と考え、この個別データ群が複数個行列状に配列して成る仮想行列データを仮定する。さらに、この仮想行列データを構成する複数の個別データ群の配列位置を、前記予め定める規則に従って変換して得られる仮想変換行列データを仮定する。上記の所定の規則とは、記憶手段からデータをアドレス順、たとえばアドレスが順次増加する順序で読み出したときに、読み出したデータが対応する個別データ群の並び順が、上記の仮想変換行列データにおける行列順序になるようなアドレスを指定することである。このようなアドレスを指定してデータを書込むことによって作成した中間データは、上記の仮想変換行列データに相当する。
【0058】
上述のようにして第1の配列変換工程によって記憶手段に書込んだデータを、第2の配列変換工程で、アドレス順にデータ量単位で読み出す。読み出したデータは、復元すべき個別データ分のデータがそろってから個別データに復元する。さらに、個別データ群に含まれる個別データがすべてそろってから、その個別データ群を構成し、この個別データ群を構成する各個別データの配列位置を、前記予め定める規則に従って変換する。これは、記憶手段に書込んだ段階では、個別データ群単位での配列位置は変換しているが、個別データ群内での各個別データの配列位置は変換していないからである。このように、個別データ群内での配列位置を変換してから、復元した個別データを行列順序で出力する。これによって、前記変換集合データを作成することができる。
【0059】
たとえば行列順序とは、データが行方向にm個、列方向にn個並ぶ場合、行方向にi番目でかつ列方向にj番目のデータをx(i,j)とすると、データx(i,j)が、x(1,1),x(2,1)…,x(m−1,1),x(m,1),x(1,2),x(2,2)…,x(m−1,n),x(m,n)と進み、ある行の行方向に沿って一方から他方に進んだ後、列方向に一段移動し、次の行について行方向に沿って一方から他方に進む順序である。
【0060】
第1の配列変換工程では、個別データ群に相当する複数の個別データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分して、区分したデータで記憶手段に対するデータの書込みを行う。これによって記憶手段の各アドレスに対応する最小格納部の格納領域のデータ容量と、区分された記憶されるべきデータとのデータ量とを等しくすることができ、最小格納部の格納領域ごとにデータが記憶されない空領域をなくして、最小格納部の格納領域をデータで充たすことができる。これによって限られた記憶手段の記憶容量に対して、記憶可能なデータ量を増やすことができる。
【0061】
このデータ量単位に区分されるデータは、個別データおよび個別データ群のデータ量とは相関関係がないので、個別データおよび個別データ群のデータ量と、記憶手段におけるデータ量単位とを任意に選択することができる。これによって生産性および経済性に応じて個別データおよび個別データ群のデータ量を、記憶手段とは無関係に設定することができる。
【0062】
またデータ配列変換方法は、データ量単位に区分したデータごとにアドレスを指定するので、個別データごとにアドレスを指定する場合に比べて、アドレスを指定する回数を少なくすることができる。また記憶手段のアドレス順に従って読出すように、アドレスを指定してデータを書込むので、記憶手段からデータを読出すときに、アドレス順に順番にデータを読出すことができる。
【0063】
さらに第1の配列変換工程および第2の配列変換工程をハードウェアによって実現することによって、ソフトウェアに比べて入力画像データの変換動作を安定させ、かつ高速で行うことができる。
【0064】
また本発明は、前記第1の配列変換工程は、順次入力される集合データに関して、順次入力されてくる集合データと、前記記憶手段の前記入力されてくる第1の画像データに対応する箇所に記憶された集合データとを比較し、前記入力されてくる集合データのうち変更された部分のデータを抽出し、変更された部分のデータを前記記憶手段へ書込む比較工程をさらに備えることを特徴とする。
【0065】
本発明に従えば、比較工程を備えることによって、変更された部分の個別データを比較し、変更された部分の個別データを記憶手段に書込む。変更された部分の個別データのみを変更するだけで、後に入力された集合データを形成することができ、記憶手段に、集合データを構成するすべての個別データを書込む必要がない。これによって記憶手段に書込まれるデータ量を少なくすることができる。
また本発明は、前記比較工程は、前記入力されてくる集合データと、前記記憶手段の前記入力されてくる第1の画像データに対応する箇所に記憶された集合データとの特徴部分を抽出した識別コードをそれぞれ生成し、前記入力されてくる集合データと、前記記憶手段の前記入力されてくる第1の画像データに対応する箇所に記憶された集合データの識別コード同士を比較することを特徴とする。
【0066】
本発明に従えば、集合データの特徴を表す識別コードによって、入力されてくる集合データと、前記記憶手段の前記入力されてくる集合データに対応する箇所に記憶された集合データとを比較するので、集合データを直接比較する場合に比べて、データ量を小さくすることができ、より短時間でデータの比較を行うことができる。
【0067】
【発明の実施の形態】
図1は、本発明の実施の一形態である表示制御装置1の構成を表すブロック図である。また図2は、表示制御装置1と表示制御装置1に接続される画像データ生成装置2および表示デバイス3との関係を表す概略図である。表示制御装置1は、画像データを生成する画像データ生成装置2と、画像データを表示するための表示デバイス3とに接続される。たとえば画像データ生成装置2はパーソナルコンピュータによって実現され、表示デバイス3は液晶表示デバイスによって実現される。
【0068】
表示デバイス3は、画像を表示する表示画面4を有する。表示画面4は主走査方向Xに沿って延びる一対の縁辺と、副走査方向Yに沿って延びる他の一対の縁辺とを有し、長方形に形成される。表示デバイス3は、表示画面4に垂直な角変位軸線まわりに90度角変位可能に構成され、第1配置状態に配置された状態と、表示デバイスを見る視認者に対して相対的に第1配置状態から縦横が逆転した第2配置状態に配置された状態との両方で画像表示可能に構成される。
【0069】
画像データ生成装置2は、表示デバイス3に表示するための画像データを生成し、生成した画像データを表示制御装置1に与える。画像データは、表示デバイス3の主走査方向Xおよび副走査方向Yに従って行列状に配列される複数の画素データから成る。
【0070】
表示制御装置1は、画像データ生成装置2から与えられる画像データを、表示デバイス3に与えて画像を表示させる。また表示制御装置1は、表示デバイス3が第1配置状態および第2配置状態のいずれの状態であっても、表示される画像が同じ向きに表示されるように画像データ生成装置2から与えられた画像データを変換する。
【0071】
たとえば図2(1)に示すように、第1配置状態の表示デバイス3に、画像データ生成装置2から第1配置状態に適合した第1の画像データ6が与えられると、表示制御装置1は、第1の画像データ6を変換せずにそのまま画像データとして表示デバイス3に与える。
【0072】
また、図2(2)に示すように、第2配置状態の表示デバイス3に、画像データ生成装置2から第1の画像データ6が与えられると、表示制御装置1は、第1の画像データ6を構成する各画素データ102の配列位置を変換して、第2配置状態に適合した第2の画像データを表示デバイス3に与える。
【0073】
具体的には、第1の画像データ6を構成する各画素データ102の主走査方向Xに並ぶ順序と副走査方向Yに並ぶ順序とが互いに逆転するように配列位置を変換することによって第2の画像データを生成する。表示制御装置1は、第1配置状態の表示デバイス3に副走査方向Yに沿って文字abが並ぶように画像を表示させていた場合、表示デバイス3が角変位されて第2配置状態になると、主走査方向Xに沿って文字abが並ぶように画像を表示させる。
【0074】
図3は、画像データの変換を説明するための概略図である。図3(1)に示すように、行列状に配列される所定数の画素データ102から成る複数の画素データ群A〜Lが、主走査方向にm個、副走査方向にn個並んで、第1の画像データとなる仮想行列データ100を仮定する。
【0075】
さらに、図3(2)に示すように、仮想行列データ100を構成する各画素データ群A〜Lの主走査方向Xに並ぶ順序と副走査方向Yに並ぶ順序とが互いに逆転するように配列位置を変換した仮想変換行列データ101を仮定する。
【0076】
第1の画像データに対して第2の画像データを反時計まわりに90度角変位させる場合、まず、仮想行列データ100を仮想変換行列データ101に変換する。仮想行列データ100を構成する各画素データ群A〜Lのうち、主走査方向上流側からi番目でかつ副走査方向上流側からj番目の位置Pijの画素データ群の配列位置が、主走査方向上流側からj番目でかつ副走査方向上流側から(m+1−i)番目のQj(m+1−i)に変換されて、仮想変換行列データ101となる。
【0077】
たとえば仮想行列データ100が、主走査方向に3個および副走査方向に4個に分割される各画素データ群A〜Lから成る場合、仮想行列データ100のうち、主走査方向上流側から3番目で副走査方向上流側から1番目の位置に配置される画素データ群Cは、仮想変換行列データ101において、主走査方向上流側から1番目で、副走査方向上流側から1番目の位置に配置される。
【0078】
図3(2)に示す仮想変換行列101では、画素データ群ごとの配列位置は変換されているが、画素データ群内での各画素データの配列位置は変換されていないので、次に図3(3)に示すように、画素データ群A〜Lごとに画素データ群を構成する各画素データ102の主走査方向Xに並ぶ順序と副走査方向Yに並ぶ順序とが互いに逆転するように配列位置を変換する。
【0079】
図4は、画素データ群を構成する各画素データの配列位置の変換を説明するための概略図である。主走査方向にt個、副走査方向にu個の画素データから成る画素データ群において、主走査方向上流からI番目で、副走査方向上流側からJ番目の画素データRIJを、主走査方向上流側からJ番目でかつ副走査方向上流側から(t+1−I)番目の位置SJ(t+1−I)に並び換える。
【0080】
このような画素データ群の配列位置の変換を、図3(2)に示す仮想変換行列データを構成する画素データ群A〜Lごとにそれぞれ行うことによって、図3(3)に示す第1の画像データを構成する各画素データの配列位置が主走査方向Xと副走査方向Yとで逆転した第2の画像データに変換することができる。
【0081】
図5は、データの書込み順と読出し順とを説明するための概略図である。図3(1)に示す仮想行列データ100のうち、予め定める行列順序に従って画素データ群A〜Lを順に取出し、取出した順番とは異なる順番で読出して行列順序に従って配列することによって、仮想変換行列データ101を作成する。
【0082】
予め定める行列順序は、たとえばデータが主走査方向にm個、副走査方向にn個に並ぶ場合、主走査方向にi番目、副走査方向にj番目のデータをx(i,j)とすると、データx(i,j)が、x(1,1),x(2,1)…,x(m−1,1),x(m,1),x(1,2),x(2,2)…,x(m−1,n),x(m,n)と進む順序であり、ある行の行方向に沿って一方から他方に進んだ後、列方向に一段移動し、次の行について行方向に沿って一方から他方に進む順序である。
【0083】
たとえば図3に示すような、第1画素データ群A〜第12画素データ群Lが、4行×3列並ぶ仮想行列データ100の場合、予め定める行列順序に従って、図5(1)に示すように第1画素データ群Aから第12画素データ群Lまで順に取出す。
【0084】
仮想行列データ100に対して、各画素データ群A〜Lの配列位置が反時計まわりに90度角変位する仮想変換行列データ101を作成する場合、仮想行列データ100において主走査方向にm個、副走査方向にn個に並ぶ各画素データ群のうち、行列順序に従ってx番目に取出した画素データ群は、z番目に読出されるように読出し順を指定する。ただし(x−1)/mの商である整数項部分をyとすると、zは、{n・(m・(y+1)−x)+y+1}で表される。
【0085】
具体的には、図5(2)に示すように、仮想行列データ100が、主走査方向に3個、副走査方向に4個の3×4個の画素データ群A〜Lに分割される場合、取出し順xが4番目に取出される第4画素群Dを、読出し順zが10番目に読出されるようにする。
【0086】
このように各画素データ群A〜Lの指定された読出し順に従って読出して、主走査方向にn個、副走査方向にm個の行列状に各画素データ群A〜Lが並ぶように、行列順序に従って各画素データ群A〜Lを配列することによって、図3(2)に示す仮想行列変換データ101を作成することができる。
【0087】
表示制御装置1は、図3〜図5に示す画像変換の考え方を用いて、第1の画像データから第2の画像データに変換する。実際には、表示制御装置1は、仮想行列変換データ101に相当する中間画像データを記憶するフレームメモリ11を備え、フレームメモリ11に適合したデータ量であるメモリ幅データに第1の画像データを区分し、メモリ幅データごとにフレームメモリ11に格納する。
【0088】
表示制御装置1は、図1に示すように、予め定めるメモリ幅でデータの書込みおよび読出しが行われ、少なくとも表示デバイスの1画面分相当のデータを記憶するフレームメモリ11と、第1の画像データからフレームメモリ11に書込むためのメモリ幅データを生成するとともに、メモリ幅データをフレームメモリ11に記憶させるためのアドレスを指定する第1の配列変換手段12と、フレームメモリ11からアドレス順に従ってメモリ幅データを読出して、読出したメモリ幅データに含まれる画素データを復元し、画素データ群に含まれる複数の画素データを復元してから画素データ群を構成して、画素データ群を構成する各画素データの配列位置を変換する第2の配列変換手段13とを備える。
【0089】
フレームメモリ11は、たとえばSDR-SDRAM(Single Data Rate
Synchronous Dynamic Random Access Memory)、DDR−SDRAM(Double Data Rate Synchronous Dynamic Random Access Memory)、RDRAM(Rambus Dynamic Random Access Memory)などのような外付けメモリまたはeDRAM(embedded Dynamic Random Access Memory)、DRAM技術によって構成される擬似SRAM(たとえば1T−SRAM(1Transistor Static Random Access Memory))などのようなASIC内に存在する内部メモリによって実現される。
【0090】
表示制御装置1は、さらに第1の画像データのうち、主走査方向1ライン分の画素データをそれぞれ格納する入力ラインメモリ14と、第2の画像データの主走査方向1ライン分画素データをそれぞれ格納する出力ラインメモリ15とを有し、各ラインメモリ14,15は、複数設けられる。
【0091】
入力ラインメモリ14は、本実施の形態では4つ設けられる。4つの入力ラインメモリ14は、第1の画像データを構成する各画素データのうち、主走査方向1ライン分の複数の画素データが副走査方向に連続して4列並ぶ、いわゆる4ライン分の画素データを格納する。入力ラインメモリ14は、画像データ生成装置2から与えられる第1の画像データを、予め定められる行列順序に従って画素データ単位で順に格納し、格納した画素データを順次更新する。
【0092】
出力ラインメモリ15は、本実施の形態では2つ設けられる。2つの出力ラインメモリ15は、第2の画像データを構成する各画素データのうちの、主走査方向1ライン分の複数の画素データが副走査方向に連続して2列並ぶ、いわゆる2ライン分の画素データを格納する。出力ラインメモリ15は、第2の配列変換部13から与えられる画素データ群を、予め定める行列順序に従って画素データ単位で順に格納し、格納した画素データを順次更新する。
【0093】
第1の配列変換部12は、第1取得部16とアドレス制御部17とを有する。第1取得部16は、各入力ラインメモリ14から画素データを順次取出す。第1取得部16は、予め定める数および配列位置の画素データから成る画素データ群を構成する複数の画素データを順にアドレス制御部17に送る。この画素データ群を構成する画素データの数および配列位置は、入力ラインメモリ14の数と出力ラインメモリ15の数に応じて設定される。入力ラインメモリ14の数がu個であり、出力ラインメモリ15の数がt個である場合には、画素データ群は、主走査方向にt個、副走査方向にu個並ぶ画素データから成る。具体的には、第1取得部16は、複数の入力ラインメモリ14から予め定める行列順序に並ぶ画素データ群を行列順序に従って順に取出す。第1取得部16は、取出した画素データ群ごとに、画素データ群を構成する複数の画素データを順にアドレス制御部17に与える。
【0094】
アドレス制御部17は、第1取得部16から与えられた複数の画素データをメモリ幅データに区分するとともに、変換したメモリ幅データをフレームメモリ11にそれぞれ格納するアドレスを設定する。1つの画素データよりもメモリ幅データのデータ容量が大きい場合、アドレス制御部17は、複数の画素データを合わせたデータを、メモリ幅データのデータ容量と同じとなる複数のメモリ幅データに区分する。
【0095】
図6は、データを格納するフレームメモリ11の格納部30を示す概略図である。フレームメモリ11は、第1取得部16から与えられた画素データ群相当のデータを格納する複数の格納部30が設けられる。また各格納部30は、メモリ幅データを格納する各最小格納部31〜33をそれぞれ備える。フレームメモリ11において、各最小格納部31〜33は、データを格納するための最小の格納領域である。またメモリ幅データは、最小格納部31〜33の格納可能な最大データ量と同じデータ量に設定される。
【0096】
たとえばフレームメモリ11の最小格納部31〜33が格納可能な最大データ量は、64ビットである。また画素データ群を構成し、データ量がそれぞれ24ビットである8つの画素データ(1)〜(8)が、第1取得部16からアドレス制御部17に与えられる。
【0097】
この場合、アドレス制御部17は、第1の画素データ(1)の24ビットと、第2の画素データ(2)の24ビットと、第3の画素データ(3)の24ビットのうちの16ビット分とを1つにまとめて、64ビット分の第1メモリ幅データとして変換して、第1の最小格納部31に格納するようアドレスを指定する。また第3の画素データ(3)の残りの8ビット分と、第4の画素データ(4)の24ビットと、第5の画素データ(5)の24ビットと、第6の画素データ(6)の24ビットのうちの8ビット分とを1つにまとめて、64ビット分の第2メモリ幅データとして変換して、第2の最小格納部32に格納するようアドレスを指定する。また第6の画素データ(6)の残りの16ビット分と、第7の画素データ(7)の24ビットと、第8の画素データ(8)の24ビットとを1つにまとめて、64ビット分の第3メモリ幅データとして変換して、第3の最小格納部33に格納するようにアドレスを指定する。
【0098】
アドレス制御部17は、フレームメモリ11のアドレス順、たとえばアドレスが順次増加する順序でメモリ幅データが読出された場合に、順に読出した各メモリ幅データが対応する画素データ群の並びが、図3(2)に示すような仮想変換行列データにおける行列順序となるようにメモリ幅データを格納するアドレスを指定する。
【0099】
アドレス制御部17は、画素データ群に対応する複数のメモリ幅データを格納部30が備える各最小格納部31,32,33に格納する。また画素データ群相当の複数のメモリ幅データを、各格納部30に歯抜け状に順に格納する。具体的には、図3に関して示したように、メモリ幅データをアドレス順に読出したときに、メモリ幅データに対応する画素データ群の並び順が、変換行列データ101の行列順序に従うようにアドレスが指定される。さらに具体的には、第1取得部16から画素データ群を取出した順に対して、図5に関して示した規則に従う順番で読出されるようにアドレスが指定される。
【0100】
また、表示制御装置1は、メモリコントローラ18を有し、アドレス制御部17は、メモリコントローラ18を介して、各最小格納部31〜33にメモリ幅データを格納する。メモリコントローラ18は、アドレス制御部17からアドレス指定されたメモリ幅データを受取り、フレームメモリ11の指定されたアドレスに対応する最小格納部31〜33にメモリ幅データ書込む。またフレームメモリ11からアドレスの並ぶ順にメモリ幅データを読出し、第2の配列変換部13に与える。表示制御装置1は、フレームメモリ11からメモリ幅データを読出す場合は、最小格納部31〜33の並び順に複数のメモリ幅データを連続して読出すバースト転送を行う。
【0101】
図7は、第2の配列変換部13の配列変換を示す概略図である。第2の配列変換部13は、第2取得部19と局部回転部20とを有する。第2取得部19は、フレームメモリ11からメモリ幅データをフレームメモリ11のアドレス順に読出す。第2取得部19は、読出したメモリ幅データを、復元すべき画素データ分のデータがそろってから画素データに復元する。さらに、画素データ群に含まれる画素データをすべて復元してから、その画素データ群を構成し、構成した画素データ群を局部回転部20に与える。
【0102】
局部回転部20は、第2取得部19から与えられた画素データ群に対して、画素データ群を構成する各画素データの配列位置を主走査方向Xに並ぶ順番と副走査方向Yに並ぶ順番とを逆転するように変換する。この配列位置を変換した画素データを行列順序に従って、出力ラインメモリ15に与える。
【0103】
たとえばメモリ幅データを順に読出し、主走査方向Xに2個、副走査方向Yに4個並ぶ画素データを復元する場合、主走査方向Xに2個、副走査方向Yに2個の2×2個の回転画素データ群を2つ作成し、回転画素データ群を構成する各画素データの配列位置を変換し、配列位置を変換した各画素データを順に出力ラインメモリ15に与える。出力ラインメモリ15は、格納した画素データを表示デバイス3に与え、表示デバイス3は、与えられる画素データに応じた画像を表示する。
【0104】
図8は、表示制御装置1のフレームメモリ11にメモリ幅データを格納する際の手順を示すフローチャートであり、図9〜図11は、メモリ幅データを記憶する際の手順を説明するための概略図である。まずステップa0で、第1の画像データを第2の画像データに変換する必要があると、表示制御装置1が判断するとステップa1に進み、動作を開始する。
【0105】
ステップa1では、複数の入力ラインメモリ14が、画像データ生成装置2から第1の画像データを画素データ単位で、第1の画像データの行列順序に従って順に格納する。たとえば図9に示すように、4つの入力ラインメモリ14は、第1の画像データを構成する各画素データのうちの主走査方向1ライン分でかつ副走査方向に4列連続して並ぶ複数の画素データを格納する。入力ラインメモリ14への4ライン分の画素データの格納が完了すると、ステップa2に進む。
【0106】
ステップa2では、表示制御装置1は、入力ラインメモリ14から一度に取出す画素データ群に相当する画素データの数を決定する。また、画素データ群と入力ラインメモリ14に記憶される画素データとに基づいて、画素データ群をメモリ幅データに区分したときのメモリ幅データの数と、入力ラインメモリ14に記憶される画素データ群の取出し回数と、取出した画素データ毎にフレームメモリ11に格納するための格納部のアドレスなどを定め、ステップa3に進む。
【0107】
ステップa3では、第1取得手段16が、入力ラインメモリ14に制御信号を与え、画素データ群を構成する各画素データを取出す。たとえば図10に示すように、主走査方向に2個、副走査方向に4個並んで画素データ群を構成する複数の画素データを取出し、ステップa4に進む。
【0108】
ステップa4では、図11に示すようにアドレス制御部17が、第1取得手段16によって取出された画素データ群を構成する複数の画素データをメモリ幅データに区分するとともに、メモリ幅データ毎にフレームメモリ11に格納するためのアドレスを予め定められる規則に従って設定し、ステップa5に進む。
【0109】
ステップa5では、メモリコントローラ18によって、メモリ幅データをフレームメモリ11の所定の格納部30を構成する最小格納部31〜33に格納する。メモリ幅データが、指定されたアドレスに対応する最小格納部31〜33に格納されると、ステップa6に進む。
【0110】
ステップa6では、取出した画素データ群に相当する複数のメモリ幅データの最小格納部への格納が完了したか否かを判定し、取出した画素データ群に相当する複数のメモリ幅データの最小格納部への格納が完了していないと、ステップa4に進み、取出された画素データ群を構成する複数の画素データのうちから次のメモリ幅データを区分してステップa5〜a6を繰返す。ステップa6で、最小格納部31〜33への格納回数がステップa2で設定した回数であると判定すると、ステップa7に進む。
【0111】
ステップa7では、入力ラインメモリ14から複数の画素データ群を構成する複数の画素データを取出した回数が、ステップa2で設定した取出し回数であるか否かを判定し、画素データを取出した回数が取出し回数であると判定すると、ステップa8に進む。すなわち、入力ラインメモリ14に格納される4ライン分のデータ量に相当する複数のメモリ幅データがフレームメモリ11に書込まれたか否かが判定される。また画素データ群を取出した回数が取出し回数未満であると判断するとステップa3に戻り、ステップa3で、入力ラインメモリ14から次の画素データ群を構成する複数の画素データを取出す。
【0112】
ステップa8では、第1の画像データに対応するメモリ幅データをフレームメモリ11に格納したか否かを判定し、第1の画像データに対応するすべてのメモリ幅データをフレームメモリ11に格納した場合には、ステップa9に進む。また、そうでない場合には、ステップa1に戻る。ステップa1では、入力ラインメモリ14に格納した画素データを更新して、第1の画像データのうちの次の4ライン分の画素データを格納し、格納が完了するとステップa2に進む。
【0113】
ステップa9では、表示制御装置1は、第1の画像データに相当するすべてのメモリ幅データがフレームメモリ11の最小格納部31〜33にアドレス設定されて格納されることによって、中間画像データを作成し、動作を終了する。
【0114】
図12は、表示制御装置1のフレームメモリ11から各画素データ群を読出して、表示デバイス3に画像データを与える手順を示すフローチャートであり、図13および図14は、表示デバイス3に画像データを与える際の手順を説明するための概略図である。
【0115】
まずステップb0で、フレームメモリ11に中間画像データが作成されると、ステップb1に進み、動作を開始する。ステップb1では、第2取得部19が、メモリコントローラ18に読出し要求を伝え、図13に示すように、フレームメモリ11の最小格納部31〜33に格納される各メモリ幅データをバーストリード転送によって複数連続して読出し、ステップb2に進む。ステップb2では、読出したメモリ幅データから、画素データを復元し、ステップb3に進む。
【0116】
ステップb3では、第2取得部19は、画素データ群を構成する複数の画素データが復元すると、図14に示すように、画素データ群を構成する。次に画素データ群を構成する複数の画素データのうち主走査方向に2個、副走査方向に2個並ぶ2×2の回転画素データ群に区分する。局部回転部20は、第2取得部19によって区分された回転画素データ群を取得し、回転画素データ群を構成する各画素データの配列を90度角変位させる。このように画素データ群を回転画素データ群に区分し、回転画素データ群ごとに画素データの配列を変換して、画素データ群を構成する各画素データの配列位置を変換すると、ステップb4に進む。
【0117】
ステップb4では、ステップb3で配列位置を変換した複数の画素データを、予め定められる行列順序に従って出力ラインメモリ15に書込み、ステップb5に進む。ステップb5では、主走査方向2ライン分の画素データが出力ラインメモリ15に格納されたか否かを判定し、主走査方向2ライン分の画素データが出力ラインメモリ15に格納されている場合は、ステップb6に進む。主走査方向2ライン分の画素データが出力ラインメモリ15に格納されていない場合は、ステップb1に戻り、再びフレームメモリ11からメモリ幅データを読出す。
【0118】
ステップb6では、出力ラインメモリ15に書込まれた画素データを表示デバイス3に与えて画像を表示させ、ステップb7に進む。ステップb7では、フレームメモリ11に格納されるすべてのメモリ幅データ対応する画素データが表示デバイス3に出力されたか否かを判定し、出力されていない場合は、ステップb1に進み、再びフレームメモリ11からメモリ幅データを読出す。またフレームメモリ11に格納されるすべてのメモリ幅データに対応する画素データが表示デバイス3に出力された場合には、ステップb8に進み、動作を終了する。
【0119】
表示制御装置1の第1の配列変換部12および第2の配列変換部13は、ハードウェアによって実現することができる。以下にアドレス制御部17と局部回転部20の構成の例示を示す。
【0120】
図15は、アドレス制御部17を示す論理回路図である。アドレス制御部17は、入力信号として、各入力ラインメモリ14から与えられる画素データ信号PIX0〜PIX3と、画素データ信号PIX0〜PIX3が有効であるか否かを表す入力データ有効無効信号SELと、アドレス設定の開始のタイミングを表す初期アドレス設定トリガ信号LDTと、予め定められる基準最小格納部のアドレスを表すベースアドレス信号LDと、歯抜け状に所定の間隔をあけて最小格納部にデータを格納するための信号を表す歯抜けアドレス信号DIFと、データのリセットを行うリセット信号RSTと、クロックパルス信号を与えるクロック信号CLKとが入力される。
【0121】
またアドレス制御部17は、出力信号として、メモリ幅データを表すメモリ幅データ信号MEMと、メモリ幅データ信号が有効であるか否かを表す出力データ有効無効信号DENと、メモリ幅データが格納されるアドレスを設定するアドレス信号ADRとを出力する。入力データ有効無効信号SELは、送られる画素データ毎にHIGHおよびLOWを交互に繰返す。
【0122】
アドレス制御部17は、画素データをメモリ幅データに変換するデータ変換部分41と、メモリ幅データを格納する最小格納部のアドレスを設定するアドレス設定部分42とを有する。アドレス制御部17は、フリップフロップ43,47と加算器44とセレクタ45,46とを含んで構成される。
【0123】
図16は、セレクタの真理値表を示す表である。セレクタは、2つのデータ信号と、2つのデータ信号のいずれを選択するかを指定するデータセレクト信号とが入力され、データセレクト信号に応じて、2つのデータ信号のうち、いずれか一方を出力する。たとえばデータセレクト信号がHIGHである場合、HIGH側入力端子から入力される一方のデータ信号が出力され、データセレクト信号がLOWである場合、LOW側入力端子から入力される他方のデータ信号が出力される。
【0124】
図17は、データ変換部分41の一部を示す論理回路図であり、図18は、図17おける論理回路図のタイミングチャートである。データ変換部分41は、フリップフロップ43とセレクタ45とを有する。フリップフロップ43は、制御信号としてクロック信号CLKが入力され、画素データ信号PIXおよび入力データ有効無効信号SELのいずれかと、リセット信号RSTとが入力端子から入力される。
【0125】
セレクタ45は、画像データ信号がHIGH側入力端子から入力され、クロック周波数の1周期前にセレクタ45から出力された画像データ信号MEMが、帰還してLOW側入力端子から入力され、データセレクト信号として入力データ有効無効信号SELが入力される。
【0126】
画素データ信号PIXは、第1のフリップフロップ43aに入力され、第1のフリップフロップ43aから出力されるデータ信号は2つに分岐される。第1のフリップフロップ43aから出力されるデータ信号の一方は、第1のセレクタ45aのHIGH側入力端子に入力される。また第1のフリップフロップ43aから出力されたデータ信号の他方は、第2のフリップフロップ43bに入力される。第2のフリップフロップ43bから出力されるデータ信号は、第2のセレクタ45bのHIGH側入力端子に入力される。
【0127】
第1のセレクタ45aから出力されるデータ信号は、第3のフリップフロップ43cに入力される。第3のフリップフロップ43cから出力されるデータ信号は、2つに分岐される。第3のフリップフロップ43cから出力されるデータ信号の一方は、第1のセレクタ45aのLOW側入力端子に入力される。また第3のフリップフロップ43cから出力されたデータ信号の他方は、メモリ幅データ信号として出力される。
【0128】
また第2のセレクタ45bから出力されるデータ信号は、第4のフリップフロップ43dに入力され、第4のフリップフロップ43dから出力されるデータ信号は、2つに分岐される。第4のフリップフロップ43dから出力されるデータ信号の一方は、第2のセレクタ45bのLOW側入力端子に入力される。また第4のフリップフロップ43bから出力されたデータ信号の他方は、メモリ幅データ信号として出力される。
【0129】
また入力データ有効無効信号SELは、第5のフリップフロップ43eに入力され、第5のフリップフロップ43eから出力されたデータ信号が第6のフリップフロップ43fに入力され、第6のフリップフロップ43fから出力されたデータ信号が2つに分岐されて一方のデータ信号が第7のフリップフロップ43gに入力され、第7のフリップフロップ43gから出力されたデータ信号が出力データ有効無効信号DENとして出力される。
【0130】
第6のフリップフロップ43fから出力され、分岐された他方のデータ信号は、第4、第5のフリップフロップによってタイミングが調整されて、各セレクタ45a,45bに入力される。
【0131】
図18に示すように、メモリ幅データ信号MEMは、各セレクタ45a,45bからそれぞれ出力される出力データを表し、データ信号として送られる画素データと次に送られる画素データとを同時に出力する。また出力データ有効無効信号DENが、送られるデータ信号1つ毎にHIGHおよびLOWを交互に繰返す。
【0132】
出力されるメモリ幅データ信号MEMのうち、出力データ有効無効信号DENによって、出力されるメモリ幅データ信号MEMを1つおきに有効とすることによって、順番に送られる画素データ群の前後の2つの画素データ同士をまとめ、1つのメモリ幅データとして変換することができる。図15に示すように画素データが複数同時に入力された場合も同様に、画素データ毎に順番に送られる前後の2つの画素データ同士をまとめて1つのメモリ幅データに変換することができる。
【0133】
図15に示すように、アドレス設定部分42は、フリップフロップ47と、セレクタ46と、加算器44とを有する。第1のセレクタ46aは、ベースアドレス信号LDがHIGH側入力端子に入力され、クロック周波数の1周期前にアドレス信号ADRとして出力されたデータ信号が、帰還してLOW側入力端子に入力され、データセレクト信号として初期アドレス設定トリガ信号LDTが入力される。
【0134】
第1のセレクタ46aから出力されたデータ信号は、第2のセレクタ46bのLOW側入力端子に入力され、クロック周波数の1周期前にアドレス信号ADRとして出力されたデータ信号が、帰還してHIGH側入力端子に入力され、データ変換部分41に設けられる第6フリップフロップ43fから分岐した入力データ有効無効信号SELを表すデータ信号がデータセレクト信号として入力される。また歯抜けアドレス信号DIFが第3のセレクタ46cのHIGH側入力端子に入力され、データ変換部分41に設けられる第6フリップフロップ43fから分岐した入力データ有効無効信号SELを表すデータ信号がデータセレクト信号として入力される。
【0135】
第2のセレクタ46bから出力される信号と第3のセレクタ46cから出力される信号は加算器44に入力される。この加算器44から出力される信号が、アドレス設定部分41に設けられるフリップフロップ47に入力される。フリップフロップ47から出力されたデータ信号は、フリップフロップ47によって、メモリ幅データ信号MEMとのタイミングが調整されて3つに分岐される。フリップフロップ47から分岐したデータ信号のうち1つは、アドレス信号ADRとして出力され、他の1つは、HIGH側入力端子から第1のセレクタ46aに入力され、さらに他の1つは、LOW側入力端子から第2のセレクタ46bに入力される。
【0136】
図19は、図15における論理回路図のタイミングチャートである。上述する回路構成によって、出力データ有効無効信号DENがHIGHとなる回数毎に、ベースアドレス信号LDに歯抜けアドレス信号DIFが積算されたデータ信号が出力される。これによって出力されるメモリ幅データ順に、予め定められる最小格納部のアドレスから所定の間隔分はなれた最小格納部のアドレスが順に設定される。
【0137】
上述するようにデータ変換部分41によって画素データがメモリ幅データに変換され、アドレス設定部分42によってメモリ幅データが格納される最小格納部のアドレスが設定されることによって、メモリ幅データをフレームメモリ11の最小格納部に歯抜け状に格納することができる。
【0138】
図20は、局部回転部20を示す論理回路図である。図21は、図20に示す論理回路による画素データの配置変換を示す図であり、図21(1)は、反時計まわりに90度角変位する画素データの配置位置を示し、図21(2)は、時計まわりに90度角変位する画素データの配置位置を示す。局部回転部20は、4つのセレクタ49と4つのフリップフロップ50とを有する。図20に示す論理回路図は、主走査方向Xに2個、副走査方向Yに2個並ぶ画素データ群が与えられた場合に、画素の配列を90度角変位させるための回路である。
【0139】
局部回転部20は、入力信号として、フレームメモリ11から与えられる画素データ信号PIX10〜PIX13と、画素データ信号PIX10〜PIX13が有効であるか否かを表すデータ有効無効信号SELと、データのリセットを行うリセット信号RSTと、クロックパルス信号を与えるクロック信号CLKとが入力される。また局部回転部20は、出力信号として、各出力ラインメモリに与える画素データ信号PIX20〜PIX23を出力する。
【0140】
主走査方向上流側からI番目で副走査方向上流側からJ番目の画素をRIJとして表すと、R11で表される画素配置を第1の画素位置とし、R12で表される画素配置を第2の画素位置とし、R21で表される画素配置を第3の画素位置とし、R22で表される画素配置を第4の画素位置とすると、各画素位置にある画素を表す画素データPIX10〜PIX13は、セレクタ49a〜49dによって配置位置が変更されて出力される。
【0141】
第1のセレクタ49aから出力される画素データは、第1の画素位置にある画素データPIX20として出力される。同様に第2〜第4のセレクタ49b〜49dから出力される画素データは、第2〜第4の画素位置にある画素データPIX21〜PIX23としてそれぞれ出力される。
【0142】
たとえば第1の画素位置にある第1の画素▲1▼を表す画素データPIX10は、第3のセレクタ49cのHIGH側入力端子に入力されるとともに、第2のセレクタ49bのLOW側入力端子に入力される。データセレクト信号がHIGHの場合は、第1の画素位置にある第1の画素▲1▼は、第3の画素位置にある画素として出力される。またデータセレクト信号がLOWの場合は、第1の画素位置にある第1の画素▲1▼は、第2の画素位置にある画素として出力される。また各セレクタ49a〜49dから出力されるデータ信号は、各フリップフロップ50に入力されることによってタイミングが調整されて出力される。
【0143】
【表1】
Figure 0003818951
【0144】
表1は、各画素の画素位置が変換された場合の画素位置を示す表である。表1および図21に示すように、データセレクト信号がHIGHの場合は、画素の配列が反時計まわりに90度角変位させることができ、データセレクト信号がLOWの場合は、画素の配列が時計まわりに90度角変位させることができる。なお、詳細な説明は省略するが、第1取得部16および第2取得部19もハードウェアによって実現される。
【0145】
以上のように表示制御装置1によれば、第1配置状態に適合した第1の画像データを第2配置状態に適合した第2の画像データに変換して表示デバイス3に与えることができる。
【0146】
表示制御装置1が、第2の画像データを作成する際には、アドレス順にメモリ幅データを読出したときに、画素データ群を1単位とみなして画素データ群の配列位置が主走査方向Xおよび副走査方向Yの並びを逆転した仮想変換行列データとなるように、フレームメモリ11の所定のアドレスに書込む。フレームメモリ11からメモリ幅データごとに読出して、画素データ群内の画素データの配列位置が、主走査方向Xおよび副走査方向Yの並びを逆転した規則に従って変更して第2配置位置に適合する第2の画像データを作成する。
【0147】
予め定められる規則は、たとえば表示位置が時計まわりに90度角変位する場合、主走査方向にm個に分割される画素群のうち、主走査方向上流側からi番目で、副走査方向上流側からj番目の位置Pijの画素群の配列を、主走査方向上流側からj番目でかつ副走査方向上流側から(m+1−i)番目の位置Qj(m+1−i)に並び換える規則に設定することによって、画素の並びを反時計まわりに90度角変位させることができ、表示デバイス3に表示される画像を角変位前の状態と同じ向きに表示させることができる。
【0148】
また上述するように第1および第2の配列変換部12,13を論理回路によって構成されるハードウェアによって実現するので、ソフトウェアの処理速度に依存することなく、画素データの配列変換動作を安定させかつ高速で行うことができる。
【0149】
またフレームメモリ11の所定の格納部30に画素データ群に相当する複数の画素データを書込む際には、フレームメモリ11に予め定められた最小格納部31〜33の最大記憶容量に応じたメモリ幅データに、画素データ群を構成する複数の画素データを変換して、フレームメモリ11に記憶させる。これによって限られたフレームメモリ11の記憶容量に対して、無駄なくデータを記憶させることができる。
【0150】
画素データごとにフレームメモリ11の最小格納部に記憶させた場合には、画素データのデータ量と格納部の記憶容量とが一致せず、最小格納部に画素データが記憶されずに空の記憶領域が生じる場合がある。この場合、空の記憶領域を見越して、記憶すべき複数の画素データよりも大きい記憶容量を有するフレームメモリ11が必要となる。本発明では、フレームメモリ11の記憶容量に対して無駄なくデータを記憶させることができるので、画素データごとにフレームメモリ11の最小格納部に記憶させる場合に比べて、少ない記憶容量のフレームメモリ11を用いることができる。これによって表示制御装置1を安価に実現することができる。また複数の画素データに相当するメモリ幅データをフレームメモリ11の所定の最小格納部31〜33に書込むことによって、画素データごとに所定の最小格納部に書込む場合に比べて、アドレスの設定を容易にすることができる。
【0151】
またメモリ幅データがフレームメモリ11の所定のアドレスに書込まれるので、フレームメモリ11から画素データ群に相当するメモリ幅データを読出すときにアドレス順に読出すことができフレームメモリ11へのアクセスにかかるオーバーヘッドを少なくして、読出し速度を早くすることができる。さらに第2取得部19によって、フレームメモリ11からバーストリード転送によって複数の格納部30に格納される画素データ群に相当するメモリ幅データを連続して読出すので、単位時間あたりの転送量を増やして転送効率を高めることができる。これによってフレームメモリ11に書込みおよび読出しする時のアクセスにかかるページ切換えのオーバーヘッドを少なくすることができる。
【0152】
またデータ読出しに費やされる時間をさらに短時間にすることができ、ソフトウェア処理では、表示するために負荷がかかるリアルタイムに画像を順次切換える動画などであっても安定かつ高速に表示することができる。
【0153】
また2×2の回転画素データ群は、角変位する最小単位であり、画素データ単位で行うので、より簡単な構成で実現することができ、また処理速度を早くすることができる。また画素データ群を格納するアドレスを制御するアドレス制御処理と回転画素データ群を構成する各画素データを回転させる処理との間で、画像データ単位の相関関係がなく、独立して行うことができる。これによってフレームメモリ11として用いられる記憶手段の制限をなくし、記憶手段の選択肢を増やすことができる。これによってフレームメモリ11として最も安価なメモリ構成の組合せを選択することができる。
【0154】
また入力ラインメモリ14の数と出力ラインメモリ15の数とに応じて設定した画素データ群を入力ラインメモリ14から取出すことによって、取出した画素群毎に出力ラインメモリに取入れることができ、画素データの配列変換を容易に行うことができる。
【0155】
また各画素データ群が分割されることなくフレームメモリ11におけるメモリ幅に区分されるよう、画素データ群のデータ量に対して、フレームメモリ11におけるメモリ幅を整数倍に設定してもよい。これによって、フレームメモリ11からデータを読み出した時に、画素データ群に含まれる画素データ分のデータが既にそろっている状態になるので、画素データ群に含まれる画素データがそろうまでデータを記憶する必要がない。また画素データ群が分割されることがなくフレームメモリ11に書込まれるので、仮想変換行列データにおける行列順序となるようにアドレスを指定することが容易となる。
【0156】
上述する記載は、本発明の実施の一形態に過ぎず、発明の範囲内で構成を変更することができる。表示制御装置1は、画素データの配列を変換するデータ配列変換装置であるので、たとえばデータ配列変換装置を用いて、画素データ以外のデータの配列を変換してもよい。
【0157】
データ配列変換を行うことによって、データ配列の変換を安定して高速で行うことができ、かつ変換した中間画像データを記憶する記憶手段の容量に対して無駄なく有効に記憶することができる。たとえば画像表示に限らず、印刷などの画像形成であっても縦横を逆転した画像を形成することができる。
【0158】
また上述する実施例では、第1の画像データを反時計まわりに90度角変位させたが、第1の画像データに対して時計まわりに90度角変位させてもよい。第1の画像データを時計まわりに90度角変位させる場合、第1の画像において副走査方向にn個に分割される画素データ群のうち、主走査方向上流側からi番目で、副走査方向上流側からj番目の位置Pijの画素群の配列を、主走査方向上流側から(n+1−j)番目でかつ副走査方向上流側からi番目のQ(n+1−j)iに並び換えて中間画像データを作成する。
【0159】
また仮想変換行列として、画素データ群が主走査方向にt個、副走査方向にu個集まるt×u個の画素データの集まりとすると、画素データ群内における画素データの配列を、主走査方向上流からI番目で、副走査方向上流側からJ番目の画素RIJを、主走査方向上流側からJ番目でかつ副走査方向上流側から(t+1−I)番目の位置SJ(t+1−I)に並び換えるように画素データ群の配列位置を変換する。
【0160】
この場合、アドレス制御部17は、第1の画像データにおいて主走査方向にm個、副走査方向にn個に分割される画素データ群のうち、第1の画像データの書込み順に応じてx番目に取出した画素データ群を、z番目に読出される格納部に格納するように設定する。ただし(x−1)/mの商である整数項部分をyとすると、zは、{n・(x−m・y)−y}で表される。
【0161】
また表示デバイス3が90度角変位しなくてもよく、表示制御装置1は、縦横が逆転する第1配置状態と第2配置状態とで表示する画像を変更することができる。たとえば表示デバイス3を見る視認者が、表示画面を見る方向を縦横逆転する場合に、第1配置状態から第2配置状態に切換えてもよく、表示デバイス3が角変位しない場合であってもよい。たとえば情報携帯端末に設けられる表示デバイス3などの小型の表示デバイスの表示画像の縦横を逆転させてもよい。また入力ラインメモリ14および出力ラインメモリ15の個数は、特に限定されることはない。また表示制御装置1は、画像データ生成装置2から与えられる画像データを変換して表示デバイス3に与える。したがって表示制御装置1は、表示デバイス3に内蔵されるほかに、画像データ生成装置2に内蔵されてもよく、表示デバイス3および画像データ生成装置2の外部に設けられてもよい。
【0162】
図22は、本発明の他の実施の形態である表示制御装置50を示すブロック図である。表示制御装置50は、図1に示す表示制御装置1とほぼ同様の構成を有し、その第1の配列変換手段が異なる以外は同様である。同一の構成については、同一の参照符号を付して、詳細な説明は省略する。
【0163】
第1の配列変換手段51は、図1に示す第1の配列変換手段12にさらに比較手段52と識別コード生成部53とを有する。比較手段52は、順次入力される第1画像データに関して、先に入力された第1の画像データと後に入力された第2の画像データとを比較し、画像データのうち変更された画像部分のデータを抽出し、変更された画素部分のデータをフレームメモリ11へ書込む。
【0164】
識別コード生成手段53は、第1取得部16から送られるデータを所定数格納し、所定数格納した段階で格納したデータからメモリ幅データに応じた識別コードを生成する。比較手段52は、メモリコントローラ18を介してフレームメモリ11に格納されているメモリ幅データに応じた前識別コードを読出す識別コード制御部54と、識別コード生成部53によって生成される識別コードと識別コード制御部54から与えられる前識別コードとを比較する比較部55とを有する。
【0165】
識別コード生成部53は、たとえばCycle Redundancy Check(CRC)生成手法を用いてメモリ幅データの識別コードを生成する。またその他にハッシュ法、MD5(Message Digest algorithm 5)、ランレングス法、冗長データ符号化法などによって識別コードを生成してもよい。冗長データ符号化は、符号化するデータ内で冗長データを抽出し、その部分に対して符号化する手法であって、入力される画像データに同一色のデータまたは同一のデータストリームの流れがどれぐらい続くのかを表す識別コードを生成する。
【0166】
図23は、比較手段52がフレームメモリ11にデータを書込む際の手順を示すフローチャートである。ステップc0では、アドレス制御部17から更新されたメモリ幅データが送られるとステップc1に進み、動作を開始する。
【0167】
ステップc1では、比較手段52は、識別コード制御部54によって、先に入力された第1の画像データに対応するメモリ幅データに応じて生成された前識別コードを、メモリコントローラ18を介してフレームメモリ11から読出し、前識別コードを比較部55に与え、ステップc2に進む。
【0168】
ステップc2では、識別コード生成部53によって、第1取得部16から送られる第1の画像をメモリ幅データに区分するとともに、メモリ幅データとメモリ幅データがフレームメモリ11に記憶されるアドレスとを所定数格納し、メモリ幅データに応じた識別コードを生成し、識別コードの生成が完了すると、ステップc3に進む。ステップc3では、識別コード生成部53によって生成された識別コードを比較手段52の比較部55に与え、ステップc4に進む。
【0169】
ステップc4では、比較部55によって、ステップc2で読出した前識別コードとステップc3で生成した識別コードとを比較し、2つの識別コードが同一であるか否かを判断する。識別コード同士が同一である場合にはステップc6に進み、識別コード同士が異なっている場合にはステップc5に進む。
【0170】
ステップc5では、メモリコントローラ18を介してアドレス制御部17から送られるメモリ幅データを、フレームメモリ11の所定の最小格納部に格納し、ステップc6に進む。ステップc6では、ステップc2で生成された識別コードを複数のメモリ幅データに応じて新しくフレームメモリ11に格納させて、ステップc7に進み、ステップc7で動作を終了する。
【0171】
以上のように表示制御装置50によれば、上述する表示制御装置1と同様の効果を得ることができる。また先に入力された第1の画像データと後に入力された第2の画像データを比較し、変更された画像部分のデータを記憶手段に書込むので、記憶手段に書込まれるデータ量を少なくすることができる。さらに識別コードによって先に入力された第1の画像と後に入力された第1の画像との比較を行うので、より短時間でデータの比較を行うことができる。これによって画像処理にかかる負荷を減らすことができ、また記憶手段への書込み量を減らして消費電力の低減を図ることができる。また動画などを表示する場合であっても安定かつ高速に表示することができる。
【0172】
特にWindows(登録商標)などのアプリケーション表示画面では、静止している部分が多く、実際に書き換え処理を必要としている部分が非常に少ないためにフレーム書込み回数を少なくすることができ、好適に用いることができる。また一般的なランレングス法では、同一色の連続性しか表現できないので、同一のデータストリームまで拡大して識別コードを生成することによってより確実な識別コードを生成することができる。
【0173】
図24は、本発明のさらに他の実施の形態である表示制御装置60を示す正面図である。表示制御装置60は、図1に示す表示制御装置1とほぼ同一の構成を有し、画像データ生成装置2および表示デバイス3の外部に設けられる。同様の構成については、同一の参照符号を付して、詳細な説明は省略する。表示制御装置60は、画像データ生成装置2と表示デバイス3とを電気的に接続する接続ケーブル61,62に連結される。
【0174】
具体的には、画像データ生成装置2に接続される入力側ケーブル61が表示制御装置60の入力側ポート63に接続される。また表示デバイス3に接続される出力側ケーブル62が表示制御装置60の出力側ポート64に接続される。
【0175】
図25は、表示制御装置60の電気的構成を示すブロック図である。表示制御装置60は、画像データ生成装置2から画像データが入力される入力側ポート63と、表示デバイス3に画像データを出力する出力側ポート64と、フレームメモリ11と、画像データを構成する各画素データの配列位置を変換するための縦横変換部65と、縦横変換部65に画素データの配列変換指令を与える回転指示マイコン66とを備える。
【0176】
入力側ポート63および出力側ポート64は、画像データを伝送可能なケーブル61,62が着脱自在に接続される。入力側ポート63は、入力側ケーブル61を介して画像データ生成装置2から画像データが与えられる。縦横変換部65は、入力側ポート63に与えられた画像データ6を取得し、画像データを変換して、または変換せずに出力側ポート63に与える。出力側ポート64は、出力側ケーブル62を介して縦横変換部65から与えられた画像データを表示デバイス3に与える。
【0177】
回転指示マイコン66は、表示デバイス3が第1配置状態に配置された状態であるか、第1配置状態から縦横が逆転した第2配置状態に配置された状態であるかを判断し、配置状態に応じて縦横変換部65に画像データの配列変換指令を与える。
【0178】
たとえば表示制御装置60は、表示デバイス3の配置状態が入力される配置状態入力スイッチ67を有する。配置状態入力スイッチ67は、入力された表示デバイス3の配置状態を示す配置信号を、回転指示マイコン66に与える。回転指示マイコン66は、配置状態入力スイッチ67から配置信号を取得し、表示デバイス3が第1配置状態であるか第2配置状態であるかを判断する。
【0179】
縦横変換部65は、入力ラインメモリ14と、第1の配列変換部12と、第2の配列変換部13と、出力ラインメモリ15と、メモリコントローラ18とを備える。縦横変換部65は、1つの集積回路(Integrated Circuit:IC)によって実現されてもよく、また複数の回路によって実現されてもよい。
【0180】
縦横変換部65は、表示デバイス3が第1配置状態および第2配置状態のいずれの状態であっても、表示される画像が同じ向きに表示されるように画像データ生成装置2から与えられた画像データを変換する。
【0181】
たとえば図2(1)に示すように、表示デバイス3が第1配置状態であり、縦横変換部65に第1配置状態に適合した第1の画像データが与えられる場合、回転指示マイコン66は、縦横変換部65に画像データの配列変換指令を与えない。配列変換指令が与えられないときには、縦横変換部65は、第1配置状態に適合した第1の画像データ6を変換せずにそのまま画像データとして表示デバイス3に与える。
【0182】
また図2(2)に示すように、表示デバイス3が第2配置状態であり、縦横変換部65に第1配置状態に適合した第1の画像データが与えられる場合、回転指示マイコン66は、縦横変換部65に画像データの配列変換指令を与える。配列変換指令が与えられるときには、縦横変換部65は、フレームメモリ11を用いて、第1の画像データ6を第2配置状態に適合した第2の画像データに変換する。
【0183】
縦横変換部65は、このように表示デバイス3の配置状態に応じた画像データを表示デバイス3に与える。表示デバイス3は、縦横変換部65から与えられる画像データに基づいて画像を表示させることによって、配置状態に応じた画像を表示することができる。
【0184】
フレームメモリ11を用いて縦横変換部65が行う画像データの配列変換動作については、上述した表示制御装置1と同様なので詳細な説明については省略する。縦横変換部65がフレームメモリ11を用いて上述した表示制御装置1と同様の動作を行うことによって、表示制御装置1と同様の効果を得ることができる。
【0185】
たとえば画素データの配列変換を、論理回路から成るハードウェアによって実現するので、ソフトウェアの処理速度に依存することなく、動作を安定させかつ高速で行うことができる。またメモリ幅単位に画素データを変換してフレームメモリ11に記憶させるので、フレームメモリ11の記憶容量に対して無駄なくデータを記憶させることができる。
【0186】
画素データをメモリ幅単位に変換せず、フレームメモリ11の最小格納部ごとに1つずつ画素データを記憶させた場合には、画素データのデータ量と最小格納部の記憶容量とが一致しない場合がある。この場合、最小格納部には、画素データが記憶されずに空となる空の記憶領域が生じる。したがって空の記憶領域を見越して、記憶すべき複数の画素データよりも大きい記憶容量を有するフレームメモリ11が必要となる。本発明では、フレームメモリ11の記憶容量に対して無駄なくデータを記憶させることができるので、画像データが記憶されない空の記憶領域をなくすことができる。これによってフレームメモリ11の最小格納部ごとに1つずつ画素データを記憶させる場合に比べて、少ない記憶容量のフレームメモリ11を用いることができる。
【0187】
さらに表示制御装置60は、画像データ生成装置2と表示デバイス3との間にケーブル61,62によって着脱自在に連結される。これによって既存の画像データ生成装置2および表示デバイス3を用いることができる。すなわち特別な画像データ生成装置2および表示デバイス3を必要とせずに、表示デバイス3の配置状態に応じた画像を表示させることができる。
【0188】
表示デバイス3は、第1配置状態と第2配置状態との2つの状態に配置状態を変更可能なほかに、2つ以上の配置状態に変更可能であってもよい。たとえば表示デバイス3は、第1配置状態から±90度、±180度および±270度角変位した配置状態で配置されてもよい。この場合、回転指示マイコン66は、配置状態の変更にあたって、配置状態入力スイッチ67から表示デバイス3が角変位した方向と角度とを取得する。すなわち表示デバイス3が第1配置状態から時計まわりとなるプラス方向に変位したか、第1配置状態から反時計まわりとなるマイナス方向に変位したかを示す方向情報と、表示デバイス3が第1配置状態から角変位した角度を示す角度情報とを取得する。
【0189】
たとえば第1配置状態から−90度角変位した場合には、配置状態入力スイッチ67は、表示デバイス3が第1の表示状態からマイナス方向に角変位したことを方向情報として取得し、表示デバイス3が第1の表示状態から90度角変位したことを角度情報として取得する。配置状態入力スイッチ67は、取得した方向情報および角度情報を縦横変換部65に与える。縦横変換部65は、回転指示マイコン66から与えられる方向情報および角度情報に基づいて、画像データを変換する。このようにして縦横変換部65が変換した画像データを表示デバイスに与えることによって、表示デバイス3は、配置状態が2つ以上の場合であっても、配置状態に適合した画像を表示することができる。
【0190】
図26は、本発明のさらに他の実施の形態である表示制御装置70の電気的構成を示すブロック図である。表示制御装置70は、図1に示す表示制御装置1とほぼ同様の構成を有し、画像データ生成装置2に内蔵される。同様の構成については、同一の参照符号を付して、詳細な説明は省略する。
【0191】
本実施の形態の特徴は、表示制御装置70を、画像データ生成装置2に設けられる接続部に着脱可能とされる接続体として構成したことである。本実施形態では、画像データ生成装置2がパーソナルコンピュータ71であり、接続体が、コンピュータ71の拡張スロットに装着される拡張ビデオカードである場合を説明する。なお、以下の説明では、表示制御装置70を拡張ビデオカード70と称して説明する。
【0192】
拡張ビデオカード70は、たとえばAGP(Accelerated Graphics Port)バスまたはPCI(Peripheral Component Interface)バスのようなデータ転送バスに対応し、対応する拡張スロットに装着される。拡張ビデオカード70は、バスインターフェース73と、描画コプロセッサ74と、画像変換部75と、ディスプレイメモリ78と、メモリコントローラ18と、ディスプレイコントローラ76と、オーバレイ処理部77とを含んで構成される。この構成のうち、画像変換部75と、ディスプレイメモリ78と、メモリコントローラ18とが本発明の表示制御装置として機能する構成である。
【0193】
コンピュータ71は、画像データを生成するための基礎となる画像生成データを生成し、AGPバスまたはPCIバスを介して拡張ビデオボード70に与える。画像生成データは、目的の画像データを生成するための指令を示す画像生成指令データを含む。
【0194】
バスインターフェース73は、コンピュータ71の拡張スロットに接続可能に形成されるコネクタ部分を含む。バスインターフェース73は、コンピュータ71に設けられるAGPバスまたはPCIバスを介して、画像生成データを取込む。描画コプロセッサ74は、バスインターフェース73が取込んだ画像生成データに基づいて、描画イメージデータを生成する。たとえば描画コプロセッサ74は、画像生成指令データに基づいて、2次元画像化処理、3次元画像化処理およびテクスチャ処理などを行う。なお描画イメージデータは、本明細書において第1の画像データを意味する。すなわち描画コプロセッサ74は、第1の画像データを生成する。
【0195】
画像変換部75は、上述した第1の配列手段12および第2の配列手段13と同様の動作を実行可能に構成される。すなわち描画コプロセッサ74から第1の画像データを取得し、画像データを構成する各画素データを区分してディスプレイメモリ78に書込むためのメモリ幅データを生成するとともに、各メモリ幅データをディスプレイメモリ78に格納させるためのアドレスを設定する。
【0196】
また画像変換部75は、ディスプレイメモリ78からアドレス順に従ってメモリ幅データを読出して、読出したメモリ幅データに含まれる画素データを復元し、画素データ群に含まれる複数の画素データを復元してから画素データ群を構成して、画素データ群を構成する各画素データの配列位置を変換する。
【0197】
ディスプレイメモリ78は、少なくとも表示デバイス3の1画面分の複数の画素データに相当するデータ記憶容量を有する。ディスプレイメモリ78は、表示デバイス3に表示するための画像データを記憶するとともに、上述したフレームメモリ11の役割も果たし、画素データ群の並びが変換された中間画像データを記憶する。言換えると、ディスプレイメモリ78は、上述したフレームメモリ11および出力メモリ15の機能を兼ねる。さらにディスプレイメモリ78は、3次元表示用の画像データも保存する。
【0198】
メモリコントローラ18は、ディスプレイメモリ78に対するデータの書込みおよび読出しを制御する。すなわち画像変換部75から与えられるデータをディスプレイメモリ78に格納するとともに、ディスプレイメモリ78に格納されるデータを、画像変換部75またはディスプレイコントローラ76に与える。
【0199】
ディスプレイコントローラ76は、表示デバイス3へ画像データを出力するタイミングを生成する。ディスプレイコントローラ76は、CRTC(Cathode-Ray Tube Controller)と呼ばれることもある。オーバレイ処理部77は、ディスプレイコントローラ76から与えられる画像データに基づいて、背景となる背景画像に他の画像を重ね合わせた画像データを生成する。たとえば背景画像に対してDVD(Digital Versatile Disk)などに記憶される動画映像を重ね合わせた画像データを生成する。またたとえばオーバレイ処理部77は、背景画像に対してカーソルおよびハードウェアを示すアイコンを重ねて表示する。
【0200】
図27は、画像変換部75の電気的構成を示すブロック図である。画像変換部75は、複数の入力ラインメモリ14と、第1取得部16と、アドレス制御部17と、第2取得部19と、局部回転部20とを含んで構成される。画像変換部75は、ディスプレイメモリ78およびメモリコントローラ18を用いて、図1に示す表示制御装置1と同様の動作を行う。すなわち画像変換部75は、ディスプレイメモリ78およびメモリコントローラ18を用いて、描画コプロセッサ74から与えられる第1の画像データを、表示デバイス3の配置状態に適合する画像データに変換する。
【0201】
概略を説明すると、描画コプロセッサ74は、コンピュータ71のビデオカードドライバから画像データを生成するための基礎となる画像生成データを取得する。画像生成データが与えられた描画コプロセッサ74は、表示デバイス3に表示するための第1の画像データを生成する。
【0202】
描画コプロセッサ74は、生成した第1の画像データを入力ラインメモリ14に与える。入力ラインメモリ14は、画像データを構成する画素データを順に記憶する。入力ラインメモリ14に画素データが記憶されると、第1取得部16が、入力ラインメモリ14から画素データ群を構成する各画素データを取出し、取出した各画素データをアドレス制御部17に与える。
【0203】
アドレス制御部17は、入力ラインメモリ14から取出された画素データ群を構成する複数の画素データをメモリ幅データに区分するとともに、メモリ幅データごとにディスプレイメモリ78に格納するためのアドレスを設定する。アドレスが設定されたメモリ幅データは、メモリコントローラ18によって、ディスプレイメモリ78の所定のアドレスに格納される。このようにして表示デバイス3の1画面分の中間画素データがディスプレイメモリ78に記憶される。このときディスプレイメモリ78は、上述したフレームメモリ11に相当する。
【0204】
1画面分の中間画素データをディスプレイメモリ78に書込んだ後、第2取得部19がディスプレイメモリ78へ読出し要求を出し、第2取得部19は、バーストリード転送によってメモリ幅データを複数連続して読み出す。第2取得部19は、読出したメモリ幅データから画素データを復元する。第2取得部19は、画素データ群を構成する複数の画素データを復元すると、画素データ群を構成してさらに、画素データ群を2×2の回転画素データ群に区分し、区分した回転画素データ群を局部回転部20に与える。
【0205】
局部回転部20は、回転画素データ群を構成する各画素データの配置位置が90度角変位するように、各画素データの配列位置を変換する。次に局部回転部20は、変換した画素データをメモリコントローラ18に与え、メモリコントローラ18によって画素データを再度ディスプレイメモリ78に記憶させる。このときディスプレイメモリ78は、出力ラインメモリ15に相当する。
【0206】
ディスプレイコントローラ76は、表示デバイス3に表示する画像データを出力するタイミングを調整する。このタイミングに応じてメモリコントローラ18が、配列位置が変換された画素データをディスプレイメモリ78から読出し、オーバレイ処理部77に与える。
【0207】
オーバレイ処理部77は、メモリコントローラ18が読出した画素データに対して、必要に応じて他の画像を重ね合わせて、最終的な画像データを生成する。オーバレイ処理部77は、最終的な画素データを表示デバイス3に与える。表示デバイス3は、オーバレイ処理部77から与えられた画素データに基づいて画像を表示する。
【0208】
このように拡張ビデオカード70に画像変換部75を搭載し、拡張ビデオカード70に設けられる画像変換部75と、ディスプレイメモリ78と、メモリコントローラ18とによって、上述した表示制御装置1と同様の動作を行うことによって、表示制御装置1と同様の効果を得ることができる。
【0209】
たとえば画素データの変換を論理回路によって構成されるハードウェアによって実現するので、ソフトウェアの処理速度に依存することなく、動作を安定させかつ高速で行うことができる。またメモリ幅単位に画素データを変換してディスプレイメモリ78に記憶させるので、ディスプレイメモリ78の記憶容量に対して無駄なくデータを記憶させることができる。
【0210】
画素データをメモリ幅単位に変換せず、ディスプレイメモリ78の最小格納部ごとに1つずつ画素データを記憶させた場合には、画素データのデータ量と最小格納部の記憶容量とが一致しない場合がある。この場合、最小格納部には、画素データが記憶されずに空の記憶領域が生じる。したがって空の記憶領域を見越して、記憶すべき複数の画素データよりも大きい記憶容量を有するディスプレイメモリ78が必要となる。本実施形態では、ディスプレイメモリ78の記憶容量に対して無駄なくデータを記憶させることができるので、画像データが記憶されない空の記憶領域をなくすことができる。これによってディスプレイメモリ78の最小格納部ごとに1つずつ画素データを記憶させる場合に比べて、少ない記憶容量のディスプレイメモリ78を用いることができる。また画像変換部75は、ディスプレイメモリ78およびメモリコントローラ18を備える必要がないので、構造を簡略化することができ、安価に製造することができる。
【0211】
また局部回転部20によって変換された画素データをディスプレイメモリ78に記憶するとしたが、図1に示す表示制御装置1の出力ラインメモリ15に相当するメモリを別途画像変換部75が備えてもよい。また表示制御装置は、画像データ生成装置2に一体に設けられていてもよい。たとえば画像データ生成装置2がパーソナルコンピュータであって、そのコンピュータのマザーボードに画像データを生成する画像データ生成機能が設けられる場合、上述した画像変換部75、ディスプレイメモリ78およびメモリコントローラ18がマザーボードに搭載されていてもよい。またディスプレイメモリ78をマザーボードに設けられる他のメモリを用いて実現するとともに、メモリコントローラ18をマザーボードに設けられる他のコントローラを用いて実現してもよい。
【0212】
【発明の効果】
請求項1記載の本発明によれば、個別データ群に相当する複数の個別データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分し、前記区分したデータを最小格納部ごとに書込むので、限られた記憶手段の記憶容量に対して、記憶可能なデータ量を増やすことができる。個別データを最小格納部の最大記憶容量と同じとなるように区分しないで記憶手段に記憶させた場合には、個別データが記憶されない空の記憶領域が生じる。この場合、記憶手段は、空の記憶領域を見越して、記憶すべき複数の個別データ分のデータ量よりも大きい記憶容量を有する必要がある。本発明では、記憶手段の記憶容量に対して無駄なくデータを記憶させることができるので、データ量単位に変換しない場合に比べて、少ない記憶容量の記憶手段を用いて記憶すべき複数の個別データを記憶することができる。これによって少ない記憶容量の記憶手段を用いて、データ配列変換装置を安価に実現することができる。
【0213】
またデータ量単位に区分されるデータのデータ量は、個別データおよび個別データ群のデータ量とは、相関関係がなく無関係に設定されるので、記憶手段におけるデータ量単位のデータ量に対して個別データおよび個別データ群のデータ量を任意に選択することができる。また逆に個別データおよび個別データ群のデータ量に対して、記憶手段におけるデータ量単位のデータ量を任意に選択することができる。これによってハードウェアでデータ配列変換装置を構成する場合、記憶手段におけるデータ量単位に依存せずに、個別データおよび個別データ群のデータ量を決定することができる。これによってハードウェアの選択肢を増やすことができ、安価な構成を実現することができる。
【0214】
また個別データ群に相当する複数の個別データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分して、記憶手段の所定のアドレスに記憶することによって、個別データ毎に所定のアドレスに書込む場合に比べて、アドレスを設定する回数を減らしてアドレス設定を容易にすることができる。またアドレスの並ぶ順に従って、集合データを読出すことができる。さらにハードウェアによって、データ配列変換装置を実現することができるので、ソフトウェアでデータ配列変換を行う場合に比べて、個別データの配列変換動作を安定させかつ高速で行うことができる。
【0215】
請求項2記載の本発明によれば、表示制御装置は、第1配置状態に適合した第1の画像データを第2配置状態にある表示デバイスに適合するように、第1の画像データを変換する。
【0216】
表示制御装置は、画素データ群に相当する複数の画素データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分し、前記区分したデータを最小格納部ごとに書込むので、限られた記憶手段の記憶容量に対して、記憶可能なデータ量を増やすことができる。画素データを最小格納部の最大記憶容量と同じとなるように区分しないで記憶手段に記憶させた場合には、画素データが記憶されない空の記憶領域が生じる。この場合、記憶手段は、空の記憶領域を見越して、記憶すべき複数の画素データ分のデータ量よりも大きい記憶容量を有する必要がある。本発明では、記憶手段の記憶容量に対して無駄なくデータを記憶させることができるので、データ量単位に変換しない場合に比べて、少ない記憶容量の記憶手段を用いて記憶すべき複数の画素データを記憶することができる。これによって少ない記憶容量の記憶手段を用いて、表示制御装置を安価に実現することができる。
【0217】
またデータ量単位に区分されるデータのデータ量は、画素データおよび画素データ群のデータ量とは、相関関係がなく無関係に設定されるので、記憶手段におけるデータ量単位のデータ量に対して画素データおよび画素データ群のデータ量を任意に選択することができる。また逆に画素データおよび画素データ群のデータ量に対して、記憶手段におけるデータ量単位のデータ量を任意に選択することができる。これによってハードウェアで表示制御装置を構成する場合、記憶手段におけるデータ量単位に依存せずに、画素データおよび画素データ群のデータ量を決定することができる。これによってハードウェアの選択肢を増やすことができ、安価な構成を実現することができる。
【0218】
また画素データ群に相当する複数の画素データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分して、記憶手段の所定のアドレスに記憶することによって、画素データ毎に所定のアドレスに書込む場合に比べて、アドレスを設定する回数を減らしてアドレス設定を容易にすることができる。またアドレスの並ぶ順に従って、集合データを読出すことができる。さらにハードウェアによって、データ配列変換装置を実現することができるので、ソフトウェアでデータ配列変換を行う場合に比べて、画素データの配列変換動作を安定させかつ高速で行うことができる。
【0219】
これによって表示デバイスが第1配置状態および第2配置状態のいずれにある場合であっても、表示デバイスに表示される画像の並びを同じにすることができ、画像を安定かつ高速に表示させることができる。
【0220】
また請求項3記載の本発明によれば、表示制御装置は、第1配置状態に適合した第1の画像データを第2配置状態にある表示デバイスに適合するように、第1の画像データを変換する。
【0221】
表示制御装置は、画素データ群に相当する複数の画素データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分し、前記区分したデータを最小格納部ごとに書込むので、限られた記憶手段の記憶容量に対して、記憶可能なデータ量を増やすことができる。画素データを最小格納部の最大記憶容量と同じとなるように区分しないで記憶手段に記憶させた場合には、画素データが記憶されない空の記憶領域が生じる。この場合、記憶手段は、空の記憶領域を見越して、記憶すべき複数の画素データ分のデータ量よりも大きい記憶容量を有する必要がある。本発明では、記憶手段の記憶容量に対して無駄なくデータを記憶させることができるので、データ量単位に変換しない場合に比べて、少ない記憶容量の記憶手段を用いて記憶すべき複数の画素データを記憶することができる。これによって、表示制御装置を安価に実現することができる。
【0222】
また画素データ群に相当する複数の画素データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分して、区分たデータで記憶手段に書込みおよび読出しするので、記憶手段に予め定められた最小データ量単位で行うことができる。また記憶手段からデータを読出したときに、画素データ群に含まれる画素データが既にそろっているので、画素データ群に含まれる画素データがそろうまで待機する時間をなくすことができるとともに、第2の配列変換手段による配列変換を容易に行うことができる。
【0223】
また画素データ群に相当する複数の個別データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分して、記憶手段の所定のアドレスに記憶することによって、画素データ毎に所定のアドレスに書込む場合に比べて、アドレスを設定する回数を減らしてアドレス設定を容易にすることができる。さらにハードウェアによって、データ配列変換装置を実現することができるので、ソフトウェアでデータ配列変換を行う場合に比べて、画素データの配列変換動作を安定させかつ高速で行うことができる。
【0224】
これによって表示デバイスが第1配置状態および第2配置状態のいずれにある場合であっても、表示デバイスに表示される画像の並びを同じにすることができ、画像を安定かつ高速に表示させることができる。
【0225】
また請求項4記載の本発明によれば、記憶手段からバーストリード転送によってデータを読出すので、転送効率を高めて記憶手段に書込みおよび読出し時のアクセスにかかるページ切換えのオーバーヘッドを少なくすることができる。これによってデータ読出しに費やされる時間をさらに短時間にすることができる。
【0226】
また請求項5記載の本発明によれば、比較手段によって、変更された画像部分の画素データを比較し、変更された画像部分の画素データを記憶手段に書込む。変更された画像部分の画素データのみを変更するだけで、入力されてくる第1の画像データを形成することができ、記憶手段に画像データを構成するすべての画素データを書込む必要がない。これによって記憶手段に書込まれるデータ量を少なくすることができる。これによって記憶手段への書込み量を減らして、画像処理にかかる負荷を減らすことができ、また消費電力の低減を図ることができる。また動画などを表示する場合であっても安定かつ高速に表示することができる。
【0227】
また請求項6記載の本発明によれば、第1の画像データの特徴を表す識別コードによって、入力されてくる第1の画像データと、前記記憶手段の前記入力されてくる第1の画像データに対応する箇所に記憶された第1の画像データとを比較するので、第1の画像を直接比較する場合に比べて、データ量を小さくすることができ、より短時間でデータの比較を行うことができる。
【0228】
また請求項7記載の本発明によれば、画素データのデータ量と、最小格納部の記憶容量とが一致しない場合であっても、最小格納部に画素データが記憶されずに空の記憶領域が生じることが防がれ、記憶手段の記憶容量に対して無駄なくデータを記憶させることができ、少ない記憶容量の記憶手段を用いることができる。これによって表示制御装置を安価に実現することができる。また画素データ群に相当するデータを記憶手段の所定の最小格納部に書込むことによって、画素データごとに所定の最小格納部に書込む場合に比べて、アドレスの設定を容易にすることができる。
また請求項8記載の本発明によれば、画素データ群のデータ量が、記憶手段の最小格納部のデータ量のL倍である場合、記憶手段のL個の最小格納部からそれぞれ区分されたデータを読出したときに、画素データ群に含まれる画素データ分のデータが既にそろっている状態となる。これによってL個の最小格納部からデータを取出すことで、画素データ群が分割されることなく、アドレスを指定することが容易となる。
また請求項9記載の本発明によれば、第1の配列変換手段が、入力ラインメモリの数と出力ラインメモリの数とに応じて設定した画素データ群を、入力ラインメモリから取出すことによって、取出した画素データ群毎に出力ラインメモリに取入れることができ、画素データの配列変換を容易に行うことができる。
また請求項10記載の本発明によれば、2×2の回転画素データ群は、角変位する最小の単位であり、画素データ単位で行うので、より簡単な構成で実現することができ、また処理速度を速くすることができる。また画素データ群を格納するアドレスを制御するアドレス制御処理と回転画素データ群を構成する各画素データを回転させる処理との間で、画素データ単位の相関関係がなく、独立して行うことができる。これによって用いられる記憶手段の制限をなくし、記憶手段の選択肢を増やすことができる。
また請求項11記載の本発明によれば、個別データ群に相当する複数の個別データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分し、前記区分したデータを最小格納部ごとに書込むので、限られた記憶手段の記憶容量に対して、記憶可能なデータ量を増やすことができる。個別データを最小格納部の最大記憶容量と同じとなるように区分しないで記憶手段に記憶させた場合には、個別データが記憶されない空の記憶領域が生じる。この場合、記憶手段は、空の記憶領域を見越して、記憶すべき複数の個別データ分のデータ量よりも大きい記憶容量を有する必要がある。本発明では、記憶手段の記憶容量に対して無駄なくデータを記憶させることができるので、データ量単位に変換しない場合に比べて、少ない記憶容量の記憶手段を用いて記憶すべき複数の個別データを記憶することができる。
【0229】
またデータ量単位に区分されるデータのデータ量は、個別データおよび個別データ群のデータ量とは、相関関係がなく無関係に設定することができる。これによって記憶手段におけるデータ量単位のデータ量に対して個別データおよび個別データ群のデータ量を任意に選択することができる。また逆に個別データおよび個別データ群のデータ量に対して、記憶手段におけるデータ量単位のデータ量を任意に選択することができる。これによってハードウェアでデータ配列変換装置を構成する場合、記憶手段におけるデータ量単位に依存せずに、個別データおよび個別データ群のデータ量を決定することができる。これによってハードウェアの選択肢を増やすことができ、安価な構成を実現することができる。
【0230】
また個別データ群に相当する複数の個別データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分して、記憶手段の所定のアドレスに記憶することによって、個別データ毎に所定のアドレスに書込む場合に比べて、アドレスを設定する回数を減らしてアドレス設定を容易にすることができる。またアドレスの並ぶ順に従って、集合データを読出すことができる。さらにハードウェアによって、データ配列変換装置を実現することができるので、ソフトウェアでデータ配列変換を行う場合に比べて、個別データの配列変換動作を安定させかつ高速で行うことができる。
【0231】
また請求項12記載の本発明によれば、比較工程を備えることによって、集合データのうち変更された部分の個別データを比較し、変更された部分の個別データを記憶手段に書込む。変更された部分の個別データのみを変更するだけで、後に入力された集合データを形成することができ、記憶手段に集合データを構成するすべての個別データを書込む必要がない。これによって記憶手段に書込まれるデータ量を少なくすることができる。これによって記憶手段への書込み量を減らして、データ配列変換にかかる負荷を減らすことができ、また消費電力の低減を図ることができる。またデータ配列が頻繁に変更される場合であっても安定かつ高速に表示することができる。
【0232】
また請求項13記載の本発明によれば、集合データの特徴を表す識別コードによって、入力されてくる集合データと、前記記憶手段の前記入力されてくる集合データに対応する箇所に記憶された集合データとを比較するので、集合データを直接比較する場合に比べて、データ量を小さくすることができ、より短時間でデータの比較を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態である表示制御装置1の構成を表すブロック図である。
【図2】表示制御装置1と表示制御装置1に接続される画像データ生成装置2および表示デバイス3との関係を表す概略図である。
【図3】画像データの変換を説明するための概略図である。
【図4】画素データ群を構成する各画素データの配列位置の変換を説明するための概略図である。
【図5】データの書込み順と読出し順とを説明するための概略図である。
【図6】データを格納するフレームメモリ11の格納部30を示す概略図である。
【図7】第2の配列変換部13の配列変換を示す概略図である。
【図8】表示制御装置1のフレームメモリ11にメモリ幅データを格納する際の手順を示すフローチャートである。
【図9】中間画像データを格納する際の手順を説明するための概略図である。
【図10】中間画像データを格納する際の手順を説明するための概略図である。
【図11】中間画像データを格納する際の手順を説明するための概略図である。
【図12】表示制御装置1のフレームメモリ11から各画素データ群を読出して、表示デバイス3に画像データを与える手順を示すフローチャートである。
【図13】表示デバイスに画像データを与える際の手順を説明するための概略図である。
【図14】表示デバイスに画像データを与える際の手順を説明するための概略図である。
【図15】アドレス制御部17を示す論理回路図である。
【図16】セレクタの真理値表を示す表である。
【図17】データ変換部分41の一部を示す論理回路図である。
【図18】図17おける論理回路図のタイミングチャートである。
【図19】図15における論理回路図のタイミングチャートである。
【図20】局部回転部20を示す論理回路図である。
【図21】図20に示す論理回路による画素データの配置変換を示す図である。
【図22】本発明の他の実施の形態である表示制御装置50を示すブロック図である。
【図23】比較部52がフレームメモリ11にデータを書込む際の手順を示すフローチャートである。
【図24】本発明のさらに他の実施の形態である表示制御装置60を示す正面図である。
【図25】表示制御装置60の電気的構成を示すブロック図である。
【図26】本発明のさらに他の実施の形態である表示制御装置70の電気的構成を示すブロック図である。
【図27】画像変換部75の電気的構成を示すブロック図である。
【符号の説明】
1,50,60,70 表示制御装置
2 画像データ生成装置
3 表示デバイス
11 フレームメモリ
12 第1配列変換部
13 第2配列変換部
14 入力ラインメモリ
15 出力ラインメモリ
16 第1取得部
17 アドレス制御部
18 メモリコントローラ
19 第2取得部
20 局部回転部
30 格納部
31,32,33 最小格納部
100 仮想行列データ
101 仮想変換行列データ
102 画素データ

Claims (13)

  1. 複数の個別データを行列状に配列して成る集合データに基づいて、前記個別データの配列位置を予め定める規則に従って変換して成る変換集合データを作成するデータ配列変換装置であって、
    (a)データを格納するための最小の格納領域が形成される最小格納部を複数有し、前記最小格納部ごとのデータ量単位でデータの書込みおよび読出しが行なわれる記憶手段と、
    (b)前記個別データ単位で予め定める行列順序に従って入力された集合データを、前記記憶手段における前記データ量単位に区分し、区分たデータを前記記憶手段のアドレスを指定して書込むことによって中間データを作成する第1の配列変換手段であって、
    (b1)入力される集合データを行列方向に並ぶ予め定める数の個別データから成る複数の個別データ群から成る仮想行列データと仮定し、この仮想行列データを構成する各個別データ群の配列位置を、前記予め定める規則に従って変換して得られる仮想変換行列データを仮定した場合、データを書込むときに指定する最小格納部のアドレスは、データを最小格納部のアドレス順に従って読出したとき、読出されるデータが対応する個別データ群の並び順が、前記仮想変換行列データにおける行列順序になるようなアドレスであり、
    (b2)個別データ群に相当する複数の個別データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分し、前記区分したデータを最小格納部ごとに書込み、前記区分したデータを書込むときに指定する最小格納部のアドレスは、前記区分したデータを最小格納部のアドレス順で読み出したとき、読出し順に読出した複数の前記区分したデータを合わせることで個別データおよび個別データ群を復元可能となるようなアドレスである第1の配列変換手段と、
    (c)前記記憶手段からアドレス順に従って前記データ量単位で前記区分したデータを読出し、復元すべき個別データ分の前記区分したデータがそろってから個別データに復元し、さらに個別データ群に含まれる個別データがすべてそろってから個別データ群を構成し、この個別データ群を構成する各個別データの配列位置を、前記予め定める規則に従って変換してから、復元した個別データを行列順序で出力することによって前記変換集合データを作成する第2の配列変換手段とを備えることを特徴とするデータ配列変換装置。
  2. 縦横が互いに逆転する第1および第2配置状態に配置可能な表示デバイスに、当該表示デバイスの主走査方向および副走査方向に従って行列状に配列される複数の画素データから成る画像データを与えて表示させるとともに、第1および第2配置状態のどちらの配置状態であっても同じ向きで画像が表示されるように、第1配置状態に適合して配列された第1の画像データが与えられた場合、
    第1配置状態の前記表示デバイスに画像データを適合させるときは、画素データの配列位置を変更することなく第1の画像データをそのまま前記表示デバイスに与え、
    第2配置状態の前記表示デバイスに画像データを適合させるときは、第1の画像データを第2配置状態に適合するように画素データの主走査方向および副走査方向の配列位置を予め定められる規則に従って変更した第2の画像データに変換して前記表示デバイスに与える表示制御装置であって、
    (a)データを格納するための最小の格納領域が形成される最小格納部を複数有し、前記最小格納部ごとのデータ量単位でデータの書込みおよび読出しが行われる記憶手段と、
    (b)前記画素データ単位で予め定める行列順序に従って、入力された第1の画像データを前記記憶手段におけるデータ量単位に区分し、区分たデータを前記記憶手段のアドレスを指定して書込むことによって、中間画像データを作成する第1の配列変換手段であって、
    (b1)入力される第1の画像データを、主走査方向にM個並び、副走査方向にN個並ぶM×N(M+N>2、ただしMおよびNは自然数)個の画素データから成る複数の画素データ群から成る仮想行列データと仮定し、この仮想行列データを構成する各画素データ群の配列位置を、前記予め定める規則に従って変換して得られる仮想変換行列データを仮定した場合、データを書込むときに指定する最小格納部のアドレスは、最小格納部ごとにデータをアドレス順で読出したとき、読出されるデータが対応する画素データ群の並び順が、前記仮想変換行列データにおける行列順序になるようなアドレスであり、
    (b2)画素データ群に相当する複数の画素データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分し、前記区分したデータを最小格納部ごとに書込み、前記区分したデータを書込むときに指定する最小格納部のアドレスは、前記区分したデータを最小格納部のアドレス順で読み出したとき、読出し順に読出した複数の前記区分したデータを合わせることで画素データおよび画素データ群を復元可能となるようなアドレスである第1の配列変換手段と、
    (c)前記記憶手段からアドレス順に従って前記データ量単位で前記区分したデータを読出し、復元すべき画素データ分の前記区分したデータがそろってから画素データに復元し、さらに画素データ群に含まれる画素データがすべてそろってから、画素データ群を構成し、この画素データ群を構成する各画素データの配列位置を、前記予め定める規則に従って変換してから、復元した画素データを行列順序で出力することによって前記第2の画像データを作成する第2の配列変換手段とを備えることを特徴とする表示制御装置。
  3. 縦横が互いに逆転する第1および第2配置状態に配置可能な表示デバイスに、当該表示デバイスの主走査方向および副走査方向に従って行列状に配列される複数の画素データから成る画像データを与えて表示させるとともに、第1および第2配置状態のどちらの配置状態であっても同じ向きで画像が表示されるように、第1配置状態に適合して配列された第1の画像データが与えられた場合、
    第1配置状態の前記表示デバイスに画像データを適合させるときは、画素データの配列位置を変更することなく第1の画像データをそのまま前記表示デバイスに与え、
    第2配置状態の前記表示デバイスに画像データを適合させるときは、第1の画像データを第2配置状態に適合するように画素データの主走査方向および副走査方向の配列位置を予め定められる規則に従って変更した第2の画像データに変換して前記表示デバイスに与える表示制御装置であって、
    (a)データを格納するための最小の格納領域が形成される最小格納部を複数有し、前記最小格納部ごとのデータ量単位でデータの書込みおよび読出しが行われる記憶手段と、
    (b)前記画素データ単位で予め定められる行列順序に従って、入力された第1の画像データのうち、主走査方向にM個並び、副走査方向にN個並ぶM×N(M+N>2、ただしMおよびNは自然数)個の画素データから成る画素データ群単位のデータを、前記記憶手段におけるデータ量単位に区分し、区分されたデータを前記記憶手段のアドレスを指定して書込むことによって、中間画像データを作成する第1の配列変換手段であって、
    (b1)入力される第1の画像データを、複数の前記画素データ群から成る仮想行列データと仮定し、この仮想行列データを構成する前記各画素データ群の配列位置を、前記予め定める規則に従って変換して得られる仮想変換行列データを仮定した場合、データを書込むときに指定する最小格納部のアドレスは、最小格納部ごとにデータをアドレス順で読出したとき、読出されるデータが対応する画素データ群の並び順が、前記仮想変換行列データにおける行列順序になるようなアドレスであり、
    (b2)画素データ群に相当する複数の画素データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分し、前記区分したデータを最小格納部ごとに書込み、前記区分したデータを書込むときに指定する最小格納部のアドレスは、前記区分したデータを最小格納部のアドレス順で読み出したとき、読出し順に読出した複数の前記区分したデータを合わせることで画素データおよび画素データ群を復元可能となるようなアドレスである第1の配列変換手段と、
    (c)前記記憶手段からアドレス順に従って前記データ量単位で前記区分したデータを読出し、復元すべきM×N個の画素データに復元し、画素データ群を構成する各画素データの配列位置を、前記予め定める規則に従って変換してから、復元した画素データを行列順序で出力することによって前記第2の画像データを作成する第2の配列変換手段とを備えることを特徴とする表示制御装置。
  4. 前記第2の配列変換手段による前記記憶手段からのデータの読出しは、前記記憶手段におけるデータ量単位のデータを予め定める数連続して読出すバーストリード転送であることを特徴とする請求項1〜3のいずれかに記載の表示制御装置。
  5. 前記第1の配列変換手段は、順次入力される第1の画像データに関して、順次入力されてくる第1の画像データと、前記記憶手段の前記入力されてくる第1の画像データに対応する箇所に記憶された第1の画像データとを比較し、前記入力されてくる第1の画像データのうち変更された画像部分のデータを抽出し、変更された画像部分のデータを前記記憶手段へ書込む比較部をさらに備えることを特徴とする請求項2〜4のいずれかに記載の表示制御装置。
  6. 前記比較部は、前記入力されてくる第1の画像データと、前記記憶手段の前記入力されてくる第1の画像データに対応する箇所に記憶された第1の画像データとの特徴部分を抽出した識別コードをそれぞれ生成し、前記入力されてくる第1の画像データと、前記記憶手段の前記入力されてくる第1の画像データに対応する箇所に記憶された第1の画像データの識別コード同士を比較することを特徴とする請求項5記載の表示制御装置。
  7. 画素データのデータ量と、記憶手段の最小格納部のデータ量とが異なることを特徴とする請求項2〜6のいずれか1つに記載の表示制御装置。
  8. 画素データ群のデータ量は、記憶手段の最小格納部のデータ量が整数倍となるように設定されることを特徴とする請求項2〜7のいずれか1つに記載の表示制御装置。
  9. 第1の画像データのうち主走査方向1ライン分の画素データをそれぞれ格納し、第1の画像データを第1の配列変換手段に入力する入力ラインメモリと、
    第2の画像データの主走査方向1ライン分の画素データをそれぞれ格納し、第2の配列変換手段から第2の画像データが入力される出力ラインメモリとをさらに備え、
    入力ラインメモリの数がu個であり、出力ラインメモリの数がt個である場合に、前記画素データ群は、主捜査方向にt個、副走査方向にu個並ぶ複数の画素データから成ることを特徴とする請求項2〜8のいずれか1つに記載の表示制御装置。
  10. 第2の配列変換手段は、復元した各画素データ群を、主捜査方向に2個並び、副走査方向に2個並ぶ回転画素データ群を作成し、作成した回転画素データ群ごとに前記予め定める規則に従って変換することを特徴とする請求項2〜9のいずれか1つに記載の表示制御装置。
  11. 複数の個別データを行列状に配列して成る集合データに基づいて、前記個別データの配列位置を予め定める規則に従って変換して成る変換集合データを作成するデータ配列変換方法であって、
    (a)データを格納するための最小の格納領域が形成される最小格納部を複数有し、前記最小格納部ごとのデータ量単位でデータの書込みおよび読出しが行なわれる記憶手段に、前記個別データ単位で予め定める行列順序に従って入力された集合データを、前記記憶手段における前記データ量単位に区分し、区分したデータを前記記憶手段のアドレスを指定して書込むことによって中間データを作成する第1の配列変換工程であって、
    (a1)入力される集合データを行列方向に並ぶ予め定める数の個別データから成る複数の個別データ群から成る仮想行列データと仮定し、この仮想行列データを構成する各個別データ群の配列位置を、前記予め定める規則に従って変換して得られる仮想変換行列データを仮定した場合、データを書込むときに指定する最小格納部のアドレスは、データを最小格納部のアドレス順に従って読出したとき、読出されるデータが対応する個別データ群の並び順が、前記仮想変換行列データにおける行列順序になるようなアドレスであり、
    (a2)個別データ群に相当する複数の個別データを合わせたデータを、前記最小格納部の最大記憶容量と同じとなる複数のデータに区分し、前記区分したデータを最小格納部ごとに書込み、前記区分したデータを書込むときに指定する最小格納部のアドレスは、前記区分したデータを最小格納部のアドレス順で読み出したとき、読出し順に読出した複 数の前記区分したデータを合わせることで個別データおよび個別データ群を復元可能となるようなアドレスである第1の配列変換工程と、
    (b)前記記憶手段からアドレス順に従って前記データ量単位でデータを読出し、復元すべき個別データ分の前記区分したデータがそろってから個別データに復元し、さらに個別データ群に含まれる個別データがすべてそろってから個別データ群を構成し、この個別データ群を構成する各個別データの配列位置を、前記予め定める規則に従って変換してから、復元した個別データを行列順序で出力することによって前記変換集合データを作成する第2の配列変換工程とを備えることを特徴とするデータ配列変換方法。
  12. 前記第1の配列変換工程は、順次入力される集合データに関して、順次入力されてくる集合データと、前記記憶手段の前記入力されてくる第1の画像データに対応する箇所に記憶された集合データとを比較し、前記入力されてくる集合データのうち変更された部分のデータを抽出し、変更された部分のデータを前記記憶手段へ書込む比較工程をさらに備えることを特徴とする請求項11記載のデータ配列変換方法。
  13. 前記比較工程は、前記入力されてくる集合データと、前記記憶手段の前記入力されてくる第1の画像データに対応する箇所に記憶された集合データとの特徴部分を抽出した識別コードをそれぞれ生成し、前記入力されてくる集合データと、前記記憶手段の前記入力されてくる第1の画像データに対応する箇所に記憶された集合データとの識別コード同士を比較することを特徴とする請求項12記載のデータ配列変換方法。
JP2002294116A 2002-06-03 2002-10-07 データ配列変換装置およびそれを用いた表示制御装置ならびにデータ配列変換方法 Expired - Fee Related JP3818951B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002294116A JP3818951B2 (ja) 2002-06-03 2002-10-07 データ配列変換装置およびそれを用いた表示制御装置ならびにデータ配列変換方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002161930 2002-06-03
JP2002294116A JP3818951B2 (ja) 2002-06-03 2002-10-07 データ配列変換装置およびそれを用いた表示制御装置ならびにデータ配列変換方法

Publications (2)

Publication Number Publication Date
JP2004062130A JP2004062130A (ja) 2004-02-26
JP3818951B2 true JP3818951B2 (ja) 2006-09-06

Family

ID=31949269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002294116A Expired - Fee Related JP3818951B2 (ja) 2002-06-03 2002-10-07 データ配列変換装置およびそれを用いた表示制御装置ならびにデータ配列変換方法

Country Status (1)

Country Link
JP (1) JP3818951B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110164027A1 (en) * 2010-01-06 2011-07-07 Qualcomm Mems Technologies, Inc. Method of detecting change in display data
JP2019074559A (ja) * 2017-10-12 2019-05-16 シャープ株式会社 画像表示システム

Also Published As

Publication number Publication date
JP2004062130A (ja) 2004-02-26

Similar Documents

Publication Publication Date Title
US3976982A (en) Apparatus for image manipulation
EP0328356A2 (en) Image pixel processing
US5251298A (en) Method and apparatus for auxiliary pixel color management using monomap addresses which map to color pixel addresses
US6181353B1 (en) On-screen display device using horizontal scan line memories
TWI315056B (en) Block-based rotation of arbitrary-shaped images
US5621866A (en) Image processing apparatus having improved frame buffer with Z buffer and SAM port
JPH0810462B2 (ja) 画像処理装置
US11055820B2 (en) Methods, apparatus and processor for producing a higher resolution frame
KR20000039714A (ko) 텍스처 매핑시스템
JP3818951B2 (ja) データ配列変換装置およびそれを用いた表示制御装置ならびにデータ配列変換方法
JP2000324337A (ja) 画像拡大縮小装置
US5745123A (en) Method for resizing an image by a factor of two
EP1308899A2 (en) Image processing apparatus
JPH0525143B2 (ja)
JP3247441B2 (ja) 画像処理装置
US6489967B1 (en) Image formation apparatus and image formation method
JP2006141001A (ja) 電力消耗が減少した画像処理装置及び方法
JP3004993B2 (ja) 画像処理装置
JPS6249570A (ja) 画像処理装置
JP3278853B2 (ja) 図形描画装置
JPH0736772A (ja) 高速ビットマップ・アクセス制御装置及び制御方法
JPS6125192B2 (ja)
JPH04329482A (ja) 画像回転処理方法およびその処理装置
JPH07271966A (ja) データ記憶方法並びにこれを用いたスクロール方法及びデータ出力方法
JPH05127980A (ja) 画像処理装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3818951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees