JP3818032B2 - 記録情報再生装置 - Google Patents

記録情報再生装置 Download PDF

Info

Publication number
JP3818032B2
JP3818032B2 JP2000228704A JP2000228704A JP3818032B2 JP 3818032 B2 JP3818032 B2 JP 3818032B2 JP 2000228704 A JP2000228704 A JP 2000228704A JP 2000228704 A JP2000228704 A JP 2000228704A JP 3818032 B2 JP3818032 B2 JP 3818032B2
Authority
JP
Japan
Prior art keywords
signal
value
point information
peak
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000228704A
Other languages
English (en)
Other versions
JP2002050125A (ja
Inventor
淳一郎 戸波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2000228704A priority Critical patent/JP3818032B2/ja
Priority to US09/903,566 priority patent/US6836456B2/en
Priority to CNB011206489A priority patent/CN1227662C/zh
Priority to EP01117877A priority patent/EP1178484B1/en
Priority to DE60136601T priority patent/DE60136601D1/de
Publication of JP2002050125A publication Critical patent/JP2002050125A/ja
Application granted granted Critical
Publication of JP3818032B2 publication Critical patent/JP3818032B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は記録情報再生装置に係り、特に光ディスクの記録情報信号を再生する記録情報再生装置に関する。
【0002】
【従来の技術】
従来より、高密度記録された光ディスクの隣接する3つのトラックから別々のビームにより再生した信号に基づいて、クロストーク除去を行うと共に中央のトラックからS/N比の良好な再生信号を得るようにした、3ビーム法による記録情報再生装置が種々提案されているが、クロストーク除去のためのプリアンブル信号を予め記録しておくことなく、再生信号のクロストーク除去を行うようにして記録容量を向上した3ビーム法による記録情報再生装置が知られている(特開平9−320200号公報)。
【0003】
この従来の記録情報再生装置では、光ディスクの任意の一のトラックから一のビームにより再生した第1の読取信号と、その一のトラックの両側に隣接する2本のトラックから別々のビームにより再生した2つの第2の読取信号とを、それぞれサンプリングして第1及び第2のサンプル値系列に変換し、そのうち第2のサンプル値系列から可変係数フィルタによりクロストーク成分を求め、上記の第1のサンプル値系列からこのクロストーク成分を減算器で減算し、更にゼロクロスサンプル抽出手段により、この減算器の出力サンプル値系列中からゼロクロスサンプル値を抽出して、このゼロクロスサンプル値が0に収束するようにフィルタ係数演算手段により上記の可変係数フィルタのフィルタ係数を更新すると共に、判定手段により減算器の出力サンプル値系列から再生信号の判定を行う構成である。
【0004】
【発明が解決しようとする課題】
しかるに、上記の従来の記録情報再生装置では、可変係数フィルタのフィルタ係数の更新は、LMS適応アルゴリズムを使用して誤差信号が0になるようにしているが、上記の誤差信号は減算器の出力サンプル値系列中から抽出したゼロクロスサンプル値のみであり、収束が遅く、誤判別が多いという問題がある。また、パーシャルレスポンス等化を行っていないので、ビタビ復号ができず、益々高密度記録される傾向のある光ディスクから読み取ったS/Nの低い再生信号のデータ復元を誤る可能性が高いという問題もある。
【0005】
また、再生信号が光ディスクからTPP(タンジェンシャルプッシュプル法)でよみだされた信号や、ハードディスク及び磁気テープのように微分系の特性を有する場合、図2に示すように、信号が0付近で連続した値をとるので、ゼロクロス検出ではデータ変化点を検出することが出来ない。つまり、クロストーク成分の抽出が不可能であり、クロストーク除去は実現しなかった。
【0006】
つまり、同一システムで、積分系と微分系の特性を有する信号の両方に対応する場合には、2種類のクロストーク除去システムを用意しなければならず、回路規模・コストの点で問題となっていた。
【0007】
本発明は以上の点に鑑みなされたもので、積分系の信号に対するクロストーク除去と、微分系の信号に対するクロストーク除去を両立し得る記録情報再生装置を提供することを目的とする。
【0008】
また、本発明の他の目的は、収束が速くしかも確実に記録媒体の記録情報を再生し得る記録情報再生装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は上述の問題点を解決するために、記録媒体に記録されている再生すべき任意の一の記録トラックから読み取った第1の再生信号を復号する記録情報再生装置において、前記第1の再生信号から、前記再生すべき任意の一の記録トラックに隣接する少なくとも1つの記録トラックから読み取った第2の再生信号を所定のフィルタリング特性を有するフィルタで処理した信号を減算して出力する第1の減算手段と、前記第一の再生信号がゼロクロスか否かを検出して0ポイント情報を出力するゼロ検出手段と、前記第一の再生信号がピークか否かを検出してピークポイント情報を出力するピーク検出手段と、前記0ポイント情報と前記ピークポイント情報を入力し、いずれかを選択して、ポイント情報として出力する選択手段と、前記ポイント情報がピークを示すタイミングにおける前記第1の減算手段からの出力信号と所定の値との差分値をエラー信号として出力する第2の減算手段と、前記エラー信号に基づき、前記フィルタの前記フィルタリング特性を前記エラー信号が最小になるように可変制御する係数生成手段とを有することを特徴とする記録情報再生装置を提供する。
【0012】
【発明の実施の形態】
次に、本発明の実施の形態について図面と共に説明する。図1は本発明になる記録情報再生装置の第1の実施の形態のブロック図を示す。この実施の形態では、記録媒体の一例としての光ディスクの隣接する3本の記録トラックに対し、3つのビームスポットを別々に形成する公知の3ビーム法を用いる。すなわち、図3に示すように、1回転当たり1本のトラックが形成されている光ディスクの任意のトラックTiから記録情報信号を再生するときは、再生専用の光ビームスポットB0をトラックTiに形成し、トラックTiの両側に隣接するトラックTi-1とTi+1のうち内周側トラックTi-1にはビームスポットB1を形成し、外周側トラックTi+1にはビームスポットB2を形成する。
【0013】
これら3つのビームスポットB0、B1、B2は、中央のビームスポットB0を中心として、光ディスクの回転方向上、ビームスポットB1が後方位置(又は前方位置)に、ビームスポットB2が前方位置(又は後方位置)に配置された状態を保ってトラッキングされることは周知の通りである。これら3つのビームスポットB0、B1、B2による反射光は、公知の光学系を別々に通して読取信号に変換される。
【0014】
上記の読取信号のうち、中央の再生すべきトラックTiの読取信号は、図1のA/D変換器11に供給され、内周側の隣接トラックTi-1の読取信号は、図1のA/D変換器12に供給され、外周側の隣接トラックTi+1の読取信号は、図1のA/D変換器13に供給される。A/D変換器11、12、13は入力された読取信号を、マスタークロックでサンプリングしてディジタル信号に変換して、次段のAGC・ATC回路14、15、16に供給し、ここで振幅が一定に制御される自動振幅制御(AGC)及び2値コンパレートの閾値を適切に直流(DC)制御する自動閾値制御(ATC)させる。
【0015】
AGC・ATC回路14の出力信号は、リサンプリングDPLL17に供給される。リサンプリングDPLL17は、自分自身のブロックの中でループが完結しているディジタルPLL(位相同期ループ)回路で、入力信号に対し所望のビットレートでサンプリングしたディジタルデータをリサンプリング(間引き補間)演算して生成し、遅延調整器20を通してトランスバーサルフィルタ21に供給する。また、リサンプリング・DPLL17は、入力された特性モード信号に応じて、積分系もしくは微分系の信号に応じた位相引き込み動作を行っている。積分系の信号に対しては、リサンプリングデータのゼロクロスを検出しており、それにより得られるポイント情報を遅延調整器22を通して後述のタップ遅延回路32に供給する。また、微分系の信号に対しては、リサンプリングデータのピークを検出しており、それにより得られるポイント情報を遅延調整器22を通して後述のタップ遅延回路32に供給する。
【0016】
更に、リサンプリングDPLL17は、ビットサンプリングのためのビットクロックBCLKを生成すると共に、リサンプリング演算するための内分する割合を示すパラメータT_ratioを生成し、それらをリサンプリング回路18及び19にそれぞれ供給し、ここでAGC・ATC回路15及び16よりのディジタル信号をパラメータT_ratioが示す割合でビットクロックBCLKでリサンプリング演算を行う。ビットクロックBCLKは、歯抜けクロック(Punctured Clock)である。
【0017】
前記リサンプリング・DPLL17にはこの実施の形態の要部となる特性モード信号が入力されており、入力信号の特性(積分系・微分系)に応じて、位相をロックさせる対象を、入力信号が積分系のときはゼロクロス、微分系のときはピークに切り替えており、さらに、それに応じたポイント情報(積分系のときは0ポイント情報、微分系のときはピークポイント情報)を出力する。
【0018】
仮判別回路33には、同じく、前記特性モード信号が入力されており、入力信号の特性(積分系・微分系)に応じて、仮判別アルゴリズムを切り替えている。なお、前記ポイント情報はビットサンプリングのデータにおけるゼロクロスポイント、もしくは、ビットサンプリングのデータにおける正又は負のピークをビットクロック単位で示している。
【0019】
リサンプリング回路18及び19よりそれぞれ取り出された信号は、遅延調整器23、24を通してトランスバーサルフィルタ25、26に供給される。前記トランスバーサルフィルタ21及び上記のトランスバーサルフィルタ25、26は、それぞれ乗算器・低域フィルタ(LPF)27、28、29よりフィルタ係数(タップ係数)が入力されてそれに応じた特性のフィルタリング処理を入力信号に対して行う。
【0020】
トランスバーサルフィルタ21は、乗算器・LPF27よりのタップ係数(フィルタ係数)に基づいて波形等化処理を行い、再生すべき所望のトラックからの読取信号の前後の信号との符号間干渉の影響を低減する。このトランスバーサルフィルタ21の出力波形等化後読取信号は、後述の減算器30及び31を通して前記仮判別回路33に供給され、ここでタップ遅延回路32よりの遅延信号と、パーシャルレスポンス(PR)の種類を示すPRモード信号と、光ディスクに記録されている信号のランレングス制限符号長(最小反転間隔や最大反転間隔)を示すRLLモード信号とが入力され、これらに基づいて仮判別結果を出力する。
【0021】
この仮判別結果と仮判別回路33の入力信号(減算器31の出力信号)とが減算器34において減算され、その差分値がエラー信号としてインバータ35で極性を反転された後、乗算器・LPF27に供給され、ここでトランスバーサルフィルタ21のタップ出力と乗算されて相関が検出され、LPFで積分される。乗算器・LPF27の出力積分値は、上記のエラー信号の値を0にする、トランスバーサルフィルタ21のフィルタ係数(タップ係数)としてトランスバーサルフィルタ21に入力される。
【0022】
上記のトランスバーサルフィルタ21、乗算器・LPF27、仮判別回路33、タップ遅延回路32、減算器34、インバータ35よりなるフィードバックループは、よく知られるLMSアルゴリズムを基本としているが、仮判別回路33は、本発明者が提案した回路であり、パーシャルレスポンス等化を前提とした仮判別(収束目標設定)を行う。
【0023】
ここで、積分系のパーシャルレスポンス(PR)特性について説明するに、例えばPR(a,b,b,a)の特性を図4(A)に示す孤立波に付与して等化すると、その等化波形はよく知られているように図4(B)に示すようになる。更に、連続波では、この等化波形は、0,a,a+b,2a,2b,a+2b,2a+2bの7値をとる。この7値をビタビ復号器に入力すると、元のデータ(入力値)とPR等化後の再生信号(出力値)は、過去の信号の拘束を受け、これと(1,7)RLLによって入力信号の"1"は2回以上続かないことを利用すると、図4(C)に示すような状態遷移図で表わすことができることが知られている。
【0024】
図4(C)において、S0〜S5は直前の出力値により定まる状態を示す。この状態遷移図から例えば状態S2にあるときは、入力値がa+2bのとき出力値が1となって状態S3へ遷移し、入力値が2bのとき出力値が1となって状態S4へ遷移するが、それ以外の入力値は入力されないことが分かり、また、もし入力されればそれはエラーであることが分かる。
【0025】
図4(D)は、入力信号のランレングス制限が(2、X)の場合の状態遷移図を示しており、S5からS1、及びS2からS4の遷移が無くなっていることが分かる。
【0026】
次に、微分系のパーシャルレスポンス(PR)特性について説明するに、例えばPR(a,b,−b,−a)の特性を図5(A)に示す孤立波に付与して等化すると、その等化波形はよく知られているように図5(B)に示すようになる。更に、連続波では、この等化波形は、−(a+b),−a,0,a,a+bの5値をとる。この5値をビタビ復号器に入力すると、元のデータ(入力値)とPR等化後の再生信号(出力値)は、過去の信号の拘束を受け、これと(1,X)RLLによって入力信号の"1"は2回以上続かないことを利用すると、図5(C)に示すような状態遷移図で表わすことができることが知られている。
【0027】
図5(C)において、S0〜S5は直前の出力値により定まる状態を示す。この状態遷移図から例えば状態S2にあるときは、入力値がa+2bのとき出力値が1となって状態S3へ遷移し、入力値が2bのとき出力値が1となって状態S4へ遷移するが、それ以外の入力値は入力されないことが分かり、また、もし入力されればそれはエラーであることが分かる。
【0028】
図5(D)は、信号のランレングス制限が(2,X)である場合の状態遷移図を示しており、S5からS1、及びS2からS4の遷移が無くなっていることが分かる。
【0029】
図6は上記の積分系のPR(a,b,b,a)の特性とランレングス制限規則RLLモードと仮判別器51の出力する仮判定値との関係を示す図である。同図において、一番上の行のPRモードは、端子43を介して仮判別回路24に入力される信号の値を示しており、一番左の列のRLLモードは、端子44を介して仮判別回路24の仮判別器51に入力される信号を示しており、ここではRLL(1,X)とRLL(2,X)を示している。
【0030】
PRモードの値はパーシャルレスポンス特性がPR(1,1)、PR(1,1,1,1)、PR(1,2,2,1)、PR(1,3,3,1)、PR(2,3,3,2)及びPR(3,4,4,3)のいずれであるかを示す。また、RLL(1,X)は最小反転間隔が"2"で、最大反転間隔が変調方式によって異なる所定の値Xのランレングス制限規則を示し、RLL(2,X)は最小反転間隔が"3"で、最大反転間隔が変調方式によって異なる所定の値Xのランレングス制限規則を示している。
【0031】
RLL(1,X)の場合は、図4と共に説明したように、等化波形は、PR(a,b,b,a)では0,a,a+b,2a,2b,a+2b,2a+2bの7値をとり、これらに対応した各パーシャルレスポンス特性における仮判定値が図5に示されている。仮判定値のうち、矢印の右側の値が上記の7値の中央値である「a+b」が"0"になるようにオフセットしたときの値を示す。RLL(2,X)はRLL(1,X)と同様の仮判定値を示すが、RLL(1,X)の2a、2bで示す2行の値は存在しない。これは、図4(C)の状態遷移図のS5→S1、S2→S4の遷移が存在しないからである(値2a、2bをとらないからである)。
【0032】
また、図6において、PR(1,1)はPR(a,b,b,a)のa=0、b=1の場合である。更に、図6において、ゲインGはオフセット後の絶対値の最大値(a+b)*を正規化するための乗算係数であり、A/(a+b)*で表される(ただし、Aは任意のレベル)。
【0033】
図7は上記の微分系のPR(a,b,−b,−a)の特性と仮判別器51の出力する仮判定値との関係を示す図である。同図において、一番上の行のPRモードは、端子43を介して仮判別回路24に入力される信号の値を示しており、一番左の列のRLLモードは、端子44を介して仮判別回路24の仮判別器51に入力される信号を示している。
【0034】
PRモードの値はパーシャルレスポンス特性がPR(1,−1)、PR(1,1,−1,−1)、PR(1,2,−2,−1)、PR(1,3,−3,−1)、PR(2,3,−3,−2)及びPR(3,4,−4,−3)のいずれであるかを示す。特にPR(1,−1)は良く知られているPR4(Partial Response ClassIV)であり、PR(1,1,−1,−1)は良く知られているEPR4(Extended Partial Response ClassIV)である。
【0035】
また、図7において、PR(1,−1)はPR(a,b,−b,−a)のa=0、b=1の場合である。更に、図5において、ゲインGは絶対値の最大値(a+b)を正規化するための乗算係数であり、A/(a+b)で表される(ただし、Aは任意のレベル)。
【0036】
減算器31からの波形等化再生信号は、現在時刻における信号D3として取り扱われる。一方、リサンプリング・DPLL17からのピークポイント情報が遅延調整22を介してタップ遅延回路32に供給され、そのタップ遅延出力が仮判別回路33に入力される。仮判別回路33は後述のアルゴリズムに従って、パーシャルレスポンス等化を前提とした仮判別(収束目標設定)を行う。
【0037】
次に、積分系のモードにおける仮判別器33の動作について、図8のフローチャート等と共に更に詳細に説明する。ここで、上記の0ポイント情報の値Zが"1"であるときはゼクロスポイントを示しており、これは、図4(C)に示したPR(a,b,b,a)の状態遷移図では「a+b」という値で表わされており、状態S1→S2又は状態S4→S5へ遷移する過程において発生する。
【0038】
この場合、図4(C)中、右半分の状態S2、S3及びS4は正の値の経路(a+b=0に正規化した場合、図5と共に説明したように、a+2b、2a+2b、2bのいずれか)を辿り、左半分の状態S5、S0及びS1は負の値の経路(a+b=0に正規化した場合、図5と共に説明したように、0、a、2aのいずれか)を辿るため、ゼロクロスポイントの前又は後の値を参照することにより、正の経路なのか、負の経路なのかが判別できる。
【0039】
しかも、あるゼロクロスポイントから次のゼロクロスポイントまでの間隔が分かれば、つまり状態S2から状態S5に至るまで、又は状態S5から状態S2に至るまでの遷移数がわかれば、経路が確定し、取り得るべき値が各々のサンプル点に対して明確になる。
【0040】
また、上記の状態遷移図で「a+b」以外の値、すなわちゼロクロスポイントでないときは、上記の0ポイント情報の値Zは"0"である。この状態遷移図から、ゼロクロスポイント(Z=1)は2つ連続して取り出されることはなく、また、RLL(1,X)の場合は、隣接するZ=1の間には最低1つの"0"が存在する(0ポイント情報の値Zが1→0→1と変化したとき、すなわち、状態S2→S4→S5、あるいは状態S5→S1→S2と遷移したとき)。なお、RLL(2,X)の場合は、隣接するZ=1の間には最低2つの"0"が存在する。2a及び2bの値は存在しないからである。
【0041】
実際の信号では、ノイズ等の影響により、ゼロクロスポイント自体の検出を誤ることも十分に予想されるが、フィードバック制御の場合、正しい判定のできる確率が誤る確率を上回っていれば、正しい方向に収束していくはずであり、また、十分な積分処理のため、単発のノイズは実用上問題ないと考えられる。
【0042】
以上の点に着目し、仮判別器33は、ビットクロックの周期毎に入力されるポイント情報の値Zを識別し、連続する5クロック周期の5つの値がオール"0"であるかどうか(図8のステップ61)、上記の5つの値のうちの最後の値のみが"1"かどうか(図8のステップ62)、上記の5つの値のうちの最初の値のみが"1"かどうか(図8のステップ63)、上記の5つの値のうちの最初と最後の値が"1"で残りの3つの値は"0"かどうかを判別する(図6のステップ64)。
【0043】
これらのパターンは、着目するポイント情報の値Zの中央の値を"0"としたとき、前後両側の0ポイント情報の値Zがいずれも"0"である場合であり、このときは信号波形が正側、又は負側に張り付いている場合であるので、これらのパターンのいずれかを満たすときは、
P=(a+b)*×G (1)
なる式により、大なる値Pを算出する(図8のステップ65)。ただし、(1)式及び後述の(2)、(3)式中、Gは図6に示したゲイン、a*、b*はPR(a,b,b,a)におけるaとbの値を、中央値(a+b)が0になるようにオフセットした後の値であることを示す。これらa*、b*及びGの値は、入力されるPRモード信号入力されるRLLモード信号により求められる既知の値である。
【0044】
上記のパターンのいずれでもないときは、連続する5クロック周期の5つの0ポイント情報の値Zが"01010"であるかどうか判別し(図8のステップ66)、このパターンのときはRLLモード信号に基づき、RLL(1,X)のパーシャルレスポンス等化であるかどうか判定する(図6のステップ67)。このパターンは、着目する中央値の0ポイント情報の値Zを"0"としたとき、中央値の前後両側に隣接する2つのZの値がいずれも"1"の場合であり、これは前記したように、RLL(1,X)のときのみ発生する可能性があるので、RLL(1,X)であるときは
P=(b−a)*×G (2)
なる式により、値Pを算出する(図8のステップ68)。なお、このときは、極性が2クロック目で瞬時に変化するので、(2)式により小なる値Pが算出される。
【0045】
連続する5クロック周期の5つのポイント情報の値Zが"01010"でないときは、それら5つの0ポイント情報の値Zが"01001"、"10010"、"00010"及び"01000"のうちのいずれかのパターンであるかどうか判別する(図8のステップ69〜72)。これら4つのパターンは、連続する5つの0ポイント情報のうち中央値がゼロクロス点を示しておらず、かつ、中央値の前後に隣接する2つのポイント情報の一方がゼロクロス点を示しているときである。
【0046】
上記の4つのパターンのどれかであるとき、あるいはステップ67でRLLモードが(1,X)でないと判定されたときは、
P=b*×G (3)
なる式により、値Pを算出する(図6のステップ73)。この場合、信号波形は短期間、同じ極性を保っているので、(1)式及び(2)式の中間レベルの値Pが(3)式により算出される。
【0047】
上記のステップ65、68及び73のいずれかで値Pを算出すると、続いてD型フリップフロップ47から取り出される現在時刻の波形等化信号D3が0以上であるかどうか判別する(図8のステップ74)。現在時刻の波形等化信号D3が0以上であるときは最終仮判定レベルQをPの値とし(図8のステップ75)、負であるときは最終仮判定レベルQを−Pの値とする(図8のステップ76)。
【0048】
なお、ステップ72でポイント情報の値Zが"01000"でないと判定されたときは、最終仮判定レベルQを"0"とする(図8のステップ77)。例えば、連続する5つのポイントZの中央値が"1"の場合などがこの場合に相当する。
【0049】
次に、微分系における仮判別器33による動作について、図9のフローチャート等と共に更に詳細に説明する。ここでは、簡単のため、信号のランレングス制限が(2,X)である場合について説明する。ここで、上記のポイント情報の値PKが"1"であるときはピークを示しており、これは、図5(C)に示したPR(a,b,−b,−a)の状態遷移図では「a+b」又は「−(a+b)」という値で表わされており、状態S1→S2又は状態S4→S5へ遷移する過程において発生する。
【0050】
この場合、図5(C)中、ピークの極性は、サンプル点の極性で判別できる。しかも、あるピークから次のピークまでの間隔が分かれば、つまり状態S2から状態S5に至るまで、又は状態S5から状態S2に至るまでの遷移数がわかれば、経路が確定し、取り得るべき値が各々のサンプル点に対して明確になる。
【0051】
また、上記の状態遷移図で「a+b」又は「−(a+b)」以外の値、すなわちピークでないときは、上記のポイント情報の値PKは"0"である。この状態遷移図から、ピーク(PK=1)は2つ連続して取り出されることはなく、(2,X)の場合は、隣接するPK=1の間には最低2つの"0"が存在する。
【0052】
実際の信号では、ノイズ等の影響により、ピーク自体の検出を誤ることも十分に予想されるが、フィードバック制御の場合、正しい判定のできる確率が誤る確率を上回っていれば、正しい方向に収束していくはずであり、また、十分な積分処理のため、単発のノイズは実用上問題ないと考えられる。
【0053】
以上の点に着目し、仮判別器33は、まず、端子42、タップ遅延回路23を介してビットクロックの周期毎に入力されるポイント情報の値PKを識別し、連続する5クロック周期の5つの値がオール"0"であるかどうか(図9のステップ61)、上記の5つの値のうちの最後の値のみが"1"かどうか(図9のステップ62)、上記の5つの値のうちの最初の値のみが"1"かどうか(図9のステップ63)、上記の5つの値のうちの最初と最後の値が"1"で残りの3つの値は"0"かどうかを判別する(図9のステップ64)。
【0054】
これらのパターンは、着目するポイント情報の値PKの中央の値を"0"としたとき、前後両側のポイント情報の値PKがいずれも"0"である場合であり、このときは信号波形0に張り付いている場合であるので、これらのパターンのいずれかを満たすときは、
Q=0 (1)
なる式により、仮判別値Qを算出する(図9のステップ65)。
【0055】
上記のパターンのいずれでもないときは、連続する5クロック周期の5つのピークポイント情報の値PKが"01010"、"01001"、"10010"、"00010"及び"01000"のうちのいずれかのパターンであるかどうか判別する(図9のステップ66、69〜72)。これら4つのパターンは、連続する5つのピークポイント情報のうち中央値がピーク点を示しておらず、かつ、中央値の前後に隣接する2つのポイント情報のいずれかがピーク点を示しているときである。
【0056】
上記の5つのパターンのどれかであるときは、
P=a×G (2)
なる式により、値Pを算出する(図9のステップ73)。ただし、(2)式及び後述の(3)式中、Gは図7に示したゲイン、a、bはPR(a,b,b,a)におけるaとbの値を示す。これらa、b及びGの値は、端子43を介して入力されるPRモード信号、端子44を介して入力されるRLLモード信号により求められる既知の値である。
【0057】
なお、ステップ72でポイント情報の値PKが上記以外と判定されたときは、
P=(a+b)×G (2)
なる式により、値Pを算出する(図9のステップ77)。例えば、連続する5つのピークPKの中央値が"1"の場合などがこの場合に相当する。
【0058】
上記のステップ73及び77のいずれかで値Pを算出すると、続いてD型フリップフロップ47から取り出される現在時刻の波形等化信号D3が0以上であるかどうか判別する(図9のステップ74)。現在時刻の波形等化信号D3が0以上であるときは最終仮判定レベルQをPの値とし(図9のステップ5)、負であるときは最終仮判定レベルQを−Pの値とする(図9のステップ76)
【0059】
次に、積分系の上記の仮判別処理による波形等化について、更に具体的に説明する。例えば、図10(A)に実線で示す波形の等化後再生信号が、トランスバーサルフィルタ21から取り出されて仮判別回路33に入力される場合、この仮判別回路33にはリサンプリング・DPLL17からは同図(A)の波形の下部に示すような値Zの0ポイント情報も入力される。ここで、図10(A)において、○印は記録媒体に記録されたランレングス制限符号の本来のデータ点を示す。また、×印はトランスバーサルフィルタ21によりパーシャルレスポンス等化するときの等化用のサンプル点を示し、これは本来のデータ点から180°ずれている(他の図10(B)〜(D)、図11、図12も同様)。
【0060】
図10(A)において、連続する5つの0ポイント情報の値Zがオール"0"のときと"10000"のときと"00001"のときは前記(1)式に基づいて等化され(図8のステップ61〜63、65)、図10(B)に示すように、再生信号が本来と同様の波形で得られる。なお、上記の(1)式〜(3)式の演算結果による波形等化は、連続する5つの0ポイント情報の値Zの3番目のタイミングで、波形等化信号D3の極性に応じて行われることは図8に示した通りである。
【0061】
図10(C)はリサンプリング・DPLL17から取り出された連続する5つの0ポイント情報の値Zが"10001"であるときの、トランスバーサルフィルタ21の出力等化後再生信号波形の一例を示す。この場合、連続する5つの0ポイント情報の値Zの3番目のタイミングの、波形等化信号D3の値は正であるから、このとき(1)式による波形等化が行われ(図8のステップ64、65、74、75)、図10(D)に示す等化後再生信号がトランスバーサルフィルタ21から得られる。
【0062】
図11(A)はリサンプリング・DPLL17から取り出された連続する5つの0ポイント情報の値Zが"01010"で、かつ、RLL(1,X)であるときと、連続する5つの0ポイント情報の値Zが"01001"であるときのトランスバーサルフィルタ21の出力等化後再生信号波形の一例を示す。この場合、連続する5つの0ポイント情報の値Zが"01010"のときの波形等化信号D3の値は正であるから、(2)式による正の値の波形等化が行われ(図8のステップ66〜68、74、75)、"01001"のときの波形等化信号D3の値は負であるから、(3)式による負の値の波形等化が行われ(図8のステップ69、73、74、76)、図11(B)に示す等化後再生信号がトランスバーサルフィルタ21から得られる。
【0063】
図12(A)はリサンプリング・DPLL17から取り出された連続する5つの0ポイント情報の値Zが"01000"であるときと、連続する5つの0ポイント情報の値Zが"00010"であるときのトランスバーサルフィルタ21の出力等化後再生信号波形の一例を示す。この場合、連続する5つの0ポイント情報の値Zが"01000"、"00010"のときはいずれも波形等化信号D3の値は正であるから、(3)式による正の値の波形等化が行われ(図8のステップ71、73〜75、又はステップ72〜75)、図12(B)に示す等化後再生信号がトランスバーサルフィルタ21から得られる。
【0064】
更に、図12(C)はリサンプリング・DPLL17から取り出された連続する5つの0ポイント情報の値Zが"01001"であるときと、連続する5つの0ポイント情報の値Zが"10010"であるときのトランスバーサルフィルタ21の出力等化後再生信号波形の一例を示す。この場合、連続する5つの0ポイント情報の値Zが"01001"、"10010"のときはいずれも波形等化信号D3の値は正であるから、(3)式による正の値の波形等化が行われ(図8のステップ69、73〜75、又はステップ70、73〜75)、図12(D)に示す等化後再生信号がトランスバーサルフィルタ21から得られる。
【0065】
このように、この実施の形態では、0ポイント情報の値Zを参照し、状態遷移図から自と決定される値に等化するようにしたため、現在のサンプル点のレベルに依存しない(他の目標値に近くても影響されない)正確な波形等化ができる。また、異なるパーシャルレスポンス等化に対応でき、更に判定を誤る確率はスレッショルドが固定の従来装置に比べて少ないので、収束時間を短時間にできる。なお、本実施の形態は、RLL(2,X)にも同様に適用できる。図6と共に説明したように、RLL(1,X)と略同様の状態遷移が行われるからである。
【0066】
次に、微分系の上記の仮判別処理による波形等化について、更に具体的に説明する。例えば、図13(A)に実線で示す波形の等化後再生信号が、トランスバーサルフィルタ21から取り出されて仮判別回路33に入力される場合、この仮判別回路24にはリサンプリング・DPLL19からは同図(A)の波形の下部に示すような値PKのピークポイント情報も入力される。ここで、図13(A)において、○印はトランスバーサルフィルタ21によりパーシャルレスポンス等化するときの等化用のサンプル点を示している(他の図13(B)、図14、図15も同様)。
【0067】
図13(A)において、連続する5つのピークポイント情報の値PKがオール"0"のときと"10000"のときと"00001"のときは前記(1)式に基づいて等化され(図9のステップ61〜63、65)、PKが"01000"のときと"00010"のときは前記(2)式に基づいて等化され(図9のステップ71〜72、73、74、75)、PKが"00100"のときは前記(3)式に基づいて等化され(図9のステップ77、74、75)、図13(B)に示すように、再生信号が本来と同様の波形で得られる。なお、上記の(1)式〜(3)式の演算結果による波形等化は、連続する5つのピークポイント情報の値PKの3番目のタイミングで、波形等化信号D3の極性に応じて行われることは図9に示した通りである。
【0068】
図14(A)において、連続する5つのピークポイント情報の値 はリサンプリング・DPLL17から取り出された連続する5つのピークポイント情報の値PKが"10001"であるときの、トランスバーサルフィルタ21の出力等化後再生信号波形の一例を示す。この場合、連続する5つの0ポイント情報の値PKの3番目のタイミングの、波形等化信号D3の値は正であるから、このとき(1)式による波形等化が行われ(図9のステップ64、65)、図14(B)に示す等化後再生信号がトランスバーサルフィルタ21から得られる。
【0069】
更に、図15(A)はリサンプリング・DPLL17から取り出された連続する5つのピークポイント情報の値PKが"01001"であるときと、連続する5つの0ピークポイント情報の値PKが"10010"であるときのトランスバーサルフィルタ21の出力等化後再生信号波形の一例を示す。この場合、連続する5つの0ポイント情報の値PKが"01001"、"10010"のときはいずれも波形等化信号D3の値は正であるから、(3)式による正の値の波形等化が行われ(図9のステップ69、73〜75、又はステップ70、73〜74、76)、図15(B)に示す等化後再生信号がトランスバーサルフィルタ21から得られる。
【0070】
このように、この実施の形態では、ピークポイント情報の値PKを参照し、状態遷移図から自と決定される値に等化するようにしたため、現在のサンプル点のレベルに依存しない(他の目標値に近くても影響されない)正確な波形等化ができる。また、異なるパーシャルレスポンス等化に対応でき、更に判定を誤る確率はスレッショルドが固定の従来装置に比べて少ないので、収束時間を短時間にできる。なお、本実施の形態は、RLL(1,X)にも同様に適用できる。図7と共に説明したように、RLL(2,X)と略同様の状態遷移が行われるからである。
【0071】
以上の仮判別処理により得られた仮判定レベルQは、図1の減算器34に供給されて現在時刻の波形等化信号D3との差分をとられてエラー信号とされ、INV35を介して乗算器・LPF27へ出力され、ここで乗算されてから高域周波数成分が除去され、トランスバーサルフィルタ21にタップ係数として出力される。このようにして、減算器34から取り出されるエラー信号が0になるように、トランスバーサルフィルタ21のタップ係数が可変制御されることにより、トランスバーサルフィルタ21による波形等化を収束範囲を拡大させて好適に行うことができる。
【0072】
このように、仮判別回路33は、パーシャルレスポンス等化の種類を示すPRモード信号と、再生信号のランレングス制限符号の種類を示すRLLモード信号と、タップ遅延回路32からの複数のポイント情報と、減算器31の出力波形等化後再生信号とを入力として受け、PRモード信号とRLLモード信号で定まる状態遷移と、複数のポイント情報のパターンとに基づき、波形等化信号の仮判別レベルQを算出する。この仮判定レベルQは目標値として図1の減算器34に供給され、実際の信号である波形等化後再生信号との差がとられてエラー信号とされる。
【0073】
一方、図1のリサンプリング回路18及び19よりそれぞれ取り出された信号は、遅延調整器23、24により固定の遅延が与えられ、後述の擬似クロストークとの時間合わせを粗く行われてトランスバーサルフィルタ25、26に入力される。このトランスバーサルフィルタ25、26にタップ係数(フィルタ係数)を供給する乗算器・LPF28、29は、前記減算器34から出力されるエラー信号が入力され、ここでトランスバーサルフィルタ25、26のタップ出力と乗算して隣接トラック信号の相関を抽出し、更にその相関値をLPFで積分してトランスバーサルフィルタ25、26に入力する。
【0074】
このようにして、トランスバーサルフィルタ25、26のタップ係数(フィルタ係数)は、隣接トラック信号の相関値に応じて更新され、トランスバーサルフィルタ25、26からは内周側、外周側の各トラックからの読取信号に対応した擬似クロストーク信号が取り出される。これらのトランスバーサルフィルタ25、26の出力擬似クロストーク信号は、トランスバーサルフィルタ21からの波形等化後の再生すべきトラックからの再生信号に、減算器30、31でそれぞれ減算される。これにより、減算器31からは、トランスバーサルフィルタ21からの波形等化後の再生すべきトラックの再生信号中のクロストークと相殺除去されて、S/Nの良好な再生信号として出力される。この実施の形態は、フィードバック処理であるため、安定な動作が実現できる。
【0075】
この実施の形態では、トランスバーサルフィルタ21を含む再生すべきトラックの再生信号の符号間干渉除去ブロックと、トランスバーサルフィルタ25及び26を含む隣接トラックからの再生信号に基づく擬似クロストーク生成ブロックには、いずれも同一のエラー信号を0にするべく各タップ係数(フィルタ係数)を制御しているので、制御の衝突は発生しない。
【0076】
また、クロストーク成分がはっきり識別できるのは、所望トラックの再生信号が平坦のとき(反転間隔が大きい状態)、つまり積分系の信号に関しては、最大値もしくは最小値付近で、微分系の信号に関しては0付近で連続している状態であり、従来のゼロクロス検出では正しい検出が出来ないのに対し、この実施の形態では、値が0又はa+bというような明確な値に向かって収束させると同時に、これらの値からの誤差をエラー信号として隣接トラック信号との相関をとり、クロストーク成分を抽出するようにしているので、正確、かつ、迅速な収束が可能である。つまり、ゼロクロスやピークポイントだけでなく、パーシャルレスポンス等化に対応したすべてのサンプリングポイントの情報からエラー信号を抽出できるということが特徴である。
【0077】
また、リサンプリングDPLL17を用いる場合、A/D変換器11に用いられるサンプリングクロックはビットクロックに同期しておらず、それは隣接トラックの再生信号のサンプリングクロックについても同様である。一定の位相ずれは擬似クロストーク発生器でも吸収できる(トランスバーサルフィルタ25、26自体もリサンプリング演算器と見ることができる。)が、周波数がずれている場合などでは、サンプリング時間間隔が一定にならないため、従来の擬似クロストーク発生器では対応できない。
【0078】
一方、この実施の形態では、リサンプリングDPLL17により生成した、リサンプリング演算時の内分割合T_ratio及びビットクロックBCLKを利用し、リサンプリング器18、19で隣接トラックからの再生信号のリサンプリング演算を行うようにしているため、周波数ずれに対応できる。また、位相については、後段の遅延調整器23、24により粗く合わせ、後はトランスバーサルフィルタ25及び26を用いた擬似クロストーク発生器に任せるようにしている。これにより、リサンプリングDPLL17を用いることができる。なお、遅延調整器23、24をリサンプリング器18、19の後段に配置したのは、この方が遅延用フリップフロップの段数を少なくできるからで、機能的にはリサンプリング器18、19の前段に配置してもよい。
【0079】
リサンプリングDPLL17は独立にAGC・ATC回路14とトランスバーサルフィルタ21を含む再生すべきトラックの再生信号の符号間干渉除去ブロックとの間に挟まれ、かつ、自分自身のブロックの中でループが完結しているため、確実な収束が期待できる。一方、リサンプリングDPLL17を用いない場合は、外付けの電圧制御発振器(VCO)が必要であり、またA/D変換器でビットサンプリングが行われるため、A/D変換器を含んだPLLループが形成され、A/D変換器として高速なものが要求されるのでコストが高くなる。
【0080】
また、リサンプリングDPLL17を用いない場合は、AGC・ATC回路を含んだPLLループが形成されるため、各々が干渉し、適切な方向へ収束できない場合があり、更に、AGCループ、ATCループ、PLLループをすべて外へ出し、アナログ回路で構成することも考えられるが、電圧制御増幅器(VCA)の追加が必要で、またアナログ回路特有の経時変化・部品ばらつきの悪影響を受ける。以上により、この実施の形態のように、リサンプリングDPLLを用いる構成が望ましいことが明らかであり、特に光ディスクでは記録再生系が周波数特性において高域減衰特性を有するため、オーバーサンプリングに適している。
【0081】
次に、本発明の他の実施の形態について説明する。図16は本発明になる記録情報再生装置の第2の実施の形態のブロック図を示す。同図中、図1と同一構成部分には同一符号を付し、その説明を省略する。図16の第2の実施の形態は、A/D変換器11〜13と、AGC・ATC回路14〜16の間にディジタルのプリイコライザ(PreEQ)37〜39を用いた点に特徴がある。
【0082】
図17は本発明になる記録情報再生装置の第3の実施の形態のブロック図を示す。同図中、図1と同一構成部分には同一符号を付し、その説明を省略する。図17の第3の実施の形態は、A/D変換器11〜13の入力側にアナログのプリイコライザ(PreEQ)41〜43を用いた点に特徴がある。
【0083】
図18は本発明になる記録情報再生装置の第4の実施の形態のブロック図を示す。同図中、図1と同一構成部分には同一符号を付し、その説明を省略する。図18の第4の実施の形態は、仮判別にポイント情報を用いず固定の閾値を用いて判別する仮判別回路45を設けた点に特徴がある。すなわち、減算器31から取り出された波形等化後の再生信号は、後段のビタビ復号回路へ出力される一方、仮判別回路45に供給され、ここで所定の閾値と比較されて0ポイントもしくはピークポイントが検出され、この0ポイントもしくはピークポイントの連続パターン系列から前述したアルゴリズムで仮判別を行う。このとき、リサンプリング・DPLL17には特性モードは必要ないので、供給していない。
【0084】
この仮判別回路45による仮判別結果と仮判別回路45の入力信号(減算器31の出力信号)とが減算器34において減算され、その差分値がエラー信号としてインバータ35で極性を反転された後、乗算器・LPF27に供給され、上記のエラー信号の値を0にする、トランスバーサルフィルタ21のフィルタ係数(タップ係数)とされてトランスバーサルフィルタ21に入力される。この実施の形態では、リサンプリングDPLL17からのピークポイント情報を用いないので、遅延調整器22及びタップ遅延回路32が不要となる。
【0085】
図19は本発明になる記録情報再生装置の第5の実施の形態のブロック図を示す。同図中、図1と同一構成部分には同一符号を付し、その説明を省略する。図19において、光ディスクに形成されたトラック群中の隣接する3つのトラックのうち、中央の再生すべきトラックTiの読取信号は、電圧制御増幅器(VCA)47に入力され、内周側の隣接トラックTi-1の読取信号はVCA48に入力され、外周側の隣接トラックTi+1の読取信号は、VCA49に入力されてレベル及びDCが制御される。
【0086】
VCA47、48、49の各出力読取信号は、次段のA/D変換器50、51、52に供給されてマスタークロックでサンプリングされてディジタル信号に変換され、次段の固定イコライザ(EQ)53、54、55でイコライザ特性が付与された後、AGC・ATC検出回路56、57、58に供給され、ここで振幅が一定に制御される自動振幅制御(AGC)及び閾値を適切に直流(DC)制御する自動閾値制御(ATC)のための利得制御信号及びDC制御信号が生成される。この利得制御信号はVCA47、48、49に供給されて、その利得を可変制御する。これにより、この実施の形態では、AGCとATCをアナログ回路と共に行うことができる。
【0087】
図20は本発明になる記録情報再生装置の第6の実施の形態のブロック図を示す。同図中、図1及び図13と同一構成部分には同一符号を付し、その説明を省略する。図16において、光ディスクに形成されたトラック群中の隣接する3つのトラックのうち、中央の再生すべきトラックTiの読取信号は、アナログのAGC・ATC回路61に入力され、内周側の隣接トラックTi-1の読取信号はアナログのAGC・ATC回路62に入力され、外周側の隣接トラックTi+1の読取信号は、アナログのAGC・ATC回路63に入力されて、それぞれ振幅が一定に制御される。
【0088】
AGC・ATC回路61、62、63の各出力読取信号は、次段のA/D変換器50、51、52に供給されてマスタークロックでサンプリングされてディジタル信号に変換され、A/D変換器50の出力だけ次段の固定イコライザ(EQ)53でイコライザ特性が付与される。この実施の形態は、AGCとATCをアナログ回路であるAGC・ATC回路61、62、63のみで行うようにしたものである。
【0089】
図21は本発明になる記録情報再生装置の第7の実施の形態のブロック図を示す。同図中、図1と同一構成部分には同一符号を付し、その説明を省略する。図21の第7の実施の形態は、減算器31の出力信号のゼロクロスポイントを検出して0ポイント情報をポイント選択回路203に供給するゼロ検出器201と、減算器31の出力信号のピークポイントを検出してピークポイント情報をポイント選択回路203に供給するピーク検出器202と、前記特性モードに応じて、前記0ポイント情報と前記ピークポイントのうちいずれかを選択し、ポイント情報としてタップ遅延回路32に供給するポイント選択回路203からなる。前記特性モードは、前記仮判別回路33にも入力されており、仮判別アルゴリズムを切り替えている。
【0090】
ゼロ検出器201は、例えば入力等化後再生信号の極性が反転したときに、近傍の2つのサンプル点のうち、より0に近い方を0ポイント情報としてポイント選択回路203に供給する。
【0091】
ピーク検出器202は、例えば入力等化後再生信号の隣接するサンプリングポイントの関係における傾きが反転したときに、ピークポイント情報としてポイント選択回路23に供給する。
【0092】
これにより、図1と同様の仮判別アルゴリズムに従って、仮判別結果が得られる。ポイント情報を減算器31からビタビ復号器へ出力される波形等化後再生信号から抽出するようにした点に特徴がある。
【0093】
図22は本発明になる記録情報再生装置の第8の実施の形態のブロック図を示す。同図中、図1と同一構成部分には同一符号を付し、その説明を省略する。図22に示す第8の実施の形態は、リサンプリングDPLL17、リサンプリング回路18及び19を用いないで、記録情報を再生するようにしたものである。すなわち、AGC・ATC回路14、15、16の各出力ディジタル読取信号は、直接に遅延調整器20、23、24を通してトランスバーサルフィルタ21、25、26に供給される。
【0094】
減算器31より取り出されたクロストークが除去され、かつ、波形等化された再生信号は、仮判別回路33に供給される一方、ゼロクロス検出・ピーク検出・位相比較器67に供給され、ここで積分系のときはゼロクロス検出、微分系のときはピーク検出され、その検出点の位相と電圧制御発振器(VCO)69よりのビットクロックの位相とを位相比較して位相誤差信号として生成される。この位相誤差信号は、ループフィルタ68を通してアナログ又はディジタルの電圧制御発振器(VCO)69に制御電圧として印加され、その出力システムクロック周波数を可変制御する。VCO69の出力システムクロックはビットクロックの自然数倍の周波数であり、装置のクロックが必要な各ブロックに印加される。
【0095】
図23は本発明になる記録情報再生装置の第9の実施の形態のブロック図を示す。同図中、図1と同一構成部分には同一符号を付し、その説明を省略する。図23において、光ディスクに形成されたトラック群中の隣接する3つのトラックのうち、中央の再生すべきトラックTiの読取信号は、アナログのAGC・ATC回路71に入力され、内周側の隣接トラックTi−1の読取信号はアナログのAGC・ATC回路72に入力され、外周側の隣接トラックTi+1の読取信号は、アナログのAGC・ATC回路73に入力されて、それぞれ振幅が一定に制御されると共に閾値を適切に制御される。
【0096】
AGC・ATC回路71の出力読取信号は、次段の固定イコライザ(EQ)41でイコライザ特性が付与された後、A/D変換器11に供給されてビットクロックでサンプリングされてディジタル信号に変換される。また、AGC・ATC回路72、73の各出力読取信号は、A/D変換器12、13に供給されてビットクロックでサンプリングされてディジタル信号に変換される。A/D変換器11、12、13の各出力ディジタル信号は、遅延調整器20、23、24を通してトランスバーサルフィルタ21、25、26に供給される。
【0097】
また、固定イコライザ41の出力アナログ信号は、位相比較器74、ループフィルタ75及び76からなるPLL回路に供給されてビットクロックの自然数倍の周波数のシステムクロックとされる。
【0098】
遅延調整器20の出力信号は、トランスバーサルフィルタ21と共にゼロ検出器204及びピーク検出器205に入力し、ポイント選択回路206が、前記特性モード信号に応じて、前記ゼロ検出器204から出力された0ポイント情報及び前記ピーク検出器205から出力されたピークポイント情報のうちいずれかを選択し、ポイント情報としてタップ遅延回路32に供給する点に特徴がある。
【0099】
図24は本発明になる記録情報再生装置の第10の実施の形態のブロック図を示す。同図中、図22と同一構成部分には同一符号を付し、その説明を省略する。図24に示す第10の実施の形態は、ATC・AGCをアナログ回路のみで行い、ディジタルVCOを用いずに固定閾値判別を行う構成としたものである。図24において、減算器31から取り出された波形等化後の再生信号は、後段のビタビ復号回路へ出力される一方、仮判別回路45に供給され、ここで所定の閾値と比較されてゼロクロスもしくはピークが検出され、このポイントの連続パターン系列から前述したアルゴリズムで仮判別を行う。
【0100】
なお、本発明は以上の実施の形態に限定されるものではなく、ゼロクロスもしくはピークに相当する信号のレベルのみに基づき、前記トランスバーサルフィルタのタップ係数及び前記フィルタリングの特性を前記エラー信号が最小になるように可変制御するようにしてもよい。図25は、この場合の第11の実施の形態のブロック図を示す。同図中、図1と同一構成部分には同一符号を付し、その説明を省略する。仮判別回路100は固定の閾値を用いて判別をおこなう。遅延調整22より出力されたポイント情報は、タップ遅延回路ではなく、エラー選択101に供給される。エラー選択101は、減算器34より出力されたエラー信号より、ピークのタイミングに対応したエラー信号のみを抽出し、乗算器・LPF28及び29に供給している。
【0101】
図26は本発明になる記録情報再生装置の第12の実施の形態のブロック図を示す。同図中、図21と同一構成部分には同一符号を付し、その説明を省略する。前記ポイント選択回路203から出力されたポイント情報は、エラー選択104に供給される。エラー選択104は、減算器34より出力されたエラー信号より、ゼロクロスもしくはピークのタイミングに対応したエラー信号のみを抽出し、乗算器・LPF28及び29に供給している。前記特性モードは、前記仮判別回路102にも入力されており、仮判別アルゴリズムを切り替えている。
【0102】
図27は本発明になる記録情報再生装置の第13の実施の形態のブロック図を示す。同図中、図23と同一構成部分には同一符号を付し、その説明を省略する。仮判別回路105は固定の閾値を用いて判別をおこなう。ポイント選択回路206より出力されたポイント情報は、タップ遅延回路ではなく、エラー選択106に供給される。エラー選択106は、減算器34より出力されたエラー信号より、ゼロクロスもしくはピークのタイミングに対応したエラー信号のみを抽出し、乗算器・LPF28及び29に供給している。
【0103】
図28は本発明になる記録情報再生装置の第14の実施の形態のブロック図を示す。同図中、図26と同一構成部分には同一符号を付し、その説明を省略する。仮判別回路107は固定の閾値を用いて判別をおこなう。ポイント選択回路203より出力されたポイント情報は、タップ遅延回路ではなく、エラー選択109に供給される。エラー選択109は、減算器34より出力されたエラー信号より、ゼロクロスもしくはピークのタイミングに対応したエラー信号のみを抽出し、乗算器・LPF28及び29に供給している。
【0104】
なお、本発明は以上の実施の形態に限定されるものではなく、パーシャルレスポンス等化を用いずに、クロストーク除去機能だけを用いることもできる。図29は、この場合の第15の実施の形態のブロック図を示す。同図中、図25と同一構成部分には同一符号を付し、その説明を省略する。トランスバーサルフィルタ、乗算器・LPF、INVが削除され、遅延調整20の出力が減算器30に供給されている。
【0105】
図30は本発明になる記録情報再生装置の第16の実施の形態のブロック図を示す。同図中、図26と同一構成部分には同一符号を付し、その説明を省略する。トランスバーサルフィルタ、乗算器・LPF、INVが削除され、遅延調整20の出力が減算器30に供給されている。
【0106】
図31は本発明になる記録情報再生装置の第17の実施の形態のブロック図を示す。同図中、図27と同一構成部分には同一符号を付し、その説明を省略する。トランスバーサルフィルタ、乗算器・LPF、INVが削除され、遅延調整20の出力が減算器30に供給されている。
【0107】
図32は本発明になる記録情報再生装置の第18の実施の形態のブロック図を示す。同図中、図28と同一構成部分には同一符号を付し、その説明を省略する。トランスバーサルフィルタ、乗算器・LPF、INVが削除され、遅延調整20の出力が減算器30に供給されている。
【0108】
なお、本発明は以上の実施の形態に限定されるものではなく、例えばリサンプリング・DPLLが出力するポイント情報は、PLL動作の後に、別途、ゼロクロスもしくはピークを検出し、ポイント情報として出力してもよい。
【0109】
なお、本発明は以上の実施の形態に限定されるものではなく、例えば図1に示す遅延調整器20、23及び24をAGC・ATC回路14、15及び16の入力側に設けてもよいし、トランスバーサルフィルタ21、25及び26に余裕がある場合は、省略してもよい。
【0110】
また、以上の実施の形態では再生すべきトラックの両側に隣接する2本のトラックに対する2ビームの読取信号についてそれぞれ専用に擬似クロストーク信号を生成する回路系を2系統設けているが、ビームの光ディスクに対する照射角度を検出する公知のチルトセンサを装置が有しているならば、チルトセンサの出力信号に基づき、再生すべきトラックの両側に隣接する2本のトラックに対する2ビームの読取信号のうち、クロストーク成分が多い方のみを選択するスイッチ回路を設けることにより、上記の擬似クロストーク信号生成回路系を一系統のみとすることができる。
【0111】
なお、上記の実施の形態では、仮判別器は、図8及び図9のフローチャートと共に説明したように、ビットクロックの周期毎に入力される、連続する5つのポイント情報の値ZもしくはPKに基づいて仮判別結果を得ているが、連続する3つのピークポイント情報の値PKに基づいて仮判別結果を得ることもできる。図33及び図34はこの場合のフローチャートを示す。ここでは動作説明は省略する。
【0112】
なお、本発明は以上の実施の形態に限定されるものではなく、例えば仮判別回路24はPRモード信号とRLLモード信号の両方を可変としてエラー信号を生成するようにしたが、いずれか一方又は両方を固定してエラー信号を生成することもできる。
【0113】
また、前記INV35はトランスバーサルフィルタ21の係数を更新する際に、ネガティブフィードバック(負帰還)にする目的で挿入しているものであり、その目的を達成する方法は他にも多く考えられ、代表的な方法は次の通りである。▲1▼INVでトランスバーサルフィルタ21のタップ出力それぞれを反転する。▲2▼INVで乗算器・LPF22の出力を反転する。▲3▼トランスバーサルフイルタ21内部のメイン信号の極性を変えてつじつまを合わせる。▲4▼ルーブ内各ブロックのうちのいずれかの中で極性反転を行う。このとき、図8、図9、図33、図34に示したフローチャートで使用されているD3の極性及びそのエラー出力の極性について配慮されなければならないことは勿論である。
【0114】
【発明の効果】
以上説明したように、本発明によれば、積分系の信号に対するクロストーク除去と微分系の信号に対するクロストーク除去が同一のシステム内で両立する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態のブロック図である。
【図2】積分系及び微分系の信号の一例の概略説明図である。
【図3】3ビーム法によるビームスポットとトラックとの位置関係の一例の概略説明図である。
【図4】積分系のパーシャルレスポンス特性の説明図である。
【図5】微分系のパーシャルレスポンス特性の説明図である。
【図6】PR(a,b,b,a)の特性とランレングス制限規則RLLモードと仮判別器の仮判定値との関係を示す図である。
【図7】PR(a,b,−b,−a)の特性とランレングス制限規則RLLモードと仮判別器の仮判定値との関係を示す図である。
【図8】仮判別器の積分系に対する一例の動作説明用フローチャートである。
【図9】仮判別器の微分系に対する一例の動作説明用フローチャートである。
【図10】本発明による積分系に対する波形等化前と波形等化後の波形例を示す図(その1)である。
【図11】本発明による積分系に対する波形等化前と波形等化後の波形例を示す図(その2)である。
【図12】本発明による積分系に対する波形等化前と波形等化後の波形例を示す図(その3)である。
【図13】本発明による微分系に対する波形等化前と波形等化後の波形例を示す図(その1)である。
【図14】本発明による微分系に対する波形等化前と波形等化後の波形例を示す図(その2)である。
【図15】本発明による微分系に対する波形等化前と波形等化後の波形例を示す図(その3)である。
【図16】本発明の第2の実施の形態のブロック図である。
【図17】本発明の第3の実施の形態のブロック図である。
【図18】本発明の第4の実施の形態のブロック図である。
【図19】本発明の第5の実施の形態のブロック図である。
【図20】本発明の第6の実施の形態のブロック図である。
【図21】本発明の第7の実施の形態のブロック図である。
【図22】本発明の第8の実施の形態のブロック図である。
【図23】本発明の第9の実施の形態のブロック図である。
【図24】本発明の第10の実施の形態のブロック図である。
【図25】本発明の第11の実施の形態のブロック図である。
【図26】本発明の第12の実施の形態のブロック図である。
【図27】本発明の第13の実施の形態のブロック図である。
【図28】本発明の第14の実施の形態のブロック図である。
【図29】本発明の第15の実施の形態のブロック図である。
【図30】本発明の第16の実施の形態のブロック図である。
【図31】本発明の第17の実施の形態のブロック図である。
【図32】本発明の第18の実施の形態のブロック図である。
【図33】仮判別器の積分系に対する別の例の動作説明用フローチャートである。
【図34】仮判別器の微分系に対する別の例の動作説明用フローチャートである。
【符号の説明】
11〜13 A/D変換器
14〜16 AGC・ATC回路
17 リサンプリングDPLL回路
18、19 リサンプリング回路
20、22、23、24 遅延調整器
21 再生すべきトラックの再生信号の波形等化用トランスバーサルフィルタ
25、26 擬似クロストーク信号生成用トランスバーサルフィルタ
27〜29 乗算器・LPF
30、31、34 減算器
32 タップ遅延回路
32a タップ遅延回路の一部回路
33 仮判別回路
45、100、102、105、107 閾値固定の仮判別回路
201、204 ゼロ検出器
202、205 ピーク検出器
203、206 ポイント選択回路
101、104、106、109 エラー選択

Claims (1)

  1. 記録媒体に記録されている再生すべき任意の一の記録トラックから読み取った第1の再生信号を復号する記録情報再生装置において、
    前記第1の再生信号から、前記再生すべき任意の一の記録トラックに隣接する少なくとも1つの記録トラックから読み取った第2の再生信号を所定のフィルタリング特性を有するフィルタで処理した信号を減算して出力する第1の減算手段と、
    前記第一の再生信号がゼロクロスか否かを検出して0ポイント情報を出力するゼロ検出手段と、
    前記第一の再生信号がピークか否かを検出してピークポイント情報を出力するピーク検出手段と、
    前記0ポイント情報と前記ピークポイント情報を入力し、いずれかを選択して、ポイント情報として出力する選択手段と、
    前記ポイント情報がピークを示すタイミングにおける前記第1の減算手段からの出力信号と所定の値との差分値をエラー信号として出力する第2の減算手段と、
    前記エラー信号に基づき、前記フィルタの前記フィルタリング特性を前記エラー信号が最小になるように可変制御する係数生成手段とを有することを特徴とする記録情報再生装置。
JP2000228704A 2000-07-27 2000-07-28 記録情報再生装置 Expired - Lifetime JP3818032B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000228704A JP3818032B2 (ja) 2000-07-28 2000-07-28 記録情報再生装置
US09/903,566 US6836456B2 (en) 2000-07-27 2001-07-13 Information reproducing apparatus
CNB011206489A CN1227662C (zh) 2000-07-27 2001-07-20 记录信息再现装置
EP01117877A EP1178484B1 (en) 2000-07-27 2001-07-23 Information reproducing apparatus
DE60136601T DE60136601D1 (de) 2000-07-27 2001-07-23 Informationswiedergabegerät

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000228704A JP3818032B2 (ja) 2000-07-28 2000-07-28 記録情報再生装置

Publications (2)

Publication Number Publication Date
JP2002050125A JP2002050125A (ja) 2002-02-15
JP3818032B2 true JP3818032B2 (ja) 2006-09-06

Family

ID=18721944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000228704A Expired - Lifetime JP3818032B2 (ja) 2000-07-27 2000-07-28 記録情報再生装置

Country Status (1)

Country Link
JP (1) JP3818032B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8611411B2 (en) 2009-03-19 2013-12-17 JVC Kenwood Corporation Equalizer and equalization method
JP5136489B2 (ja) * 2009-03-24 2013-02-06 株式会社Jvcケンウッド 等化器および等化方法
JP5136577B2 (ja) * 2009-03-19 2013-02-06 株式会社Jvcケンウッド 等化器および等化方法

Also Published As

Publication number Publication date
JP2002050125A (ja) 2002-02-15

Similar Documents

Publication Publication Date Title
KR100490498B1 (ko) 디지털 기록 데이터 재생 장치
US6542039B1 (en) Phase-locked loop apparatus and method
JP2002175673A (ja) Pll回路、データ検出回路及びディスク装置
US6836456B2 (en) Information reproducing apparatus
JP4433438B2 (ja) 情報再生装置および位相同期制御装置
US8085639B2 (en) Information reproducing device
KR100726787B1 (ko) 적응등화회로 및 적응등화방법
JP3818032B2 (ja) 記録情報再生装置
WO2006100981A1 (ja) 情報記録媒体、情報再生装置、情報再生方法
JP3818031B2 (ja) 記録情報再生装置
JP2001110146A (ja) 再生装置
KR20000062966A (ko) 가변 임계값을 갖는 매체 잡음 포스트-프로세서
KR20030029896A (ko) 정정신호를 얻기 위한 파형 등화기와 정보 재생장치
JP3428525B2 (ja) 記録情報再生装置
JP4072746B2 (ja) 再生装置
JP3428505B2 (ja) ディジタル信号再生装置
JP3428499B2 (ja) ディジタル信号再生装置
JP3395716B2 (ja) ディジタル信号再生装置
JP4433437B2 (ja) 再生装置
JP2977031B2 (ja) データ検出器及びその方法
JP4804268B2 (ja) デジタルpll回路およびデータ再生装置
JP2006216175A (ja) Pll回路およびディスク再生装置
JP3994987B2 (ja) 再生装置
JP4063010B2 (ja) 再生装置
JP2002304817A (ja) 振幅制限を狭くした振幅制限型の波形等化器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R151 Written notification of patent or utility model registration

Ref document number: 3818032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

EXPY Cancellation because of completion of term