JP3816036B2 - Cement admixture, cement composition and mortar or concrete using the same - Google Patents

Cement admixture, cement composition and mortar or concrete using the same Download PDF

Info

Publication number
JP3816036B2
JP3816036B2 JP2002210965A JP2002210965A JP3816036B2 JP 3816036 B2 JP3816036 B2 JP 3816036B2 JP 2002210965 A JP2002210965 A JP 2002210965A JP 2002210965 A JP2002210965 A JP 2002210965A JP 3816036 B2 JP3816036 B2 JP 3816036B2
Authority
JP
Japan
Prior art keywords
cement
sio
2cao
concrete
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002210965A
Other languages
Japanese (ja)
Other versions
JP2004051426A (en
Inventor
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2002210965A priority Critical patent/JP3816036B2/en
Publication of JP2004051426A publication Critical patent/JP2004051426A/en
Application granted granted Critical
Publication of JP3816036B2 publication Critical patent/JP3816036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に、土木・建築業界におけるセメント混和材、セメント組成物、及びそれを用いてなるモルタル又はコンクリートに関する。なお、本発明における部や%は特に規定しない限り質量基準で示す。
【0002】
【従来の技術とその課題】
最近では、コンクリートの耐久性問題が大きくクローズアップされ、コンクリートの耐久性向上の要求が高まっている。コンクリートの劣化要因には中性化や塩害などがある。しかしながら、これらは相反する要求性能である。
【0003】
なぜなら、塩害はコンクリート中の水酸化カルシウム量が多いほど影響を受けやすい。一方、中性化は水酸化カルシウム生成量が少ないほど影響を受けやすいためである。
【0004】
塩害はおもに海岸近くのコンクリート構造物で発生し、飛来塩分等に由来する塩化物イオンが表面からコンクリート内部に浸透することにより鉄筋が腐食し、その結果構造物としての耐力の低下やコンクリート片の剥落等の劣化を引き起こす現象である。
塩害の影響を受けにくいコンクリートを得るためには、高炉スラグ、フライアッシュ、及びシリカフュームなどの潜在水硬性物質を多量に混和して、セメントの水和から生成するフリー状態の水酸化カルシウムを消費させて、水酸化カルシウム量の少ない緻密なコンクリートとすることにより耐塩化物浸透性を向上させることが有効とされてきた。
【0005】
一方、中性化は水酸化カルシウムが大気中の二酸化炭素と反応して炭酸化されることにより引き起こされる現象である。したがって、水酸化カルシウム生成量が多いコンクリートほど影響を受けにくいとされている。
【0006】
このように、今日ではコンクリートの塩害と中性化を同時に効果的に抑制する技術の開発が求められている。
【0007】
そこで、本発明者は種々検討を重ねた結果、本発明者は、水硬性を持たないγ−2CaO・SiO2の粉末が、中性化抑制効果を有することを見出し、潜在水硬性物質とγ-2CaO・SiO2微粉末からなるセメント混和材が、耐塩化物浸透性及び中性化抵抗性の双方を付与することを知見して本発明を完成するに至った。
【0008】
【課題を解決するための手段】
即ち、本発明は、潜在水硬性物質γ-2CaO・SiO2を含有してなり、潜在水硬性物質とγ -2CaO SiO 2 の合計 100 部中、γ -2CaO SiO 2 10 80 部であるセメント混和材であり、セメントと該セメント混和材とを含有してなるセメント組成物であり、該セメント組成物を用いてなるモルタル又はコンクリートであり、潜在水硬性物質を結合材の一部として、また、γ-2CaO・SiO2を骨材の一部として配合することを特徴とする該モルタル又はコンクリートである。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0010】
本発明で使用するγ-2CaO・SiO2は2CaO・SiO2で表される化合物のうち、低温相として知られるものであり、高温相として知られるα-2CaO・SiO2及びβ-2CaO・SiO2とは異なるものである。これらは、いずれも2CaO・SiO2で同じ化学組成を有するが、結晶構造は異なっている。セメントクリンカ中に存在する2CaO・SiO2はβ-2CaO・SiO2であり、γ-2CaO・SiO2は全く含まれない。β-2CaO・SiO2は水硬性を有するが、本発明のγ-2CaO・SiO2のような中性化抵抗性を示さない。
【0011】
本発明のγ-2CaO・SiO2を工業的に製造する方法は特に限定されないが、一般的には(1)CaO源として生石灰、消石灰、及び/又は炭酸カルシウムなどのカルシウム源、(2)酸化アルミニウム、水酸化アルミニウム、及び/又はボーキサイトなどのアルミニウム源を熱処理する方法等が挙げられる。
【0012】
熱処理温度は特に限定されるものではなく、使用する原料によっても異なるが、通常、850℃〜1600℃程度の範囲で行えばよく、1,000℃〜1,500℃程度が熱処理効率の面から好ましい。
【0013】
γ-2CaO・SiO2微粉末の粒度はブレーン比表面積値で、2,000〜8,000cm/gが好ましく、3,000〜6,000cm/gがより好ましい。ブレーン比表面積値が2,000cm/g未満では中性化抵抗性が十分に得られない場合がある。8,000cm2/gを超えると過剰な粉砕動力が必要となりコスト増の原因となる。
【0014】
本発明のγ-2CaO・SiO2を工業的に製造する際には、微量不純物の存在は特に限定されるものではなく、本発明の目的を実質的に阻害しない範囲では特に問題とならない。その具体例としては、例えば、F、Cl、B2O3、Al2O3、MgO、TiO2、MnO、Na2O、S、P2O5、及びFe2O3等が挙げられる。
【0015】
また、共存する化合物としては、トライカルシウムシリケート3CaO・SiO2、ランキナイト3CaO・2SiO2、ワラストナイトCaO・SiO2などのγ-2CaO・SiO2以外のカルシウムシリケート、メルヴィナイト3CaO・MgO・2SiO2、アケルマナイト2CaO・MgO・2SiO2、モンチセライトCaO・MgO・SiO2などのカルシウムマグネシウムシリケート、ゲーレナイト2CaO・Al2O3・SiO2及びアノーサイトCaO・Al2O3・2SiO2などのカルシウムアルミノシリケート、アケルマナイト2CaO・MgO・2SiO2及びゲーレナイト2CaO・Al2O3・SiO2の混晶であるメリライト、MgO・SiO2及び2MgO・SiO2などのマグネシウムシリケート、遊離石灰、遊離マグネシア、カルシウムフェライト2CaO・Fe2O3、カルシウムアルミノフェライト4CaO・Al2O3・Fe2O3、リューサイト(K2O、Na2O)・Al2O3・SiO2、スピネルMgO・Al2O3、並びにマグネタイトFe3O4を含む場合がある。
【0016】
本発明に係る潜在水硬性物質(以下、ポゾランともいう)とは、特に限定されるものではなく、いかなるものでも使用可能である。その具体例としては、高炉水砕スラグ微粉末、フライアッシュ、シリカフューム、及び珪藻土等が挙げられ、本発明ではこれらのポゾランのうちの1種又は2種以上が使用可能である。
【0017】
本発明のセメント混和材はポゾランとγ-2CaO・SiO2とを含有するものであるが、中性化抵抗性や耐塩化物浸透性は、セメント・コンクリートの圧縮強度と深い関連があり、強度が高いほど中性化抵抗性が大きく、耐塩化物浸透性も良好となる。
【0018】
そこで、γ-2CaO・SiO2とポゾランをセメント・コンクリートに使用する場合、セメントとポゾランとを混合して結合材とすること、すなわち、ポゾランは結合材としてセメントと置換して配合することが好ましく、また、これをモルタル又はコンクリートに使用する場合、ポゾランは結合材としてセメントと置換して配合することが好ましい。また、γ-2CaO・SiO2は骨材と置換して配合することが好ましく、特に細骨材と置換して配合することがより好ましい。
【0019】
本発明におけるγ-2CaO・SiO2とポゾラン配合割合は、γ -2CaO SiO 2 とポゾランの合計 100 部に対して、γ-2CaO・SiO2は10〜80部であり、 40 60 部が好ましい。また、ポゾランは90〜20部であり、 60 40 部が好ましい。ポゾランが90部を超えたり、γ-2CaO・SiO2が10部未満であると、中性化抵抗性が不十分になる場合がある。また、ポゾランが20部未満であったり、γ-2CaO・SiO2が80部を超えると、耐塩化物浸透性が不十分となる場合がある。
【0020】
本発明のセメント混和材の粒度は特に限定されるものではないが、通常、ブレーン比表面積値で3,000〜15,000cm2/gが好ましく、4,000〜9,000cm2/gがより好ましい。3,000cm2/g未満では、本発明の効果が十分に得られない場合があり、15,000cm2/gを超えても更なる効果の増進が期待できない。
【0021】
本発明のセメント混和材の使用量は特に限定されるものではない。
【0022】
ポゾランの使用量は、通常、セメント及びポゾランからなる結合材100部中、10〜80部が好ましく、ポゾラン30〜70部がより好ましい。10部未満では耐塩化物浸透性が充分でなく、80部を超えると中性化抵抗性が悪くなる場合がある
【0023】
また、ポゾランの粒度は特に限定されないが、通常、ブレーン比表面積値で3,000〜200,000cm2/gのものがあり、4,000〜20,000cm2/gの範囲にあるものが好ましい。3,000cm2/g未満では、耐塩化物浸透性が充分に得られない場合があり、200,000cm2/gを超えると作業性が悪くなる場合がある。
【0024】
本セメント組成物では、γ-2CaO・SiO2は細骨材と置換して配合することが好ましく、結合材100部に対して5部以上が好ましく、10部以上がより好ましい。5部未満では中性化抵抗性が充分に得られない場合がある。なお、細骨材のすべてをγ-2CaO・SiO2に置き換えて使用することも可能である。
【0025】
本発明のセメント混和材のポゾランは結合材としてセメントと置換して配合することで、また、γ-2CaO・SiO2を骨材として置換して配合することで、本発明のセメント混和材を混和しないセメント・コンクリートと比べて圧縮強度をそれほど大きく変えることがなく、設計強度に対する中性化抵抗性や耐塩化物浸透性を明瞭に向上させることができる。
【0026】
本発明で使用するセメントは特に限定されないが、ポルトランドセメントを含有するセメントを用いることが好ましく、たとえば普通、早強、超早強、低熱、または中庸熱などの各種ポルトランドセメント、これらポルトランドセメントに高炉水砕スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、あるいは、ポルトランドセメントに石灰石粉末などを混合した石灰石フィラーセメントなどが挙げられる。
【0027】
本発明のセメント組成物の粒度は、使用する目的・用途に依存するため特に限定されるものではないが、通常、ブレーン比表面積値で3,000〜8,000cm2/gが好ましく、4,000〜6,000cm2/gがより好ましい。ブレーン比表面積値が3,000cm2/g未満では、強度発現性が十分に得られない場合があり、8,000cm2/gを超えると作業性が悪くなる場合がある。
【0028】
本発明では、セメント、本セメント混和材、砂や砂利などの骨材の他に、従来コンクリートに用いられてきた石灰石微粉末などの混和材料、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、防錆剤、防凍剤、ポリマー、収縮低減剤、及び凝結調整剤などの各種添加剤、ベントナイトなどの粘土鉱物、ハイドロタルサイトなどのアニオン交換体、急硬材、並びに膨張剤などのうちの1種又は2種以上の添加材を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。
【0029】
本発明において、各材料の混合方法は特に限定されるものではなく、それぞれの材料を施工時に混合しても良いし、あらかじめ一部を、あるいは全部を混合しておいても差し支えない。
【0030】
混合装置としては、既存のいかなる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、及びナウタミキサなどの使用が可能である。
【0031】
本発明における水の使用量は、従来のセメント材料のw/c比(水/セメント比)に相当する水/結合材比を20〜60%とすることが好ましい。水/結合材比が20%未満では流動性が不足する場合があり、60%を超えると強度不足の原因となるおそれがある。
【0032】
【実施例】
以下、本発明の実験例に基づいてさらに説明する。
【0033】
実験例1
表1に示すような割合でセメント、高炉水砕スラグ、砂、及びγ-2CaO・SiO2を使用し、結合材と砂の比率が1対2、水結合材比が50%のモルタルを調製し、塩分浸透深さ、中性化深さ、及び圧縮強度を測定した。ただし、ポゾランは結合材の一部として配合し、γ-2CaO・SiO2は砂の一部として配合した。結果を表1に併記した。
【0034】
<使用材料>
セメント :市販の普通ポルトランドセメント、ブレーン比表面積値3,200cm2/g、比重3.15
高炉水砕スラグ:高炉水砕スラグ微粉末、ブレーン比表面積値6,000cm2/g、ガラス化率95%、比重2.90
γ-2CaO・SiO2 :試薬1級の炭酸カルシウム2モルと試薬1級の二酸化ケイ素1モルを配合して混合粉砕した後、電気炉で1450℃で3時間焼成し、炉外に取り出して自然放冷により冷却して合成した。このときダスティングし、ブレーン比表面積1,800cm2/gまで粉化した。これをブレーン比表面積値4,000cm2/gまでさらに粉砕した。
石灰石微粉末:新潟県青海鉱山産石灰石の粉砕品、ブレーン比表面積値6,000cm2/g、比重2.70
砂 :JIS標準砂(ISO679準拠)
水 :水道水
【0035】
<測定方法>
圧縮強度 :4×4×16cm供試体を作製し、JIS R 5201に準じて材齢28日強度を測定。
中性化深さ:4×4×16cm供試体を作製し、材齢28日まで20℃水中養生を施した後、大気圧下30℃、相対湿度60%、炭酸ガス濃度5%の環境で促進中性化を行い、8週間後に供試体を輪切りし、断面にフェノールフタレインアルコール溶液を塗布して中性化深さを測定し、中性化抵抗性を評価した。
塩分浸透深さ:4×4×16cm供試体を作製し、材齢28日まで20℃水中養生を施した後、5%食塩水に供試体を24時間浸漬し、40℃で24時間乾燥する工程を1サイクルとする促進試験を50サイクルにわたって行った。この供試体を輪切りにして断面に硝酸銀水溶液を塗布して塩分浸透深さを測定し、耐塩化物浸透性を評価した。
【0036】
【表1】

Figure 0003816036
注:実験No.1-9〜1-15の*印はγ-2CaO・SiO2の代わりに石灰石微粉末を使用。
【0037】
実験例2
単位セメント量150kg/m3(50部)、単位ポゾランA量150kg/m3(50部)、単位γ-2CaO・SiO2量150kg/m3(50部)、単位砂量450kg/m3(150部)、水/結合材比55%、s/a(細骨材率)=42%、及び空気量4.5±1.5%のコンクリートを調製し、γ-2CaO・SiO2の粉末度を表2に示すように変化して実験を行った。ただし、γ-2CaO・SiO2は細骨材に置換して配合し、ポゾランは結合材として配合した。圧縮強度、塩分浸透深さ、及び中性化深さを測定した。
【0038】
また、中性化に対する抵抗性を検討するために、同一配合の場合にγ-2CaO・SiO2と圧縮強度が同等となる、石灰石微粉末を混和した場合についても同様の実験を行った。結果を表2に併記する。
【0039】
<使用材料>
砂 :新潟県姫川産、比重2.62
砂利 :新潟県姫川産、砕石、比重2.64
高性能AE減水剤:ポリカルボン酸系、市販品
【0040】
<測定方法>
圧縮強度 :10cmφ×20cm供試体を作製し、JIS A 1108に準じて材齢28日強度を測定。ただし、脱型は材齢7日に行い、以後20℃の水中養生を行った。
中性化深さ:10cmφ×20cm供試体を作製し、材齢28日まで20℃水中養生を施した後、30℃・相対湿度60%・炭酸ガス濃度5%の環境で促進中性化を行い、6ヶ月後に供試体を輪切りし、断面にフェノールフタレインアルコール溶液を塗布して中性化深さを測定し、耐中性化抵抗性を評価した。
塩分浸透深さ(耐塩化物浸透性):コンクリートを10cmφ×20cm型に流込み成型して供試体を作製し、材齢28日まで20℃水中養生を施した後、新潟県西頸城郡青海町の浜辺に供試体を海水に暴露し、6ヶ月後に回収した。この際、供試体が潮の満ち引きによって周期的に海水に漬かったり乾燥したりするような場所を選定した。この供試体を輪切りにして断面に硝酸銀水溶液を塗布して塩分浸透深さを測定し、耐塩化物浸透性を評価した。
【0041】
【表2】
Figure 0003816036
注:LSPは石灰石微粉末。
【0042】
実験例3
潜在水硬性物質の種類、単位量、及びγ-2CaO・SiO2の単位量を表3に示すように変化したこと以外は実験例2と同様に行った。結果を表3に併記する。ただし、セメントと潜在水硬性物質からなる結合材の単位量は300kg/m3とし、水結合材比も55%とした。また、γ-2CaO・SiO2は細骨材に置換して配合した。
<使用材料 >
フライアッシュ:ブレーン比表面積値4,500cm2/g、比重2.40
シリカフューム:ブレーン比表面積値135,000cm2/g、比重2.20
【0043】
【表3】
Figure 0003816036
【0044】
【発明の効果】
本発明のセメント混和材を使用することにより、耐塩化物浸透性と中性化抵抗性を付与できるセメント組成物とすることができるなどの効果を奏するため、本発明は土木・建築業界において、特に塩害及び/又は中性化を受けやすい環境において使用されるセメントコンクリート材料に適する。[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a cement admixture, a cement composition, and a mortar or concrete using the cement admixture in the civil engineering and construction industry. In the present invention, “parts” and “%” are based on mass unless otherwise specified.
[0002]
[Prior art and its problems]
Recently, the durability problem of concrete has been greatly highlighted, and the demand for improving the durability of concrete has increased. The deterioration factors of concrete include neutralization and salt damage. However, these are contradictory performance requirements.
[0003]
This is because salt damage is more susceptible as the amount of calcium hydroxide in the concrete increases. On the other hand, the neutralization is more susceptible to the smaller the amount of calcium hydroxide produced.
[0004]
Salt damage occurs mainly in concrete structures near the coast. Chloride ions derived from incoming salt and the like penetrate into the concrete from the surface, corroding the reinforcing bars, resulting in a decrease in the yield strength of the structure and This is a phenomenon that causes deterioration such as peeling.
In order to obtain concrete that is not susceptible to salt damage, a large amount of latent hydraulic substances such as blast furnace slag, fly ash, and silica fume are mixed to consume free calcium hydroxide generated from cement hydration. Thus, it has been effective to improve the chloride penetration resistance by using dense concrete with a small amount of calcium hydroxide.
[0005]
On the other hand, neutralization is a phenomenon caused by the fact that calcium hydroxide reacts with carbon dioxide in the atmosphere and is carbonated. Therefore, it is said that the more the calcium hydroxide production amount, the less affected.
[0006]
Thus, today, there is a demand for the development of a technology that effectively suppresses salt damage and neutralization of concrete simultaneously.
[0007]
Therefore, as a result of repeated investigations, the present inventor has found that the powder of γ-2CaO · SiO 2 having no hydraulic property has a neutralization-inhibiting effect, and the potential hydraulic substance and γ The present invention was completed by discovering that a cement admixture comprising -2CaO · SiO 2 fine powder imparts both chloride penetration resistance and neutralization resistance.
[0008]
[Means for Solving the Problems]
That is, the present invention, latent hydraulic material and Ri greens contain γ-2CaO · SiO 2, a total of 100 parts of the latent hydraulic material and γ -2CaO · SiO 2, γ -2CaO · SiO 2 10 to a 80 parts der Ru cement admixture, a cement composition comprising a cement and the cement admixture, a mortar or concrete made with the cement composition, binder a latent hydraulic material Further, the mortar or concrete is characterized in that γ-2CaO · SiO 2 is blended as a part of the aggregate.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0010]
Γ-2CaO · SiO 2 used in the present invention is known as a low temperature phase among the compounds represented by 2CaO · SiO 2 , α-2CaO · SiO 2 and β-2CaO · SiO known as high temperature phases. It is different from 2 . These are both 2CaO · SiO 2 and have the same chemical composition, but their crystal structures are different. 2CaO · SiO 2 present in the cement clinker is β-2CaO · SiO 2 and does not contain γ-2CaO · SiO 2 at all. β-2CaO · SiO 2 has hydraulic properties, but does not show neutralization resistance like γ-2CaO · SiO 2 of the present invention.
[0011]
The method for industrially producing γ-2CaO · SiO 2 of the present invention is not particularly limited, but in general, (1) a calcium source such as quick lime, slaked lime, and / or calcium carbonate as a CaO source, (2) oxidation Examples include a method of heat treating an aluminum source such as aluminum, aluminum hydroxide, and / or bauxite.
[0012]
The heat treatment temperature is not particularly limited and may vary depending on the raw materials used. Usually, the heat treatment temperature may be in the range of about 850 ° C. to 1600 ° C., and about 1,000 ° C. to 1,500 ° C. is preferable from the viewpoint of heat treatment efficiency.
[0013]
γ-2CaO · SiO 2 particle size of fine powder in the Blaine specific surface area value is preferably 2,000~8,000cm 2 / g, 3,000~6,000cm 2 / g is more preferable. If the Blaine specific surface area value is less than 2,000 cm 2 / g, neutralization resistance may not be sufficiently obtained. If it exceeds 8,000 cm 2 / g, excessive pulverization power is required, which causes an increase in cost.
[0014]
When the γ-2CaO · SiO 2 of the present invention is produced industrially, the presence of a trace amount of impurities is not particularly limited, and is not particularly problematic as long as the object of the present invention is not substantially inhibited. Specific examples thereof include F, Cl, B 2 O 3 , Al 2 O 3 , MgO, TiO 2 , MnO, Na 2 O, S, P 2 O 5 , and Fe 2 O 3 .
[0015]
The compound coexist, tri calcium silicate 3CaO · SiO 2, rankinite night 3CaO · 2SiO 2, γ-2CaO · SiO 2 other than calcium silicate such as Wollastonite CaO · SiO 2, Meruvi night 3CaO · MgO · 2SiO 2, Akerumanaito 2CaO · MgO · 2SiO 2, calcium magnesium silicate, such as Monte celite CaO · MgO · SiO 2, calcium aluminate such as gehlenite 2CaO · Al 2 O 3 · SiO 2 and anorthite CaO · Al 2 O 3 · 2SiO 2 Bruno Silicates, magnesium silicates such as acermanite 2CaO · MgO · 2SiO 2 and gelenite 2CaO · Al 2 O 3 · SiO 2 mixed crystals, MgO · SiO 2 and 2MgO · SiO 2 , free lime, free magnesia, calcium ferrite 2CaO・ Fe 2 O 3 , Calcium Aluminoferrite 4CaO ・ Al 2 O 3・ Fe 2 O 3 , Leucite (K 2 O, Na 2 O) ・ Al 2 O 3・ SiO 2 , Spinel MgO ・ Al It may contain 2 O 3 and magnetite Fe 3 O 4 .
[0016]
The latent hydraulic material according to the present invention (hereinafter also referred to as pozzolanic) is not particularly limited, and any material can be used. Specific examples thereof include ground granulated blast furnace slag, fly ash, silica fume, and diatomaceous earth. In the present invention, one or more of these pozzolans can be used.
[0017]
The cement admixture of the present invention contains pozzolanic and γ-2CaO · SiO 2 , but neutralization resistance and chloride penetration resistance are closely related to the compressive strength of cement and concrete, and the strength is high. The higher the neutralization resistance, the better the chloride penetration resistance.
[0018]
Therefore, when γ-2CaO · SiO 2 and pozzolanic are used for cement and concrete, it is preferable to mix cement and pozzolanic to form a binder, that is, pozzolanic is replaced with cement as a binder. Moreover, when this is used for mortar or concrete, it is preferable to mix pozzolan with cement as a binder. Further, γ-2CaO · SiO 2 is preferably blended by replacing the aggregate, and more preferably by blending with the fine aggregate.
[0019]
The blending ratio of γ-2CaO · SiO 2 and pozzolan in the present invention is 10 to 80 parts of γ-2CaO · SiO 2 and 40 to 60 parts with respect to 100 parts in total of γ -2CaO · SiO 2 and pozzolans. Is preferred . Further, pozzolan is 90-20 parts, preferably 60-40 parts. If the pozzolan exceeds 90 parts or the γ-2CaO · SiO 2 content is less than 10 parts, the neutralization resistance may be insufficient. Further, if the pozzolan is less than 20 parts or the γ-2CaO · SiO 2 exceeds 80 parts, the chloride permeation resistance may be insufficient.
[0020]
Although the particle size of the cement admixture of the present invention is not particularly limited, it is usually preferably from 3,000 to 15,000 cm 2 / g, more preferably from 4,000 to 9,000 cm 2 / g in terms of Blaine specific surface area. If it is less than 3,000 cm 2 / g, the effect of the present invention may not be sufficiently obtained, and if it exceeds 15,000 cm 2 / g, further enhancement of the effect cannot be expected.
[0021]
The amount of the cement admixture of the present invention is not particularly limited.
[0022]
The amount of pozzolan is usually preferably 10 to 80 parts, more preferably 30 to 70 parts in 100 parts of a binder composed of cement and pozzolans. If it is less than 10 parts, the chloride penetration resistance is not sufficient, and if it exceeds 80 parts, the neutralization resistance may be deteriorated. [0023]
The particle size of the pozzolan is not particularly limited, but usually has a Blaine specific surface area value of 3,000 to 200,000 cm 2 / g, preferably 4,000 to 20,000 cm 2 / g. If it is less than 3,000 cm 2 / g, sufficient chloride penetration resistance may not be obtained, and if it exceeds 200,000 cm 2 / g, workability may deteriorate.
[0024]
In the present cement composition, γ-2CaO · SiO 2 is preferably blended in place of fine aggregate, and is preferably 5 parts or more, more preferably 10 parts or more with respect to 100 parts of the binder. If it is less than 5 parts, the neutralization resistance may not be sufficiently obtained. It is also possible to replace the fine aggregate with γ-2CaO · SiO 2 for use.
[0025]
The pozzolan of the cement admixture of the present invention is blended by replacing cement as a binder, and by blending by replacing γ-2CaO · SiO 2 as an aggregate, thereby mixing the cement admixture of the present invention. Compared with cement and concrete that do not, the compressive strength does not change so much, and the neutralization resistance and chloride penetration resistance to the design strength can be clearly improved.
[0026]
Although the cement used in the present invention is not particularly limited, it is preferable to use a cement containing Portland cement. For example, various portland cements such as normal, early strength, super early strength, low heat, or moderate heat, and blast furnaces for these portland cements are used. Examples include various mixed cements obtained by mixing granulated slag, fly ash, or silica, or limestone filler cement obtained by mixing limestone powder with Portland cement.
[0027]
The particle size of the cement composition of the present invention is not particularly limited since it depends on the purpose and application of use, generally preferably 3,000~8,000cm 2 / g in Blaine specific surface area value, 4,000~6,000Cm 2 / g is more preferred. If the Blaine specific surface area value is less than 3,000 cm 2 / g, sufficient strength development may not be obtained, and if it exceeds 8,000 cm 2 / g, workability may deteriorate.
[0028]
In the present invention, in addition to cement, the present cement admixture, aggregates such as sand and gravel, admixture materials such as limestone fine powder conventionally used in concrete, water reducing agent, AE water reducing agent, high performance water reducing agent, high Various additives such as performance AE water reducing agent, antifoaming agent, thickening agent, rust preventive agent, antifreeze agent, polymer, shrinkage reducing agent and setting modifier, clay mineral such as bentonite, anion exchanger such as hydrotalcite In addition, one or two or more additives among the hardened material and the expanding agent can be used as long as the object of the present invention is not substantially impaired.
[0029]
In the present invention, the mixing method of each material is not particularly limited, and the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance.
[0030]
Any existing apparatus can be used as the mixing apparatus, and for example, a tilting cylinder mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer can be used.
[0031]
The amount of water used in the present invention is preferably 20 to 60% of the water / binder ratio corresponding to the w / c ratio (water / cement ratio) of conventional cement materials. If the water / binder ratio is less than 20%, fluidity may be insufficient. If it exceeds 60%, strength may be insufficient.
[0032]
【Example】
Hereinafter, further description will be given based on experimental examples of the present invention.
[0033]
Experimental example 1
Using cement, blast furnace granulated slag, sand, and γ-2CaO · SiO 2 at the ratios shown in Table 1, prepare a mortar with a binder to sand ratio of 1 to 2 and a water binder ratio of 50%. The salt penetration depth, neutralization depth, and compressive strength were measured. However, pozzolana was blended as part of the binder, and γ-2CaO · SiO 2 was blended as part of the sand. The results are also shown in Table 1.
[0034]
<Materials used>
Cement: Commercially available ordinary Portland cement, Blaine specific surface area 3,200 cm 2 / g, specific gravity 3.15
Granulated blast furnace slag: Granulated blast furnace slag, Blaine specific surface area value 6,000cm 2 / g, Vitrification rate 95%, Specific gravity 2.90
γ-2CaO · SiO 2 : 2 moles of reagent grade 1 calcium carbonate and 1 mole of reagent grade 1 silicon dioxide were mixed and pulverized, then fired at 1450 ° C for 3 hours in an electric furnace, taken out of the furnace and naturally It was cooled and then synthesized. At this time, dusting was performed, and the powder was pulverized to a specific surface area of 1,800 cm 2 / g. This was further pulverized to a Blaine specific surface area value of 4,000 cm 2 / g.
Limestone fine powder: ground limestone from the Aomi mine, Niigata prefecture, Blaine specific surface area value 6,000cm 2 / g, specific gravity 2.70
Sand: JIS standard sand (ISO679 compliant)
Water: Tap water [0035]
<Measurement method>
Compressive strength: A 4 × 4 × 16 cm specimen was prepared, and the strength at 28 days of age was measured according to JIS R 5201.
Neutralization depth: 4 x 4 x 16 cm specimens were prepared and subjected to water curing at 20 ° C until the age of 28 days, then in an environment of 30 ° C under atmospheric pressure, 60% relative humidity and 5% carbon dioxide concentration Accelerated neutralization was carried out, and after 8 weeks, the specimen was cut off, a phenolphthalein alcohol solution was applied to the cross section, the neutralization depth was measured, and the neutralization resistance was evaluated.
Salinity penetration depth: 4 x 4 x 16 cm specimens were prepared, and after curing at 20 ° C under the age of 28 days, the specimens were immersed in 5% saline for 24 hours and dried at 40 ° C for 24 hours. An accelerated test with one cycle was performed over 50 cycles. The test specimen was cut into pieces, a silver nitrate aqueous solution was applied to the cross section, the salt penetration depth was measured, and the chloride penetration resistance was evaluated.
[0036]
[Table 1]
Figure 0003816036
Note: * marks in Experiment Nos. 1-9 to 1-15 use limestone fine powder instead of γ-2CaO · SiO 2 .
[0037]
Experimental example 2
Unit cement amount 150 kg / m 3 (50 parts), unit pozzolana A amount 150 kg / m 3 (50 parts), unit γ-2CaO · SiO 2 amount 150 kg / m 3 (50 parts), unit sand amount 450 kg / m 3 ( 150 parts), concrete with a water / binding material ratio of 55%, s / a (fine aggregate ratio) = 42%, and air volume of 4.5 ± 1.5%, and the fineness of γ-2CaO · SiO 2 is shown in Table 2. The experiment was conducted while changing as shown in FIG. However, γ-2CaO · SiO 2 was mixed with fine aggregate, and pozzolana was mixed as a binder. Compressive strength, salt penetration depth, and neutralization depth were measured.
[0038]
In addition, in order to examine the resistance to neutralization, the same experiment was also performed in the case of mixing limestone fine powder, which has the same compressive strength as γ-2CaO · SiO 2 in the case of the same composition. The results are also shown in Table 2.
[0039]
<Materials used>
Sand: Himekawa, Niigata prefecture, specific gravity 2.62
Gravel: from Himekawa, Niigata Prefecture, crushed stone, specific gravity 2.64
High performance AE water reducing agent: polycarboxylic acid, commercially available
<Measurement method>
Compressive strength: A 10cmφ × 20cm specimen was prepared and the strength at 28 days of age was measured according to JIS A 1108. However, demolding was carried out on the 7th day of age, and then water curing at 20 ° C. was performed.
Neutralization depth: 10cmφ × 20cm specimens were prepared and subjected to 20 ° C water curing until the age of 28 days, followed by accelerated neutralization in an environment of 30 ° C, relative humidity 60% and carbon dioxide concentration 5% After 6 months, the specimens were cut, and a phenolphthalein alcohol solution was applied to the cross section to measure the neutralization depth, and the neutralization resistance was evaluated.
Salt penetration depth (chloride penetration resistance): After casting concrete into a 10cmφ × 20cm mold and making a specimen under water curing at 20 ° C until the age of 28 days, The specimen was exposed to seawater on the beach and collected after 6 months. At this time, a place where the specimen was periodically immersed in seawater or dried due to tides was selected. The test specimen was cut into pieces, a silver nitrate aqueous solution was applied to the cross section, the salt penetration depth was measured, and the chloride penetration resistance was evaluated.
[0041]
[Table 2]
Figure 0003816036
Note: LSP is limestone fine powder.
[0042]
Experimental example 3
The experiment was performed in the same manner as in Experimental Example 2 except that the type of latent hydraulic substance, the unit amount, and the unit amount of γ-2CaO · SiO 2 were changed as shown in Table 3. The results are also shown in Table 3. However, the unit amount of the binder composed of cement and latent hydraulic material was 300 kg / m 3 and the water binder ratio was also 55%. Further, γ-2CaO · SiO 2 was mixed with fine aggregate.
<Materials used>
Fly ash: Blaine specific surface area 4,500cm 2 / g, specific gravity 2.40
Silica fume: Blaine specific surface area 135,000cm 2 / g, specific gravity 2.20
[0043]
[Table 3]
Figure 0003816036
[0044]
【The invention's effect】
By using the cement admixture of the present invention, it is possible to obtain a cement composition capable of imparting chloride penetration resistance and neutralization resistance. Suitable for cement concrete materials used in environments subject to salt damage and / or neutralization.

Claims (4)

潜在水硬性物質γ-2CaO・SiO2を含有してなり、潜在水硬性物質とγ -2CaO SiO 2 の合計 100 部中、γ -2CaO SiO 2 10 80 部であるセメント混和材。 Ri Na contain latent hydraulic material and γ-2CaO · SiO 2, potential water total of 100 parts of the rigid material and the γ -2CaO · SiO 2, γ -2CaO · SiO 2 from 10 to 80 parts der Ru cement Admixture. セメントと請求項1記載のセメント混和材とを含有してなるセメント組成物。  A cement composition comprising cement and the cement admixture according to claim 1. 請求項2記載のセメント組成物を用いてなるモルタル又はコンクリート。  A mortar or concrete comprising the cement composition according to claim 2. セメント及び潜在水硬性物質からなる結合材、並びに、γ-2CaO・SiO2を含有してなる骨材を配合することを特徴とする請求項3記載のモルタル又はコンクリート。The mortar or concrete according to claim 3, wherein a binder comprising cement and a latent hydraulic substance and an aggregate comprising γ-2CaO · SiO 2 are blended.
JP2002210965A 2002-07-19 2002-07-19 Cement admixture, cement composition and mortar or concrete using the same Expired - Lifetime JP3816036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210965A JP3816036B2 (en) 2002-07-19 2002-07-19 Cement admixture, cement composition and mortar or concrete using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002210965A JP3816036B2 (en) 2002-07-19 2002-07-19 Cement admixture, cement composition and mortar or concrete using the same

Publications (2)

Publication Number Publication Date
JP2004051426A JP2004051426A (en) 2004-02-19
JP3816036B2 true JP3816036B2 (en) 2006-08-30

Family

ID=31934328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210965A Expired - Lifetime JP3816036B2 (en) 2002-07-19 2002-07-19 Cement admixture, cement composition and mortar or concrete using the same

Country Status (1)

Country Link
JP (1) JP3816036B2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882258B2 (en) * 2005-03-30 2012-02-22 Jfeスチール株式会社 Hydrated hardened body with rebar having excellent salt resistance
JP4882259B2 (en) * 2005-03-30 2012-02-22 Jfeスチール株式会社 Hydrated hardened body with rebar having excellent salt resistance
JP4882257B2 (en) * 2005-03-30 2012-02-22 Jfeスチール株式会社 Hydrated hardened body with rebar having excellent salt resistance
JP4827548B2 (en) * 2006-02-10 2011-11-30 Jfeスチール株式会社 Hydrated cured body
JP4791200B2 (en) * 2006-02-10 2011-10-12 Jfeスチール株式会社 Hydrated cured body and method for producing the same
JP4796402B2 (en) * 2006-02-10 2011-10-19 Jfeスチール株式会社 Hydrated cured body and method for producing the same
JP4827585B2 (en) * 2006-03-31 2011-11-30 Jfeスチール株式会社 Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4791231B2 (en) * 2006-03-31 2011-10-12 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4827581B2 (en) * 2006-03-31 2011-11-30 Jfeスチール株式会社 Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4796424B2 (en) * 2006-03-31 2011-10-19 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4827583B2 (en) * 2006-03-31 2011-11-30 Jfeスチール株式会社 Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4796420B2 (en) * 2006-03-31 2011-10-19 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4796419B2 (en) * 2006-03-31 2011-10-19 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791226B2 (en) * 2006-03-31 2011-10-12 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791229B2 (en) * 2006-03-31 2011-10-12 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4827582B2 (en) * 2006-03-31 2011-11-30 Jfeスチール株式会社 Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4827584B2 (en) * 2006-03-31 2011-11-30 Jfeスチール株式会社 Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4791230B2 (en) * 2006-03-31 2011-10-12 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4827580B2 (en) * 2006-03-31 2011-11-30 Jfeスチール株式会社 Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4791227B2 (en) * 2006-03-31 2011-10-12 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4796422B2 (en) * 2006-03-31 2011-10-19 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4796421B2 (en) * 2006-03-31 2011-10-19 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4796423B2 (en) * 2006-03-31 2011-10-19 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791228B2 (en) * 2006-03-31 2011-10-12 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4538438B2 (en) * 2006-10-13 2010-09-08 電気化学工業株式会社 Grout composition and grout material using the same
JP2010006662A (en) * 2008-06-27 2010-01-14 Mitsubishi Materials Corp Highly durable concrete composition and method for producing highly durable concrete
JP5504000B2 (en) * 2010-02-18 2014-05-28 鹿島建設株式会社 CO2 absorbing precast concrete and method for producing the same
JP7026741B1 (en) 2020-08-18 2022-02-28 デンカ株式会社 Cement admixture and cement composition
JP7129530B1 (en) * 2021-08-19 2022-09-01 デンカ株式会社 Cement admixture, method for producing cement admixture, and cement composition

Also Published As

Publication number Publication date
JP2004051426A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
JP3816036B2 (en) Cement admixture, cement composition and mortar or concrete using the same
JP3844457B2 (en) Cement admixture and cement composition
Binici et al. Sulfate resistance of plain and blended cement
JP4267446B2 (en) Cement admixture, cement composition, and neutralization suppression method using the same
Mbessa et al. Durability of high-strength concrete in ammonium sulfate solution
WO2020100925A1 (en) Cement admixture, expansion material, and cement composition
WO2022044890A1 (en) Cement composition, production method, method for inhibiting carbonation of steel-reinforced concrete by adding said cement composition, and method for keeping beautiful appearance of surface of steel-reinforced concrete by adding said cement composition
JP5068906B2 (en) Cement admixture, cement composition, and cement concrete using the same
JP7181355B1 (en) Cement admixture, method for producing cement admixture, and cement composition
JP2001122650A (en) Cement admixture and cement composition
JP4131795B2 (en) Cement admixture and cement composition
JP2010076999A (en) Cement admixture and cement composition
JP2003073155A (en) Cement admixture, cement composition and high fluidity concrete using the same
JP3821496B2 (en) Cement composition for injection material
JP4101574B2 (en) Cement admixture and cement composition
JP3844458B2 (en) Cement admixture and cement composition
JP3897689B2 (en) Cement admixture and cement composition
JP4459379B2 (en) Cement admixture and cement composition
JP2002029796A (en) Cement admixture and cement composition
JP3810350B2 (en) Cement admixture and cement composition
JP2003192410A (en) Cement admixture, cement composition and cement concrete obtained by using the same
JP6003900B2 (en) Cement admixture manufacturing method
JP4459380B2 (en) Cement admixture and cement composition
JP4514319B2 (en) Cement admixture and cement composition
JP2001151547A (en) Cement admixture and cement composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3816036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term