JP4796419B2 - Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same - Google Patents

Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same Download PDF

Info

Publication number
JP4796419B2
JP4796419B2 JP2006097633A JP2006097633A JP4796419B2 JP 4796419 B2 JP4796419 B2 JP 4796419B2 JP 2006097633 A JP2006097633 A JP 2006097633A JP 2006097633 A JP2006097633 A JP 2006097633A JP 4796419 B2 JP4796419 B2 JP 4796419B2
Authority
JP
Japan
Prior art keywords
less
resistance
fly ash
cement
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006097633A
Other languages
Japanese (ja)
Other versions
JP2007269557A (en
Inventor
之郎 釣
久宏 松永
一章 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Sumitomo Metal Industries Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd, Nippon Steel Corp, Nippon Steel Nisshin Co Ltd, Sumitomo Metal Industries Ltd filed Critical JFE Steel Corp
Priority to JP2006097633A priority Critical patent/JP4796419B2/en
Publication of JP2007269557A publication Critical patent/JP2007269557A/en
Application granted granted Critical
Publication of JP4796419B2 publication Critical patent/JP4796419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、乾湿が繰り返される海岸等の、中性化と塩害が進みやすい環境下で用いる構造物での利用に好適な、耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体およびその製造方法に関するものである。 The present invention is suitable for use in a structure used in an environment where neutralization and salt damage are likely to proceed, such as a coast where dryness and humidity are repeated, and is hydrated with a reinforcing bar excellent in neutralization resistance and salt damage resistance. The present invention relates to a cured body and a method for producing the same.

鉄筋コンクリートは、コンクリート中のアルカリ成分によって鉄筋の表面に不動態皮膜が形成されるため鉄筋が防食され、長期に渡って強度と耐久性を発揮する構造部材である。したがって、コンクリートが中性化すると不動態皮膜が破壊され鉄筋が腐食し、構造物部材として機能しなくなる。   Reinforced concrete is a structural member that exhibits strength and durability over a long period of time because the passive component film is formed on the surface of the reinforcing bar by the alkali components in the concrete, thereby preventing corrosion of the reinforcing bar. Therefore, when the concrete is neutralized, the passive film is destroyed and the rebar is corroded, so that it does not function as a structural member.

近年は、コンクリートの骨材の入手事情が悪化し、例えば、アルカリ骨材反応を生じる可能性がある安山岩等を骨材として使用せざるを得ない場合がある。アルカリ骨材反応によりコンクリートにひび割れを生じた場合、コンクリートの中性化が急速に進行し、鉄筋が腐食する等の問題がある。また良質な骨材を使用したコンクリートの場合であっても、これを乾湿が繰り返される等の中性化が進みやすい環境下で使用した際には、コンクリートの中性化よって鉄筋表面の不動態皮膜が破壊されて鉄筋が腐食し、発生した錆に起因する体積膨張によってコンクリートが剥落する。当然のことながら、鉄筋と外界との間に存在するコンクリートの厚み(かぶり厚)を増大させることにより、中性化が鉄筋の表面に到達する時間を遅延させることができるが、コンクリートのかぶり厚の増大により構造物が大型化するためコストが増大するという問題がある。   In recent years, the availability of concrete aggregates has deteriorated, and for example, andesite that may cause an alkali aggregate reaction may be used as an aggregate. When cracks occur in the concrete due to the alkali aggregate reaction, there is a problem that the neutralization of the concrete proceeds rapidly and the reinforcing bars corrode. Even in the case of concrete using high-quality aggregates, if it is used in an environment where neutralization is likely to proceed, such as repeated drying and wetting, the neutralization of the concrete causes the passivation of the reinforcing bar surface. The coating is destroyed and the rebar is corroded, and the concrete is peeled off by volume expansion caused by the generated rust. Naturally, increasing the thickness of the concrete (cover thickness) between the reinforcing bar and the outside world can delay the time for neutralization to reach the surface of the reinforcing bar. There is a problem that the cost increases because the structure becomes larger due to the increase in the size of the structure.

上記のような鉄筋コンクリートの耐中性化性を向上する手段としては、一般に水セメント比を小さくする方法が知られている。   As a means for improving the neutralization resistance of reinforced concrete as described above, a method of reducing the water-cement ratio is generally known.

一方、製鋼スラグと高炉スラグ微粉末とを主原料とし、コンクリートの代替が可能な水和硬化体が特許文献1及び非特許文献1に開示されている。   On the other hand, Patent Document 1 and Non-Patent Document 1 disclose a hydrated hardened body that can use steelmaking slag and blast furnace slag fine powder as main raw materials and can replace concrete.

これらの水和硬化体をコンクリートの代替として用いることで、製鉄所で大量に発生するスラグを有効利用することができる。
特開2001−049310号公報 「鉄鋼スラグ水和固化体技術マニュアル」沿岸開発技術研究センター 2003年
By using these hydrated hardened bodies as a substitute for concrete, it is possible to effectively use slag generated in large quantities at steelworks.
JP 2001-049310 A “Steel Slag Hydrated Solid Technology Manual” Coastal Development Technology Research Center 2003

しかし、鉄筋コンクリートの耐中性化性を向上させるために水セメント比を小さくする方法は、アルカリ骨材反応を生じることがない良質な骨材を用いたときは有効であるが、アルカリ骨材反応を生じる骨材を用いた場合は効果がない。また、水セメント比を小さくすると高コストとなるばかりでなく、コンクリートの自己収縮が大きくなるという弊害を生じる。   However, the method of reducing the water-cement ratio in order to improve the neutralization resistance of reinforced concrete is effective when using high-quality aggregates that do not cause alkali-aggregate reaction, but alkali-aggregate reaction. There is no effect when using aggregates that cause Moreover, if the water-cement ratio is reduced, not only the cost is increased, but also the self-shrinkage of the concrete is increased.

一方、上記の特許文献1、非特許文献1の水和硬化体をコンクリート代替として用いた場合の耐中性化性については、特許文献1に開示された水和硬化体は用途を路盤材、建築・土木材等としている程度で不明瞭であり、非特許文献1に開示された水和硬化体は、対象を鉄筋を含有しない無筋コンクリート代替に限定しているため、どちらについても性能自体が不明である。そこで、これらの水和硬化体の耐中性化性を本発明者らが調べたところ、極めてばらつきが大きく、鉄筋コンクリート代替として安定して使用することが困難であることがわかった。   On the other hand, regarding the neutralization resistance when the hydrated cured body of Patent Document 1 and Non-Patent Document 1 is used as a concrete substitute, the hydrated cured body disclosed in Patent Document 1 is used for roadbed materials, The hydration hardened body disclosed in Non-Patent Document 1 is unclear to the extent that it is used for construction and earthwork, etc., and the target is limited to the replacement of unreinforced concrete that does not contain reinforcing bars. Is unknown. Then, when the present inventors investigated the neutralization resistance of these hydrated cured bodies, it was found that the dispersion was extremely large and it was difficult to stably use as a substitute for reinforced concrete.

このように、従来の技術を用いては、コンクリートや、製鋼スラグと高炉スラグ微粉末等を材料とした水和硬化体の中性化を抑止して鉄筋の腐食を防止することは限界がある。   In this way, using conventional technology, there is a limit to prevent corrosion of rebars by inhibiting neutralization of hydrated hardened bodies made of concrete, steelmaking slag and blast furnace slag fine powder, etc. .

したがって本発明の目的は、このような従来技術の課題を解決し、中性化が進みやすいような環境条件においても長期の耐久性を有する構造物部材とすることができる、耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体およびその製造方法を提供することにある。 Therefore, the object of the present invention is to solve the problems of the prior art, and to make the structure member having long-term durability even under environmental conditions where neutralization is likely to proceed. Another object of the present invention is to provide a hydrated cured product having a reinforcing bar excellent in salt damage resistance and a method for producing the same.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)鉄筋を内部に有する水和硬化体が、少なくとも、ポルトランドセメント、JIS R5213「フライアッシュセメント」に適合するB種のフライアッシュセメント、消石灰の中から選んだ1種または2種以上と、CaO/SiO2が質量比で1.5未満またはCaO濃度が25質量%未満の製鋼スラグと、高炉スラグ微粉末とフライアッシュとを含有し、「ポルトランドセメント(kg/m3フライアッシュセメント(kg/m3)×0.85+消石灰(kg/m3)」が55kg/m3以上であり、さらに前記鉄筋が耐候性を有する炭素鋼であり、製鋼スラグの含有量が2239kg/m 3 以上であり、前記混合物中における高炉スラグ微粉末の含有量が100〜600kg/m 3 であることを特徴とする耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体。
(2)鉄筋が、質量%で、C:0.15%以下、Si:0.7%以下、Mn:0.10%以上、2.00%以下、P:0.03%超、0.15%以下、S:0.020%以下、Al:0.010%以上、0.100%以下、Ni:0.2%以上、4.0%以下、Cu:0.1%未満、Mo:0.10%以上、4.00%以下を含有し、残部がFeおよび不可避的不純物から成る。
(3)耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体の製造方法であって、「ポルトランドセメント(kg/m3フライアッシュセメント(kg/m3)×0.85+消石灰(kg/m3)」が55kg/m3以上になるように、少なくとも、ポルトランドセメント、JIS R5213「フライアッシュセメント」に適合するB種のフライアッシュセメント、消石灰の中から選んだ1種または2種以上と、CaO/SiO2が質量比で1.5未満またはCaO濃度が25質量%未満の製鋼スラグと、高炉スラグ微粉末とフライアッシュとを水と混合し、得られた混合物を硬化するステップを含み、前記鉄筋が耐候性を有する炭素鋼であり、製鋼スラグの含有量が2239kg/m 3 以上であり、前記混合物中における高炉スラグ微粉末の含有量が100〜600kg/m 3 であることを特徴とする耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体の製造方法。
The features of the present invention for solving such problems are as follows.
(1) A hydrated cured body having reinforcing bars inside is at least one selected from Portland cement , B type fly ash cement suitable for JIS R5213 “fly ash cement” , slaked lime, Contains steelmaking slag with a CaO / SiO 2 ratio of less than 1.5 or a CaO concentration of less than 25% by mass, blast furnace slag fine powder and fly ash , “Portland cement (kg / m 3 ) + fly ash cement” (kg / m 3) × 0.85 + slaked lime (kg / m 3) "is a 55 kg / m 3 or more, further wherein the reinforcing bars Ri Ah of carbon steel having a weather resistance, the content of steelmaking slag 2239kg / m is 3 or more,耐中resistance resistance and salt damage, wherein the amount of ground granulated blast furnace slag in the mixture is 100~600kg / m 3 Hydrated cured product having excellent reinforcing bar.
(2) Reinforcing bars in mass%, C: 0.15% or less, Si: 0.7% or less, Mn: 0.10% or more, 2.00% or less, P: more than 0.03%, 0.0. 15% or less, S: 0.020% or less, Al: 0.010% or more, 0.100% or less, Ni: 0.2% or more, 4.0% or less, Cu: less than 0.1%, Mo: It contains 0.10% or more and 4.00% or less, and the balance consists of Fe and inevitable impurities.
(3) A method for producing a hydrated cured body having a reinforcing bar excellent in neutralization resistance and salt damage resistance, wherein “Portland cement (kg / m 3 ) + fly ash cement (kg / m 3 ) × 0 .85 + Slaked lime (kg / m 3 ) ”is selected from at least Portland cement , Class B fly ash cement and slaked lime that conform to JIS R5213“ Fly Ash Cement ” so that“ 55 + slaked lime (kg / m 3 ) ”is 55 kg / m 3 or more. Mixture obtained by mixing seed or two or more, steelmaking slag with a CaO / SiO 2 mass ratio of less than 1.5 or a CaO concentration of less than 25% by mass, blast furnace slag fine powder and fly ash with water comprising the step of curing, the reinforcing bar Ri Ah of carbon steel having a weather resistance, the content of steel slag is at 2239kg / m 3 or more, blast slide in said mixture Method for producing a hydrated cured product having耐中resistance resistance and salt damage excellent in reinforcing bars, wherein the amount of the fine grayed fines is 100~600kg / m 3.

本発明によれば、耐中性化性と耐塩害性に優れることから、鉄筋に対する防食性に優れた水和硬化体が得られる。このため、中性化により従来の鉄筋コンクリートが短期間で崩壊するような環境下においても、長期間の使用が可能な構造物を提供できる。   According to this invention, since it is excellent in neutralization resistance and salt damage resistance, the hydration hardening body excellent in the corrosion resistance with respect to a reinforcing bar is obtained. For this reason, the structure which can be used for a long period of time can be provided even in the environment where the conventional reinforced concrete collapses in a short period of time by neutralization.

本発明では、水和硬化体の材料を最適化することにより、従来のコンクリートや製鋼スラグと高炉スラグ微粉末等を材料とした水和硬化体よりも耐中性化性に優れた水和硬化体が得られ、これを耐候性を有する鉄筋と組み合わせることで、高塩分濃度を含有し乾湿が繰り返される中性化および塩害の進みやすい環境下においても長期の耐久性を有する構造物部材として使用できることを見出し、本発明を完成した。   In the present invention, by optimizing the material of the hydrated hardened body, the hydration hardening having better neutralization resistance than conventional hydrated hardened bodies made of concrete, steelmaking slag and blast furnace slag fine powder, etc. Used as a structural member that has a long-term durability even in an environment where neutralization and salt damage are likely to occur due to the combination of high salinity and repeated drying and wetting by combining a reinforcing bar with weather resistance. The present invention has been completed by finding out what can be done.

まず水和硬化体を構成する材料について説明する。   First, materials constituting the hydrated cured body will be described.

なお、本発明において、水和硬化体における(水和硬化体中の)含有量(配合量)とは、水和硬化体の配合原料となる各材料(混練用の水や混和剤なども含む)を混合した混合物中における含有量を意味する。本発明における水和硬化体は、配合原料となる材料を混合して形成した混合物を硬化させたものである。   In the present invention, the content (in the hydrated cured body) (in the hydrated cured body) of the hydrated cured body includes each material (including kneading water and admixture) that is a raw material for blending the hydrated cured body. ) In the mixed mixture. The hydrated cured product in the present invention is obtained by curing a mixture formed by mixing materials to be blended raw materials.

本発明の水和硬化体は、製鋼スラグと、高炉スラグ微粉末と、さらに、ポルトランドセメント、高炉セメント、フライアッシュセメント、消石灰の中から選んだ1種または2種以上とを含有する。   The hydrated hardened body of the present invention contains steelmaking slag, blast furnace slag fine powder, and one or more selected from Portland cement, blast furnace cement, fly ash cement, and slaked lime.

水和硬化体の材料のうち、製鋼スラグは、骨材および結合材、さらに水和硬化体の中性化抑止材として作用する。骨材として作用させるための製鋼スラグの粒度分布は、コンクリート用の細骨材や粗骨材に相当するような粒度とし、粒径が0.075mm以上程度、また最大粒径が40mm以下程度とすることが好ましい。また、結合材として作用させるための製鋼スラグは微粉であることが好ましく、粒径が0.15mm未満程度であることが好ましい。したがって、結合材としての粒径と骨材としての粒径をそれぞれ満足するスラグ粒子が含まれている適当な粒度分布を有する製鋼スラグ(例えば、或る条件で粉砕処理した製鋼スラグやその粉砕処理後に篩分した製鋼スラグ)を使用することが望ましい。中性化抑止材として作用させるための製鋼スラグは、CaO/SiO2が質量比で1.5以上、またはCaO濃度が25質量%以上であることが好ましい。CaO/SiO2が質量比で1.5以上、またはCaO濃度が25質量%以上の製鋼スラグは、製鋼スラグ中のCaO成分が長期間にわたり水和硬化体中に含まれる水に溶解し、水和硬化体を弱アルカリ性に保ち、中性化を抑止する。より好ましくは、CaO/SiO2が質量比で2.0以上、またはCaO濃度が30質量%以上である。一般にCaO/SiO2、CaO濃度が高くなると製鋼スラグ中の遊離CaO(free−CaO)による水和膨張性が大きくなるが、水和硬化体の膨張安定性が確保されれば問題がないことから、これらの上限値は特に規定しない。 Among the materials of the hydrated hardened body, the steelmaking slag acts as an aggregate and a binder, and further as a neutralization inhibitor for the hydrated hardened body. The particle size distribution of the steelmaking slag for acting as an aggregate is a particle size corresponding to fine aggregate or coarse aggregate for concrete, the particle size is about 0.075 mm or more, and the maximum particle size is about 40 mm or less. It is preferable to do. Moreover, it is preferable that the steelmaking slag for making it act as a binder is a fine powder, and it is preferable that a particle size is less than about 0.15 mm. Accordingly, a steelmaking slag having an appropriate particle size distribution containing slag particles satisfying the particle size as a binder and the particle size as an aggregate (for example, steelmaking slag pulverized under a certain condition and its pulverization treatment). It is desirable to use steelmaking slag that is sieved later. The steelmaking slag for acting as a neutralization inhibiting material preferably has a CaO / SiO 2 ratio of 1.5 or more, or a CaO concentration of 25% by mass or more. CaO / SiO 2 is in a weight ratio of 1.5 or more, or CaO concentration of 25 mass% or more steel slag is dissolved in water CaO component in the steelmaking slag is contained in the hydrated cured body over a long period of time, water Keep the Japanese cured body weakly alkaline and suppress neutralization. More preferably, CaO / SiO 2 is 2.0 or more by mass ratio, or the CaO concentration is 30% by mass or more. Generally, when the CaO / SiO 2 and CaO concentrations are increased, the hydration expansion due to free CaO (free-CaO) in the steelmaking slag increases, but there is no problem if the expansion stability of the hydrated cured body is ensured. These upper limits are not specified.

また、製鋼スラグは通常の砂利等の骨材と異なりアルカリ骨材反応を起こさないため、水和硬化体そのものの耐久性が優れるだけでなく、アルカリ骨材反応に起因するひび割れの発生も抑制できるので、ひび割れを介した中性化が起こらず、水和硬化体中の鉄筋の防食の観点からも好ましい。   In addition, steelmaking slag does not cause an alkali-aggregate reaction unlike ordinary gravel aggregates, so that not only the durability of the hydrated hardened body itself is excellent, but also the occurrence of cracks due to the alkali-aggregate reaction can be suppressed. Therefore, neutralization through cracks does not occur, which is preferable from the viewpoint of corrosion prevention of reinforcing steel in the hydrated cured body.

水和硬化体の材料として高炉スラグ微粉末を用いるのは、潜在水硬性を有する高炉スラグ微粉末が製鋼スラグによりアルカリ刺激を受け効率的に水和反応するためだけでなく、従来のコンクリートよりも硬化物が緻密な組織を有するため、水和硬化体の中性化の原因となる二酸化炭素の透過を著しく抑制できるからである。また、高炉スラグ微粉末と製鋼スラグ中の遊離CaO(free−CaO)が反応し、製鋼スラグの水和膨張を抑制するためである。高炉スラグ微粉末としてはJIS A 6206「コンクリート用高炉スラグ微粉末」を特に好ましく用いることができる。   The reason why blast furnace slag fine powder is used as a material for the hydrated hardened body is not only because the blast furnace slag fine powder having latent hydraulic properties is subjected to alkali stimulation by steelmaking slag and efficiently hydrates but also more than conventional concrete. This is because, since the cured product has a dense structure, the permeation of carbon dioxide that causes neutralization of the hydrated cured product can be remarkably suppressed. Moreover, it is because the free blast furnace slag fine powder and free CaO (free-CaO) in the steelmaking slag react to suppress the hydration expansion of the steelmaking slag. As the blast furnace slag fine powder, JIS A 6206 “Blast furnace slag fine powder for concrete” can be particularly preferably used.

水和硬化体の材料として、ポルトランドセメント、高炉セメント、フライアッシュセメント、消石灰の中から選んだ1種または2種以上を用いるのは、これらの材料を混合することで、水和硬化体の内部をアルカリ性に保つためである。なお、本発明におけるポルトランドセメントとは、JIS R 5210「ポルトランドセメント」に記載されている、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメントのことである。また、高炉セメントとは、JIS R 5211「高炉セメント」に記載されているA種、B種、C種のことである。また、フライアッシュセメントとは、JIS R 5213「フライアッシュセメント」に記載のA種、B種、C種のことである。   One or more types selected from Portland cement, blast furnace cement, fly ash cement, and slaked lime are used as the material of the hydrated cured body. Is to keep the alkalinity. The Portland cement in the present invention is described in JIS R 5210 “Portland cement”, ordinary Portland cement, early-strength Portland cement, super-early-strength Portland cement, moderately hot Portland cement, low heat Portland cement, sulfate resistant salt Portland cement. Further, the blast furnace cement is A type, B type or C type described in JIS R 5211 “Blast furnace cement”. Moreover, fly ash cement is A class, B class, and C class as described in JIS R 5213 “fly ash cement”.

本発明ではさらに、ポルトランドセメント、高炉セメント、フライアッシュセメント、消石灰の水和硬化体中の配合量を、「ポルトランドセメント(kg/m3)+高炉セメント(kg/m3)×0.6+フライアッシュセメント(kg/m3)×0.85+消石灰(kg/m3)」で55kg/m3以上とする。55kg/m3以上となるように多量に含有させることにより、CaO/SiO2が質量比で1.5未満またはCaO濃度が25質量%未満の製鋼スラグを用いた水和硬化体の場合でも、内部を長期間にわたりアルカリ性に保つことができる。この値は、好ましくは70kg/m3以上である。この値の上限値は特に設定しないが、150kg/m3を超えて配合しても耐中性化効果の向上はほとんど無い。 In the present invention, the blending amount of Portland cement, blast furnace cement, fly ash cement, and slaked lime in the hydrated hardened body is expressed as “Portland cement (kg / m 3 ) + blast furnace cement (kg / m 3 ) × 0.6 + fly. Ash cement (kg / m 3 ) × 0.85 + slaked lime (kg / m 3 ) ”is set to 55 kg / m 3 or more. By large amount is contained so that 55 kg / m 3 or more, even if 1.5 or below CaO concentration CaO / SiO 2 mass ratio of hydrated hardened body using steel slag of less than 25 wt%, The inside can be kept alkaline for a long time. This value is preferably 70 kg / m 3 or more. The upper limit of this value is not particularly set, but even if it exceeds 150 kg / m 3 , there is almost no improvement in neutralization resistance.

高炉スラグ微粉末の水和硬化体中の配合量は、100〜600kg/m3であることが好ましい。100kg/m3未満ではコンクリート代替として必要な18N/mm2以上の圧縮強度が得られない場合があり、600kg/m3を超えると強度の増加はほとんど無く不経済となるためである。高炉スラグ微粉末のより好ましい配合量は、200〜400kg/m3である。 The blending amount of the blast furnace slag fine powder in the hydrated cured product is preferably 100 to 600 kg / m 3 . If it is less than 100 kg / m 3 , the compressive strength of 18 N / mm 2 or more necessary as a concrete substitute may not be obtained, and if it exceeds 600 kg / m 3 , there is almost no increase in strength and it becomes uneconomical. A more preferable blending amount of the blast furnace slag fine powder is 200 to 400 kg / m 3 .

水和硬化体は、さらにフライアッシュを含有することが好ましい。水和硬化体の材料としてフライアッシュを用いるのは、製鋼スラグ中のCa成分とフライアッシュが効率的に反応することによりフライアッシュのポゾラン反応が進むためである。また、フライアッシュと製鋼スラグ中の遊離CaOが反応し、製鋼スラグの水和膨張を抑制するためである。さらに、フライアッシュの適量の配合でワーカビリティを向上させる効果もある。フライアッシュはJIS A 6201「コンクリート用フライアッシュ」を用いることが好ましいが、原粉および加圧流動床灰の使用等も可能である。   The hydrated cured body preferably further contains fly ash. The reason why fly ash is used as the material of the hydrated and cured body is that the Ca component in the steelmaking slag and the fly ash react efficiently so that the pozzolanic reaction of fly ash proceeds. Moreover, it is for the free CaO in fly ash and steelmaking slag to react, and to suppress the hydration expansion of steelmaking slag. Furthermore, there is an effect of improving workability by blending an appropriate amount of fly ash. The fly ash is preferably JIS A 6201 “Fly Ash for Concrete”, but it is also possible to use raw powder and pressurized fluidized bed ash.

フライアッシュの水和硬化体中の配合量は、特に限定しないが、50〜300kg/m3であることが好ましい。50kg/m3未満では製鋼スラグの水和膨張を抑制する効果が低く、300kg/m3を超えると水を加えて練混ぜた後のフレッシュな状態の粘性が高くなり、ワーカビリティが悪化するため、また製鋼スラグの水和膨張を抑制する効果も変わらず不経済であるためである。 Although the compounding quantity in the hydrated hardening body of fly ash is not specifically limited, It is preferable that it is 50-300 kg / m < 3 >. If it is less than 50 kg / m 3 , the effect of suppressing the hydration expansion of steelmaking slag is low, and if it exceeds 300 kg / m 3 , the viscosity of the fresh state after adding water and kneading increases, and workability deteriorates. Moreover, it is because the effect which suppresses the hydration expansion of steelmaking slag is also uneconomical.

次に、本発明で用いる鉄筋について説明する。尚、無筋の水和硬化体は、耐中性化性が優れていない場合でも問題とはならない。   Next, the reinforcing bars used in the present invention will be described. In addition, the non-muscle hydrated cured product does not cause a problem even when the resistance to neutralization is not excellent.

鉄筋に用いる鋼材としては耐候性を有する炭素鋼を用いるものとする。耐候性を有する炭素鋼を用いることで、鉄筋を有する水和硬化体の耐塩害性を十分に向上させることができる。なお、耐候性を有する炭素鋼とは、適量のCu、Cr、Ni、Pなどの合金元素を含有し、大気中での適度な乾湿の繰り返しにより表面に緻密なさびを形成する、腐食量の少ない鋼材であり、JISの溶接構造用耐候性鋼材(SMA)や高耐候性鋼材(SPA)に規定されているものを用いることができる。   Carbon steel having weather resistance is used as the steel material used for the reinforcing bars. By using the carbon steel having weather resistance, the salt damage resistance of the hydrated cured body having reinforcing bars can be sufficiently improved. Incidentally, the carbon steel having weather resistance contains an appropriate amount of alloying elements such as Cu, Cr, Ni, P, etc., and forms a fine rust on the surface by repeated appropriate drying and wetting in the atmosphere. There are few steel materials, and what is prescribed | regulated to the weather-resistant steel materials (SMA) for welded structures of JIS and high weather-resistant steel materials (SPA) can be used.

耐候性を有する炭素鋼は、質量%でC:0.15%以下、Si:0.7%以下、Mn:0.10%以上、2.00%以下、P:0.03%超、0.15%以下、S:0.020%以下、Al:0.010%以上、0.100%以下、Ni:0.2%以上、4.0%以下、Cu:0.1%未満、Mo:0.10%以上、4.00%以下を含有し、残部がFeおよび不可避的不純物から成る組成の鋼を用いることが好ましい。以下、各化学成分の限定理由について説明する。以下の説明において%で示す単位は全て質量%である。   The carbon steel having weather resistance is C: 0.15% or less, Si: 0.7% or less, Mn: 0.10% or more, 2.00% or less, P: more than 0.03%, 0% by mass%. .15% or less, S: 0.020% or less, Al: 0.010% or more, 0.100% or less, Ni: 0.2% or more, 4.0% or less, Cu: less than 0.1%, Mo : It is preferable to use steel having a composition containing 0.10% or more and 4.00% or less, with the balance being Fe and inevitable impurities. Hereinafter, the reasons for limiting each chemical component will be described. In the following description, all units represented by% are mass%.

C:0.15%以下とする。
Cは所定の強度を確保するために添加するが、0.15%を超えると溶接性および靭性が劣化するので、上限を0.15%とする。
C: 0.15% or less.
C is added to ensure a predetermined strength, but if it exceeds 0.15%, weldability and toughness deteriorate, so the upper limit is made 0.15%.

Si:0.7%以下とする。
Siは製鋼時の脱酸剤および強度向上元素として添加するが、過剰に添加すると靭性が著しく低下するので、0.7%以下とする。
Si: 0.7% or less.
Si is added as a deoxidizer and a strength improving element during steelmaking, but if added in excess, the toughness is significantly reduced, so the content is made 0.7% or less.

Mn:0.10%以上、2.00%以下とする。
Mnは所定の強度を確保するために0.10%以上添加するが、2.00%を超えると溶接性が劣化するため、2.00%以下とする。
Mn: 0.10% or more and 2.00% or less.
Mn is added in an amount of 0.10% or more in order to ensure a predetermined strength, but if it exceeds 2.00%, the weldability deteriorates, so the content is made 2.00% or less.

P:0.03%超、0.15%以下とする。
Pは重要な元素であり、鋼の強度を向上させる作用があるとともに、耐食性を向上させる効果があるので、必要量添加する。0.03%以下の添加では耐食性の向上に効果がなく、0.15%を超える添加では溶接性が劣化するので、0.03%超、0.15%以下とする。
P: Over 0.03% and 0.15% or less.
P is an important element and has the effect of improving the strength of steel and the effect of improving corrosion resistance, so it is added in a necessary amount. Addition of 0.03% or less has no effect in improving corrosion resistance, and addition exceeding 0.15% deteriorates weldability. Therefore, the addition is made over 0.03% and 0.15% or less.

S:0.020%以下とする。
Sは耐食性に有害な元素であるので、0.020%以下とする。
S: Set to 0.020% or less.
Since S is an element harmful to corrosion resistance, it is set to 0.020% or less.

Al:0.010%以上、0.100%以下とする。
Alは製鋼時の脱酸剤として0.010%以上添加するが、過剰に添加すると腐食の起点となる介在物が生じやすくなるので0.100%以下とする。
Al: 0.010% or more and 0.100% or less.
Al is added in an amount of 0.010% or more as a deoxidizer at the time of steelmaking, but if added in excess, inclusions that become the starting point of corrosion tend to occur, so the content is made 0.100% or less.

Ni:0.2%以上、4.0%以下とする。
Niも重要な元素であり、Moとの共存により塩分の多い環境における耐食性を向上させる効果がある。Niが0.2%未満の添加では効果がなく、4.0%を超える添加では経済性の点で不利であるので、0.2%以上、4.0%以下とする。
Ni: 0.2% or more and 4.0% or less.
Ni is also an important element and has the effect of improving the corrosion resistance in a salty environment by coexistence with Mo. If Ni is added less than 0.2%, there is no effect, and if it exceeds 4.0%, there is a disadvantage in terms of economy, so 0.2% or more and 4.0% or less.

Cu:0.1%未満とする。
Cuは耐食性を向上させる元素であるが、0.1%以上の添加では効果が飽和し、かつ経済性の点で不利であるので、0.1%未満とする。
Cu: Less than 0.1%.
Cu is an element that improves the corrosion resistance. However, if added in an amount of 0.1% or more, the effect is saturated and disadvantageous in terms of economy, so the content is made less than 0.1%.

Mo:0.10%以上、4.00%以下とする。Moも重要な元素であり、Niとの共存により塩分の多い環境における耐食性を向上させる効果がある。0.10%未満の添加では効果がなく、4.00%を超える添加では経済性の点で不利であるので、0.10%以上、4.00%以下とする。   Mo: 0.10% or more and 4.00% or less. Mo is also an important element and has the effect of improving the corrosion resistance in a salty environment by coexistence with Ni. If the addition is less than 0.10%, there is no effect, and if it exceeds 4.00%, it is disadvantageous in terms of economy, so the content is made 0.10% or more and 4.00% or less.

上記以外の残部はFeおよび不可避的不純物である。   The balance other than the above is Fe and inevitable impurities.

ここで、NiとMoの耐食性に与える効果の詳細は、明らかではないが、次のように考えられる。Moは錆の稠密性を高め、水分や塩分等の腐食因子が鋼表面に接触するのを妨げる効果があると考えられる。その一方、Moは錆を脆くする性質があり、クラックなどの欠陥が生じやすくなる。Niは割れやすい錆の性質を改善し、クラックなどの欠陥を生じにくくする性質がある。これら2つの異なる性質による相乗効果が発揮されるため、Moを適当な量のNiとともに添加することにより、耐食性が著しく改善すると考えられる。   Here, the details of the effects of Ni and Mo on the corrosion resistance are not clear, but are considered as follows. Mo is considered to have an effect of increasing the density of rust and preventing corrosion factors such as moisture and salt from contacting the steel surface. On the other hand, Mo has the property of making rust brittle, and defects such as cracks are likely to occur. Ni has the property of improving the property of rust which is easily broken and making it difficult to cause defects such as cracks. Since a synergistic effect is exhibited by these two different properties, it is considered that the corrosion resistance is remarkably improved by adding Mo together with an appropriate amount of Ni.

なお、通常積極的に添加されるCrは、塩分の多い環境においてはむしろ孔あき腐食を助長する作用があり、また溶接性を著しく劣化させる元素であるため、基本的には添加しないことが望ましい。   Note that Cr, which is normally actively added, is an element that rather promotes perforated corrosion in a salty environment, and is an element that significantly deteriorates weldability. .

水和硬化体は、上記の材料を配合して、水を加えて混練して、所定の型枠等に打ち込んで養生して製造する。打ち込みの際に鉄筋を配筋して、鉄筋を有する水和硬化体とする。   The hydrated cured body is produced by blending the above materials, adding water, kneading, and driving and curing in a predetermined formwork or the like. Reinforcing bars are placed during driving to obtain a hydrated hardened body having reinforcing bars.

水和硬化体の養生方法は、所定の強度が確保できれば、通常コンクリートにおいて用いられる水中養生、現場養生、蒸気養生等の何れの方法をも用いることができる。   As a curing method for the hydrated cured body, any method such as underwater curing, on-site curing, and steam curing that are usually used in concrete can be used as long as a predetermined strength can be secured.

製鋼スラグは表1に示す化学成分、物性値(最大粒径、粗粒率、細骨材率、表乾密度)のものを用いた(製鋼スラグNo.A、B)。粗粒率とはJIS A 0203に記載の番号3115の粗粒率のことである。細骨材率とは全粒度の製鋼スラグ量に対する粒径5mm以下の製鋼スラグ量の絶対容積比を百分率で表した値である。   The steelmaking slags used were those having the chemical components and physical properties shown in Table 1 (maximum particle size, coarse particle ratio, fine aggregate ratio, surface dry density) (steelmaking slag Nos. A and B). The coarse particle ratio is the coarse particle ratio of No. 3115 described in JIS A 0203. The fine aggregate rate is a value representing the absolute volume ratio of the amount of steelmaking slag having a particle size of 5 mm or less with respect to the amount of steelmaking slag of all particle sizes as a percentage.

Figure 0004796419
Figure 0004796419

高炉スラグ微粉末はJIS A 6206「コンクリート用高炉スラグ微粉末」における高炉スラグ微粉末4000を、フライアッシュはJIS A 6201「コンクリート用フライアッシュ」におけるII種を使用した。ポルトランドセメントは、JIS R 5201「ポルトランドセメント」に適合する普通ポルトランドセメントを用いた。高炉セメントは、JIS R 5211「高炉セメント」に適合するB種を用いた。フライアッシュセメントは、JIS R 5213「フライアッシュセメント」に適合するB種を用いた。消石灰は、JIS R 9001に適合する工業用消石灰・特号を使用した。混和剤は、JIS A 6204に適合するポリカルボン酸系の高性能AE減水剤を使用した。   Blast furnace slag fine powder used was blast furnace slag fine powder 4000 in JIS A 6206 “Blast furnace slag fine powder for concrete”, and fly ash used type II in JIS A 6201 “Fly ash for concrete”. As the Portland cement, ordinary Portland cement conforming to JIS R 5201 “Portland cement” was used. As the blast furnace cement, type B suitable for JIS R 5211 “blast furnace cement” was used. As the fly ash cement, type B conforming to JIS R 5213 “fly ash cement” was used. As the slaked lime, industrial slaked lime / special name conforming to JIS R 9001 was used. As the admixture, a polycarboxylic acid-based high-performance AE water reducing agent conforming to JIS A 6204 was used.

鉄筋は、表2に示す化学成分を有する25φ×200mmの鉄筋を製造して用いた(鋼種A〜V)。   Reinforcing bars were manufactured by using 25φ × 200 mm reinforcing bars having chemical components shown in Table 2 (steel types A to V).

Figure 0004796419
Figure 0004796419

表3に示す配合(配合No.1〜12)により水和硬化体の材料をミキサで練混ぜ、φ100×200mmの型枠に流し込み、養生してNo.1〜22の圧縮強度測定用のテストピースを製作した。圧縮強度の測定は、JIS A 1108「コンクリートの圧縮強度試験方法」にしたがって行った。養生条件は標準養生28日とした。また、同時に表3に示す鋼種の鉄筋を中心部に挿入したφ100×200mmの中性化促進試験用のテストピースをNo.1〜22の各製造条件に付き2体製作した。養生条件は標準養生28日とした。中性化促進試験は、標準養生28日後のテストピースをCO2濃度5%、温度40℃、湿度60%RHの条件で91日間暴露後、1体を50mmピッチで輪切りしたものについて、中性化深さを測定し、その平均値より評価した。中性化深さの測定は、フェノールフタレイン1%溶液噴霧法によって、無変色部を中性化部とした。 According to the composition shown in Table 3 (Formulation Nos. 1 to 12), the hydrated cured material was kneaded with a mixer, poured into a mold of φ100 × 200 mm, cured, and no. Test pieces for measuring compressive strength of 1 to 22 were produced. The compressive strength was measured in accordance with JIS A 1108 “Concrete compressive strength test method”. The curing conditions were standard curing 28 days. At the same time, a test piece for a neutralization promotion test of φ100 × 200 mm in which a steel type reinforcing bar shown in Table 3 was inserted in the center was No. Two pieces were manufactured according to each manufacturing condition of 1-22. The curing conditions were standard curing 28 days. The neutralization promotion test is a test piece that was exposed to a test piece after 28 days of standard curing for 91 days under conditions of CO 2 concentration 5%, temperature 40 ° C, and humidity 60% RH. The chemical depth was measured and evaluated from the average value. The neutralization depth was measured by using a phenolphthalein 1% solution spray method and setting the non-colored portion to the neutralized portion.

中性化促進試験を終えた試験体のうち輪切りにしなかったものを、耐塩害性試験に供した。耐塩害性試験は、60℃の3%NaCl水溶液に3日間浸漬した後に60℃、50%RHの恒温恒湿槽で4日間乾燥することを1サイクルとし、これを100サイクル繰り返した後に水和硬化体を破壊して鉄筋を取り出し、鉄筋を10mass%の水素クエン酸アンモニウム水溶液で除錆し、腐食面積率と最大腐食深さをマイクロメーターで測定した。   Of the specimens that had been subjected to the neutralization promotion test, those that were not cut into pieces were subjected to a salt damage resistance test. In the salt damage resistance test, one cycle consists of immersing in a 3% NaCl aqueous solution at 60 ° C. for 3 days and then drying in a constant temperature and humidity bath at 60 ° C. and 50% RH for one cycle. The hardened body was destroyed and the rebar was taken out. The rebar was derusted with a 10 mass% aqueous solution of ammonium hydrogen citrate, and the corrosion area ratio and the maximum corrosion depth were measured with a micrometer.

Figure 0004796419
Figure 0004796419

また、比較のために製鋼スラグおよび高炉スラグ微粉末を用いない、普通コンクリートのテストピース(No.23)を作製した。表4の配合によりコンクリートの材料をミキサで練り混ぜ、φ100×200mmの型枠に流し込み、養生して、圧縮強度測定用、中性化促進試験用および耐塩害性試験用のテストピースを製作した。圧縮強度測定用のテストピースの養生条件は標準養生28日とした。圧縮強度試験、中性化促進試験および耐塩害性試験は上記と同じように行なった。なお、骨材はJIS A 1145「骨材のアルカリシリカ反応性試験方法(化学法)」による試験において、「無害」と判定された良質なものを用いた。   For comparison, a test piece (No. 23) of ordinary concrete without using steelmaking slag and blast furnace slag fine powder was prepared. According to the composition shown in Table 4, concrete materials were mixed with a mixer, poured into a φ100 × 200 mm mold, and cured to produce test pieces for compressive strength measurement, neutralization promotion test, and salt damage resistance test. . The curing conditions for the test pieces for compressive strength measurement were standard curing 28 days. The compressive strength test, neutralization acceleration test, and salt damage resistance test were performed in the same manner as described above. The aggregate used was a high-quality one determined to be “harmless” in the test according to JIS A 1145 “Aggregate Alkali Silica Reactivity Test Method (Chemical Method)”.

Figure 0004796419
Figure 0004796419

圧縮強度測定結果、中性化促進試験結果および耐塩害性試験結果を表3、4に併せて示す。製鋼スラグと高炉スラグ微粉末とを含有し、「ポルトランドセメント(kg/m3)+高炉セメント(kg/m3)×0.6+フライアッシュセメント(kg/m3)×0.85+消石灰(kg/m3)」(表3におけるNP+0.6BB+0.85FB+CHに相当)を55kg/m3以上含有し、所定の成分を有する鉄筋と組み合わせた水和硬化体(テストピースNo.1〜12)は、良質な骨材を用いた水結合材比(水セメント比)50%のテストピースNo.23の普通コンクリートよりも中性化深さが小さく、耐塩害性試験後も内部の鉄筋に腐食は認められなかった。一方、これらに該当しない水和硬化体と鉄筋を組み合わせた場合(テストピースNo.13〜22)には、良質な骨材を用いた水結合材比50%の普通コンクリートよりも耐中性化性に劣り、耐塩害性試験後に鉄筋の腐食が認められた。 The compression strength measurement results, neutralization promotion test results, and salt damage resistance test results are also shown in Tables 3 and 4. Steelmaking slag and blast furnace slag fine powder, "Portland cement (kg / m 3 ) + blast furnace cement (kg / m 3 ) x 0.6 + fly ash cement (kg / m 3 ) x 0.85 + slaked lime (kg / M 3 ) ”(corresponding to NP + 0.6BB + 0.85FB + CH in Table 3) 55 kg / m 3 or more, and a hydrated cured body (test pieces No. 1 to 12) combined with a reinforcing bar having a predetermined component, Test piece No. 50% water binding material ratio (water cement ratio) using good quality aggregates. The neutralization depth was smaller than that of ordinary concrete No. 23, and no corrosion was observed in the internal reinforcing bars even after the salt damage resistance test. On the other hand, when a hydrated cured body and a reinforcing bar that do not correspond to these are combined (test pieces No. 13 to 22), they are more resistant to neutrality than ordinary concrete with a 50% water binder ratio using high-quality aggregates. The corrosion of the reinforcing bars was observed after the salt damage resistance test.

Claims (3)

鉄筋を内部に有する水和硬化体が、少なくとも、ポルトランドセメント、JIS R5213「フライアッシュセメント」に適合するB種のフライアッシュセメント、消石灰の中から選んだ1種または2種以上と、CaO/SiO2が質量比で1.5未満またはCaO濃度が25質量%未満の製鋼スラグと、高炉スラグ微粉末とフライアッシュとを含有し、「ポルトランドセメント(kg/m3フライアッシュセメント(kg/m3)×0.85+消石灰(kg/m3)」が55kg/m3以上であり、さらに前記鉄筋が耐候性を有する炭素鋼であり、製鋼スラグの含有量が2239kg/m 3 以上であり、前記混合物中における高炉スラグ微粉末の含有量が100〜600kg/m 3 であることを特徴とする耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体。 A hydrated cured body having a reinforcing bar inside is at least one selected from Portland cement , B type fly ash cement suitable for JIS R5213 “fly ash cement” , slaked lime, and CaO / SiO 2 2 containing steelmaking slag having a mass ratio of less than 1.5 or CaO concentration of less than 25% by mass, blast furnace slag fine powder and fly ash , “Portland cement (kg / m 3 ) + fly ash cement (kg / m 3) × 0.85 + slaked lime (kg / m 3) "is a 55 kg / m 3 or more, in addition the reinforcing bars Ri Ah of carbon steel having a weather resistance, the content of steelmaking slag 2239kg / m 3 or more There, Yu the耐中resistance resistance and salt damage resistance, wherein the amount of ground granulated blast furnace slag in the mixture is 100~600kg / m 3 Hydrated cured product having a rebar. 鉄筋が、質量%で、C:0.15%以下、Si:0.7%以下、Mn:0.10%以上、2.00%以下、P:0.03%超、0.15%以下、S:0.020%以下、Al:0.010%以上、0.100%以下、Ni:0.2%以上、4.0%以下、Cu:0.1%未満、Mo:0.10%以上、4.00%以下を含有し、残部がFeおよび不可避的不純物から成ることを特徴とする請求項1に記載の耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体。 Reinforcing bars in mass%, C: 0.15% or less, Si: 0.7% or less, Mn: 0.10% or more, 2.00% or less, P: more than 0.03%, 0.15% or less S: 0.020% or less, Al: 0.010% or more, 0.100% or less, Ni: 0.2% or more, 4.0% or less, Cu: less than 0.1%, Mo: 0.10 The hydration hardening having a reinforcing bar excellent in neutralization resistance and salt damage resistance according to claim 1 , characterized in that it contains not less than 1% and not more than 4.00%, and the balance consists of Fe and inevitable impurities body. 耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体の製造方法であって、「ポルトランドセメント(kg/m3フライアッシュセメント(kg/m3)×0.85+消石灰(kg/m3)」が55kg/m3以上になるように、少なくとも、ポルトランドセメント、JIS R5213「フライアッシュセメント」に適合するB種のフライアッシュセメント、消石灰の中から選んだ1種または2種以上と、CaO/SiO2が質量比で1.5未満またはCaO濃度が25質量%未満の製鋼スラグと、高炉スラグ微粉末とフライアッシュとを水と混合し、得られた混合物を硬化するステップを含み、前記鉄筋が耐候性を有する炭素鋼であり、製鋼スラグの含有量が2239kg/m 3 以上であり、前記混合物中における高炉スラグ微粉末の含有量が100〜600kg/m 3 であることを特徴とする耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体の製造方法。 A method for producing a hydrated hardened body having a rebar excellent in neutralization resistance and salt damage resistance, comprising “Portland cement (kg / m 3 ) + fly ash cement (kg / m 3 ) × 0.85 + slaked lime (Kg / m 3 ) ”is 55 kg / m 3 or more, at least one selected from Portland cement , Class B fly ash cement conforming to JIS R5213“ Fly ash cement ”, or slaked lime curing the above species, the steel slag of less than 25% by weight less than 1.5 or CaO concentration CaO / SiO 2 mass ratio, and a blast furnace slag and fly ash is mixed with water, the resulting mixture comprising the step, the reinforcing bars Ri Ah of carbon steel having a weather resistance, the content of steel slag is at 2239kg / m 3 or more, blast furnace slag in the mixture Method for producing a hydrated cured product having excellent reinforcing bar耐中resistance resistance and salt damage resistance, wherein the amount of end is 100~600kg / m 3.
JP2006097633A 2006-03-31 2006-03-31 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same Active JP4796419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006097633A JP4796419B2 (en) 2006-03-31 2006-03-31 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097633A JP4796419B2 (en) 2006-03-31 2006-03-31 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007269557A JP2007269557A (en) 2007-10-18
JP4796419B2 true JP4796419B2 (en) 2011-10-19

Family

ID=38672735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097633A Active JP4796419B2 (en) 2006-03-31 2006-03-31 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4796419B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040768A2 (en) * 2009-10-01 2011-04-07 한국철도기술연구원 Heavy concrete composition using slag by-products
JP6755730B2 (en) * 2016-06-29 2020-09-16 株式会社デイ・シイ Method for suppressing neutralization of hardened cement and suppressing chloride ion permeation

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233539A (en) * 1989-03-06 1990-09-17 Kobe Steel Ltd Slag block
JPH0740331A (en) * 1993-07-27 1995-02-10 High Frequency Heattreat Co Ltd Production of salt-resistant concrete columnar body
JP3265867B2 (en) * 1994-11-09 2002-03-18 日本鋼管株式会社 Welded structural steel with excellent weather resistance
JP3582263B2 (en) * 1996-11-21 2004-10-27 Jfeスチール株式会社 Hydrated product using steelmaking slag
JPH1121622A (en) * 1997-07-07 1999-01-26 Nkk Corp Manufacture of steel product for welded structure, having excellent atmospheric corrosion resistance and low yield ratio
JP3314682B2 (en) * 1997-09-04 2002-08-12 日本鋼管株式会社 H-shaped steel with excellent weather resistance and bridge using the same
JP4736157B2 (en) * 2000-03-24 2011-07-27 Jfeスチール株式会社 Solidification method of steelmaking slag
JP3654122B2 (en) * 2000-03-28 2005-06-02 Jfeスチール株式会社 Method for producing hardened slag
JP4560887B2 (en) * 2000-05-09 2010-10-13 Jfeスチール株式会社 Underwater hardened body made from steelmaking slag
JP4003387B2 (en) * 2000-06-09 2007-11-07 住友金属工業株式会社 Anticorrosion surface treatment method and anticorrosion surface treatment steel material and method of using the same
JP2002047052A (en) * 2000-07-31 2002-02-12 Nc Kk Concrete and method of producing the same
JP2003165751A (en) * 2001-11-28 2003-06-10 Nkk Corp Hydraulic composition and hydrated hardened body
JP2003306359A (en) * 2002-04-17 2003-10-28 Jfe Steel Kk Cement composition and hydrated hardened body
JP3844457B2 (en) * 2002-07-19 2006-11-15 電気化学工業株式会社 Cement admixture and cement composition
JP3816036B2 (en) * 2002-07-19 2006-08-30 電気化学工業株式会社 Cement admixture, cement composition and mortar or concrete using the same
JP2004149333A (en) * 2002-10-29 2004-05-27 Port & Airport Research Institute Concrete structure suitable for deposition and breeding of marine life and method for suppressing corrosion of steel bar in concrete structure
JP4558281B2 (en) * 2003-03-28 2010-10-06 新日本製鐵株式会社 Solidified body manufacturing method
JP4255726B2 (en) * 2003-03-28 2009-04-15 新日本製鐵株式会社 Method for determining expansion stability of solidified material containing steelmaking slag
JP4438307B2 (en) * 2003-03-28 2010-03-24 Jfeスチール株式会社 How to select steelmaking slag for hardened slag
JP4427375B2 (en) * 2004-04-12 2010-03-03 新日本製鐵株式会社 Concrete and reinforced concrete structures using blast furnace cement with excellent resistance to neutralization.

Also Published As

Publication number Publication date
JP2007269557A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
US20090151604A1 (en) Cement additive and cement composition
WO2011108065A1 (en) Cement admixture and cement composition
JP5259094B6 (en) Hydrated hardened body excellent in neutralization resistance with rebar
JP4796424B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4796419B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4827580B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP6985177B2 (en) Hydraulic composition and concrete
JP4827585B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP6735624B2 (en) Concrete surface modifier and method for improving surface quality of concrete using the same
JP4791228B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791200B2 (en) Hydrated cured body and method for producing the same
JP4796402B2 (en) Hydrated cured body and method for producing the same
JP4791227B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791231B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791226B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP5651055B2 (en) Cement admixture and cement composition
JP4796420B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4827584B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4827548B2 (en) Hydrated cured body
JP4827581B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4796422B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791229B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4796421B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4827582B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4796423B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20081225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110729

R150 Certificate of patent or registration of utility model

Ref document number: 4796419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250