JP4791200B2 - Hydrated cured body and method for producing the same - Google Patents
Hydrated cured body and method for producing the same Download PDFInfo
- Publication number
- JP4791200B2 JP4791200B2 JP2006033649A JP2006033649A JP4791200B2 JP 4791200 B2 JP4791200 B2 JP 4791200B2 JP 2006033649 A JP2006033649 A JP 2006033649A JP 2006033649 A JP2006033649 A JP 2006033649A JP 4791200 B2 JP4791200 B2 JP 4791200B2
- Authority
- JP
- Japan
- Prior art keywords
- cement
- fly ash
- blast furnace
- mixture
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000002893 slag Substances 0.000 claims description 75
- 239000010881 fly ash Substances 0.000 claims description 65
- 239000000203 mixture Substances 0.000 claims description 59
- 230000003014 reinforcing effect Effects 0.000 claims description 37
- 238000009628 steelmaking Methods 0.000 claims description 35
- 239000004568 cement Substances 0.000 claims description 33
- 239000000843 powder Substances 0.000 claims description 33
- 239000011398 Portland cement Substances 0.000 claims description 30
- 239000011400 blast furnace cement Substances 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 20
- 239000000920 calcium hydroxide Substances 0.000 claims description 20
- 235000011116 calcium hydroxide Nutrition 0.000 claims description 20
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 20
- 238000002156 mixing Methods 0.000 claims description 15
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- 230000036571 hydration Effects 0.000 claims description 10
- 238000006703 hydration reaction Methods 0.000 claims description 10
- 229910000831 Steel Inorganic materials 0.000 claims description 7
- 239000010959 steel Substances 0.000 claims description 7
- 239000004567 concrete Substances 0.000 description 46
- 238000006386 neutralization reaction Methods 0.000 description 46
- 239000002994 raw material Substances 0.000 description 25
- 238000012360 testing method Methods 0.000 description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 20
- 238000005260 corrosion Methods 0.000 description 15
- 230000007797 corrosion Effects 0.000 description 15
- 238000001723 curing Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 239000001569 carbon dioxide Substances 0.000 description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000035515 penetration Effects 0.000 description 6
- 239000011150 reinforced concrete Substances 0.000 description 6
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002956 ash Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- BWKOZPVPARTQIV-UHFFFAOYSA-N azanium;hydron;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [NH4+].OC(=O)CC(O)(C(O)=O)CC([O-])=O BWKOZPVPARTQIV-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/08—Slag cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00198—Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、鉄筋を内部に有する水和硬化体およびその製造方法に関し、詳しくは、乾湿が繰り返される環境のように中性化が進みやすい環境下においても、内部の鉄筋の腐食を抑制し、長期間の耐久性を有する構造部材として利用することのできる、耐中性化に優れた水和硬化体およびその製造方法に関するものである。 The present invention relates to a hydrated cured body having a reinforcing bar therein and a method for producing the same , and more particularly, to suppress corrosion of the internal reinforcing bar even in an environment where neutralization is likely to proceed, such as an environment where drying and wetting are repeated, The present invention relates to a hydrated cured product excellent in neutralization resistance that can be used as a structural member having long-term durability and a method for producing the same.
鉄筋コンクリートは、コンクリート中のアルカリ成分によって鉄筋の表面に不動態皮膜が形成され、これによって鉄筋の腐食が防止され、長期にわたって強度と耐久性を発揮する構造部材である。従って、コンクリートが中性化すると、不動態皮膜が破壊されて鉄筋が腐食し、構造物部材として機能しなくなる。 Reinforced concrete is a structural member that exhibits a strength and durability over a long period of time because a passive film is formed on the surface of the reinforcing bar by the alkali component in the concrete, thereby preventing corrosion of the reinforcing bar. Therefore, when the concrete is neutralized, the passive film is destroyed and the rebar is corroded, so that it does not function as a structural member.
近年、コンクリート骨材の入手事情が悪化し、例えば、アルカリ骨材反応を生じる可能性のある安山岩などをコンクリート骨材として使用せざるを得ない場合がある。アルカリ骨材反応によってコンクリートにひび割れが生じた場合には、コンクリートの中性化が急速に進行し、鉄筋が腐食するなどの問題が発生する。また良質な骨材を使用したコンクリートの場合であっても、これを乾湿が繰り返されるなどの中性化が進みやすい環境下で使用した際には、コンクリートの中性化よって鉄筋表面の不動態皮膜が破壊されて鉄筋が腐食し、発生した錆に起因する体積膨張によってコンクリートが剥落する。当然のことながら、鉄筋と外界との間に存在するコンクリートの厚み(「かぶり厚」という)を増大させることにより、中性化が鉄筋の表面に到達するまでの時間を遅延させることはできるが、コンクリートのかぶり厚の増大によって構造物が大型化するため、コストが増大するという問題が発生する。 In recent years, the availability of concrete aggregates has deteriorated, and for example, andesite, which may cause an alkali aggregate reaction, has to be used as a concrete aggregate. When cracks occur in the concrete due to the alkali aggregate reaction, the neutralization of the concrete proceeds rapidly, causing problems such as corrosion of the reinforcing bars. Even in the case of concrete using high-quality aggregates, if it is used in an environment where neutralization is likely to progress, such as repeated drying and wetting, the neutralization of the concrete will result in passivity of the reinforcing bar surface. The coating is destroyed and the rebar is corroded, and the concrete is peeled off by volume expansion caused by the generated rust. Naturally, it is possible to delay the time until neutralization reaches the surface of the reinforcing bar by increasing the thickness of the concrete existing between the reinforcing bar and the outside (called “covering thickness”). Since the structure becomes larger due to the increase in the cover thickness of the concrete, there is a problem that the cost increases.
上記のようなコンクリートの中性化による鉄筋の腐食を防止する手段として、以下のような技術が提案されている。例えば、特許文献1には、コンクリート構造物の表面に炭酸ガスや水蒸気の透過率の低い有機高分子組成物の被膜を形成し、中性化の原因となる炭酸ガスや水蒸気をコンクリート構造物の内部に侵入させないようにする方法が提案されている。また、特許文献2には、低セメント比で混練・締固めを行い、コンクリートを緻密化して、中性化の原因となる炭酸ガスや水蒸気のコンクリートへの侵入を防止する方法が提案されている。また更に、特許文献3には、中性化したコンクリートの表面部に外部電極を設置し、コンクリート内部の鉄筋を内部電極とし、電流を印加するコンクリート部分を昇温しつつ、外部電極間または外部電極−内部電極間に電流を印加し、中性化したコンクリートのアルカリ度を回復させる方法が提案されている。 The following techniques have been proposed as means for preventing corrosion of reinforcing bars due to the above-mentioned neutralization of concrete. For example, in Patent Document 1, a film of an organic polymer composition having a low carbon dioxide gas or water vapor permeability is formed on the surface of a concrete structure, and carbon dioxide gas or water vapor that causes neutralization is applied to the concrete structure. A method has been proposed to prevent the inside from entering. Further, Patent Document 2 proposes a method of kneading and compacting at a low cement ratio, densifying the concrete, and preventing carbon dioxide gas or water vapor that causes neutralization from entering the concrete. . Furthermore, Patent Document 3 discloses that an external electrode is installed on the surface of neutralized concrete, the reinforcing bar inside the concrete is used as the internal electrode, and the temperature of the concrete portion to which current is applied is increased between the external electrodes or outside. There has been proposed a method for recovering the alkalinity of neutralized concrete by applying an electric current between the electrode and the internal electrode.
しかし、特許文献1〜3に提案された方法には、以下の問題点がある。即ち、特許文献1に開示されるようなコンクリート構造物の表面に炭酸ガスや水蒸気の侵入を遮断する被膜を形成する方法では、日光の照射などにより被膜が変質し、被膜に亀裂が生じたり皮膜が剥離したりして、長期間にわたって中性化を防止できないという問題点がある。特許文献2に開示された水セメント比を小さくする方法は、アルカリ骨材反応を生じることがない良質な骨材を用いた場合には有効であるが、アルカリ骨材反応を生じる骨材を用いた場合には効果がなく、また、水セメント比を小さくすると高コストとなるばかりでなく、コンクリートの自己収縮が大きくなるという弊害も生じる。特許文献3に開示された方法は、大掛かりの装置が必要であり、このような装置を長期間にわたって運転・維持することは非常にコスト高である。 However, the methods proposed in Patent Documents 1 to 3 have the following problems. That is, in the method of forming a coating film that blocks the intrusion of carbon dioxide gas or water vapor on the surface of a concrete structure as disclosed in Patent Document 1, the coating film changes in quality due to irradiation of sunlight or the like, and the coating film is cracked or coated. Peeling off, and there is a problem that neutralization cannot be prevented over a long period of time. The method of reducing the water-cement ratio disclosed in Patent Document 2 is effective when a high-quality aggregate that does not cause an alkali-aggregate reaction is used, but an aggregate that causes an alkali-aggregate reaction is used. If it is, there is no effect, and if the water-cement ratio is reduced, not only the cost is increased, but also the adverse effect that the self-shrinkage of the concrete increases. The method disclosed in Patent Document 3 requires a large-scale device, and it is very expensive to operate and maintain such a device for a long period of time.
ところで近年、製鋼スラグと高炉スラグ微粉末とを主原料とし、コンクリートの代替可能な水和硬化体が特許文献4及び非特許文献1に開示されている。
本発明者等は、鉄筋コンクリートの中性化を抑制する手段を種々検討した。その結果、中性化を抑制して鉄筋の腐食を防止するには、コンクリートの代替として、製鋼スラグ及び高炉スラグ微粉末を主原料とする水和硬化体を利用することが極めて効果的であるとの知見を得た。これは、製鋼スラグはスラグ組成のCaO/SiO2 (塩基度)が高く、長期間にわたって鉄筋の周囲が高アルカリに維持されるからである。また、この水和硬化体はコンクリートと同等の機械的強度を発現し、コンクリートの代替として問題がないからである。 The present inventors have studied various means for suppressing the neutralization of reinforced concrete. As a result, it is extremely effective to use steel slag and blast furnace slag fine powder as the main raw material as a substitute for concrete to suppress neutralization and prevent corrosion of reinforcing bars. And gained knowledge. This is because steelmaking slag has a high slag composition of CaO / SiO 2 (basicity), and the periphery of the reinforcing bar is maintained at a high alkali for a long period of time. In addition, this hydrated cured product exhibits mechanical strength equivalent to that of concrete, and there is no problem as a substitute for concrete.
この観点から、特許文献4及び非特許文献1に開示された水和硬化体を検証した。しかしながら、特許文献4に開示される水和硬化体は用途が不明瞭であり、また、非特許文献1に開示される水和硬化体は、対象として鉄筋を含有しない無筋コンクリート代替を限定しており、耐中性化の性能自体が不明であった。 From this viewpoint, the hydrated cured product disclosed in Patent Document 4 and Non-Patent Document 1 was verified. However, the use of the hydrated cured body disclosed in Patent Document 4 is unclear, and the hydrated cured body disclosed in Non-Patent Document 1 limits the substitution of unreinforced concrete that does not contain reinforcing steel as a target. The performance of neutralization resistance itself was unknown.
そこで本発明者等は、これら水和硬化体の耐中性化性能を調査した。その結果、これらの水和硬化体では、耐中性化性能のばらつきが極めて大きく、安定して使用することは困難であることが分かった。即ち、製鋼スラグと高炉スラグ微粉末とを主たる原料とした従来の水和硬化体では、中性化を抑止して鉄筋の腐食を防止することには限界があることが分かった。 Therefore, the present inventors investigated the resistance to neutralization of these hydrated cured bodies. As a result, it was found that these hydrated cured bodies have extremely large variations in neutralization resistance and are difficult to use stably. That is, it has been found that there is a limit in preventing corrosion of reinforcing steel by suppressing neutralization in the conventional hydrated and hardened body made mainly of steelmaking slag and blast furnace slag fine powder.
本発明は上記事情に鑑みてなされたもので、その目的とするところは、乾湿が繰り返される環境のようにコンクリートなどの中性化が進みやすい環境下においても、内部の鉄筋の腐食を抑制し、長期間の耐久性を有する構造部材として利用することのできる、耐中性化に優れた水和硬化体およびその製造方法を提供することである。 The present invention has been made in view of the above circumstances, and the object of the present invention is to suppress corrosion of internal reinforcing bars even in an environment where neutralization is likely to proceed, such as in an environment where dry and wet conditions are repeated. An object of the present invention is to provide a hydrated cured product excellent in neutralization resistance and a method for producing the same, which can be used as a structural member having long-term durability.
上記課題を解決するための第1の発明に係る水和硬化体は、鉄筋を内部に有する水和硬化体であって、該水和硬化体は、CaO/SiO 2 が質量比で1.5未満、且つ、CaO濃度が25質量%未満の製鋼スラグ、高炉スラグ微粉末及びフライアッシュと、更に、ポルトランドセメント、JIS R 5211「高炉セメント」に適合するB種の高炉セメント、JIS R 5213「フライアッシュセメント」に適合するB種のフライアッシュセメント及び消石灰の群から選択された1種または2種以上とを、水と混合し、得られた混合物を硬化したものであり、前記混合物中におけるフライアッシュの含有量が100kg/m3以上であり、且つ、前記混合物中におけるフライアッシュ、ポルトランドセメント、高炉セメント、フライアッシュセメント及び消石灰の各含有量が下記の(1)式を満足する範囲であり、且つ、前記製鋼スラグの含有量が1975kg/m 3 以上であり、且つ、前記混合物中における高炉セメントに由来する高炉スラグ微粉末以外の高炉スラグ微粉末の含有量が100kg/m 3 以上であることを特徴とするものである。但し、(1)式において、Pは、混合物中におけるポルトランドセメントの含有量(kg/m3)、Bは、混合物中における高炉セメントの含有量(kg/m3)、Fは、混合物中におけるフライアッシュセメントの含有量(kg/m3)、CHは、混合物中における消石灰の含有量(kg/m3 )、FAは、混合物中におけるフライアッシュの含有量(kg/m3)である。 The hydrated cured body according to the first invention for solving the above-mentioned problems is a hydrated cured body having a reinforcing bar inside, and the hydrated cured body has a CaO / SiO 2 mass ratio of 1.5. Steelmaking slag having a CaO concentration of less than 25% by mass , blast furnace slag fine powder and fly ash, and Portland cement, Class B blast furnace cement suitable for JIS R 5211 “blast furnace cement” , JIS R 5213 “fly” 1 type or 2 or more types selected from the group of B type fly ash cement and slaked lime suitable for “ash cement” are mixed with water, and the resulting mixture is hardened. The ash content is 100 kg / m 3 or more, and fly ash, Portland cement, blast furnace cement, fly ash in the mixture The blast furnace derived from the blast furnace cement in the mixture, wherein the contents of each of the cement and slaked lime are in a range satisfying the following formula (1) and the steelmaking slag content is 1975 kg / m 3 or more. The content of blast furnace slag fine powder other than slag fine powder is 100 kg / m 3 or more . However, in Formula (1), P is the content of Portland cement in the mixture (kg / m 3 ), B is the content of blast furnace cement in the mixture (kg / m 3 ), and F is in the mixture The content of fly ash cement (kg / m 3 ), CH is the content of slaked lime in the mixture (kg / m 3 ), and FA is the content of fly ash in the mixture (kg / m 3 ).
第2の発明に係る水和硬化体の製造方法は、鉄筋を内部に有する水和硬化体の製造方法であって、CaO/SiO 2 が質量比で1.5未満、且つ、CaO濃度が25質量%未満の製鋼スラグ、高炉スラグ微粉末及びフライアッシュと、更に、ポルトランドセメント、JIS R 5211「高炉セメント」に適合するB種の高炉セメント、JIS R 5213「フライアッシュセメント」に適合するB種のフライアッシュセメント及び消石灰の群から選択された1種または2種以上とを、水と混合し、得られた混合物を硬化するステップを含み、前記混合物中におけるフライアッシュの含有量が100kg/m 3 以上であり、且つ、前記混合物中におけるフライアッシュ、ポルトランドセメント、高炉セメント、フライアッシュセメント及び消石灰の各含有量が下記の(1)式を満足する範囲であり、且つ、前記製鋼スラグの含有量が1975kg/m 3 以上であり、且つ、前記混合物中における高炉セメントに由来する高炉スラグ微粉末以外の高炉スラグ微粉末の含有量が100kg/m 3 以上であることを特徴とするものである。
(P+0.6×B+0.85×F+CH)/(FA+0.15×F)≦0.45 …(1)
但し、(1)式において各記号は以下を表すものである。
P:混合物中におけるポルトランドセメントの含有量(kg/m 3 )
B:混合物中における高炉セメントの含有量(kg/m 3 )
F:混合物中におけるフライアッシュセメントの含有量(kg/m 3 )
CH:混合物中における消石灰の含有量(kg/m 3 )
FA:混合物中におけるフライアッシュの含有量(kg/m 3 )
The method for producing a hydrated cured product according to the second invention is a method for producing a hydrated cured product having a reinforcing bar inside, wherein CaO / SiO 2 is less than 1.5 in terms of mass ratio, and the CaO concentration is 25. Steelmaking slag of less than% by mass, blast furnace slag fine powder and fly ash, and Portland cement, Class B blast furnace cement compatible with JIS R 5211 "Blast furnace cement", Class B compatible with JIS R 5213 "Fly ash cement" One or more selected from the group of fly ash cement and slaked lime with water and curing the resulting mixture, wherein the fly ash content in the mixture is 100 kg / m 3 or more, and fly ash, Portland cement, blast furnace cement, fly ash cement and slaked stone in the mixture Each ash content is in a range satisfying the following formula (1), and the steelmaking slag content is 1975 kg / m 3 or more, and blast furnace slag fines derived from blast furnace cement in the mixture. The content of fine blast furnace slag powder other than powder is 100 kg / m 3 or more.
(P + 0.6 × B + 0.85 × F + CH) / (FA + 0.15 × F) ≦ 0.45 (1)
However, in the formula (1), each symbol represents the following.
P: Portland cement content in the mixture (kg / m 3 )
B: Content of blast furnace cement in the mixture (kg / m 3 )
F: Content of fly ash cement in the mixture (kg / m 3 )
CH: Slaked lime content in the mixture (kg / m 3 )
FA: content of fly ash in the mixture (kg / m 3 )
上記構成の本発明に係る水和硬化体およびその製造方法によれば、配合原料の製鋼スラグが中性化抑止材として作用するとともに、潜在水硬性を有する高炉スラグ微粉末の配合、及び、ポゾラン反応性を有するフライアッシュの配合により、更に、ポルトランドセメント、高炉セメント、フライアッシュセメント、消石灰のうちの1種または2種以上の配合によるフライアッシュのポゾラン反応の促進作用も加味されて、従来のコンクリートよりも緻密な組織を有する硬化物が形成されて、中性化の原因となる炭酸ガスや水蒸気の浸透・透過を抑制することができるので、水和硬化体の内部に配置される鉄筋の腐食を長期間にわたって防止することができる。その結果、中性化による鉄筋の腐食によって従来の鉄筋コンクリートでは短期間で崩壊するような環境下においても、長期間の使用が可能な構造物を提供することができる。 According to the hydrated cured body and the method for producing the same according to the present invention having the above-described configuration, the steelmaking slag as a blending raw material acts as a neutralization inhibiting material, and blends blast furnace slag fine powder having latent hydraulic properties, and By adding the fly ash having reactivity, further promoting the pozzolanic reaction of fly ash by mixing one or more of Portland cement, blast furnace cement, fly ash cement and slaked lime, A hardened material with a denser structure than concrete is formed, and the penetration and permeation of carbon dioxide and water vapor, which cause neutralization, can be suppressed. Corrosion can be prevented over a long period of time. As a result, it is possible to provide a structure that can be used for a long period of time even in an environment where conventional reinforced concrete collapses in a short period of time due to corrosion of the reinforcing bars due to neutralization.
本発明者等は、水和硬化体の配合原料を最適化することにより、従来のコンクリートや製鋼スラグと高炉スラグ微粉末などとを原料とした水和硬化体よりも耐中性化に優れた水和硬化体が得られ、これを鉄筋と組み合わせることで、乾湿が繰り返されるなどの中性化が進みやすい環境下においても、長期の耐久性を有する構造物部材として使用できることを見出し、本発明を完成した。 By optimizing the blended raw material of the hydrated hardened body, the present inventors were superior in neutralization resistance to hydrated hardened bodies made from conventional concrete, steelmaking slag, blast furnace slag fine powder, etc. It was found that a hydrated cured product was obtained, and by combining this with a reinforcing bar, it could be used as a structural member having long-term durability even in an environment where neutralization is likely to proceed, such as repeated drying and wetting. Was completed.
先ず、本発明に係る水和硬化体を構成する配合原料について説明する。 First, the compounding raw material which comprises the hydration hardening body which concerns on this invention is demonstrated.
本発明に係る水和硬化体では、その配合原料として、製鋼スラグ、高炉スラグ微粉末及びフライアッシュを使用し、更に、ポルトランドセメント、高炉セメント、フライアッシュセメント及び消石灰の群から選択された1種または2種以上を使用する。当然ながら、水和硬化体の内部に配置される鉄筋も本発明に係る水和硬化体を構成する原料の1つであり、混錬用の水や混和剤なども配合原料である。本発明に係る水和硬化体は、これら配合原料を混合して混合物を形成し、この混合物を硬化させたものである。 In the hydrated cured body according to the present invention, steelmaking slag, blast furnace slag fine powder and fly ash are used as the raw materials for mixing, and further, one kind selected from the group of Portland cement, blast furnace cement, fly ash cement and slaked lime. Or use 2 or more types. Naturally, the reinforcing bar arranged inside the hydrated cured body is also one of the raw materials constituting the hydrated cured body according to the present invention, and kneading water, admixture and the like are blended raw materials. The hydrated cured product according to the present invention is obtained by mixing these blending raw materials to form a mixture and curing the mixture.
本発明に係る水和硬化体の配合原料のうち、製鋼スラグは、骨材及び結合材、更には水和硬化体の中性化抑止材として作用する。骨材として作用させるための製鋼スラグの粒度分布は、コンクリート用の細骨材や粗骨材に相当するような粒度とし、粒径が0.075mm以上程度、また最大粒径が40mm以下程度とすることが好ましい。また、結合材として作用させるための製鋼スラグは微粉であることが好ましく、粒径が0.15mm未満程度であることが好ましい。従って、結合材としての粒径と骨材としての粒径とをそれぞれ満足するスラグ粒子が含まれている適当な粒度分布を有する製鋼スラグ(例えば、或る条件で粉砕処理した製鋼スラグやその粉砕処理後に篩分した製鋼スラグ)を使用することが望ましい。 Among the blended raw materials of the hydrated cured body according to the present invention, the steelmaking slag acts as an aggregate and a binder, and further as a neutralization inhibiting material for the hydrated cured body. The particle size distribution of the steelmaking slag for acting as an aggregate is a particle size corresponding to fine aggregate or coarse aggregate for concrete, the particle size is about 0.075 mm or more, and the maximum particle size is about 40 mm or less. It is preferable to do. Moreover, it is preferable that the steelmaking slag for making it act as a binder is a fine powder, and it is preferable that a particle size is less than about 0.15 mm. Therefore, a steelmaking slag having an appropriate particle size distribution containing slag particles satisfying the particle size as a binder and the particle size as an aggregate (for example, steelmaking slag that has been pulverized under certain conditions or its pulverization) It is desirable to use steelmaking slag that is sieved after the treatment.
中性化抑止材として作用させるための製鋼スラグは、スラグ組成のCaO/SiO2 が質量比で1.5以上またはスラグ中のCaO濃度が25質量%以上であることが好ましい。CaO/SiO2 が質量比で1.5以上またはCaO濃度が25質量%以上の製鋼スラグは、製鋼スラグ中のCaO成分が長期間にわたり水和硬化体中に含まれる水に溶解し、水和硬化体を弱アルカリ性に保ち、中性化を抑止する。従って、より好ましい製鋼スラグは、CaO/SiO2 が質量比で2.0以上またはCaO濃度が30質量%以上である。一般にCaO/SiO2 或いはCaO濃度が高くなると製鋼スラグ中の遊離CaO(free−CaO)による水和膨張性が大きくなるが、水和硬化体の膨張安定性が確保されれば問題がないことから、これらの上限値は特に規定しない。 Steelmaking slag for acting as a neutralization inhibiting material preferably has a slag composition of CaO / SiO 2 of 1.5 or more by mass ratio or a CaO concentration in the slag of 25% by mass or more. CaO / SiO 2 is 1.5 or more or CaO concentration of 25 mass% or more steel slag in mass ratio, was dissolved in water CaO component in the steelmaking slag is contained in the hydrated cured body over a long period of time, hydration Keep the cured body weakly alkaline and suppress neutralization. Therefore, a more preferable steelmaking slag has a mass ratio of CaO / SiO 2 of 2.0 or more or a CaO concentration of 30 mass% or more. In general, when the CaO / SiO 2 or CaO concentration is increased, the hydration and expansion property by free CaO (free-CaO) in the steelmaking slag is increased, but there is no problem if the expansion stability of the hydrated cured body is ensured. These upper limits are not specified.
また、製鋼スラグは通常の砂利などの骨材と異なりアルカリ骨材反応を起こさないので、水和硬化体そのものの耐久性が優れるだけでなく、アルカリ骨材反応に起因するひび割れの発生も抑制できるので、ひび割れを介した中性化が起こらず、水和硬化体中の鉄筋の防食の観点からも好ましい。尚、本発明が鉄筋を有する水和硬化体を対象とした理由は、無筋の水和硬化体は、耐中性化が優れていない場合でも何ら問題とならないからである。 In addition, steelmaking slag does not cause an alkali-aggregate reaction unlike aggregates such as ordinary gravel, so it not only has excellent durability of the hydrated hardened body itself, but can also suppress the occurrence of cracks due to the alkali-aggregate reaction. Therefore, neutralization through cracks does not occur, which is preferable from the viewpoint of corrosion prevention of reinforcing steel in the hydrated cured body. The reason why the present invention is directed to a hydrated and cured body having a reinforcing bar is that a non-muscle hydrated and cured body does not cause any problems even when the resistance to neutralization is not excellent.
本発明に係る水和硬化体の配合原料として高炉スラグ微粉末を用いるのは、潜在水硬性を有する高炉スラグ微粉末が、製鋼スラグによりアルカリ刺激を受け効率的に水和反応するためだけではなく、従来のコンクリートよりも硬化物が緻密な組織を有することから、水和硬化体の中性化の原因となる炭酸ガス及び水蒸気の浸透・透過を著しく抑制できるからである。また、高炉スラグ微粉末と製鋼スラグ中の遊離CaOとが反応し、製鋼スラグの水和膨張を抑制するからである。高炉スラグ微粉末としてはJIS A 6206「コンクリート用高炉スラグ微粉末」を特に好ましく用いることができる。 The reason why the blast furnace slag fine powder is used as a raw material for blending the hydrated cured body according to the present invention is not only because the blast furnace slag fine powder having latent hydraulic properties is subjected to an alkali stimulus by the steelmaking slag and efficiently hydrates. This is because, since the cured product has a denser structure than conventional concrete, the penetration and permeation of carbon dioxide gas and water vapor that cause neutralization of the hydrated cured body can be remarkably suppressed. Moreover, it is because blast furnace slag fine powder and the free CaO in steelmaking slag react, and the hydration expansion of steelmaking slag is suppressed. As the blast furnace slag fine powder, JIS A 6206 “Blast furnace slag fine powder for concrete” can be particularly preferably used.
高炉スラグ微粉末の配合量は、水和硬化体を構成する配合原料が混合された混合物中において、100〜600kg/m3 とすることが好ましい。100kg/m3 未満ではコンクリート代替として必要な18N/mm2 以上の圧縮強度が得られない場合があり、一方、600kg/m3 を超えると強度の増加はほとんど無く不経済となるためである。高炉スラグ微粉末のより好ましい配合量は、200〜400kg/m3 である。 It is preferable that the compounding quantity of blast furnace slag fine powder shall be 100-600 kg / m < 3 > in the mixture with which the compounding raw material which comprises a hydration hardening body was mixed. If it is less than 100 kg / m 3 , the compressive strength of 18 N / mm 2 or more necessary as a concrete substitute may not be obtained. On the other hand, if it exceeds 600 kg / m 3 , there is almost no increase in strength and it becomes uneconomical. A more preferable blending amount of the blast furnace slag fine powder is 200 to 400 kg / m 3 .
本発明に係る水和硬化体の配合原料としてフライアッシュを用いるのは、ポゾラン反応性を有するフライアッシュが製鋼スラグや高炉スラグ微粉末と長期にわたって反応し、生成した水和ゲルが組織中の空隙を埋めることにより、従来のコンクリートよりも硬化物が極めて緻密な組織を有するようになり、水和硬化体の中性化の原因となる炭酸ガス及び水蒸気の浸透・透過を著しく抑制できるからである。このためには、水和硬化体を構成する配合原料が混合された混合物中において、フライアッシュを100kg/m3 以上含有させる必要がある。フライアッシュを100kg/m3 含有することにより、水和硬化体の平均細孔径は、普通コンクリートが約0.1μmであるのに対して約0.01μmとなり、約1/10になる。また、フライアッシュには、フライアッシュと製鋼スラグ中の遊離CaOとが反応し、製鋼スラグの水和膨張を抑制する効果もある。フライアッシュの上限値は特に設定しないが、300kg/m3 を超えると水を加えて練り混ぜた後のフレッシュな状態の粘性が高くなり、ワーカビリティが悪化し、また製鋼スラグの水和膨張を抑制する効果も変わらず不経済となる。フライアッシュとしてはJIS A 6201「コンクリート用フライアッシュ」を用いることが好ましいが、原粉及び加圧流動床灰などの使用も可能である。 The fly ash is used as a raw material for the hydrated cured product according to the present invention because the fly ash having pozzolanic reactivity reacts with steelmaking slag and blast furnace slag fine powder over a long period of time, and the generated hydrated gel has voids in the structure. This is because the hardened material has a more dense structure than conventional concrete, and the penetration and permeation of carbon dioxide gas and water vapor, which cause neutralization of the hydrated hardened body, can be remarkably suppressed. . For this purpose, it is necessary to contain 100 kg / m 3 or more of fly ash in the mixture in which the blended raw materials constituting the hydrated cured body are mixed. By containing fly ash at 100 kg / m 3 , the average pore size of the hydrated cured body is about 0.01 μm, compared to about 0.1 μm for ordinary concrete, and about 1/10. Fly ash also has an effect of suppressing hydration expansion of steel slag by reacting fly ash with free CaO in the steel slag. The upper limit of fly ash is not particularly set, but if it exceeds 300 kg / m 3 , the viscosity of the fresh state after adding water and kneading becomes high, workability deteriorates, and the hydration expansion of steelmaking slag Suppressing effect is not changed and it becomes uneconomical. As the fly ash, JIS A 6201 “Fly ash for concrete” is preferably used, but raw powder and pressurized fluidized bed ash can be used.
本発明に係る水和硬化体は、ポルトランドセメント、高炉セメント、フライアッシュセメント及び消石灰の群から選択された1種または2種以上を、フライアッシュの含有量に対して下記の(1)式を満足する範囲で含有する。但し、(1)式において、Pは、水和硬化体を構成する配合原料が混合された混合物中におけるポルトランドセメントの含有量(kg/m3 )、Bは、前記混合物中における高炉セメントの含有量(kg/m3 )、Fは、前記混合物中におけるフライアッシュセメントの含有量(kg/m3 )、CHは、前記混合物中における消石灰の含有量(kg/m3 )、FAは、前記混合物中におけるフライアッシュの含有量(kg/m3 )である。 The hydrated cured product according to the present invention comprises one or more selected from the group of Portland cement, blast furnace cement, fly ash cement and slaked lime, with the following formula (1) for the fly ash content: Contain in the range to be satisfied. However, in the formula (1), P is the content (kg / m 3 ) of Portland cement in the mixture in which the blended raw materials constituting the hydrated cured body are mixed, and B is the content of blast furnace cement in the mixture Amount (kg / m 3 ), F is the fly ash cement content (kg / m 3 ) in the mixture, CH is the slaked lime content (kg / m 3 ) in the mixture, FA is the above It is the content (kg / m 3 ) of fly ash in the mixture.
フライアッシュ及びフライアッシュセメントの含有量に対して(1)式の範囲を満足する範囲で、ポルトランドセメント、高炉セメント、フライアッシュセメント及び消石灰の群から選択された1種または2種以上を含有させることで、カルシウム成分を含むこれらの原料により、フライアッシュ及びフライアッシュセメントのポゾラン反応が効率的に生じ、平均細孔径は1ヶ月で約0.01μmとなり、短期間で水和硬化体の組織を緻密にすることができるためである。つまり、水和硬化体の中性化の原因となる炭酸ガスや水蒸気の浸透・透過を著しく抑制できるからである。この観点からは、(1)式の右辺が0.4以下の範囲で、これらの原料を配合することが好ましい。配合量の下限は特に設けないが、(1)式の右辺を0.15以上とすることで上記効果を得られるので好ましい。 One or more selected from the group of Portland cement, blast furnace cement, fly ash cement and slaked lime are included within the range satisfying the range of the formula (1) with respect to the content of fly ash and fly ash cement. Thus, with these raw materials containing calcium components, the pozzolanic reaction of fly ash and fly ash cement occurs efficiently, the average pore diameter becomes about 0.01 μm in one month, and the structure of the hydrated cured body can be formed in a short period of time. This is because it can be made minute. That is, the penetration and permeation of carbon dioxide gas and water vapor that cause neutralization of the hydrated cured product can be remarkably suppressed. From this viewpoint, it is preferable to blend these raw materials so that the right side of the equation (1) is 0.4 or less. The lower limit of the amount is not particularly set, but it is preferable to set the right side of the formula (1) to 0.15 or more because the above effect can be obtained.
尚、本発明におけるポルトランドセメントとは、JIS R 5210「ポルトランドセメント」に記載されている、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメントのことである。また、高炉セメントとは、JIS R 5211「高炉セメント」に記載されているA種、B種、C種のことである。また、フライアッシュセメントとは、JIS R 5213「フライアッシュセメント」に記載のA種、B種、C種のことである。 The Portland cement in the present invention is described in JIS R 5210 “Portland cement”, ordinary Portland cement, early-strength Portland cement, ultra-early strong Portland cement, moderately hot Portland cement, low-heat Portland cement, sulfate resistant salt Portland cement. The blast furnace cement is A type, B type or C type described in JIS R 5211 “Blast furnace cement”. The fly ash cement is a type A, type B, or type C described in JIS R 5213 “Fly ash cement”.
本発明に係る水和硬化体で使用する鉄筋としては、JIS G 3112「鉄筋コンクリート用棒鋼」またはJIS G 3117「鉄筋コンクリート用再生棒鋼」を用いることができる。鉄筋の水和硬化体に占める割合は、鉄筋の長手方向に垂直な断面において、水和硬化体部分の断面積に対する鉄筋の断面積が0.2〜10%の面積率となるように配筋することが好ましい。鉄筋の断面積が0.2%未満の場合には、鉄筋配合による構造物部材の耐力の増強効果が得られにくく、また鉄筋の断面積が10%を超えると原料コストに見合った効果を得にくく、更に作業効率が低下する傾向となるからである。 As the reinforcing bars used in the hydrated cured body according to the present invention, JIS G 3112 “Steel bars for reinforced concrete” or JIS G 3117 “Recycled bars for reinforced concrete” can be used. The ratio of the reinforcing bars to the hydrated hardened body is such that the cross-sectional area of the reinforcing bars relative to the cross-sectional area of the hydrated hardened body is 0.2 to 10% in the cross section perpendicular to the longitudinal direction of the reinforcing bars. It is preferable to do. When the cross-sectional area of the reinforcing bar is less than 0.2%, it is difficult to obtain the effect of reinforcing the strength of the structural member by the reinforcing bar composition, and when the cross-sectional area of the reinforcing bar exceeds 10%, an effect commensurate with the raw material cost is obtained. This is because the working efficiency tends to decrease.
これらの原料を用いて本発明に係る水和硬化体を製造する。つまり、上記の原料を配合し、更に水を加えて混合物とし、この混合物を混練して、所定の型枠などに打ち込んで養生して製造する。打ち込みの際に鉄筋を配筋して硬化させ、鉄筋を有する水和硬化体とする。 Using these raw materials, the hydrated cured body according to the present invention is produced. That is, the above raw materials are blended, and water is further added to form a mixture. This mixture is kneaded, and is cast into a predetermined formwork and cured. Reinforcing bars are placed and hardened during driving to obtain a hydrated hardened body having reinforcing bars.
水和硬化体の養生方法は、所定の強度が確保できれば、水中養生、現場養生、蒸気養生などの通常用いられる何れの方法をも用いることができる。また、鉄筋の表面から水和硬化体外面までの厚さであるかぶり厚は20mm以上とすることが好ましい。かぶり厚が20mm未満の場合には、中性化の原因となる炭酸ガスや水蒸気の外部からの浸透・透過を十分に遮断できない場合があるからである。 As a curing method for the hydrated cured body, any method that is usually used, such as underwater curing, on-site curing, and steam curing, can be used as long as a predetermined strength can be secured. The cover thickness, which is the thickness from the surface of the reinforcing bar to the outer surface of the hydrated cured body, is preferably 20 mm or more. This is because if the cover thickness is less than 20 mm, the penetration and permeation of carbon dioxide gas and water vapor that cause neutralization from the outside may not be sufficiently blocked.
以上説明したように、本発明に係る水和硬化体によれば、配合原料の製鋼スラグが中性化抑止材として作用するとともに、潜在水硬性を有する高炉スラグ微粉末の配合、及び、ポゾラン反応性を有するフライアッシュの配合により、更に、ポルトランドセメント、高炉セメント、フライアッシュセメント、消石灰のうちの1種または2種以上の配合によるフライアッシュのポゾラン反応の促進作用も加味されて、従来のコンクリートよりも緻密な組織を有する硬化物が形成されて中性化の原因となる炭酸ガスや水蒸気の浸透・透過を抑制することができるので、水和硬化体の内部に配置される鉄筋の腐食を長期間にわたって防止することが達成される。 As described above, according to the hydrated cured body according to the present invention, the steelmaking slag of the blending raw material acts as a neutralization inhibitor, and blending of blast furnace slag fine powder having latent hydraulic properties, and pozzolanic reaction In addition, the blending of fly ash with the properties of the concrete further adds the action of promoting the pozzolanic reaction of fly ash by blending one or more of Portland cement, blast furnace cement, fly ash cement and slaked lime. Since a hardened material with a denser structure is formed and the penetration and permeation of carbon dioxide gas and water vapor, which cause neutralization, can be suppressed, corrosion of the reinforcing bars arranged inside the hydrated hardened body can be prevented. Preventing over a long period of time is achieved.
以下、本発明を実施例により更に詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
製鋼スラグは表1に示す2種類(No.A,B)の化学成分、物性値(最大寸法、粗粒率、細骨材率、表乾密度)のものを用いた。用いた製鋼スラグは、No.A及びNo.BともにCaO/SiO2 が質量比で1.5未満、且つCaO濃度が25質量%未満であり、中性化抑止材として作用しにくい製鋼スラグである。ここで、粗粒率とは、JIS A 0203「コンクリート用語」に規定される番号3115の粗粒率のことである。また、細骨材率とは、製鋼スラグ全容量に対する粒径5mm以下の製鋼スラグ量の絶対容積を百分率で表した値である。 As the steelmaking slag, two types (No. A, B) of chemical components and physical properties (maximum dimensions, coarse grain ratio, fine aggregate ratio, surface dry density) shown in Table 1 were used. The steelmaking slag used is a steelmaking slag in which both No. A and No. B have a CaO / SiO 2 mass ratio of less than 1.5 and a CaO concentration of less than 25% by mass, and hardly act as a neutralization inhibitor. is there. Here, the coarse grain ratio is a coarse grain ratio of No. 3115 defined in JIS A 0203 “Concrete terms”. Further, the fine aggregate rate is a value representing the absolute volume of the amount of steelmaking slag having a particle size of 5 mm or less with respect to the total capacity of steelmaking slag as a percentage.
高炉スラグ微粉末はJIS A 6206「コンクリート用高炉スラグ微粉末」における高炉スラグ微粉末4000を、フライアッシュはJIS A 6201「コンクリート用フライアッシュ」におけるII種を使用した。ポルトランドセメントは、JIS R 5201「ポルトランドセメント」に適合する普通ポルトランドセメントを用いた。高炉セメントは、JIS R 5211「高炉セメント」に適合するB種を用いた。フライアッシュセメントは、JIS R 5213「フライアッシュセメント」に適合するB種を用いた。消石灰は、JIS R 9001に適合する工業用消石灰・特号を使用した。混和剤は、JIS A 6204に適合するポリカルボン酸系の高性能AE減水剤を使用した。 Blast furnace slag fine powder used was blast furnace slag fine powder 4000 in JIS A 6206 “Blast furnace slag fine powder for concrete”, and fly ash used type II in JIS A 6201 “Fly ash for concrete”. As the Portland cement, ordinary Portland cement conforming to JIS R 5201 “Portland cement” was used. As the blast furnace cement, B type conforming to JIS R 5211 “Blast furnace cement” was used. As the fly ash cement, type B conforming to JIS R 5213 “fly ash cement” was used. As the slaked lime, industrial slaked lime and special name conforming to JIS R 9001 were used. As the admixture, a polycarboxylic acid-based high-performance AE water reducing agent conforming to JIS A 6204 was used.
これらの水和硬化体の原料を、表2に示す配合でミキサに装入し、この混合物をミキサにより練り混ぜ、直径100mm、高さ200mmの型枠に流し込み、養生して配合No.1〜12の圧縮強度測定用のテストピースを製作した。圧縮強度の測定は、JIS A 1108「コンクリートの圧縮強度試験方法」に準じて行った。養生条件は標準養生28日とした。また、同時に直径100mm、高さ200mmの中性化促進試験用のテストピースを製作した。養生条件は標準養生28日とした。中性化促進試験は、標準養生28日後のテストピースをCO2 濃度5容量%、温度40℃、相対湿度60%の条件で91日間暴露後、50mmピッチで輪切りしたものについて、中性化深さを測定し、その平均値で評価した。中性化深さの測定は、フェノールフタレイン1質量%水溶液噴霧法によって、無変色部を中性化部とした。圧縮強度の測定結果及び中性化促進試験の結果を表2に併せて示す。尚、表2の備考欄には、本発明の範囲を満足する配合割合の水和硬化体は「発明例」と表示し、それ以外の水和硬化体は「比較例」と表示している。 The raw materials of these hydrated cured bodies were charged into a mixer with the formulation shown in Table 2, and this mixture was kneaded with the mixer, poured into a mold having a diameter of 100 mm and a height of 200 mm, cured, and blended No. 1 Twelve test pieces for measuring compressive strength were produced. The compressive strength was measured according to JIS A 1108 “Method for testing compressive strength of concrete”. The curing conditions were standard curing 28 days. At the same time, a test piece for a neutralization promotion test with a diameter of 100 mm and a height of 200 mm was produced. The curing conditions were standard curing 28 days. The neutralization promotion test is a test piece that was exposed to a test piece after 28 days of standard curing for 91 days under conditions of a CO 2 concentration of 5% by volume, a temperature of 40 ° C., and a relative humidity of 60%. The thickness was measured and evaluated by the average value. The neutralization depth was measured by using a 1% by mass aqueous solution spraying method of phenolphthalein and setting the non-colored portion to the neutralized portion. Table 2 also shows the measurement results of the compressive strength and the results of the neutralization promotion test. In the remarks column of Table 2, the hydrated cured product having a blending ratio that satisfies the scope of the present invention is indicated as “Invention Example”, and the other hydrated cured product is indicated as “Comparative Example”. .
また、比較のための従来例としてコンクリートの原料を表3に示す配合でミキサにより練り混ぜ、直径100mm、高さ200mmの型枠に流し込み、養生して、圧縮強度測定用テストピース及び中性化促進試験用テストピースを製作した(配合No.13)。養生条件は圧縮強度測定用テストピース及び中性化促進試験用テストピースともに、標準養生28日とした。圧縮強度試験及び中性化促進試験は上記と同一方法で行なった。尚、コンクリート用原料の骨材はJIS A 1145:2001「骨材のアルカリシリカ反応性試験方法(化学法)」による試験で「無害」と判定された良質なものを用いた。圧縮強度の測定結果及び中性化促進試験の結果を表3に併せて示す。 Also, as a conventional example for comparison, concrete raw materials are kneaded with a mixer with the composition shown in Table 3, poured into a mold with a diameter of 100 mm and a height of 200 mm, cured, a test piece for measuring compressive strength and neutralization A test piece for the acceleration test was prepared (formulation No. 13). The curing conditions were 28 days for standard curing for both the test piece for compressive strength measurement and the test piece for neutralization promotion test. The compressive strength test and the neutralization promotion test were performed by the same method as described above. In addition, the aggregate of the raw material for concrete used the quality thing determined to be "harmless" by the test by JIS A 1145: 2001 "Aggregate alkali-silica reactivity test method (chemical method)". Table 3 also shows the measurement results of the compressive strength and the results of the neutralization promotion test.
製鋼スラグ、高炉スラグ微粉末及びフライアッシュを含有し、フライアッシュの配合量が100kg/m3 以上で、且つ、前述した(1)式を満足する範囲でポルトランドセメント、高炉セメント、フライアッシュセメント及び消石灰の群から選択された1種または2種以上を含有した水和硬化体(発明例)は、良質な骨材を用いた水結合材比50%の普通コンクリート(配合No.14)よりも中性化深さが小さく、優れた耐中性化を示した。一方、本発明に該当しない水和硬化体(比較例)は、良質な骨材を用いた水結合材比50%の普通コンクリート(配合No.13)よりも耐中性化が劣った。 Portland cement, blast furnace cement, fly ash cement and steelmaking slag, blast furnace slag fine powder and fly ash, the fly ash content is 100 kg / m 3 or more, and satisfies the above formula (1) Hydrated and hardened bodies (invention examples) containing one or more selected from the group of slaked lime are more than ordinary concrete (mixed No. 14) with a water binder ratio of 50% using good quality aggregates. The neutralization depth was small, and excellent neutralization resistance was exhibited. On the other hand, the hydrated cured body (comparative example) not corresponding to the present invention was inferior in neutral resistance compared to ordinary concrete (mixed No. 13) having a water binder ratio of 50% using a good quality aggregate.
また、表2及び表3の配合による水和硬化体の原料混合物に、鉄筋を、鉄筋の長手方向に垂直な断面において、水和硬化体の断面積に対する鉄筋の断面積が2%となるような条件でかぶり厚を30mmとして配し、縦100mm、横100mm、高さ400mmの型枠に打ち込んだ。鉄筋は、JIS G 3112:2004「鉄筋コンクリート用棒鋼」に適合する丸棒 SR235 D13を用いた。供試材は脱枠後20℃の水中で材齢28日まで養生を行い、かぶり厚を制御した面を残し、他の面を全てエポキシ樹脂で被覆した。 Further, in the raw material mixture of the hydrated cured body with the composition of Table 2 and Table 3, the cross section of the reinforcing bar is 2% relative to the cross sectional area of the hydrated cured body in the cross section perpendicular to the longitudinal direction of the reinforcing bar Under such conditions, the cover thickness was set to 30 mm, and it was driven into a mold having a length of 100 mm, a width of 100 mm, and a height of 400 mm. As the reinforcing bar, a round bar SR235 D13 conforming to JIS G 3112: 2004 “Steel for Reinforced Concrete” was used. After removing the frame, the specimen was cured in water at 20 ° C. until the age of 28 days, leaving the surface where the cover thickness was controlled, and all the other surfaces were covered with epoxy resin.
この供試材に対して、60℃、50%の相対湿度、4日間の乾燥条件と、60℃、3質量%NaCl水溶液に3日間浸漬の湿潤条件とを1サイクルとする乾湿繰り返し試験を行った。この乾湿繰り返し試験を30サイクル実施した後に、水和硬化体を破壊して鉄筋を取り出し、鉄筋を10質量%の二水素クエン酸アンモニウム水溶液で徐錆し、腐食面積率とマイクロメーターでの計測による最大腐食深さとを測定した。測定結果を表4に示す。 This test material was subjected to a dry / wet repeated test with one cycle consisting of 60 ° C., 50% relative humidity, 4 days of drying conditions, and 60 ° C., 3% by weight NaCl aqueous solution for 3 days. It was. After 30 cycles of this wet and dry test, the hydrated hardened body was destroyed and the rebar was taken out. The rebar was gradually rusted with a 10% by mass ammonium dihydrogen citrate aqueous solution, and the corrosion area ratio and measurement with a micrometer were performed. The maximum corrosion depth was measured. Table 4 shows the measurement results.
表4に示すように、配合No.1〜8の本発明に係る水和硬化体中の鉄筋では腐食は認められなかった。これに対して、配合No.13の普通コンクリート中の鉄筋では、腐食面積率が22%、最大侵食深さが350μmであった。一方、本発明に該当しない配合No.9〜12の水和硬化体中の鉄筋は、水和硬化体の中性化により腐食が認められた。
As shown in Table 4, no corrosion was observed in the reinforcing bars in the hydrated and cured body according to the present invention of Formulation Nos. 1 to 8. On the other hand, in the reinforcing steel in the ordinary concrete of the blend No. 13, the corrosion area ratio was 22% and the maximum erosion depth was 350 μm. On the other hand, corrosion was recognized by the neutralization of the hydration hardening body of the reinforcing steel in the hydration hardening body of the mixing | blending No. 9-12 which does not correspond to this invention.
Claims (2)
(P+0.6×B+0.85×F+CH)/(FA+0.15×F)≦0.45 …(1)
但し、(1)式において各記号は以下を表すものである。
P:混合物中におけるポルトランドセメントの含有量(kg/m3)
B:混合物中における高炉セメントの含有量(kg/m3)
F:混合物中におけるフライアッシュセメントの含有量(kg/m3)
CH:混合物中における消石灰の含有量(kg/m3)
FA:混合物中におけるフライアッシュの含有量(kg/m3) A hydrated and cured body having a reinforcing bar inside, the hydrated and cured body having a CaO / SiO 2 mass ratio of less than 1.5 and a CaO concentration of less than 25% by mass , and a blast furnace slag fine powder And fly ash, and also selected from the group of Portland cement, Type B blast furnace cement suitable for JIS R 5211 “Blast Furnace Cement”, Type B fly ash cement suitable for JIS R 5213 “Fly Ash Cement” and slaked lime. 1 type or 2 types or more are mixed with water, and the resulting mixture is cured, and the content of fly ash in the mixture is 100 kg / m 3 or more, and in the mixture Each content of fly ash, Portland cement, blast furnace cement, fly ash cement and slaked lime satisfies the following formula (1) And the content of the steelmaking slag is 1975 kg / m 3 or more, and the content of the blast furnace slag fine powder other than the blast furnace slag fine powder derived from the blast furnace cement in the mixture is 100 kg / m. A hydrated cured product characterized by being 3 or more .
(P + 0.6 × B + 0.85 × F + CH) / (FA + 0.15 × F) ≦ 0.45 (1)
However, in the formula (1), each symbol represents the following.
P: Portland cement content in the mixture (kg / m 3 )
B: Content of blast furnace cement in the mixture (kg / m 3 )
F: Content of fly ash cement in the mixture (kg / m 3 )
CH: Slaked lime content in the mixture (kg / m 3 )
FA: content of fly ash in the mixture (kg / m 3 )
(P+0.6×B+0.85×F+CH)/(FA+0.15×F)≦0.45 …(1)(P + 0.6 × B + 0.85 × F + CH) / (FA + 0.15 × F) ≦ 0.45 (1)
但し、(1)式において各記号は以下を表すものである。However, in the formula (1), each symbol represents the following.
P:混合物中におけるポルトランドセメントの含有量(kg/mP: Portland cement content in the mixture (kg / m 3Three ))
B:混合物中における高炉セメントの含有量(kg/mB: Content of blast furnace cement in the mixture (kg / m 3Three ))
F:混合物中におけるフライアッシュセメントの含有量(kg/mF: Content of fly ash cement in the mixture (kg / m 3Three ))
CH:混合物中における消石灰の含有量(kg/mCH: Slaked lime content in the mixture (kg / m 3Three ))
FA:混合物中におけるフライアッシュの含有量(kg/mFA: content of fly ash in the mixture (kg / m 3Three ))
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006033649A JP4791200B2 (en) | 2006-02-10 | 2006-02-10 | Hydrated cured body and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006033649A JP4791200B2 (en) | 2006-02-10 | 2006-02-10 | Hydrated cured body and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007210850A JP2007210850A (en) | 2007-08-23 |
JP4791200B2 true JP4791200B2 (en) | 2011-10-12 |
Family
ID=38489616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006033649A Active JP4791200B2 (en) | 2006-02-10 | 2006-02-10 | Hydrated cured body and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4791200B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104478344B (en) * | 2014-12-25 | 2016-06-08 | 安徽工业大学 | A kind of concrete preparation method of steel slag expansion |
CN115819053A (en) * | 2022-08-05 | 2023-03-21 | 武汉大学 | Cement-free low-carbon ultrahigh-performance concrete |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001163656A (en) * | 1999-12-03 | 2001-06-19 | Tajima Roofing Co Ltd | Hydraulic composition and building material produced from the same |
JP2002068804A (en) * | 2000-08-22 | 2002-03-08 | Taiheiyo Cement Corp | Concrete composition |
JP3958090B2 (en) * | 2001-06-08 | 2007-08-15 | Jfeスチール株式会社 | Hydrated cured body |
JP2003165751A (en) * | 2001-11-28 | 2003-06-10 | Nkk Corp | Hydraulic composition and hydrated hardened body |
JP2003306359A (en) * | 2002-04-17 | 2003-10-28 | Jfe Steel Kk | Cement composition and hydrated hardened body |
JP3816036B2 (en) * | 2002-07-19 | 2006-08-30 | 電気化学工業株式会社 | Cement admixture, cement composition and mortar or concrete using the same |
JP3844457B2 (en) * | 2002-07-19 | 2006-11-15 | 電気化学工業株式会社 | Cement admixture and cement composition |
JP2004149333A (en) * | 2002-10-29 | 2004-05-27 | Port & Airport Research Institute | Concrete structure suitable for deposition and breeding of marine life and method for suppressing corrosion of steel bar in concrete structure |
JP4558281B2 (en) * | 2003-03-28 | 2010-10-06 | 新日本製鐵株式会社 | Solidified body manufacturing method |
JP2005145747A (en) * | 2003-11-14 | 2005-06-09 | Chugoku Electric Power Co Inc:The | Hardening accelerator for hardened boy, method of accelerating hardening of hardened body and method of manufacturing hardened body |
-
2006
- 2006-02-10 JP JP2006033649A patent/JP4791200B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007210850A (en) | 2007-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5442249B2 (en) | Acid resistant cement composition | |
JP5259094B2 (en) | Hydrated hardened body with rebar and excellent resistance to neutrality | |
JP6755730B2 (en) | Method for suppressing neutralization of hardened cement and suppressing chloride ion permeation | |
JP4796424B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
JP4791200B2 (en) | Hydrated cured body and method for producing the same | |
JP6985177B2 (en) | Hydraulic composition and concrete | |
JP4796402B2 (en) | Hydrated cured body and method for producing the same | |
JP6131459B2 (en) | Mortar or concrete composition and molded product obtained by molding the same | |
JP6735624B2 (en) | Concrete surface modifier and method for improving surface quality of concrete using the same | |
WO2021256484A1 (en) | Hydraulic composition, hydraulic composition mixed material, and hardened body | |
JP2017124950A (en) | Concrete and production method of concrete | |
JP4796419B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
JP4827548B2 (en) | Hydrated cured body | |
JP4827580B2 (en) | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance | |
JP4827585B2 (en) | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance | |
JP4791231B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
JP4791228B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
JP4791227B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
JP4827584B2 (en) | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance | |
JP4791226B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
JP4796423B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
JP4796420B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
JP7384230B2 (en) | Method for producing cured geopolymer and method for producing geopolymer composition | |
JP7195962B2 (en) | Construction method of tunnel lining concrete | |
JP2012201522A (en) | Cement admixture and cement composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20090128 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20081225 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110621 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110721 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4791200 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |