JP4796402B2 - Hydrated cured body and method for producing the same - Google Patents

Hydrated cured body and method for producing the same Download PDF

Info

Publication number
JP4796402B2
JP4796402B2 JP2006033647A JP2006033647A JP4796402B2 JP 4796402 B2 JP4796402 B2 JP 4796402B2 JP 2006033647 A JP2006033647 A JP 2006033647A JP 2006033647 A JP2006033647 A JP 2006033647A JP 4796402 B2 JP4796402 B2 JP 4796402B2
Authority
JP
Japan
Prior art keywords
mixture
fly ash
hydrated
content
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006033647A
Other languages
Japanese (ja)
Other versions
JP2007210848A (en
Inventor
久宏 松永
之郎 釣
多穂 谷敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Sumitomo Metal Industries Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd, Nippon Steel Corp, Nippon Steel Nisshin Co Ltd, Sumitomo Metal Industries Ltd filed Critical JFE Steel Corp
Priority to JP2006033647A priority Critical patent/JP4796402B2/en
Publication of JP2007210848A publication Critical patent/JP2007210848A/en
Application granted granted Critical
Publication of JP4796402B2 publication Critical patent/JP4796402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00198Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、鉄筋を内部に有する水和硬化体に関し、詳しくは、乾湿が繰り返される環境のように中性化が進みやすい環境下においても、内部の鉄筋の腐食を抑制し、長期間の耐久性を有する構造部材として利用することのできる、耐中性化に優れた水和硬化体およびその製造方法に関するものである。 The present invention relates to a hydrated cured body having a reinforcing bar inside, and more specifically, it suppresses corrosion of the internal reinforcing bar even in an environment where neutralization is likely to proceed, such as an environment in which dry and wet conditions are repeated, and provides long-term durability. The present invention relates to a hydrated cured product excellent in neutralization resistance and a method for producing the same, which can be used as a structural member having a property.

鉄筋コンクリートは、コンクリート中のアルカリ成分によって鉄筋の表面に不動態皮膜が形成され、これによって鉄筋の腐食が防止され、長期にわたって強度と耐久性を発揮する構造部材である。従って、コンクリートが中性化すると、不動態皮膜が破壊されて鉄筋が腐食し、構造物部材として機能しなくなる。   Reinforced concrete is a structural member that exhibits a strength and durability over a long period of time because a passive film is formed on the surface of the reinforcing bar by the alkali component in the concrete, thereby preventing corrosion of the reinforcing bar. Therefore, when the concrete is neutralized, the passive film is destroyed and the rebar is corroded, so that it does not function as a structural member.

近年、コンクリート骨材の入手事情が悪化し、例えば、アルカリ骨材反応を生じる可能性のある安山岩などをコンクリート骨材として使用せざるを得ない場合がある。アルカリ骨材反応によってコンクリートにひび割れが生じた場合には、コンクリートの中性化が急速に進行し、鉄筋が腐食するなどの問題が発生する。また良質な骨材を使用したコンクリートの場合であっても、これを乾湿が繰り返されるなどの中性化が進みやすい環境下で使用した際には、コンクリートの中性化よって鉄筋表面の不動態皮膜が破壊されて鉄筋が腐食し、発生した錆に起因する体積膨張によってコンクリートが剥落するという問題が発生する。当然のことながら、鉄筋と外界との間に存在するコンクリートの厚み(「かぶり厚」という)を増大させることにより、鉄筋の表面までが中性化するまでの時間を遅延させることはできるが、コンクリートのかぶり厚の増大によって構造物が大型化するため、コストが増大するという問題が発生する。   In recent years, the availability of concrete aggregates has deteriorated, and for example, andesite, which may cause an alkali aggregate reaction, has to be used as a concrete aggregate. When cracks occur in the concrete due to the alkali aggregate reaction, the neutralization of the concrete proceeds rapidly, causing problems such as corrosion of the reinforcing bars. Even in the case of concrete using high-quality aggregates, if it is used in an environment where neutralization is likely to progress, such as repeated drying and wetting, the neutralization of the concrete will result in passivity of the reinforcing bar surface. The film is destroyed and the rebar is corroded and the concrete is peeled off due to the volume expansion caused by the generated rust. Naturally, by increasing the thickness of the concrete existing between the reinforcing bar and the outside world (called “covering thickness”), it is possible to delay the time until the surface of the reinforcing bar becomes neutral, Since the structure becomes larger due to the increase in the cover thickness of the concrete, there arises a problem that the cost increases.

上記のようなコンクリートの中性化による鉄筋の腐食を防止する手段として、以下のような技術が提案されている。例えば、特許文献1には、コンクリート構造物の表面に炭酸ガスや水蒸気の透過率の低い有機高分子組成物の被膜を形成し、中性化の原因となる炭酸ガスや水蒸気をコンクリート構造物の内部に侵入させないようにする方法が提案されている。また、特許文献2には、低セメント比で混練・締固めを行い、コンクリートを緻密化して、中性化の原因となる炭酸ガスや水蒸気のコンクリートへの侵入を防止する方法が提案されている。また更に、特許文献3には、中性化したコンクリートの表面部に外部電極を設置し、コンクリート内部の鉄筋を内部電極とし、電流を印加するコンクリート部分を昇温しつつ、外部電極間または外部電極−内部電極間に電流を印加し、中性化したコンクリートのアルカリ度を回復させる方法が提案されている。   The following techniques have been proposed as means for preventing corrosion of reinforcing bars due to the above-mentioned neutralization of concrete. For example, in Patent Document 1, a film of an organic polymer composition having a low carbon dioxide gas or water vapor permeability is formed on the surface of a concrete structure, and carbon dioxide gas or water vapor that causes neutralization is applied to the concrete structure. A method has been proposed to prevent the inside from entering. Further, Patent Document 2 proposes a method of kneading and compacting at a low cement ratio, densifying the concrete, and preventing carbon dioxide gas or water vapor that causes neutralization from entering the concrete. . Furthermore, Patent Document 3 discloses that an external electrode is installed on the surface of neutralized concrete, the reinforcing bar inside the concrete is used as the internal electrode, and the temperature of the concrete portion to which current is applied is increased between the external electrodes or outside. There has been proposed a method for recovering the alkalinity of neutralized concrete by applying an electric current between the electrode and the internal electrode.

しかし、これらの方法には、以下の問題点がある。即ち、特許文献1に開示された、コンクリート構造物の表面に炭酸ガスや水蒸気の侵入を遮断する被膜を形成する方法は、日光の照射などにより被膜が変質し、被膜に亀裂が生じたり皮膜が剥離したりして、長期間にわたって中性化を防止できないという問題点がある。特許文献2に開示された、水セメント比を小さくする方法は、アルカリ骨材反応を生じることがない良質な骨材を用いた場合には有効であるが、アルカリ骨材反応を生じる骨材を用いた場合には効果がなく、また、水セメント比を小さくすると高コストとなるばかりでなく、コンクリートの自己収縮が大きくなるという弊害も生じる。特許文献3に開示された、電流を印加する方法は、大掛かりの装置が必要であり、このような装置を長期間にわたって運転・維持することは非常にコスト高である。   However, these methods have the following problems. That is, the method disclosed in Patent Document 1 for forming a coating that blocks the intrusion of carbon dioxide or water vapor on the surface of a concrete structure is altered by irradiation with sunlight or the like, and the coating is cracked or has a coating. There is a problem that it is not possible to prevent neutralization over a long period of time due to peeling. The method of reducing the water-cement ratio disclosed in Patent Document 2 is effective when a high-quality aggregate that does not cause an alkali-aggregate reaction is used, but an aggregate that causes an alkali-aggregate reaction is used. When used, it is not effective, and if the water-cement ratio is reduced, not only the cost is increased, but also the adverse effect that the self-shrinkage of the concrete increases. The method of applying a current disclosed in Patent Document 3 requires a large-scale device, and it is very expensive to operate and maintain such a device over a long period of time.

ところで近年、製鋼スラグと高炉スラグ微粉末とを主原料とし、コンクリートの代替可能な水和硬化体が特許文献4及び非特許文献1に開示されている。
特開昭61−236669号公報 特開平2−208252号公報 特開平7−291767号公報 特開2001−49310号公報 鉄鋼スラグ水和固化体技術マニュアル、沿岸開発技術研究センター、2003年
By the way, in recent years, Patent Document 4 and Non-Patent Document 1 disclose hydrated hardened bodies that can use steelmaking slag and blast furnace slag fine powder as main raw materials and that can replace concrete.
JP-A 61-236669 JP-A-2-208252 JP-A-7-291767 JP 2001-49310 A Steel Slag Hydrated Solids Technical Manual, Coastal Development Technology Research Center, 2003

本発明者等は、鉄筋コンクリートの中性化を抑制する手段を種々検討した。その結果、中性化を抑制して鉄筋の腐食を防止するには、コンクリートの代替として、製鋼スラグ及び高炉スラグ微粉末を主原料とする水和硬化体を利用することが極めて効果的であるとの知見を得た。これは、製鋼スラグはスラグ組成のCaO/SiO2 (塩基度)が高く、長期間にわたって鉄筋の周囲が高アルカリに維持されるからである。また、この水和硬化体はコンクリートと同等の機械的強度を発現し、コンクリートの代替として問題がないからである。 The present inventors have studied various means for suppressing the neutralization of reinforced concrete. As a result, it is extremely effective to use steel slag and blast furnace slag fine powder as the main raw material as a substitute for concrete to suppress neutralization and prevent corrosion of reinforcing bars. And gained knowledge. This is because steelmaking slag has a high slag composition of CaO / SiO 2 (basicity), and the periphery of the reinforcing bar is maintained at a high alkali for a long period of time. In addition, this hydrated cured product exhibits mechanical strength equivalent to that of concrete, and there is no problem as a substitute for concrete.

この観点から、特許文献4及び非特許文献1に開示された水和硬化体を検証した。しかしながら、特許文献4に開示される水和硬化体は用途が不明瞭であり、また、非特許文献1に開示される水和硬化体は、対象として鉄筋を含有しない無筋コンクリート代替を限定しており、耐中性化の性能自体が不明であった。   From this viewpoint, the hydrated cured product disclosed in Patent Document 4 and Non-Patent Document 1 was verified. However, the use of the hydrated cured body disclosed in Patent Document 4 is unclear, and the hydrated cured body disclosed in Non-Patent Document 1 limits the substitution of unreinforced concrete that does not contain reinforcing steel as a target. The performance of neutralization resistance itself was unknown.

そこで本発明者等は、これら水和硬化体の耐中性化性能を調査・測定した。その結果、これらの水和硬化体では、耐中性化性能のばらつきが極めて大きく、安定して使用することは困難であることが分かった。即ち、製鋼スラグと高炉スラグ微粉末とを主たる原料とした従来の水和硬化体では、中性化を抑止して鉄筋の腐食を防止することは困難であることが分かった。   Accordingly, the present inventors investigated and measured the resistance to neutralization of these hydrated cured bodies. As a result, it was found that these hydrated cured bodies have extremely large variations in neutralization resistance and are difficult to use stably. That is, it has been found that it is difficult to prevent the corrosion of the reinforcing bars by suppressing the neutralization in the conventional hydrated hardened body made mainly of steelmaking slag and blast furnace slag fine powder.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、乾湿が繰り返される環境のようにコンクリートなどの中性化が進みやすい環境下において も、内部の鉄筋の腐食を抑制し、長期間の耐久性を有する構造部材として利用することのできる、耐中性化に優れた水和硬化体およびその製造方法を提供することである。 The present invention has been made in view of the above circumstances, and the object of the present invention is to suppress corrosion of internal reinforcing bars even in an environment where neutralization is likely to proceed, such as in an environment where dry and wet conditions are repeated. An object of the present invention is to provide a hydrated cured product excellent in neutralization resistance and a method for producing the same, which can be used as a structural member having long-term durability.

上記課題を解決するための第1の発明に係る水和硬化体は、鉄筋を内部に有する水和硬化体であって、該水和硬化体は、CaO/SiO2が質量比で1.5未満またはCaO濃度が25質量%未満の製鋼スラグ及び高炉スラグ微粉末と、更に、ポルトランドセメント、JIS R5213「フライアッシュセメント」に適合するB種のフライアッシュセメント及び消石灰の群から選択された1種または2種以上とを、下記の(1)式を満足する範囲で水と混合し、得られた混合物を硬化したものであり、製鋼スラグの含有量が2239kg/m 3 以上であり、前記混合物中における高炉スラグ微粉末の含有量が100〜600kg/m 3 であり、前記混合物が更にフライアッシュを含有することを特徴とするものである。
P+0.85×F+CH≧55…(1)
但し、(1)式において各記号は以下を表すものである。
P:混合物中におけるポルトランドセメントの含有量(kg/m 3
F:混合物中におけるフライアッシュセメントの含有量(kg/m 3
CH:混合物中における消石灰の含有量(kg/m 3
The hydrated cured body according to the first invention for solving the above-mentioned problem is a hydrated cured body having a reinforcing bar inside, and the hydrated cured body has a CaO / SiO 2 mass ratio of 1.5. Steel slag and blast furnace slag fine powder having a CaO concentration of less than 25% by mass or less, and one selected from the group of B type fly ash cement and slaked lime that conform to Portland cement , JIS R5213 "Fly ash cement" or a two or more, mixed with water in a range satisfying the following equation (1) state, and are obtained by curing the resulting mixture, the content of steel slag is at 2239kg / m 3 or more, the Content of the blast furnace slag fine powder in a mixture is 100-600 kg / m < 3 > , The said mixture contains fly ash further, It is characterized by the above-mentioned.
P + 0.85 × F + CH ≧ 55 ... (1)
However, in the formula (1), each symbol represents the following.
P: Portland cement content in the mixture (kg / m 3 )
F: Content of fly ash cement in the mixture (kg / m 3 )
CH: Slaked lime content in the mixture (kg / m 3 )

Figure 0004796402
Figure 0004796402

第2の発明に係る水和硬化体の製造方法は、鉄筋を内部に有する水和硬化体の製造方法であって、CaO/SiO2が質量比で1.5未満またはCaO濃度が25質量%未満の製鋼スラグ及び高炉スラグ微粉末と、更に、ポルトランドセメント、JIS R5213「フライアッシュセメント」に適合するB種のフライアッシュセメント及び消石灰の群から選択された1種または2種以上とを、上記(1)式を満足する範囲で水と混合し、得られた混合物を硬化するステップを含み、製鋼スラグの含有量が2239kg/m 3 以上であり、前記混合物中における高炉スラグ微粉末の含有量が100〜600kg/m 3 であり、前記混合物が更にフライアッシュを含有することを特徴とするものである。 The method for producing a hydrated and cured product according to the second invention is a method for producing a hydrated and cured product having a reinforcing bar therein, wherein CaO / SiO 2 is less than 1.5 by mass ratio or the CaO concentration is 25% by mass. a steel slag and blast-furnace slag under further Portland cement, and JIS R5213 "fly ash cement" to be selected from the group of compatible B species fly ash cement and hydrated lime were one or more, the (1) was mixed with water in a range satisfying a viewing including the step of curing the resulting mixture, the content of steel slag is at 2239kg / m 3 or more, inclusion of ground granulated blast furnace slag in the mixture The amount is 100 to 600 kg / m 3 , and the mixture further contains fly ash .

上記構成の本発明に係る水和硬化体およびその製造方法によれば、配合原料の製鋼スラグが中性化抑止材として作用するとともに、潜在水硬性を有する高炉スラグ微粉末の配合によって従来のコンクリートよりも緻密な組織を有する硬化物が形成されて、中性化の原因となる炭酸ガスや水蒸気の浸透・透過が抑制され、且つ、ポルトランドセメントフライアッシュセメント、消石灰の1種または2種以上の所定量の配合により、水和硬化体の内部が長期間にわたりアルカリ性に保たれるので、水和硬化体の内部に配置される鉄筋の腐食を長期間にわたって防止することができる。即ち、本発明によれば、従来の鉄筋コンクリートでは中性化による鉄筋の腐食によって短期間で崩壊するような環境下においても長期間の使用が可能な構造物を提供することが可能となる。 According to the hydrated cured body and the manufacturing method thereof according to the present invention having the above-described configuration, the steelmaking slag as a raw material acts as a neutralization inhibiting material, and the conventional concrete is formulated by blending blast furnace slag fine powder having latent hydraulic properties. A hardened material with a denser structure is formed, and the penetration and permeation of carbon dioxide and water vapor that cause neutralization is suppressed, and one or more of Portland cement , fly ash cement, and slaked lime are used. Since the inside of the hydrated cured body is kept alkaline for a long period of time by blending a predetermined amount of the above, corrosion of reinforcing bars arranged inside the hydrated cured body can be prevented for a long period of time. That is, according to the present invention, it is possible to provide a structure that can be used for a long period of time even in an environment where conventional reinforced concrete collapses in a short period due to corrosion of the reinforcing bar due to neutralization.

本発明者等は、水和硬化体の配合原料を最適化することにより、従来のコンクリートや製鋼スラグと高炉スラグ微粉末などとを原料とした従来の水和硬化体よりも耐中性化に優れた水和硬化体が得られ、これを鉄筋と組み合わせることで、乾湿が繰り返されるなどの中性化が進みやすい環境下においても、長期間の耐久性を有する構造物部材として使用できることを見出し、本発明を完成した。   By optimizing the raw material of the hydrated hardened body, the present inventors have made it more resistant to neutrality than the conventional hydrated hardened body made of conventional concrete, steelmaking slag, blast furnace slag fine powder, etc. An excellent hydrated and cured product is obtained, and it is found that it can be used as a structural member with long-term durability even in an environment where neutralization is likely to proceed, such as repeated drying and wetting, by combining this with a reinforcing bar. The present invention has been completed.

先ず、本発明に係る水和硬化体の配合原料について説明する。本発明に係る水和硬化体では、その配合原料として、製鋼スラグ及び高炉スラグ微粉末、更に、ポルトランドセメント、高炉セメント、フライアッシュセメント及び消石灰の群から選択された1種または2種以上を使用する。また、これらに加えて更にフライアッシュを使用することが好ましい。当然ながら、水和硬化体の内部に配置される鉄筋も本発明に係る水和硬化体を構成する原料の1つであり、混錬用の水や混和剤なども配合原料である。本発明に係る水和硬化体は、これら配合原料を混合して混合物を形成し、この混合物を硬化させたものである。   First, the compounding raw material of the hydrated cured product according to the present invention will be described. In the hydrated cured product according to the present invention, as a raw material for mixing, steelmaking slag and blast furnace slag fine powder, and further, one or more selected from the group of Portland cement, blast furnace cement, fly ash cement and slaked lime are used. To do. In addition to these, it is preferable to further use fly ash. Naturally, the reinforcing bar arranged inside the hydrated cured body is also one of the raw materials constituting the hydrated cured body according to the present invention, and kneading water, admixture and the like are blended raw materials. The hydrated cured product according to the present invention is obtained by mixing these blending raw materials to form a mixture and curing the mixture.

1.製鋼スラグ
本発明に係る水和硬化体の配合原料のうち、製鋼スラグは、骨材及び結合材、更には水和硬化体の中性化抑止材として作用する。骨材として作用させるための製鋼スラグの粒度分布は、コンクリート用の細骨材や粗骨材に相当するような粒度とし、粒径が0.075mm以上程度、また最大粒径が40mm以下程度とすることが好ましい。また、結合材として作用させるための製鋼スラグは微粉であることが好ましく、粒径が0.15mm未満程度であることが好ましい。従って、結合材としての粒径と骨材としての粒径とをそれぞれ満足するスラグ粒子が含まれている適当な粒度分布を有する製鋼スラグ(例えば、或る条件で粉砕処理した製鋼スラグや粉砕処理後に篩分した製鋼スラグ)を使用することが望ましい。
1. Steelmaking slag Among the blended raw materials of the hydrated hardened body according to the present invention, steelmaking slag acts as an aggregate and a binder, and further as a neutralization inhibiting material for the hydrated hardened body. The particle size distribution of the steelmaking slag for acting as an aggregate is a particle size corresponding to fine aggregate or coarse aggregate for concrete, the particle size is about 0.075 mm or more, and the maximum particle size is about 40 mm or less. It is preferable to do. Moreover, it is preferable that the steelmaking slag for making it act as a binder is a fine powder, and it is preferable that a particle size is less than about 0.15 mm. Therefore, a steelmaking slag having an appropriate particle size distribution containing slag particles satisfying the particle size as a binder and the particle size as an aggregate (for example, steelmaking slag or pulverization processed under certain conditions). It is desirable to use steelmaking slag that is sieved later.

中性化抑止材として作用させるための製鋼スラグは、スラグ組成のCaO/SiO2 が質量比で1.5以上またはスラグ中のCaO濃度が25質量%以上であることが好ましい。CaO/SiO2 が質量比で1.5以上またはCaO濃度が25質量%以上の製鋼スラグは、製鋼スラグ中のCaO成分が長期間にわたり水和硬化体中に含まれる水に溶解し、水和硬化体を弱アルカリ性に保ち、中性化を抑止する。従って、より好ましい製鋼スラグは、CaO/SiO2 が質量比で2.0以上またはCaO濃度が30質量%以上である。一般にCaO/SiO2 或いはCaO濃度が高くなると製鋼スラグ中の遊離CaO(free−CaO)による水和膨張性が大きくなるが、水和硬化体の膨張安定性が確保されれば問題がないことから、これらの上限値は特に規定しない。 Steelmaking slag for acting as a neutralization inhibiting material preferably has a slag composition of CaO / SiO 2 of 1.5 or more by mass ratio or a CaO concentration in the slag of 25% by mass or more. CaO / SiO 2 is 1.5 or more or CaO concentration of 25 mass% or more steel slag in mass ratio, was dissolved in water CaO component in the steelmaking slag is contained in the hydrated cured body over a long period of time, hydration Keep the cured body weakly alkaline and suppress neutralization. Therefore, a more preferable steelmaking slag has a mass ratio of CaO / SiO 2 of 2.0 or more or a CaO concentration of 30 mass% or more. In general, when the CaO / SiO 2 or CaO concentration is increased, the hydration and expansion property by free CaO (free-CaO) in the steelmaking slag is increased, but there is no problem if the expansion stability of the hydrated cured body is ensured. These upper limits are not specified.

また、製鋼スラグは通常の砂利などの骨材と異なりアルカリ骨材反応を起こさないので、水和硬化体そのものの耐久性が優れるだけでなく、アルカリ骨材反応に起因するひび割れの発生も抑制できるので、ひび割れを介した中性化が起こらず、水和硬化体中の鉄筋の防食の観点からも好ましい。製鋼スラグの配合量は、水和硬化体を構成する配合原料の混合された混合物中で、500kg/m3 以上とすることが好ましい。 In addition, steelmaking slag does not cause an alkali-aggregate reaction unlike aggregates such as ordinary gravel, so it not only has excellent durability of the hydrated hardened body itself, but can also suppress the occurrence of cracks due to the alkali-aggregate reaction. Therefore, neutralization through cracks does not occur, which is preferable from the viewpoint of corrosion prevention of reinforcing steel in the hydrated cured body. The compounding amount of the steelmaking slag is preferably 500 kg / m 3 or more in the mixture in which the compounding raw materials constituting the hydrated cured body are mixed.

2.高炉スラグ微粉末
本発明に係る水和硬化体の配合原料として高炉スラグ微粉末を用いるのは、潜在水硬性を有する高炉スラグ微粉末が、製鋼スラグによりアルカリ刺激を受け効率的に水和反応するためだけではなく、従来のコンクリートよりも硬化物が緻密な組織を有することから、水和硬化体の中性化の原因となる炭酸ガス及び水蒸気の浸透・透過を著しく抑制できるからである。また、高炉スラグ微粉末と製鋼スラグ中の遊離CaOとが反応し、製鋼スラグの水和膨張を抑制するからである。高炉スラグ微粉末としてはJIS A 6206:1997「コンクリート用高炉スラグ微粉末」を特に好ましく用いることができる。
2. Blast-furnace slag fine powder Blast-furnace slag fine powder is used as a raw material of the hydrated cured product according to the present invention because the blast furnace slag fine powder having latent hydraulic properties is subjected to alkali stimulation by steelmaking slag and efficiently hydrates. Not only for this purpose, but because the cured product has a denser structure than conventional concrete, the penetration and permeation of carbon dioxide gas and water vapor, which cause neutralization of the hydrated cured body, can be remarkably suppressed. Moreover, it is because blast furnace slag fine powder and the free CaO in steelmaking slag react, and the hydration expansion of steelmaking slag is suppressed. As the blast furnace slag fine powder, JIS A 6206: 1997 “Blast furnace slag fine powder for concrete” can be used particularly preferably.

高炉スラグ微粉末の配合量は、水和硬化体を構成する配合原料が混合された混合物中に100〜600kg/m3 とすることが好ましい。100kg/m3 未満ではコンクリート代替として必要な18N/mm2 以上の圧縮強度が得られない場合があり、一方、600kg/m3 を超えると強度の増加はほとんど無く、不経済となるためである。高炉スラグ微粉末のより好ましい配合量は、200〜400kg/m3 である。 It is preferable that the compounding quantity of blast furnace slag fine powder shall be 100-600 kg / m < 3 > in the mixture with which the compounding raw material which comprises a hydration hardening body was mixed. If it is less than 100 kg / m 3 , the compressive strength of 18 N / mm 2 or more necessary as a concrete substitute may not be obtained. On the other hand, if it exceeds 600 kg / m 3 , there will be almost no increase in strength and it will be uneconomical. . A more preferable blending amount of the blast furnace slag fine powder is 200 to 400 kg / m 3 .

3.ポルトランドセメント、高炉セメント、フライアッシュセメント、消石灰
本発明に係る水和硬化体は、ポルトランドセメント、高炉セメント、フライアッシュセメント及び消石灰の群から選択された1種または2種以上を、下記の(1)式を満足する範囲で含有する。但し、(1)式において、Pは、水和硬化体を構成する配合原料が混合された混合物中におけるポルトランドセメントの含有量(kg/m3 )、Bは、前記混合物中における高炉セメントの含有量(kg/m3 )、Fは、前記混合物中におけるフライアッシュセメントの含有量(kg/m3 )、CHは、前記混合物中における消石灰の含有量(kg/m3 )である。
3. Portland cement, blast furnace cement, fly ash cement, slaked lime The hydrated and cured product according to the present invention comprises one or more selected from the group of Portland cement, blast furnace cement, fly ash cement and slaked lime as described below (1 ) In a range that satisfies the formula. However, in the formula (1), P is the content (kg / m 3 ) of Portland cement in the mixture in which the blended raw materials constituting the hydrated cured body are mixed, and B is the content of blast furnace cement in the mixture The amount (kg / m 3 ), F is the fly ash cement content (kg / m 3 ) in the mixture, and CH is the slaked lime content (kg / m 3 ) in the mixture.

Figure 0004796402
Figure 0004796402

これらのセメント原料及び消石灰は、アルカリ強度は異なるが何れもアルカリ性であるので、これらのセメント原料を(1)式を満足させて配合することにより、CaO/SiO2 が質量比で1.5未満またはCaO濃度が25質量%未満の製鋼スラグを用いた水和硬化体の場合でも、内部を長期間にわたりアルカリ性に保つことができる。つまり、水和硬化体の中性化を防止することができる。水和硬化体の内部を長期間にわたりアルカリ性に保つ観点からは、(1)式の左辺の和を70以上とすることが好ましい。(1)式の左辺の和の上限値は特に設定しないが、150を超えても耐中性化効果は飽和してそれ以上の向上はほとんど無い。(1)式の各原料の係数は、各原料のアルカリ強度に基づくものである。 Since these cement raw materials and slaked lime are different in alkali strength but are alkaline, by adding these cement raw materials satisfying the formula (1), CaO / SiO 2 is less than 1.5 by mass ratio. Even in the case of a hydrated and cured body using a steelmaking slag having a CaO concentration of less than 25% by mass, the inside can be kept alkaline for a long period of time. That is, neutralization of the hydrated cured product can be prevented. From the viewpoint of keeping the inside of the hydrated cured body alkaline for a long period of time, it is preferable that the sum of the left side of the formula (1) is 70 or more. The upper limit value of the sum of the left sides of the equation (1) is not particularly set, but even if it exceeds 150, the neutralization effect is saturated and there is almost no further improvement. The coefficient of each raw material in the formula (1) is based on the alkali strength of each raw material.

尚、本発明におけるポルトランドセメントとは、JIS R 5210:2003「ポルトランドセメント」に記載されている普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメントのことである。また、高炉セメントとは、JIS R 5211:2003「高炉セメント」に記載されているA種、B種、C種のことである。また、フライアッシュセメントとは、JIS R 5213:1997「フライアッシュセメント」に記載されているA種、B種、C種のことである。   In addition, the Portland cement in the present invention is a normal Portland cement described in JIS R 5210: 2003 “Portland cement”, an early early Portland cement, an ultra early early Portland cement, a moderately hot Portland cement, a low heat Portland cement, a sulfuric acid resistant material. It is salt Portland cement. The blast furnace cement is A type, B type or C type described in JIS R 5211: 2003 “Blast furnace cement”. The fly ash cement is A type, B type or C type described in JIS R 5213: 1997 “Fly ash cement”.

4.フライアッシュ
本発明に係る水和硬化体は、更にフライアッシュを含有することが好ましい。水和硬化体の原料としてフライアッシュを用いるのは、製鋼スラグ中のCa成分とフライアッシュとが効率的に反応することにより、フライアッシュのポゾラン反応が進み、緻密な硬化体が形成され、水和硬化体の中性化の原因となる炭酸ガスや水蒸気の浸透・透過を抑制できるからである。また、フライアッシュと製鋼スラグ中の遊離CaOとが反応し、製鋼スラグの水和膨張を抑制するためでもある。更に、フライアッシュの適量の配合でワーカビリティを向上させる効果もある。フライアッシュとしてはJIS A 6201:1999「コンクリート用フライアッシュ」を用いることが好ましいが、原粉及び加圧流動床灰の使用なども可能である。
4). Fly ash It is preferable that the hydrated cured body according to the present invention further contains fly ash. Fly ash is used as a raw material for the hydrated hardened body because the Ca component in the steelmaking slag and fly ash react efficiently, so that the pozzolanic reaction of fly ash proceeds and a dense hardened body is formed. This is because the penetration and permeation of carbon dioxide and water vapor, which cause neutralization of the Japanese cured product, can be suppressed. Moreover, it is also for fly ash and the free CaO in steelmaking slag to react, and to suppress the hydration expansion of steelmaking slag. Furthermore, there is an effect of improving workability by blending an appropriate amount of fly ash. As the fly ash, JIS A 6201: 1999 “Fly ash for concrete” is preferably used, but it is also possible to use raw powder and pressurized fluidized bed ash.

フライアッシュの配合量は、特に限定しないが、水和硬化体を構成する配合原料が混合された混合物中において50〜300kg/m3 であることが好ましい。50kg/m3 未満では製鋼スラグの水和膨張を抑制する効果が低く、一方、300kg/m3 を超えると水を加えて練り混ぜた後のフレッシュな状態の粘性が高くなり、ワーカビリティが悪化するためであり、また製鋼スラグの水和膨張を抑制する効果も変わらず不経済であるためである。 Although the compounding quantity of fly ash is not specifically limited, It is preferable that it is 50-300 kg / m < 3 > in the mixture with which the compounding raw material which comprises a hydration hardening body was mixed. If it is less than 50 kg / m 3 , the effect of suppressing the hydration expansion of steelmaking slag is low. On the other hand, if it exceeds 300 kg / m 3 , the viscosity of the fresh state after adding water and kneading increases and the workability deteriorates. This is because the effect of suppressing the hydration expansion of the steelmaking slag is also unchanged and uneconomical.

5.鉄筋
本発明に係る水和硬化体は内部に鉄筋を有することにより、構造物部材として必要な耐力を確保することができる。鉄筋としては、JIS G 3112:2004「鉄筋コンクリート用棒鋼」またはJIS G 3117:1987「鉄筋コンクリート用再生棒鋼」を用いることが好ましい。
5. Reinforcing Bar The hydrated cured body according to the present invention has a reinforcing bar inside, thereby ensuring the proof stress necessary as a structural member. As the reinforcing bars, it is preferable to use JIS G 3112: 2004 “Steel bars for reinforced concrete” or JIS G 3117: 1987 “Recycled bars for reinforced concrete”.

鉄筋の水和硬化体に占める割合は、鉄筋の長手方向に垂直な断面において、水和硬化体部分の断面積に対する鉄筋の断面積が0.2〜10%の面積率となるように配筋することが好ましい。鉄筋の断面積が0.2%未満の場合には、鉄筋配合による構造物部材の耐力の増強効果が得られにくく、また鉄筋の断面積が10%を超えると原料コストに見合った効果を得にくく、更に作業効率が低下する傾向となるからである。   The ratio of the reinforcing bars to the hydrated hardened body is such that the cross-sectional area of the reinforcing bars relative to the cross-sectional area of the hydrated hardened body is 0.2 to 10% in the cross section perpendicular to the longitudinal direction of the reinforcing bars. It is preferable to do. When the cross-sectional area of the reinforcing bar is less than 0.2%, it is difficult to obtain the effect of reinforcing the strength of the structural member by the reinforcing bar composition, and when the cross-sectional area of the reinforcing bar exceeds 10%, an effect commensurate with the raw material cost is obtained. This is because the working efficiency tends to decrease.

これらの原料を用いて本発明に係る水和硬化体を製造する。つまり、上記の原料を配合し、更に水を加えて混合物とし、この混合物を混練して、所定の型枠などに打ち込んで養生して製造する。打ち込みの際に鉄筋を配筋して硬化させ、鉄筋を有する水和硬化体とする。   Using these raw materials, the hydrated cured body according to the present invention is produced. That is, the above raw materials are blended, and water is further added to form a mixture. This mixture is kneaded, and is cast into a predetermined formwork and cured. Reinforcing bars are placed and hardened during driving to obtain a hydrated hardened body having reinforcing bars.

水和硬化体の養生方法は、所定の強度が確保できれば、水中養生、現場養生、蒸気養生などの通常用いられる何れの方法をも用いることができる。また、鉄筋の表面から水和硬化体外面までの厚さであるかぶり厚は20mm以上とすることが好ましい。かぶり厚が20mm未満の場合には、中性化の原因となる炭酸ガスや水蒸気の外部からの浸透・透過を十分に遮断できない場合があるからである。   As a curing method for the hydrated cured body, any method that is usually used, such as underwater curing, on-site curing, and steam curing, can be used as long as a predetermined strength can be secured. The cover thickness, which is the thickness from the surface of the reinforcing bar to the outer surface of the hydrated cured body, is preferably 20 mm or more. This is because if the cover thickness is less than 20 mm, the penetration and permeation of carbon dioxide gas and water vapor that cause neutralization from the outside may not be sufficiently blocked.

以上説明したように、本発明に係る水和硬化体によれば、配合原料の製鋼スラグが中性化抑止材として作用するとともに、潜在水硬性を有する高炉スラグ微粉末の配合によって従来のコンクリートよりも緻密な組織を有する硬化物が形成されて、中性化の原因となる炭酸ガスや水蒸気の浸透・透過が抑制され、且つ、ポルトランドセメント、高炉セメント、フライアッシュセメント、消石灰の1種または2種以上の所定量の配合により、水和硬化体の内部が長期間にわたりアルカリ性に保たれるので、水和硬化体の内部に配置される鉄筋の腐食を長期間にわたって防止することができる。   As described above, according to the hydrated and cured body according to the present invention, the steelmaking slag as a raw material for blending acts as a neutralization inhibitor, and by blending fine powder of blast furnace slag having latent hydraulic properties, compared with conventional concrete. A hardened material having a dense structure is formed, and the penetration and permeation of carbon dioxide gas and water vapor, which cause neutralization, is suppressed, and one or two of Portland cement, blast furnace cement, fly ash cement, slaked lime Since the inside of the hydrated cured body is kept alkaline for a long period of time by blending a predetermined amount of seeds or more, corrosion of the reinforcing bars disposed inside the hydrated cured body can be prevented for a long period of time.

以下、本発明を実施例により更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

製鋼スラグは表1に示す化学成分、物性値(最大寸法、粗粒率、細骨材率、表乾密度)のものを用いた。粗粒率とは、JIS A 0203:1999「コンクリート用語」に規定される番号3115の粗粒率のことである。細骨材率とは、製鋼スラグ全容量に対する粒径5mm以下の製鋼スラグ量の絶対容積を百分率で表した値である。   Steelmaking slag having the chemical composition and physical properties shown in Table 1 (maximum dimensions, coarse grain ratio, fine aggregate ratio, surface dry density) was used. The coarse grain ratio is a coarse grain ratio of No. 3115 defined in JIS A 0203: 1999 “Concrete terms”. The fine aggregate ratio is a value representing the absolute volume of the steelmaking slag amount with a particle size of 5 mm or less with respect to the total capacity of the steelmaking slag as a percentage.

Figure 0004796402
Figure 0004796402

高炉スラグ微粉末はJIS A 6206:1997「コンクリート用高炉スラグ微粉末」における高炉スラグ微粉末4000を、フライアッシュはJIS A 6201:1999「コンクリート用フライアッシュ」におけるII種を使用した。ポルトランドセメントは、JIS R 5201:2003「ポルトランドセメント」に適合する普通ポルトランドセメントを用いた。高炉セメントは、JIS R 5211:2003「高炉セメント」に適合するB種を用いた。フライアッシュセメントは、JIS R 5213:1997「フライアッシュセメント」に適合するB種を用いた。消石灰は、JIS R 9001:1993に適合する工業用消石灰・特号を使用した。混和剤は、JIS A 6204:2000に適合するポリカルボン酸系の高性能AE減水剤を使用した。   Blast furnace slag fine powder used was blast furnace slag fine powder 4000 in JIS A 6206: 1997 “Blast furnace slag fine powder for concrete”, and fly ash used type II in JIS A 6201: 1999 “fly fly ash for concrete”. As the Portland cement, ordinary Portland cement conforming to JIS R 5201: 2003 “Portland cement” was used. As the blast furnace cement, B type that conforms to JIS R 5211: 2003 “Blast furnace cement” was used. As the fly ash cement, type B conforming to JIS R 5213: 1997 “fly ash cement” was used. The slaked lime used was industrial slaked lime / special name conforming to JIS R 9001: 1993. As the admixture, a polycarboxylic acid-based high-performance AE water reducing agent conforming to JIS A 6204: 2000 was used.

これらの水和硬化体の原料を、表2に示す配合でミキサに装入し、この混合物をミキサにより練り混ぜ、直径100mm、高さ200mmの型枠に流し込み、養生して配合No.1〜12の圧縮強度測定用のテストピースを製作した。圧縮強度の測定は、JIS A 1108「コンクリートの圧縮強度試験方法」に準じて行った。養生条件は標準養生28日とした。また、同時に縦100mm、横100mm、高さ400mmの中性化促進試験用のテストピースを製作した。養生条件は標準養生28日とした。中性化促進試験は、JIS A 1153:2003「コンクリートの促進中性化試験方法」に準拠し、テストピースをCO2 濃度5容量%、温度20℃、相対湿度60%の条件で26週間暴露後、60mmピッチで切断したものについて、中性化深さを測定し、その平均値で評価した。中性化深さの測定は、フェノールフタレイン1質量%水溶液噴霧法によって、無変色部を中性化部とした。圧縮強度の測定結果及び中性化促進試験の結果を表2に併せて示す。尚、表2の備考欄には、本発明の範囲を満足する配合割合の水和硬化体は「発明例」と表示し、それ以外の水和硬化体は「比較例」と表示している。 The raw materials of these hydrated cured bodies were charged into a mixer with the formulation shown in Table 2, and this mixture was kneaded with the mixer, poured into a mold having a diameter of 100 mm and a height of 200 mm, cured, and blended No. 1 Twelve test pieces for measuring compressive strength were produced. The compressive strength was measured according to JIS A 1108 “Method for testing compressive strength of concrete”. The curing conditions were standard curing 28 days. At the same time, a test piece for a neutralization promotion test of 100 mm in length, 100 mm in width, and 400 mm in height was manufactured. The curing conditions were standard curing 28 days. Neutralization acceleration test conforms to JIS A 1153: 2003 “Accelerated neutralization test method for concrete” and test pieces are exposed for 26 weeks under conditions of 5% CO 2 concentration, temperature 20 ° C. and relative humidity 60%. Then, about what was cut | disconnected by 60 mm pitch, the neutralization depth was measured and it evaluated by the average value. The neutralization depth was measured by using a 1% by mass aqueous solution spraying method of phenolphthalein and setting the non-colored portion to the neutralized portion. Table 2 also shows the measurement results of the compressive strength and the results of the neutralization promotion test. In the remarks column of Table 2, the hydrated cured product having a blending ratio that satisfies the scope of the present invention is indicated as “Invention Example”, and the other hydrated cured product is indicated as “Comparative Example”. .

Figure 0004796402
Figure 0004796402

また、比較のための従来例としてコンクリートの原料を表3に示す配合でミキサにより練り混ぜ、直径100mm、高さ200mmの型枠、及び、縦100mm、横100mm、高さ400mmの型枠に流し込み、養生して、圧縮強度測定用テストピース及び中性化促進試験用テストピースを製作した(配合No.13)。養生条件は圧縮強度測定用テストピース及び中性化促進試験用テストピースともに、標準養生28日とした。圧縮強度試験及び中性化促進試験は上記と同一方法で行なった。尚、コンクリート用原料の骨材はJIS A 1145:2001「骨材のアルカリシリカ反応性試験方法(化学法)」による試験で「無害」と判定された良質なものを用いた。圧縮強度の測定結果及び中性化促進試験の結果を表3に併せて示す。   As a conventional example for comparison, concrete raw materials are kneaded by a mixer with the composition shown in Table 3, and poured into a mold having a diameter of 100 mm, a height of 200 mm, and a mold having a length of 100 mm, a width of 100 mm, and a height of 400 mm. After curing, test pieces for measuring compressive strength and test pieces for promoting neutralization were prepared (Formulation No. 13). The curing conditions were 28 days for standard curing for both the test piece for compressive strength measurement and the test piece for neutralization promotion test. The compressive strength test and the neutralization promotion test were performed by the same method as described above. In addition, the aggregate of the raw material for concrete used the quality thing determined to be "harmless" by the test by JIS A 1145: 2001 "Aggregate alkali-silica reactivity test method (chemical method)". Table 3 also shows the measurement results of the compressive strength and the results of the neutralization promotion test.

Figure 0004796402
Figure 0004796402

表2及び表3からも明らかなように、製鋼スラグと高炉スラグ微粉末とを含有し、且つ、前述した(1)式を満足する範囲でポルトランドセメント、高炉セメント、フライアッシュセメント及び消石灰の群から選択された1種または2種以上を含有した混合物を硬化させた水和硬化体(配合No.1〜8)は、良質な骨材を用いた水結合材比50%の普通コンクリート(配合No.13)よりも中性化深さが小さく、優れた耐中性化を示した。一方、本発明に該当しない水和硬化体(配合No.9〜12)は、良質な骨材を用いた水結合材比50%の普通コンクリート(配合No.13)よりも耐中性化が劣った。   As apparent from Tables 2 and 3, Portland cement, blast furnace cement, fly ash cement, and slaked lime are included in the range containing steelmaking slag and fine powder of blast furnace slag and satisfying the above-mentioned formula (1). Hydrated cured bodies (mixture Nos. 1 to 8) obtained by curing a mixture containing one or more selected from the above are ordinary concrete (mixed No. 1-8) using a high-quality aggregate The neutralization depth was smaller than that of No. 13), indicating excellent neutralization resistance. On the other hand, the hydrated cured product (mixing No. 9 to 12) which does not fall under the present invention is more resistant to neutrality than ordinary concrete (mixing No. 13) with a water binder ratio of 50% using good quality aggregates. inferior.

また、表2及び表3の配合による水和硬化体の原料混合物に、鉄筋を、鉄筋の長手方向に垂直な断面において、水和硬化体の断面積に対する鉄筋の断面積が2%となるような条件でかぶり厚を30mmとして配し、縦100mm、横100mm、高さ400mmの型枠に打ち込んだ。鉄筋は、JIS G 3112:2004「鉄筋コンクリート用棒鋼」に適合する丸棒 SR235 D13を用いた。脱枠後20℃の水中で材齢28日まで養生を行い、かぶり厚を制御した面を残し、他の面を全てエポキシ樹脂で被覆して供試材とした。   Further, in the raw material mixture of the hydrated cured body with the composition of Table 2 and Table 3, the cross section of the reinforcing bar is 2% relative to the cross sectional area of the hydrated cured body in the cross section perpendicular to the longitudinal direction of the reinforcing bar Under such conditions, the cover thickness was set to 30 mm, and it was driven into a mold having a length of 100 mm, a width of 100 mm, and a height of 400 mm. As the reinforcing bar, a round bar SR235 D13 conforming to JIS G 3112: 2004 “Steel for Reinforced Concrete” was used. After removing the frame, it was cured in water at 20 ° C. until the age of 28 days, leaving a surface with a controlled cover thickness, and covering all other surfaces with an epoxy resin to obtain a test material.

この供試材に対して、60℃、50%の相対湿度、4日間の乾燥条件と、60℃、3質量%NaCl水溶液に3日間浸漬の湿潤条件とを1サイクルとする乾湿繰り返し試験を行った。この乾湿繰り返し試験を30サイクル実施した後に、水和硬化体を破壊して鉄筋を取り出し、鉄筋を10質量%の二水素クエン酸アンモニウム水溶液で徐錆し、腐食面積率とマイクロメーターでの計測による最大腐食深さとを測定した。測定結果を表4に示す。   This test material was subjected to a dry / wet repeated test with one cycle consisting of 60 ° C., 50% relative humidity, 4 days of drying conditions, and 60 ° C., 3% by weight NaCl aqueous solution for 3 days. It was. After 30 cycles of this wet and dry test, the hydrated hardened body was destroyed and the rebar was taken out. The rebar was gradually rusted with a 10% by mass ammonium dihydrogen citrate aqueous solution, and the corrosion area ratio and measurement with a micrometer were performed. The maximum corrosion depth was measured. Table 4 shows the measurement results.

Figure 0004796402
Figure 0004796402

表4に示すように、配合No.1〜8の本発明に係る水和硬化体中の鉄筋では腐食は認められなかった。これに対して、配合No.13の普通コンクリート中の鉄筋では、腐食面積率が22%、最大侵食深さが350μmであった。一方、本発明に該当しない配合No.9〜12の水和硬化体中の鉄筋は、水和硬化体の中性化により腐食が認められた。
As shown in Table 4, no corrosion was observed in the reinforcing bars in the hydrated and cured body according to the present invention of Formulation Nos. 1 to 8. On the other hand, in the reinforcing steel in the ordinary concrete of the blend No. 13, the corrosion area ratio was 22% and the maximum erosion depth was 350 μm. On the other hand, corrosion was recognized by the neutralization of the hydration hardening body of the reinforcing steel in the hydration hardening body of the mixing | blending No. 9-12 which does not correspond to this invention.

Claims (2)

鉄筋を内部に有する水和硬化体であって、該水和硬化体は、CaO/SiO2が質量比で1.5未満またはCaO濃度が25質量%未満の製鋼スラグ及び高炉スラグ微粉末と、更に、ポルトランドセメント、JIS R5213「フライアッシュセメント」に適合するB種のフライアッシュセメント及び消石灰の群から選択された1種または2種以上とを、下記の(1)式を満足する範囲で水と混合し、得られた混合物を硬化したものであり、製鋼スラグの含有量が2239kg/m 3 以上であり、前記混合物中における高炉スラグ微粉末の含有量が100〜600kg/m 3 であり、前記混合物が更にフライアッシュを含有することを特徴とする水和硬化体。
+0.85×F+CH≧55…(1)
但し、(1)式において各記号は以下を表すものである。
P:混合物中におけるポルトランドセメントの含有量(kg/m3
F:混合物中におけるフライアッシュセメントの含有量(kg/m3
CH:混合物中における消石灰の含有量(kg/m3
A hydrated and cured product having a reinforcing bar inside, the hydrated and cured product having a mass ratio of CaO / SiO 2 of less than 1.5 or a CaO concentration of less than 25% by mass, and blast furnace slag fine powder, Further, one or two or more selected from the group of Portland cement , B-type fly ash cement and slaked lime conforming to JIS R5213 “Fly ash cement” are used as long as the following formula (1) is satisfied. mixed with state, and are obtained by curing the resulting mixture, the content of steel slag is at 2239kg / m 3 or more, the content of ground granulated blast furnace slag in the mixture are located at 100~600kg / m 3 The hydrated cured product , wherein the mixture further contains fly ash .
P + 0.85 × F + CH ≧ 55 ... (1)
However, in the formula (1), each symbol represents the following.
P: Portland cement content in the mixture (kg / m 3 )
F: Content of fly ash cement in the mixture (kg / m 3 )
CH: Slaked lime content in the mixture (kg / m 3 )
鉄筋を内部に有する水和硬化体の製造方法であって、CaO/SiO2が質量比で1.5未満またはCaO濃度が25質量%未満の製鋼スラグ及び高炉スラグ微粉末と、更に、ポルトランドセメント、JIS R5213「フライアッシュセメント」に適合するB種のフライアッシュセメント及び消石灰の群から選択された1種または2種以上とを、下記の(1)式を満足する範囲で水と混合し、得られた混合物を硬化するステップを含み、製鋼スラグの含有量が2239kg/m 3 以上であり、前記混合物中における高炉スラグ微粉末の含有量が100〜600kg/m 3 であり、前記混合物が更にフライアッシュを含有することを特徴とする水和硬化体の製造方法。
+0.85×F+CH≧55…(1)
但し、(1)式において各記号は以下を表すものである。
P:混合物中におけるポルトランドセメントの含有量(kg/m3
F:混合物中におけるフライアッシュセメントの含有量(kg/m3
CH:混合物中における消石灰の含有量(kg/m3
A method for producing a hydrated hardened body having a reinforcing bar inside, wherein steelmaking slag and blast furnace slag fine powder with a CaO / SiO 2 ratio of less than 1.5 or a CaO concentration of less than 25% by mass, and Portland cement 1 type or 2 types or more selected from the group of B type fly ash cement and slaked lime that conform to JIS R5213 “Fly ash cement” are mixed with water in a range satisfying the following formula (1): look including the step of curing the resulting mixture, the content of steel slag is at 2239kg / m 3 or more, the content of ground granulated blast furnace slag in the mixture is 100~600kg / m 3, wherein the mixture Furthermore , the manufacturing method of the hydration hardening body characterized by including a fly ash .
P + 0.85 × F + CH ≧ 55 ... (1)
However, in the formula (1), each symbol represents the following.
P: Portland cement content in the mixture (kg / m 3 )
F: Content of fly ash cement in the mixture (kg / m 3 )
CH: Slaked lime content in the mixture (kg / m 3 )
JP2006033647A 2006-02-10 2006-02-10 Hydrated cured body and method for producing the same Active JP4796402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033647A JP4796402B2 (en) 2006-02-10 2006-02-10 Hydrated cured body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033647A JP4796402B2 (en) 2006-02-10 2006-02-10 Hydrated cured body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007210848A JP2007210848A (en) 2007-08-23
JP4796402B2 true JP4796402B2 (en) 2011-10-19

Family

ID=38489614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033647A Active JP4796402B2 (en) 2006-02-10 2006-02-10 Hydrated cured body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4796402B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265166A (en) * 2009-04-14 2010-11-25 Kajima Corp Environmental load-reducing mortar or concrete kneading matter
WO2011040768A2 (en) * 2009-10-01 2011-04-07 한국철도기술연구원 Heavy concrete composition using slag by-products

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233539A (en) * 1989-03-06 1990-09-17 Kobe Steel Ltd Slag block
JP3582263B2 (en) * 1996-11-21 2004-10-27 Jfeスチール株式会社 Hydrated product using steelmaking slag
JP4736157B2 (en) * 2000-03-24 2011-07-27 Jfeスチール株式会社 Solidification method of steelmaking slag
JP3654122B2 (en) * 2000-03-28 2005-06-02 Jfeスチール株式会社 Method for producing hardened slag
JP4560887B2 (en) * 2000-05-09 2010-10-13 Jfeスチール株式会社 Underwater hardened body made from steelmaking slag
JP2002047052A (en) * 2000-07-31 2002-02-12 Nc Kk Concrete and method of producing the same
JP2003165751A (en) * 2001-11-28 2003-06-10 Nkk Corp Hydraulic composition and hydrated hardened body
JP2003306359A (en) * 2002-04-17 2003-10-28 Jfe Steel Kk Cement composition and hydrated hardened body
JP3816036B2 (en) * 2002-07-19 2006-08-30 電気化学工業株式会社 Cement admixture, cement composition and mortar or concrete using the same
JP3844457B2 (en) * 2002-07-19 2006-11-15 電気化学工業株式会社 Cement admixture and cement composition
JP2004149333A (en) * 2002-10-29 2004-05-27 Port & Airport Research Institute Concrete structure suitable for deposition and breeding of marine life and method for suppressing corrosion of steel bar in concrete structure
JP4558281B2 (en) * 2003-03-28 2010-10-06 新日本製鐵株式会社 Solidified body manufacturing method
JP4255726B2 (en) * 2003-03-28 2009-04-15 新日本製鐵株式会社 Method for determining expansion stability of solidified material containing steelmaking slag
JP4438307B2 (en) * 2003-03-28 2010-03-24 Jfeスチール株式会社 How to select steelmaking slag for hardened slag
JP4427375B2 (en) * 2004-04-12 2010-03-03 新日本製鐵株式会社 Concrete and reinforced concrete structures using blast furnace cement with excellent resistance to neutralization.

Also Published As

Publication number Publication date
JP2007210848A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP2010006662A (en) Highly durable concrete composition and method for producing highly durable concrete
JP5259094B6 (en) Hydrated hardened body excellent in neutralization resistance with rebar
JP4796402B2 (en) Hydrated cured body and method for producing the same
JP4796424B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791200B2 (en) Hydrated cured body and method for producing the same
JP6735624B2 (en) Concrete surface modifier and method for improving surface quality of concrete using the same
JP6131459B2 (en) Mortar or concrete composition and molded product obtained by molding the same
WO2022190861A1 (en) Method for producing geopolymer cured body, geopolymer cured body, method for producing geopolymer composition, and geopolymer composition
JP4827548B2 (en) Hydrated cured body
JP4796419B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4827580B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4791228B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791227B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4827585B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4827584B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4791231B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4796420B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4796423B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791226B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4882257B2 (en) Hydrated hardened body with rebar having excellent salt resistance
JP4827581B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4796421B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4796422B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP6262897B1 (en) Composition for mortar or concrete, molded product obtained by molding the same, and method for confirming quality of mortar or concrete
JP4827582B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20081225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110729

R150 Certificate of patent or registration of utility model

Ref document number: 4796402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250