JP4796424B2 - Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same - Google Patents

Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same Download PDF

Info

Publication number
JP4796424B2
JP4796424B2 JP2006097638A JP2006097638A JP4796424B2 JP 4796424 B2 JP4796424 B2 JP 4796424B2 JP 2006097638 A JP2006097638 A JP 2006097638A JP 2006097638 A JP2006097638 A JP 2006097638A JP 4796424 B2 JP4796424 B2 JP 4796424B2
Authority
JP
Japan
Prior art keywords
resistance
fly ash
hydrated
cement
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006097638A
Other languages
Japanese (ja)
Other versions
JP2007269562A (en
Inventor
之郎 釣
久宏 松永
一章 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Sumitomo Metal Industries Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd, Nippon Steel Corp, Nippon Steel Nisshin Co Ltd, Sumitomo Metal Industries Ltd filed Critical JFE Steel Corp
Priority to JP2006097638A priority Critical patent/JP4796424B2/en
Publication of JP2007269562A publication Critical patent/JP2007269562A/en
Application granted granted Critical
Publication of JP4796424B2 publication Critical patent/JP4796424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、乾湿が繰り返される海岸等の中性化と塩害が進みやすい環境下で用いる構造物での利用に好適な耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体およびその製造方法に関するものである。 The present invention is a hydrated and cured body having a reinforcing bar excellent in neutralization resistance and salt damage resistance suitable for use in a structure used in an environment where neutralization and salt damage are likely to proceed, such as coasts where dryness and humidity are repeated And a manufacturing method thereof .

鉄筋コンクリートは、コンクリート中のアルカリ成分によって鉄筋の表面に不動態皮膜が形成されるため鉄筋が防食され、長期に渡って強度と耐久性を発揮する構造部材である。したがって、コンクリートが中性化すると不動態皮膜が破壊され鉄筋が腐食し、構造物部材として機能しなくなる。   Reinforced concrete is a structural member that exhibits strength and durability over a long period of time because the passive component film is formed on the surface of the reinforcing bar by the alkali components in the concrete, thereby preventing corrosion of the reinforcing bar. Therefore, when the concrete is neutralized, the passive film is destroyed and the rebar is corroded, so that it does not function as a structural member.

近年は、コンクリートの骨材の入手事情が悪化し、例えば、アルカリ骨材反応を生じる可能性がある安山岩等を骨材として使用せざるを得ない場合がある。アルカリ骨材反応によりコンクリートにひび割れを生じた場合、コンクリートの中性化が急速に進行し、鉄筋が腐食する等の問題があった。また良質な骨材を使用したコンクリートの場合であっても、これを乾湿が繰り返される等の中性化が進みやすい環境下で使用した際には、コンクリートの中性化よって鉄筋表面の不動態皮膜が破壊されて鉄筋が腐食し、発生した錆に起因する体積膨張によってコンクリートが剥落する。当然のことながら、鉄筋と外界との間に存在するコンクリートの厚み(かぶり厚)を増大させることにより、中性化が鉄筋の表面に到達する時間を遅延させることができるが、コンクリートのかぶり厚の増大により構造物が大型化するためコストが増大するという問題がある。   In recent years, the availability of concrete aggregates has deteriorated, and for example, andesite that may cause an alkali aggregate reaction may be used as an aggregate. When cracks occur in concrete due to alkali-aggregate reaction, the neutralization of concrete progresses rapidly, causing problems such as corrosion of the reinforcing bars. Even in the case of concrete using high-quality aggregates, if it is used in an environment where neutralization is likely to proceed, such as repeated drying and wetting, the neutralization of the concrete causes the passivation of the reinforcing bar surface. The coating is destroyed and the rebar is corroded, and the concrete is peeled off by volume expansion caused by the generated rust. Naturally, increasing the thickness of the concrete (cover thickness) between the reinforcing bar and the outside world can delay the time for neutralization to reach the surface of the reinforcing bar. There is a problem that the cost increases because the structure becomes larger due to the increase in the size of the structure.

上記のような鉄筋コンクリートの耐中性化性を向上する手段としては、一般に水セメント比を小さくする方法が知られている。   As a means for improving the neutralization resistance of reinforced concrete as described above, a method of reducing the water-cement ratio is generally known.

一方、製鋼スラグと高炉スラグ微粉末とを主原料とし、コンクリートの代替が可能な水和硬化体が特許文献1及び非特許文献1に開示されている。   On the other hand, Patent Document 1 and Non-Patent Document 1 disclose a hydrated hardened body that can use steelmaking slag and blast furnace slag fine powder as main raw materials and can replace concrete.

これらの水和硬化体をコンクリートの代替として用いることで、製鉄所で大量に発生するスラグを有効利用することができる。
特開2001−049310号公報 「鉄鋼スラグ水和固化体技術マニュアル」沿岸開発技術研究センター 2003年
By using these hydrated hardened bodies as a substitute for concrete, it is possible to effectively use slag generated in large quantities at steelworks.
JP 2001-049310 A “Steel Slag Hydrated Solid Technology Manual” Coastal Development Technology Research Center 2003

しかし、鉄筋コンクリートの耐中性化性を向上させるために水セメント比を小さくする方法は、アルカリ骨材反応を生じることがない良質な骨材を用いたときは有効であるが、アルカリ骨材反応を生じる骨材を用いた場合は効果がない。また、水セメント比を小さくすると高コストとなるばかりでなく、コンクリートの自己収縮が大きくなるという弊害を生じる。   However, the method of reducing the water-cement ratio in order to improve the neutralization resistance of reinforced concrete is effective when using high-quality aggregates that do not cause alkali-aggregate reaction, but alkali-aggregate reaction. There is no effect when using aggregates that cause Moreover, if the water-cement ratio is reduced, not only the cost is increased, but also the self-shrinkage of the concrete is increased.

一方、上記の特許文献1、非特許文献1の水和硬化体をコンクリート代替として用いた場合の耐中性化性については、特許文献1に開示された水和硬化体は用途を路盤材、建築・土木材等としている程度で不明瞭であり、非特許文献1に開示された水和硬化体は、対象を鉄筋を含有しない無筋コンクリート代替に限定しているため、どちらについても性能自体が不明である。そこで、これらの水和硬化体の耐中性化性を本発明者らが調べたところ、極めてばらつきが大きく、鉄筋コンクリート代替として安定して使用することが困難であることがわかった。   On the other hand, regarding the neutralization resistance when the hydrated cured body of Patent Document 1 and Non-Patent Document 1 is used as a concrete substitute, the hydrated cured body disclosed in Patent Document 1 is used for roadbed materials, The hydration hardened body disclosed in Non-Patent Document 1 is unclear to the extent that it is used for construction and earthwork, etc., and the target is limited to the replacement of unreinforced concrete that does not contain reinforcing bars. Is unknown. Then, when the present inventors investigated the neutralization resistance of these hydrated cured bodies, it was found that the dispersion was extremely large and it was difficult to stably use as a substitute for reinforced concrete.

このように、従来の技術を用いては、コンクリートや、製鋼スラグと高炉スラグ微粉末等を材料とした水和硬化体の中性化を抑止して鉄筋の腐食を防止することは限界がある。   In this way, using conventional technology, there is a limit to prevent corrosion of rebars by inhibiting neutralization of hydrated hardened bodies made of concrete, steelmaking slag and blast furnace slag fine powder, etc. .

したがって本発明の目的は、このような従来技術の課題を解決し、中性化が進みやすいような環境条件においても長期の耐久性を有する構造物部材とすることができる耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体およびその製造方法を提供することにある。 Therefore, the object of the present invention is to solve the problems of the prior art, and to make the structure member having long-term durability even under environmental conditions where neutralization is likely to proceed, An object of the present invention is to provide a hydrated cured product having a reinforcing bar excellent in salt damage resistance and a method for producing the same.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)鉄筋を内部に有する水和硬化体が、少なくとも、ポルトランドセメント、JIS R5213「フライアッシュセメント」に適合するB種のフライアッシュセメント、消石灰の中から選んだ1種または2種以上と、CaO/SiO2が質量比で1.5未満またはCaO濃度が25質量%未満の製鋼スラグと、高炉スラグ微粉末とフライアッシュとを含有し、「ポルトランドセメント(kg/m3フライアッシュセメント(kg/m3)×0.85+消石灰(kg/m3)」が55kg/m3以上であり、さらに前記鉄筋の表面に表面処理が施され、製鋼スラグの含有量が2239kg/m 3 以上であり、前記混合物中における高炉スラグ微粉末の含有量が100〜600kg/m 3 であることを特徴とする耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体。
(2)鉄筋の表面処理が、燐酸鉄処理、燐酸亜鉛処理、燐酸亜鉛カルシウム処理、燐酸マグネシウム処理、燐酸カルシウム処理および亜鉛めっきのいずれかである。
(3)耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体の製造方法であって、鉄筋を内部に有する水和硬化体が、「ポルトランドセメント(kg/m3フライアッシュセメント(kg/m3)×0.85+消石灰(kg/m3)」が55kg/m3以上になるように、少なくとも、ポルトランドセメント、JIS R5213「フライアッシュセメント」に適合するB種のフライアッシュセメント、消石灰の中から選んだ1種または2種以上と、CaO/SiO2が質量比で1.5未満またはCaO濃度が25質量%未満の製鋼スラグと、高炉スラグ微粉末とフライアッシュとを水と混合し、得られた混合物を硬化するステップを含み、前記鉄筋の表面に表面処理が施され、製鋼スラグの含有量が2239kg/m 3 以上であり、前記混合物中における高炉スラグ微粉末の含有量が100〜600kg/m 3 であることを特徴とする耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体の製造方法。
The features of the present invention for solving such problems are as follows.
(1) A hydrated cured body having reinforcing bars inside is at least one selected from Portland cement , B type fly ash cement suitable for JIS R5213 “fly ash cement” , slaked lime, Contains steelmaking slag with a CaO / SiO 2 ratio of less than 1.5 or a CaO concentration of less than 25% by mass, blast furnace slag fine powder and fly ash , “Portland cement (kg / m 3 ) + fly ash cement” (Kg / m 3 ) × 0.85 + slaked lime (kg / m 3 ) ”is 55 kg / m 3 or more, the surface of the rebar is further surface-treated , and the steelmaking slag content is 2239 kg / m 3 or more. , and the in耐中resistance resistance and salt damage resistance, wherein the amount of ground granulated blast furnace slag in the mixture is 100~600kg / m 3 Hydrated cured product having a rebar that.
(2) The surface treatment of the reinforcing bar is any one of iron phosphate treatment, zinc phosphate treatment, zinc calcium phosphate treatment, magnesium phosphate treatment, calcium phosphate treatment and galvanization.
(3) A method for producing a hydrated and cured product having a reinforcing bar excellent in neutralization resistance and salt damage resistance, wherein the hydrated and cured product having a reinforcing bar inside is “Portland cement (kg / m 3 ) + At least B type suitable for Portland cement , JIS R5213 “fly ash cement” so that “ fly ash cement (kg / m 3 ) × 0.85 + slaked lime (kg / m 3 )” is 55 kg / m 3 or more . One or more selected from fly ash cement and slaked lime, steelmaking slag with a CaO / SiO 2 mass ratio of less than 1.5 or a CaO concentration of less than 25% by mass, blast furnace slag fine powder and fly ash And a step of curing the resulting mixture, the surface of the reinforcing bar is subjected to surface treatment , and the steelmaking slag content is 2239 kg / m 3 or more, Method for producing a hydrated cured product having耐中resistance resistance and salt damage excellent in reinforcing bars, wherein the amount of ground granulated blast furnace slag in the mixture is 100~600kg / m 3.

本発明によれば耐中性化性と耐塩害性に優れることから、鉄筋に対する防食性に優れた水和硬化体が得られる。このため、中性化により従来の鉄筋コンクリートが短期間で崩壊するような環境下においても、長期間の使用が可能な構造物を提供できる。   According to the present invention, since it is excellent in neutralization resistance and salt damage resistance, a hydrated cured product having excellent anticorrosive properties against reinforcing steel can be obtained. For this reason, the structure which can be used for a long period of time can be provided even in the environment where the conventional reinforced concrete collapses in a short period of time by neutralization.

本発明では、水和硬化体の材料を最適化することにより、従来のコンクリートや製鋼スラグと高炉スラグ微粉末等を材料とした水和硬化体よりも耐中性化性に優れた水和硬化体が得られ、これを表面処理を施した鉄筋と組み合わせることで、高塩分濃度を含有し乾湿が繰り返される中性化および塩害の進みやすい環境下においても長期の耐久性を有する構造物部材として使用できることを見出し、本発明を完成した。   In the present invention, by optimizing the material of the hydrated hardened body, the hydration hardening having better neutralization resistance than conventional hydrated hardened bodies made of concrete, steelmaking slag and blast furnace slag fine powder, etc. As a structural member that has a long-term durability even in an environment where neutralization and salt damage are likely to occur due to the combination of high salinity and repeated drying and wetting, by combining this with a surface-treated steel bar The present invention has been completed by finding that it can be used.

まず水和硬化体を構成する材料について説明する。   First, materials constituting the hydrated cured body will be described.

なお、本発明において、水和硬化体における(水和硬化体中の)含有量(配合量)とは、水和硬化体の配合原料となる各材料(混練用の水や混和剤なども含む)を混合した混合物中における含有量を意味する。本発明における水和硬化体は、配合原料となる材料を混合して形成した混合物を硬化させたものである。   In the present invention, the content (in the hydrated cured body) (in the hydrated cured body) of the hydrated cured body includes each material (including kneading water and admixture) that is a raw material for blending the hydrated cured body. ) In the mixed mixture. The hydrated cured product in the present invention is obtained by curing a mixture formed by mixing materials to be blended raw materials.

本発明の水和硬化体は、製鋼スラグと、高炉スラグ微粉末と、さらに、ポルトランドセメント、高炉セメント、フライアッシュセメント、消石灰の中から選んだ1種または2種以上とを含有する。   The hydrated hardened body of the present invention contains steelmaking slag, blast furnace slag fine powder, and one or more selected from Portland cement, blast furnace cement, fly ash cement, and slaked lime.

水和硬化体の材料のうち、製鋼スラグは、骨材および結合材、さらに水和硬化体の中性化抑止材として作用する。骨材として作用させるための製鋼スラグの粒度分布は、コンクリート用の細骨材や粗骨材に相当するような粒度とし、粒径が0.075mm以上程度、また最大粒径が40mm以下程度とすることが好ましい。また、結合材として作用させるための製鋼スラグは微粉であることが好ましく、粒径が0.15mm未満程度であることが好ましい。したがって、結合材としての粒径と骨材としての粒径をそれぞれ満足するスラグ粒子が含まれている適当な粒度分布を有する製鋼スラグ(例えば、或る条件で粉砕処理した製鋼スラグやその粉砕処理後に篩分した製鋼スラグ)を使用することが望ましい。中性化抑止材として作用させるための製鋼スラグは、CaO/SiO2が質量比で1.5以上、またはCaO濃度が25質量%以上であることが好ましい。CaO/SiO2が質量比で1.5以上、またはCaO濃度が25質量%以上の製鋼スラグは、製鋼スラグ中のCaO成分が長期間にわたり水和硬化体中に含まれる水に溶解し、水和硬化体を弱アルカリ性に保ち、中性化を抑止する。より好ましくは、CaO/SiO2が質量比で2.0以上、またはCaO濃度が30質量%以上である。一般にCaO/SiO2、CaO濃度が高くなると製鋼スラグ中の遊離CaO(free−CaO)による水和膨張性が大きくなるが、水和硬化体の膨張安定性が確保されれば問題がないことから、これらの上限値は特に規定しない。 Among the materials of the hydrated hardened body, the steelmaking slag acts as an aggregate and a binder, and further as a neutralization inhibitor for the hydrated hardened body. The particle size distribution of the steelmaking slag for acting as an aggregate is a particle size corresponding to fine aggregate or coarse aggregate for concrete, the particle size is about 0.075 mm or more, and the maximum particle size is about 40 mm or less. It is preferable to do. Moreover, it is preferable that the steelmaking slag for making it act as a binder is a fine powder, and it is preferable that a particle size is less than about 0.15 mm. Accordingly, a steelmaking slag having an appropriate particle size distribution containing slag particles satisfying the particle size as a binder and the particle size as an aggregate (for example, steelmaking slag pulverized under a certain condition and its pulverization treatment). It is desirable to use steelmaking slag that is sieved later. The steelmaking slag for acting as a neutralization inhibiting material preferably has a CaO / SiO 2 ratio of 1.5 or more, or a CaO concentration of 25% by mass or more. CaO / SiO 2 is in a weight ratio of 1.5 or more, or CaO concentration of 25 mass% or more steel slag is dissolved in water CaO component in the steelmaking slag is contained in the hydrated cured body over a long period of time, water Keep the Japanese cured body weakly alkaline and suppress neutralization. More preferably, CaO / SiO 2 is 2.0 or more by mass ratio, or the CaO concentration is 30% by mass or more. Generally, when the CaO / SiO 2 and CaO concentrations are increased, the hydration expansion due to free CaO (free-CaO) in the steelmaking slag increases, but there is no problem if the expansion stability of the hydrated cured body is ensured. These upper limits are not specified.

また、製鋼スラグは通常の砂利等の骨材と異なりアルカリ骨材反応を起こさないため、水和硬化体そのものの耐久性が優れるだけでなく、アルカリ骨材反応に起因するひび割れの発生も抑制できるので、ひび割れを介した中性化が起こらず、水和硬化体中の鉄筋の防食の観点からも好ましい。   In addition, steelmaking slag does not cause an alkali-aggregate reaction unlike ordinary gravel aggregates, so that not only the durability of the hydrated hardened body itself is excellent, but also the occurrence of cracks due to the alkali-aggregate reaction can be suppressed. Therefore, neutralization through cracks does not occur, which is preferable from the viewpoint of corrosion prevention of reinforcing steel in the hydrated cured body.

水和硬化体の材料として高炉スラグ微粉末を用いるのは、潜在水硬性を有する高炉スラグ微粉末が製鋼スラグによりアルカリ刺激を受け効率的に水和反応するためだけでなく、従来のコンクリートよりも硬化物が緻密な組織を有するため、水和硬化体の中性化の原因となる二酸化炭素の透過を著しく抑制できるからである。また、高炉スラグ微粉末と製鋼スラグ中の遊離CaO(free−CaO)が反応し、製鋼スラグの水和膨張を抑制するためである。高炉スラグ微粉末としてはJIS A 6206「コンクリート用高炉スラグ微粉末」を特に好ましく用いることができる。   The reason why blast furnace slag fine powder is used as a material for the hydrated hardened body is not only because the blast furnace slag fine powder having latent hydraulic properties is subjected to alkali stimulation by steelmaking slag and efficiently hydrates but also more than conventional concrete. This is because, since the cured product has a dense structure, the permeation of carbon dioxide that causes neutralization of the hydrated cured product can be remarkably suppressed. Moreover, it is because the free blast furnace slag fine powder and free CaO (free-CaO) in the steelmaking slag react to suppress the hydration expansion of the steelmaking slag. As the blast furnace slag fine powder, JIS A 6206 “Blast furnace slag fine powder for concrete” can be particularly preferably used.

水和硬化体の材料として、ポルトランドセメント、高炉セメント、フライアッシュセメント、消石灰の中から選んだ1種または2種以上を用いるのは、これらの材料を混合することで、水和硬化体の内部をアルカリ性に保つためである。なお、本発明におけるポルトランドセメントとは、JIS R 5210「ポルトランドセメント」に記載されている、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメントのことである。また、高炉セメントとは、JIS R 5211「高炉セメント」に記載されているA種、B種、C種のことである。また、フライアッシュセメントとは、JIS R 5213「フライアッシュセメント」に記載のA種、B種、C種のことである。   One or more types selected from Portland cement, blast furnace cement, fly ash cement, and slaked lime are used as the material of the hydrated cured body. Is to keep the alkalinity. The Portland cement in the present invention is described in JIS R 5210 “Portland cement”, ordinary Portland cement, early-strength Portland cement, super-early-strength Portland cement, moderately hot Portland cement, low heat Portland cement, sulfate resistant salt Portland cement. Further, the blast furnace cement is A type, B type or C type described in JIS R 5211 “Blast furnace cement”. Moreover, fly ash cement is A class, B class, and C class as described in JIS R 5213 “fly ash cement”.

本発明ではさらに、ポルトランドセメント、高炉セメント、フライアッシュセメント、消石灰の水和硬化体中の配合量を、「ポルトランドセメント(kg/m3)+高炉セメント(kg/m3)×0.6+フライアッシュセメント(kg/m3)×0.85+消石灰(kg/m3)」で55kg/m3以上とする。55kg/m3以上となるように多量に含有させることにより、CaO/SiO2が質量比で1.5未満またはCaO濃度が25質量%未満の製鋼スラグを用いた水和硬化体の場合でも、内部を長期間にわたりアルカリ性に保つことができる。この値は、好ましくは70kg/m3以上である。この値の上限値は特に設定しないが、150kg/m3を超えて配合しても耐中性化効果の向上はほとんど無い。 In the present invention, the blending amount of Portland cement, blast furnace cement, fly ash cement, and slaked lime in the hydrated hardened body is expressed as “Portland cement (kg / m 3 ) + blast furnace cement (kg / m 3 ) × 0.6 + fly. Ash cement (kg / m 3 ) × 0.85 + slaked lime (kg / m 3 ) ”is set to 55 kg / m 3 or more. By large amount is contained so that 55 kg / m 3 or more, even if 1.5 or below CaO concentration CaO / SiO 2 mass ratio of hydrated hardened body using steel slag of less than 25 wt%, The inside can be kept alkaline for a long time. This value is preferably 70 kg / m 3 or more. The upper limit of this value is not particularly set, but even if it exceeds 150 kg / m 3 , there is almost no improvement in neutralization resistance.

高炉スラグ微粉末の水和硬化体中の配合量は、100〜600kg/m3であることが好ましい。100kg/m3未満ではコンクリート代替として必要な18N/mm2以上の圧縮強度が得られない場合があり、600kg/m3を超えると強度の増加はほとんど無く不経済となるためである。高炉スラグ微粉末のより好ましい配合量は、200〜400kg/m3である。 The blending amount of the blast furnace slag fine powder in the hydrated cured product is preferably 100 to 600 kg / m 3 . If it is less than 100 kg / m 3 , the compressive strength of 18 N / mm 2 or more necessary as a concrete substitute may not be obtained, and if it exceeds 600 kg / m 3 , there is almost no increase in strength and it becomes uneconomical. A more preferable blending amount of the blast furnace slag fine powder is 200 to 400 kg / m 3 .

水和硬化体は、さらにフライアッシュを含有することが好ましい。水和硬化体の材料としてフライアッシュを用いるのは、製鋼スラグ中のCa成分とフライアッシュが効率的に反応することによりフライアッシュのポゾラン反応が進むためである。また、フライアッシュと製鋼スラグ中の遊離CaOが反応し、製鋼スラグの水和膨張を抑制するためである。さらに、フライアッシュの適量の配合でワーカビリティを向上させる効果もある。フライアッシュはJIS A 6201「コンクリート用フライアッシュ」を用いることが好ましいが、原粉および加圧流動床灰の使用等も可能である。   The hydrated cured body preferably further contains fly ash. The reason why fly ash is used as the material of the hydrated and cured body is that the Ca component in the steelmaking slag and the fly ash react efficiently so that the pozzolanic reaction of fly ash proceeds. Moreover, it is for the free CaO in fly ash and steelmaking slag to react, and to suppress the hydration expansion of steelmaking slag. Furthermore, there is an effect of improving workability by blending an appropriate amount of fly ash. The fly ash is preferably JIS A 6201 “Fly Ash for Concrete”, but it is also possible to use raw powder and pressurized fluidized bed ash.

フライアッシュの水和硬化体中の配合量は、特に限定しないが、50〜300kg/m3であることが好ましい。50kg/m3未満では製鋼スラグの水和膨張を抑制する効果が低く、300kg/m3を超えると水を加えて練混ぜた後のフレッシュな状態の粘性が高くなり、ワーカビリティが悪化するため、また製鋼スラグの水和膨張を抑制する効果も変わらず不経済であるためである。 Although the compounding quantity in the hydrated hardening body of fly ash is not specifically limited, It is preferable that it is 50-300 kg / m < 3 >. If it is less than 50 kg / m 3 , the effect of suppressing the hydration expansion of steelmaking slag is low, and if it exceeds 300 kg / m 3 , the viscosity of the fresh state after adding water and kneading increases, and workability deteriorates. Moreover, it is because the effect which suppresses the hydration expansion of steelmaking slag is also uneconomical.

次に、本発明で用いる表面に表面処理を施した鉄筋について説明する。尚、無筋の水和硬化体は、耐中性化性が優れていない場合でも問題とはならない。   Next, a description will be given of a reinforcing bar whose surface is used in the present invention. In addition, the non-muscle hydrated cured product does not cause a problem even when the resistance to neutralization is not excellent.

水和硬化体中の鉄筋の表面に行なう表面処理としては、例えば、燐酸鉄処理、燐酸亜鉛処理、燐酸亜鉛カルシウム処理、燐酸マグネシウム処理、燐酸カルシウム処理或いは亜鉛めっきが挙げられる。   Examples of the surface treatment performed on the surface of the reinforcing bar in the hydrated cured body include iron phosphate treatment, zinc phosphate treatment, zinc calcium phosphate treatment, magnesium phosphate treatment, calcium phosphate treatment, and zinc plating.

本発明では各々の表面処理の詳細を規定するものではないが、例えば皮膜質量を例にとると、燐酸鉄処理は0.1〜1.5g/m2、燐酸亜鉛処理は0.5〜15g/m2、燐酸亜鉛カルシウム処理は0.5〜15g/m2、亜鉛めっきは20g/m2以上とすることが好ましい。各々の表面処理の皮膜質量の下限値未満の皮膜質量の表面処理を施した場合には、耐食性向上の効果が得られない場合があり好ましくない。一方、上限値を越える皮膜質量の表面処理を施した場合には、コストに見合うだけの効果が得られないだけでなく、表面処理層のクラックの発生や剥離が発生し、耐食性が低下する場合があるので好ましくない。 In the present invention, details of each surface treatment are not specified. For example, when the film mass is taken as an example, iron phosphate treatment is 0.1 to 1.5 g / m 2 , and zinc phosphate treatment is 0.5 to 15 g. / m 2, zinc phosphate calcium treatment 0.5 to 15 g / m 2, the zinc plating is preferably set to 20 g / m 2 or more. When a surface treatment with a film mass less than the lower limit of the film mass of each surface treatment is performed, the effect of improving the corrosion resistance may not be obtained, which is not preferable. On the other hand, when a surface treatment with a film mass exceeding the upper limit is applied, not only the effect corresponding to the cost is not obtained, but also the occurrence of cracks and peeling of the surface treatment layer, and the corrosion resistance decreases. This is not preferable.

燐酸亜鉛皮膜の主成分はホパイト(Zn3(PO424H2O)とフォスフォフィライト(FeZn2(PO424H2O)から成っているが、ホパイトとフォスフォフィライトの質量の和に占めるフォスフォフィライトの質量の割合(P比)が0.8以上のものが好ましい。アルカリ環境におけるフォスフォフィライトの溶解度がホパイトよりも低く、水和硬化体中でより安定的に存在するからである。 The main component of the zinc phosphate coating consists of hopite (Zn 3 (PO 4 ) 2 4H 2 O) and phosphophyllite (FeZn 2 (PO 4 ) 2 4H 2 O). It is preferable that the ratio (P ratio) of the phosphophyllite to the total mass is 0.8 or more. This is because the solubility of phosphophyllite in an alkaline environment is lower than that of hopite and exists more stably in the hydrated cured product.

また、燐酸亜鉛皮膜中のホパイトおよびフォスフォフィライトの結晶粒径を細かくし、耐食性を向上させるために、Zn原子の一部をMnやNi原子で置換することもできる。   Further, in order to reduce the crystal grain size of the hopite and phosphophyllite in the zinc phosphate coating and improve the corrosion resistance, a part of Zn atoms can be substituted with Mn or Ni atoms.

亜鉛めっきについては電気亜鉛めっき、溶融亜鉛めっき、溶融亜鉛合金めっき等のいずれの処理方法でも用いることができる。   As for galvanization, any treatment method such as electrogalvanization, hot dip galvanization, hot dip zinc alloy plating, etc. can be used.

水和硬化体は、上記の材料を配合して、水を加えて混練して、所定の型枠等に打ち込んで養生して製造する。打ち込みの際に表面処理を施した鉄筋を配筋して、鉄筋を有する水和硬化体とする。   The hydrated cured body is produced by blending the above materials, adding water, kneading, and driving and curing in a predetermined formwork or the like. Reinforcing the reinforcing bars that have been surface-treated at the time of driving into a hydrated and cured body having reinforcing bars.

水和硬化体の養生方法は、所定の強度が確保できれば、通常コンクリートにおいて用いられる水中養生、現場養生、蒸気養生等の何れの方法をも用いることができる。   As a curing method for the hydrated cured body, any method such as underwater curing, on-site curing, and steam curing that are usually used in concrete can be used as long as a predetermined strength can be secured.

製鋼スラグは表1に示す化学成分、物性値(最大粒径、粗粒率、細骨材率、表乾密度)のものを用いた(製鋼スラグNo.A、B)。粗粒率とはJIS A 0203に記載の番号3115の粗粒率のことである。細骨材率とは全粒度の製鋼スラグ量に対する粒径5mm以下の製鋼スラグ量の絶対容積比を百分率で表した値である。   The steelmaking slags used were those having the chemical components and physical properties shown in Table 1 (maximum particle size, coarse particle ratio, fine aggregate ratio, surface dry density) (steelmaking slag Nos. A and B). The coarse particle ratio is the coarse particle ratio of No. 3115 described in JIS A 0203. The fine aggregate rate is a value representing the absolute volume ratio of the amount of steelmaking slag having a particle size of 5 mm or less with respect to the amount of steelmaking slag of all particle sizes as a percentage.

Figure 0004796424
Figure 0004796424

高炉スラグ微粉末はJIS A 6206「コンクリート用高炉スラグ微粉末」における高炉スラグ微粉末4000を、フライアッシュはJIS A 6201「コンクリート用フライアッシュ」におけるII種を使用した。ポルトランドセメントは、JIS R 5201「ポルトランドセメント」に適合する普通ポルトランドセメントを用いた。高炉セメントは、JIS R 5211「高炉セメント」に適合するB種を用いた。フライアッシュセメントは、JIS R 5213「フライアッシュセメント」に適合するB種を用いた。消石灰は、JIS R 9001に適合する工業用消石灰・特号を使用した。混和剤は、JIS A 6204に適合するポリカルボン酸系の高性能AE減水剤を使用した。   Blast furnace slag fine powder used was blast furnace slag fine powder 4000 in JIS A 6206 “Blast furnace slag fine powder for concrete”, and fly ash used type II in JIS A 6201 “Fly ash for concrete”. As the Portland cement, ordinary Portland cement conforming to JIS R 5201 “Portland cement” was used. As the blast furnace cement, type B suitable for JIS R 5211 “blast furnace cement” was used. As the fly ash cement, type B conforming to JIS R 5213 “fly ash cement” was used. As the slaked lime, industrial slaked lime / special name conforming to JIS R 9001 was used. As the admixture, a polycarboxylic acid-based high-performance AE water reducing agent conforming to JIS A 6204 was used.

表2に示す化学成分と機械的特性を有する25φ×200mmの鉄筋に、燐酸鉄処理、燐酸亜鉛処理、燐酸亜鉛カルシウム処理、燐酸マグネシウム処理、燐酸カルシウム処理および亜鉛めっきの表面処理を行なった。   Surface treatments of iron phosphate treatment, zinc phosphate treatment, zinc calcium phosphate treatment, magnesium phosphate treatment, calcium phosphate treatment and galvanization were performed on 25φ × 200 mm reinforcing bars having chemical components and mechanical properties shown in Table 2.

Figure 0004796424
Figure 0004796424

燐酸鉄処理に関しては、20g/lの濃度の脱脂液(CL−N364S:日本パーカライジング(株)製)を55℃で120秒スプレーした後に水洗し、50℃の燐酸鉄処理液(PF−1077:日本パーカライジング(株)製)に60秒間浸漬し、水洗・乾燥した。鋼材の表面に形成された燐酸鉄皮膜の皮膜質量は0.35g/m2であった。 Regarding the iron phosphate treatment, a degreasing solution (CL-N364S: manufactured by Nippon Parkerizing Co., Ltd.) having a concentration of 20 g / l was sprayed at 55 ° C. for 120 seconds, washed with water, and treated with 50 ° C. iron phosphate treatment (PF-1077: It was immersed in Nippon Parkerizing Co., Ltd. for 60 seconds, washed with water and dried. The film mass of the iron phosphate film formed on the surface of the steel material was 0.35 g / m 2 .

燐酸亜鉛処理については、20g/lの濃度の脱脂液(FC−L4460:日本パーカライジング(株)製)を43℃で120秒スプレーした後に水洗し、濃度3g/lの表面調整用の薬液(PL−X:日本パーカライジング(株)製)で表面にTiコロイドの核を付着させた後に、43℃の燐酸亜鉛処理溶液(PB−L3020:日本パーカライジング(株)製)に120秒間浸漬し、水洗・乾燥させた。鋼材の表面に形成された燐酸亜鉛処理皮膜の皮膜質量は2.75g/m2、P比は0.90、Ni付着量は23.2mg/m2、Mn付着量は49.5mg/m2であった。 For zinc phosphate treatment, a 20 g / l concentration degreasing solution (FC-L4460: manufactured by Nihon Parkerizing Co., Ltd.) was sprayed at 43 ° C. for 120 seconds, washed with water, and a surface conditioning chemical solution (PL -X: Nihon Parkerizing Co., Ltd.) was used to attach Ti colloid nuclei to the surface, and then immersed in a 43 ° C. zinc phosphate treatment solution (PB-L3020: Nihon Parkerizing Co., Ltd.) for 120 seconds. Dried. The coating mass of the zinc phosphate treatment coating formed on the surface of the steel material is 2.75 g / m 2 , the P ratio is 0.90, the Ni adhesion amount is 23.2 mg / m 2 , and the Mn adhesion amount is 49.5 mg / m 2. Met.

燐酸亜鉛カルシウム処理としては、燐酸鉄処理と同様に脱脂した後に、90℃の燐酸亜鉛カルシウム溶液(PB−880:日本パーカライジング(株)製)に360秒間浸漬し、水洗・乾燥させた。鋼材の表面に形成された燐酸亜鉛カルシウム処理皮膜の皮膜質量は5.7g/m2であった。 As the zinc calcium phosphate treatment, after degreasing in the same manner as the iron phosphate treatment, it was immersed in a 90 ° C. zinc calcium phosphate solution (PB-880: manufactured by Nihon Parkerizing Co., Ltd.) for 360 seconds, washed with water and dried. The film mass of the zinc calcium phosphate-treated film formed on the surface of the steel material was 5.7 g / m 2 .

燐酸マグネシウム処理および燐酸カルシウム処理は、それぞれ60℃の飽和燐酸マグネシウム水溶液および飽和燐酸カルシウム水溶液に鉄筋を10分間浸漬した後に水洗・乾燥させた。   In the magnesium phosphate treatment and the calcium phosphate treatment, the reinforcing bars were immersed in a saturated magnesium phosphate aqueous solution and a saturated calcium phosphate aqueous solution at 60 ° C. for 10 minutes, respectively, and then washed and dried.

亜鉛めっきについては、目付け量90g/m2の溶融亜鉛めっき鉄筋を用いた。 For galvanization, a hot dip galvanized reinforcing bar with a basis weight of 90 g / m 2 was used.

表3に示す配合により水和硬化体の材料をミキサで練混ぜ、φ100×200mmの型枠に流し込み、養生して配合No.1〜12の圧縮強度測定用のテストピースを製作した。圧縮強度の測定は、JIS A 1108「コンクリートの圧縮強度試験方法」にしたがって行った。養生条件は標準養生28日とした。また、同時に表3に示す表面処理を施した鉄筋を中心部に挿入したφ100×200mmの中性化促進試験用のテストピースをNo.1〜12の各配合条件に付き2体製作した。養生条件は標準養生28日とした。中性化促進試験は、標準養生28日後のテストピースをCO2濃度5%、温度40℃、湿度60%RHの条件で91日間暴露後、1体を50mmピッチで輪切りしたものについて、中性化深さを測定し、その平均値より評価した。中性化深さの測定は、フェノールフタレイン1%溶液噴霧法によって、無変色部を中性化部とした。 According to the formulation shown in Table 3, the hydrated cured material was kneaded with a mixer, poured into a φ100 × 200 mm mold, cured, and blended No. Test pieces for measuring compressive strength of 1 to 12 were produced. The compressive strength was measured in accordance with JIS A 1108 “Concrete compressive strength test method”. The curing conditions were standard curing 28 days. At the same time, a test piece for a neutralization acceleration test of φ100 × 200 mm in which a reinforcing bar subjected to the surface treatment shown in Table 3 was inserted in the center was No. Two pieces were produced according to each blending condition of 1-12. The curing conditions were standard curing 28 days. The neutralization promotion test is a test piece that was exposed to a test piece after 28 days of standard curing for 91 days under conditions of CO 2 concentration 5%, temperature 40 ° C, and humidity 60% RH. The chemical depth was measured and evaluated from the average value. The neutralization depth was measured by using a phenolphthalein 1% solution spray method and setting the non-colored portion to the neutralized portion.

中性化促進試験を終えた試験体のうち輪切りにしなかったものを、耐塩害性試験に供した。耐塩害性試験は、60℃の3%NaCl水溶液に3日間浸漬した後に60℃、50%RHの恒温恒湿槽で4日間乾燥することを1サイクルとし、これを100サイクル繰り返した後に水和硬化体を破壊して鉄筋を取り出し、鉄筋を10mass%の水素クエン酸アンモニウム水溶液で除錆し、腐食面積率と最大腐食深さをマイクロメーターで測定した。   Of the specimens that had been subjected to the neutralization promotion test, those that were not cut into pieces were subjected to a salt damage resistance test. In the salt damage resistance test, one cycle consists of immersing in a 3% NaCl aqueous solution at 60 ° C. for 3 days and then drying in a constant temperature and humidity bath at 60 ° C. and 50% RH for one cycle. The hardened body was destroyed and the rebar was taken out. The rebar was derusted with a 10 mass% aqueous solution of ammonium hydrogen citrate, and the corrosion area ratio and the maximum corrosion depth were measured with a micrometer.

Figure 0004796424
Figure 0004796424

また、比較のために製鋼スラグおよび高炉スラグ微粉末を用いない、普通コンクリートのテストピースを作製した。表4に示す配合(No.13)によりコンクリートの材料をミキサで練り混ぜ、φ100×200mmの型枠に流し込み、養生して、圧縮強度測定用、中性化促進試験用および耐塩害性試験用のテストピースを製作した。圧縮強度測定用のテストピースの養生条件は標準養生28日とした。圧縮強度試験、中性化促進試験および耐塩害性試験は上記と同じように行なった。なお、骨材はJIS A 1145「骨材のアルカリシリカ反応性試験方法(化学法)」による試験において、「無害」と判定された良質なものを用いた。   For comparison, a test piece of ordinary concrete was prepared without using steelmaking slag and blast furnace slag fine powder. Mix the concrete material with the mixer shown in Table 4 (No. 13), pour it into a mold of φ100 × 200mm, and cure it for compressive strength measurement, neutralization promotion test, and salt damage resistance test The test piece was made. The curing conditions for the test pieces for compressive strength measurement were standard curing 28 days. The compressive strength test, neutralization acceleration test, and salt damage resistance test were performed in the same manner as described above. The aggregate used was a high-quality one determined to be “harmless” in the test according to JIS A 1145 “Aggregate Alkali Silica Reactivity Test Method (Chemical Method)”.

Figure 0004796424
Figure 0004796424

圧縮強度測定結果、中性化促進試験結果および耐塩害性試験結果を表3、4に併せて示す。製鋼スラグと高炉スラグ微粉末とを含有し、「ポルトランドセメント(kg/m3)+高炉セメント(kg/m3)×0.6+フライアッシュセメント(kg/m3)×0.85+消石灰(kg/m3)」(表3におけるNP+0.6BB+0.85FB+CHに相当)を55kg/m3以上含有する水和硬化体(配合No.1〜8)は、良質な骨材を用いた水結合材比(水セメント比)50%の配合No.13の普通コンクリートよりも中性化深さが小さく、耐塩害性試験後も内部の鉄筋に腐食は認められなかった。一方、これらに該当しない水和硬化体(配合No.9〜12)は、良質な骨材を用いた水結合材比(水セメント比)50%の普通コンクリート(配合No.13)よりも耐中性化性に劣り、耐塩害性試験後に鉄筋の腐食が認められた。 The compression strength measurement results, neutralization promotion test results, and salt damage resistance test results are also shown in Tables 3 and 4. Steelmaking slag and blast furnace slag fine powder, "Portland cement (kg / m 3 ) + blast furnace cement (kg / m 3 ) x 0.6 + fly ash cement (kg / m 3 ) x 0.85 + slaked lime (kg / M 3 ) ”(corresponding to NP + 0.6BB + 0.85FB + CH in Table 3) of 55 kg / m 3 or more, the hydrated cured product (formulation No. 1-8) is a water binder ratio using high-quality aggregates. (Water cement ratio) 50% formulation No. The neutralization depth was smaller than 13 ordinary concrete, and no corrosion was observed in the internal reinforcing bars even after the salt damage resistance test. On the other hand, hydrated hardened bodies (mixing Nos. 9 to 12) not corresponding to these are more resistant than ordinary concrete (mixing No. 13) with a water binder ratio (water cement ratio) of 50% using high-quality aggregates. It was inferior in neutralization property, and corrosion of the reinforcing bars was observed after the salt damage resistance test.

Claims (3)

鉄筋を内部に有する水和硬化体が、少なくとも、ポルトランドセメント、JIS R5213「フライアッシュセメント」に適合するB種のフライアッシュセメント、消石灰の中から選んだ1種または2種以上と、CaO/SiO2が質量比で1.5未満またはCaO濃度が25質量%未満の製鋼スラグと、高炉スラグ微粉末とフライアッシュとを含有し、「ポルトランドセメント(kg/m3フライアッシュセメント(kg/m3)×0.85+消石灰(kg/m3)」が55kg/m3以上であり、さらに前記鉄筋の表面に表面処理が施され、製鋼スラグの含有量が2239kg/m 3 以上であり、前記混合物中における高炉スラグ微粉末の含有量が100〜600kg/m 3 であることを特徴とする耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体。 A hydrated cured body having a reinforcing bar inside is at least one selected from Portland cement , B type fly ash cement suitable for JIS R5213 “fly ash cement” , slaked lime, and CaO / SiO 2 2 containing steelmaking slag having a mass ratio of less than 1.5 or CaO concentration of less than 25% by mass, blast furnace slag fine powder and fly ash , “Portland cement (kg / m 3 ) + fly ash cement (kg / m 3 ) × 0.85 + slaked lime (kg / m 3 ) ”is 55 kg / m 3 or more, the surface of the reinforcing bar is further surface-treated , and the steelmaking slag content is 2239 kg / m 3 or more, the content of ground granulated blast furnace slag in the mixture is excellent in耐中resistance resistance and salt damage resistance, which is a 100~600kg / m 3 Hydrated hardened body having a muscle. 鉄筋の表面処理が、燐酸鉄処理、燐酸亜鉛処理、燐酸亜鉛カルシウム処理、燐酸マグネシウム処理、燐酸カルシウム処理および亜鉛めっきのいずれかであることを特徴とする請求項1に記載の耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体。 2. The neutralization resistance according to claim 1 , wherein the surface treatment of the reinforcing bars is any one of iron phosphate treatment, zinc phosphate treatment, zinc calcium phosphate treatment, magnesium phosphate treatment, calcium phosphate treatment and galvanization. And a hydrated hardened body having a reinforcing bar with excellent salt damage resistance. 耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体の製造方法であって、鉄筋を内部に有する水和硬化体が、「ポルトランドセメント(kg/m3フライアッシュセメント(kg/m3)×0.85+消石灰(kg/m3)」が55kg/m3以上になるように、少なくとも、ポルトランドセメント、JIS R5213「フライアッシュセメント」に適合するB種のフライアッシュセメント、消石灰の中から選んだ1種または2種以上と、CaO/SiO2が質量比で1.5未満またはCaO濃度が25質量%未満の製鋼スラグと、高炉スラグ微粉末とフライアッシュとを水と混合し、得られた混合物を硬化するステップを含み、前記鉄筋の表面に表面処理が施され、製鋼スラグの含有量が2239kg/m 3 以上であり、前記混合物中における高炉スラグ微粉末の含有量が100〜600kg/m 3 であることを特徴とする耐中性化性および耐塩害性に優れた鉄筋を有する水和硬化体の製造方法。 A method for producing a hydrated hardened body having a reinforcing bar excellent in neutralization resistance and salt damage resistance, wherein the hydrated hardened body having a reinforcing bar inside is “Portland cement (kg / m 3 ) + fly ash cement” (Kg / m 3 ) × 0.85 + slaked lime (kg / m 3 ) ”is a B type fly ash cement suitable for at least Portland cement , JIS R5213“ fly ash cement ” so as to be 55 kg / m 3 or more. One or more selected from slaked lime, steelmaking slag with a CaO / SiO 2 mass ratio of less than 1.5 or a CaO concentration of less than 25% by mass, fine blast furnace slag powder and fly ash are mixed with water. And the step of curing the resulting mixture, the surface of the reinforcing bar is subjected to surface treatment , and the steelmaking slag content is 2239 kg / m 3 or more, Method for producing a hydrated cured product having耐中resistance resistance and salt damage excellent in reinforcing bars, wherein the amount of ground granulated blast furnace slag in the compound in is 100~600kg / m 3.
JP2006097638A 2006-03-31 2006-03-31 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same Active JP4796424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006097638A JP4796424B2 (en) 2006-03-31 2006-03-31 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097638A JP4796424B2 (en) 2006-03-31 2006-03-31 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007269562A JP2007269562A (en) 2007-10-18
JP4796424B2 true JP4796424B2 (en) 2011-10-19

Family

ID=38672740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097638A Active JP4796424B2 (en) 2006-03-31 2006-03-31 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4796424B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725005A (en) * 2015-02-04 2015-06-24 贵州开磷集团股份有限公司 Jade-imitated decorative plate made of phosphogypsum base material and preparation method of jade-imitated decorative plate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732690B2 (en) * 2008-05-07 2015-06-10 国立大学法人宇都宮大学 Hydraulic composition and concrete using the hydraulic composition
JP6318846B2 (en) * 2014-05-23 2018-05-09 宇部興産株式会社 Low carbon neutralization mortar and method for producing the same
CN104761224B (en) * 2015-02-04 2017-05-31 贵州开磷磷石膏综合利用有限公司 Imitative porcelain wall brick of a kind of ardealite base material and preparation method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233539A (en) * 1989-03-06 1990-09-17 Kobe Steel Ltd Slag block
JPH09125259A (en) * 1995-11-07 1997-05-13 Kawasaki Steel Corp Surface treated steel sheet for welded can
JP3582263B2 (en) * 1996-11-21 2004-10-27 Jfeスチール株式会社 Hydrated product using steelmaking slag
JP3433077B2 (en) * 1997-11-26 2003-08-04 新日本製鐵株式会社 Steel for concrete structure
JP4736157B2 (en) * 2000-03-24 2011-07-27 Jfeスチール株式会社 Solidification method of steelmaking slag
JP3654122B2 (en) * 2000-03-28 2005-06-02 Jfeスチール株式会社 Method for producing hardened slag
JP4560887B2 (en) * 2000-05-09 2010-10-13 Jfeスチール株式会社 Underwater hardened body made from steelmaking slag
JP4003387B2 (en) * 2000-06-09 2007-11-07 住友金属工業株式会社 Anticorrosion surface treatment method and anticorrosion surface treatment steel material and method of using the same
JP2002047052A (en) * 2000-07-31 2002-02-12 Nc Kk Concrete and method of producing the same
JP2003165751A (en) * 2001-11-28 2003-06-10 Nkk Corp Hydraulic composition and hydrated hardened body
JP2003306359A (en) * 2002-04-17 2003-10-28 Jfe Steel Kk Cement composition and hydrated hardened body
JP3816036B2 (en) * 2002-07-19 2006-08-30 電気化学工業株式会社 Cement admixture, cement composition and mortar or concrete using the same
JP3844457B2 (en) * 2002-07-19 2006-11-15 電気化学工業株式会社 Cement admixture and cement composition
JP2004124204A (en) * 2002-10-04 2004-04-22 Haruken Sangyo Kk Rust prevention/corrosion prevention method and rust prevention/corrosion prevention coating
JP2004149333A (en) * 2002-10-29 2004-05-27 Port & Airport Research Institute Concrete structure suitable for deposition and breeding of marine life and method for suppressing corrosion of steel bar in concrete structure
JP4438307B2 (en) * 2003-03-28 2010-03-24 Jfeスチール株式会社 How to select steelmaking slag for hardened slag
JP4255726B2 (en) * 2003-03-28 2009-04-15 新日本製鐵株式会社 Method for determining expansion stability of solidified material containing steelmaking slag
JP4558281B2 (en) * 2003-03-28 2010-10-06 新日本製鐵株式会社 Solidified body manufacturing method
JP4427375B2 (en) * 2004-04-12 2010-03-03 新日本製鐵株式会社 Concrete and reinforced concrete structures using blast furnace cement with excellent resistance to neutralization.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725005A (en) * 2015-02-04 2015-06-24 贵州开磷集团股份有限公司 Jade-imitated decorative plate made of phosphogypsum base material and preparation method of jade-imitated decorative plate

Also Published As

Publication number Publication date
JP2007269562A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4796424B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP5259094B2 (en) Hydrated hardened body with rebar and excellent resistance to neutrality
JP4827585B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4796419B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791231B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4827580B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
KR100561233B1 (en) Ready mixed concrete contained watertight, inorganic, crack decreasing matter
JP4791200B2 (en) Hydrated cured body and method for producing the same
JP4827584B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4796402B2 (en) Hydrated cured body and method for producing the same
JP5651055B2 (en) Cement admixture and cement composition
JPS61256952A (en) Steel material preventive concret, mortar and cement
JP4791228B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4827548B2 (en) Hydrated cured body
JP4796423B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791227B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4882258B2 (en) Hydrated hardened body with rebar having excellent salt resistance
JP4796420B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791226B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4882257B2 (en) Hydrated hardened body with rebar having excellent salt resistance
JP4827581B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance
JP4791230B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP2006273689A (en) Hydrated hardened body containing reinforcing bar excellent in salt damage resistance
JP4796421B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JPH0649604B2 (en) Hydraulic material composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20081225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110729

R150 Certificate of patent or registration of utility model

Ref document number: 4796424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250