JP2012201522A - Cement admixture and cement composition - Google Patents
Cement admixture and cement composition Download PDFInfo
- Publication number
- JP2012201522A JP2012201522A JP2011065162A JP2011065162A JP2012201522A JP 2012201522 A JP2012201522 A JP 2012201522A JP 2011065162 A JP2011065162 A JP 2011065162A JP 2011065162 A JP2011065162 A JP 2011065162A JP 2012201522 A JP2012201522 A JP 2012201522A
- Authority
- JP
- Japan
- Prior art keywords
- cement
- iron powder
- iron
- cement admixture
- oxygen scavenger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004568 cement Substances 0.000 title claims abstract description 74
- 239000000203 mixture Substances 0.000 title claims abstract description 42
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 94
- 239000000843 powder Substances 0.000 claims abstract description 41
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000011575 calcium Substances 0.000 claims abstract description 11
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 11
- 150000001875 compounds Chemical class 0.000 claims abstract description 11
- 229940123973 Oxygen scavenger Drugs 0.000 claims description 39
- 238000002156 mixing Methods 0.000 claims description 23
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 17
- 239000003792 electrolyte Substances 0.000 claims description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 31
- 230000000694 effects Effects 0.000 abstract description 30
- -1 iron ion Chemical class 0.000 abstract description 22
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 abstract description 22
- 230000002265 prevention Effects 0.000 abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 16
- 229910001424 calcium ion Inorganic materials 0.000 abstract description 13
- 238000002386 leaching Methods 0.000 abstract description 12
- 229910052742 iron Inorganic materials 0.000 abstract description 9
- 238000000227 grinding Methods 0.000 abstract description 3
- 238000005507 spraying Methods 0.000 abstract description 3
- 230000000903 blocking effect Effects 0.000 abstract description 2
- 238000000151 deposition Methods 0.000 abstract description 2
- 238000001764 infiltration Methods 0.000 abstract 1
- 230000008595 infiltration Effects 0.000 abstract 1
- 230000002787 reinforcement Effects 0.000 abstract 1
- 239000007921 spray Substances 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 22
- 239000003153 chemical reaction reagent Substances 0.000 description 20
- 239000007864 aqueous solution Substances 0.000 description 18
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 18
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical group [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 17
- 239000000292 calcium oxide Substances 0.000 description 17
- 235000012255 calcium oxide Nutrition 0.000 description 17
- 238000001035 drying Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 14
- 239000004567 concrete Substances 0.000 description 14
- 238000001816 cooling Methods 0.000 description 14
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 230000035515 penetration Effects 0.000 description 11
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 8
- 229910000019 calcium carbonate Inorganic materials 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- 239000004570 mortar (masonry) Substances 0.000 description 7
- 230000001629 suppression Effects 0.000 description 7
- 230000003014 reinforcing effect Effects 0.000 description 6
- 150000003839 salts Chemical group 0.000 description 6
- 238000010583 slow cooling Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 5
- 239000000920 calcium hydroxide Substances 0.000 description 5
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000002893 slag Substances 0.000 description 5
- 239000011398 Portland cement Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000003635 deoxygenating effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 229940126062 Compound A Drugs 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 2
- 239000002956 ash Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000007798 antifreeze agent Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- SHFAFEZLBIWABL-UHFFFAOYSA-L disilver 2-(3-oxido-6-oxoxanthen-9-yl)benzoate Chemical compound [Ag+].[Ag+].[O-]C(=O)c1ccccc1-c1c2ccc([O-])cc2oc2cc(=O)ccc12 SHFAFEZLBIWABL-UHFFFAOYSA-L 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000011372 high-strength concrete Substances 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- IDNHOWMYUQKKTI-UHFFFAOYSA-M lithium nitrite Chemical compound [Li+].[O-]N=O IDNHOWMYUQKKTI-UHFFFAOYSA-M 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver nitrate Substances [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、主に、土木・建築業界において使用されるセメント混和材及びセメント組成物に関する。 The present invention mainly relates to a cement admixture and a cement composition used in the civil engineering and construction industries.
近年、土木や建築分野において、コンクリート構造物の耐久性向上に対する要望が高まっている。 In recent years, there has been an increasing demand for improving the durability of concrete structures in the civil engineering and construction fields.
コンクリート構造物の劣化要因の1つとして、塩化物イオンの存在によって鉄筋腐食が顕在化する塩害があり、その塩害を抑制するための方法として、コンクリート構造物に塩化物イオン浸透抵抗性を付与する手法がある。 As one of the deterioration factors of concrete structures, there is salt damage in which reinforcing steel corrosion becomes obvious due to the presence of chloride ions, and as a method to suppress the salt damage, imparts chloride ion penetration resistance to concrete structures. There is a technique.
コンクリート硬化体の内部への塩化物イオン浸透を抑制し、塩化物イオン浸透抵抗性を与える方法としては、水/セメント比を小さくする方法が知られている(非特許文献1参照)。しかしながら、水/セメント比を小さくする方法では、施工性が損なわれるだけでなく、抜本的な対策とはならない場合があった。 As a method for suppressing chloride ion penetration into the inside of a hardened concrete and imparting chloride ion penetration resistance, a method of reducing the water / cement ratio is known (see Non-Patent Document 1). However, in the method of reducing the water / cement ratio, not only the workability is impaired but also a drastic measure may not be provided.
また、セメントコンクリートに早強性を付与し、かつ、鉄筋の腐食を防止するなどの目的で、CaO・2Al2O3とセッコウを主体とし、ブレーン比表面積値が8,000cm2/g以上の微粉を含有するセメント混和材を使用する方法が提案されている(特許文献1参照)。 In addition, for the purpose of imparting early strength to cement concrete and preventing corrosion of reinforcing bars, the main component is CaO.2Al 2 O 3 and gypsum, and the Blaine specific surface area value is 8,000 cm 2 / g or more. A method of using a cement admixture containing fine powder has been proposed (see Patent Document 1).
さらに、CaO/Al2O3 モル比が0.3〜0.7、ブレーン比表面積が2000〜7000cm2/gのカルシウムアルミネートを含有するセメント混和材を使用し、優れた塩化物イオン浸透抵抗性を持ち,マスコンの温度ひび割れ抑制する方法が提案されている(特許文献2参照)。しかしながら、これらの混和材は初期の強度発現を阻害するため初期に十分な養生を必要とする課題を有していた。 Furthermore, using a cement admixture containing calcium aluminate with a CaO / Al 2 O 3 molar ratio of 0.3 to 0.7 and a Blaine specific surface area of 2000 to 7000 cm 2 / g, excellent chloride ion penetration resistance A method for suppressing temperature cracks in mascons has been proposed (see Patent Document 2). However, these admixtures have a problem of requiring sufficient curing at an early stage in order to inhibit the initial strength development.
一方、鉄粉や鉄塊を混和したセメント組成物が高強度コンクリートや重量コンクリートとして利用されている(特許文献3参照)。しかしながら、これらの鉄粉は単に重量骨材として利用されているだけであり、セメント組成物の耐久性を向上させる効果はなかった。 On the other hand, a cement composition in which iron powder or iron ingot is mixed is used as high-strength concrete or heavy concrete (see Patent Document 3). However, these iron powders are merely used as heavy aggregates and have no effect of improving the durability of the cement composition.
他方、鉄筋の防錆を目的として、亜硝酸塩などを添加する方法も提案されている(特許文献4、特許文献5参照)。しかしながら、亜硝酸塩は、防錆効果を発揮するものの、外部から侵入する塩化物イオンの遮蔽効果を発揮するものではなく、また、亜硝酸型ハイドロカルマイトは、防錆効果を発揮するものの、これを混和したセメント硬化体が多孔質になりやすく、むしろ、外部からの塩化物イオンの浸透を許容しやすいという課題を有していた。 On the other hand, a method of adding nitrite or the like has also been proposed for the purpose of rust prevention of reinforcing bars (see Patent Document 4 and Patent Document 5). However, although nitrite exhibits a rust prevention effect, it does not exert a shielding effect against chloride ions entering from the outside, and nitrite hydrocalumite exhibits a rust prevention effect. However, the hardened cement paste containing the material tends to be porous, but rather has a problem that it easily allows permeation of chloride ions from the outside.
本発明者らは、種々検討を重ねた結果、特定の組成を用いることにより、前述のような初期強度の低下と、塩化物イオンの遮蔽効果および鉄筋の腐食の課題を解決し、高耐久性のセメント混和材が得られる知見を得て、本発明を完成するに至った。 As a result of various studies, the present inventors have solved the problems of the initial strength reduction, chloride ion shielding effect, and corrosion of reinforcing bars by using a specific composition, and high durability. As a result, the present invention was completed.
セメントコンクリート硬化体内部の鉄筋に優れた防錆効果を付与し、外部から侵入するセメントコンクリート硬化体への塩化物イオン浸透の遮蔽効果を有し、セメントコンクリート硬化体からのCaイオンの溶脱も少ないため多孔化も抑制でき、さらに発生したひび割れを自ら閉塞する自己治癒効果を有するセメント組成物を提供する。 Provides excellent rust prevention effect to the reinforcing steel bars inside the hardened cement concrete, has the effect of shielding chloride ions from entering the hardened cement concrete, and less leaching of Ca ions from the hardened cement concrete Therefore, it is possible to provide a cement composition that can suppress porosity and further has a self-healing effect that blocks generated cracks by itself.
本発明は、(1)CaO/Al2O3モル比が0.15〜0.7でFe2O3の含有量が0.5〜20質量%のカルシウムフェロアルミネート化合物と脱酸素剤を含有するセメント混和材、(2)カルシウムフェロアルミネート化合物の粉末度が、ブレーン比表面積値で2,000〜7,000cm2/gである(1)のセメント混和材、(3)脱酸素剤が、還元鉄粉を含有してなる請求項1または請求項2に記載のセメント混和材、(4)脱酸素剤が、さらに電解質を含有する(3)のセメント混和材、(5)カルシウムフェロアルミネート化合物と脱酸素剤との配合割合が、質量比で10/1〜1/10である(1)〜(4)のうちのいずれかのセメント混和材、(6)セメントと、(1)〜(5)のうちのいずれかのセメント混和材を含有するセメント組成物、(7)セメントとCaO/Al2O3モル比が0.15〜0.7でFe2O3の含有量が0.5〜20質量%のブレーン比表面積値で2,000〜7,000cm2/gであるカルシウムフェロアルミネート化合物と脱酸素剤を含有してなるセメント組成物、である。 The present invention provides (1) a calcium ferroaluminate compound having a CaO / Al 2 O 3 molar ratio of 0.15 to 0.7 and an Fe 2 O 3 content of 0.5 to 20% by mass and an oxygen scavenger. A cement admixture containing (2) a cement admixture of (1) having a fineness of the calcium ferroaluminate compound of 2,000 to 7,000 cm 2 / g in terms of Blaine specific surface area; 3. The cement admixture according to claim 1 or 2, comprising reduced iron powder, (4) the oxygen adsorbent further containing an electrolyte, (3) cement admixture, (5) calcium ferro The cement admixture of any one of (1) to (4), wherein the blending ratio of the aluminate compound and the oxygen scavenger is 10/1 to 1/10 by mass ratio, (6) cement, (1 ) To (5) Cement compositions containing wood, (7) cement and CaO / Al 2 O 3 molar ratio of Fe 2 content of O 3 is Blaine specific surface area value of 0.5 to 20 wt% with 0.15 to 0.7 A cement composition comprising a calcium ferroaluminate compound and an oxygen scavenger, which is 2,000 to 7,000 cm 2 / g.
本発明のセメント混和材を使用することにより、優れた防錆効果と、外部から侵入する塩化物イオンの遮蔽効果を持ち、セメントコンクリート硬化体からのCaイオンの溶脱も少ないことから、多孔化も抑制でき、さらに発生したひび割れを自ら閉塞する自己治癒効果を有するため、長期に渡り優れた遮塩性を発揮するなどの効果を奏する。 By using the cement admixture of the present invention, it has an excellent rust prevention effect and a shielding effect of chloride ions entering from the outside, and less leaching of Ca ions from the hardened cement concrete, so that it can be made porous. Further, since it has a self-healing effect of blocking the generated cracks by itself, it exerts an effect of exhibiting excellent salt barrier properties for a long period of time.
以下、本発明を詳細に説明する。
なお、本発明における部や%は、特に規定しない限り質量基準で示す。
また、本発明で云うセメントコンクリートとは、セメントペースト、セメントモルタル、及びコンクリートの総称である。
Hereinafter, the present invention will be described in detail.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.
The cement concrete referred to in the present invention is a general term for cement paste, cement mortar, and concrete.
本発明で使用するカルシウムフェロアルミネート化合物(以下、CFA化合物という)とは、カルシアを含む原料、アルミナを含む原料、フェライトを含む原料等を混合して、キルンでの焼成や電気炉での溶融等の熱処理をして得られる、CaO、Al2O3、Fe2O3を主成分とする化合物を総称するものである。
CFA化合物の組成は、CaO/Al2O3モル比が0.15〜0.7でFe2O3含有量が0.5〜20%である。CaO/Al2O3モル比が0.4〜0.6がより好ましく、0.15未満では、塩化物イオンの遮蔽効果が充分に得られない場合があり、逆に、0.7を超えると急硬性が現れるようになり、可使時間が確保できない場合がある。
CFA化合物にFe2O3の含有量は、0.5〜20%が好ましく、1〜10%がより好ましく、3〜7%が最も好ましい。0.5%未満では、キルンで焼成した場合に未反応の酸化アルミニウムが多く残る可能性があり、20%を越えても効率的に反応を進行させる効果は頭うちとなり、塩化物イオン浸透抵抗性が悪くなる場合がある。
The calcium ferroaluminate compound (hereinafter referred to as CFA compound) used in the present invention is a mixture of a raw material containing calcia, a raw material containing alumina, a raw material containing ferrite, etc., and firing in a kiln or melting in an electric furnace. This is a generic term for compounds obtained by heat treatment such as CaO, Al 2 O 3 , and Fe 2 O 3 as main components.
The composition of the CFA compound is such that the CaO / Al 2 O 3 molar ratio is 0.15 to 0.7 and the Fe 2 O 3 content is 0.5 to 20%. The CaO / Al 2 O 3 molar ratio is more preferably 0.4 to 0.6. If the CaO / Al 2 O 3 molar ratio is less than 0.15, the chloride ion shielding effect may not be sufficiently obtained. In some cases, rapid hardening will appear and the pot life cannot be secured.
The content of Fe 2 O 3 in the CFA compound is preferably 0.5 to 20%, more preferably 1 to 10%, and most preferably 3 to 7%. If it is less than 0.5%, a large amount of unreacted aluminum oxide may remain when calcined in the kiln, and even if it exceeds 20%, the effect of allowing the reaction to proceed efficiently becomes a head, and chloride ion penetration resistance. May be worse.
CFA化合物の粉末度は、ブレーン比表面積値(以下、ブレーン値という)で2,000〜7,000cm2/gが好ましく、3,000〜6,000cm2/gがより好ましく、4,000〜5,000cm2/gが最も好ましい。CFA化合物が粗粒では充分な塩化物イオンの遮蔽効果が得られない場合があり、7,000cm2/gを超える微粉では急硬性が現れるようになり、可使時間が確保できない場合がある。 Fineness of CFA compounds, Blaine specific surface area value (hereinafter, referred to as Blaine value) is preferably 2,000~7,000cm 2 / g, the more preferably 3,000~6,000cm 2 / g, 4,000~ Most preferred is 5,000 cm 2 / g. If the CFA compound is coarse, a sufficient chloride ion shielding effect may not be obtained, and if it exceeds 7,000 cm 2 / g, rapid hardening will appear and the pot life may not be secured.
本発明では、CaO/Al2O3モル比が0.15〜0.7でFe2O3含有量が0.5〜20%のCFA化合物と脱酸素剤を併用する。
本発明の脱酸素剤とは、特に限定されるものではないが、例えば、鉄鉱石を還元、粉砕して得られる海綿鉄粉、鉄イオン溶液から電気的に鉄を析出させて得られる電解鉄粉、溶鉱を水中または油中に噴霧して得られる噴霧(アトマイズ)鉄粉、及び、鉄塊を破砕または研削して得られる破砕鉄粉などが挙げられ、本発明では、これらを還元鉄粉と云う。
その他、脱酸素剤としては有機物を主剤とした、例えば、L−アスコルビン酸、エルソルビン酸及びそれらの塩、グルコースなどの還元性糖類、カテコール、ピロガロールなどの還元性多価フェノール類、エチレングリコール、グリセリンなどの多価アルコール類を用いたものなどが挙げられる。
脱酸素剤は、鉄筋の腐食の原因の一つである酸素を吸収し、酸化することで犠牲陽極材として作用し、鉄筋の腐食を防止する。さらに酸化することで体積膨張し、セメント硬化体を緻密化することでその後の塩化物の侵入も防ぐことが出来る。
本発明の脱酸素剤には、電解質を助剤として還元鉄粉に配合するのが好ましい。電解質は特に限定されるものではないが、金属のハロゲン化物、炭酸塩、硫酸塩、水酸化物などが挙げられ、いずれのものも使用可能である。
電解質の配合量は特に限定されるものではないが、還元鉄粉100部に対して0.1〜10部が好ましく、0.2〜4部がより好ましい。電解質量が前記の範囲より少ない場合には酸素吸収速度が遅くなり、一方、前記の範囲より多い場合には吸湿して水分が鉄粉表面を覆ってしまい、酸素との反応を阻害する場合がある。
電解質の配合方法は、還元鉄粉と電解質とを単に機械的に混合しても良いが、還元鉄粉表面に電解質水溶液を散布・乾燥させる方法、あるいは、還元鉄粉と電解質水溶液を混合し、これを乾燥させる方法により鉄粉に付着させることが好ましい。
In the present invention, a CFA compound having a CaO / Al 2 O 3 molar ratio of 0.15 to 0.7 and an Fe 2 O 3 content of 0.5 to 20% and an oxygen scavenger are used in combination.
Although the oxygen scavenger of the present invention is not particularly limited, for example, sponge iron powder obtained by reducing and grinding iron ore, electrolytic iron obtained by electrically depositing iron from an iron ion solution Examples thereof include atomized iron powder obtained by spraying powder, molten ore into water or oil, and crushed iron powder obtained by crushing or grinding an iron lump. In the present invention, these are reduced iron. It is called powder.
In addition, as an oxygen scavenger, organic substances are mainly used, for example, L-ascorbic acid, ersorbic acid and salts thereof, reducing sugars such as glucose, reducing polyphenols such as catechol and pyrogallol, ethylene glycol, glycerin. And the like using polyhydric alcohols such as
The oxygen scavenger absorbs oxygen, which is one of the causes of corrosion of reinforcing bars, and oxidizes it to act as a sacrificial anode material to prevent corrosion of reinforcing bars. Furthermore, volume expansion is achieved by oxidation, and subsequent cementation can be prevented by densifying the cement hardened body.
The oxygen scavenger of the present invention is preferably blended with the reduced iron powder using an electrolyte as an auxiliary agent. The electrolyte is not particularly limited, and examples thereof include metal halides, carbonates, sulfates and hydroxides, and any of them can be used.
Although the compounding quantity of electrolyte is not specifically limited, 0.1-10 parts are preferable with respect to 100 parts of reduced iron powder, and 0.2-4 parts are more preferable. When the electrolytic mass is less than the above range, the oxygen absorption rate is slow, while when it is more than the above range, moisture is absorbed and moisture covers the surface of the iron powder, which may inhibit the reaction with oxygen. is there.
The compounding method of the electrolyte may be simply mechanically mixing the reduced iron powder and the electrolyte, but the method of spraying and drying the aqueous electrolyte solution on the surface of the reduced iron powder, or mixing the reduced iron powder and the aqueous electrolyte solution, It is preferable to adhere this to the iron powder by a method of drying it.
本発明のCFA化合物と脱酸素剤との配合割合は、質量比で10/1〜1/10が好ましく、1/5〜5/1がより好ましい。1/10よりも脱酸素剤が過剰になると、外部から侵入する塩化物イオンの遮蔽効果が充分でない場合があり、逆に、10/1よりもCFA化合物が過剰になると、防錆効果が不充分になる場合がある。 The blending ratio of the CFA compound and the oxygen scavenger of the present invention is preferably 10/1 to 1/10, more preferably 1/5 to 5/1, in terms of mass ratio. If the oxygen scavenger exceeds 1/10, the shielding effect of chloride ions entering from the outside may not be sufficient, and conversely, if the CFA compound exceeds 10/1, the rust preventive effect will be insufficient. It may be enough.
本発明で使用するセメントとしては、普通、早強、超早強、低熱、及び中庸熱などの各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、石灰石粉末や高炉徐冷スラグ微粉末などを混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)などのポルトランドセメントが挙げられ、これらのうちの一種又は二種以上が使用可能である。 As the cement used in the present invention, various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, various mixed cements obtained by mixing these portland cements with blast furnace slag, fly ash, or silica, Portland cement such as filler cement mixed with limestone powder and blast furnace slow-cooled slag fine powder, as well as environmentally friendly cement (eco-cement) manufactured from municipal waste incineration ash and sewage sludge incineration ash, etc. 1 type or 2 types or more can be used.
セメント混和材の使用量は特に限定されるものではないが、通常、セメントとセメント混和材からなるセメント組成物100部中、1〜30部が好ましく、5〜20部がより好ましい。セメント混和材の使用量が少ないと充分な防錆効果、塩化物イオンの遮蔽効果、Caイオンの溶脱抑制効果が得られない場合があり、過剰に使用すると急硬性が現れるようになり、充分な可使時間が確保できない場合がある。 Although the usage-amount of a cement admixture is not specifically limited, Usually, 1-30 parts are preferable in a cement composition which consists of a cement and a cement admixture, and 5-20 parts are more preferable. If the amount of cement admixture is small, sufficient rust prevention effect, chloride ion shielding effect, Ca ion leaching suppression effect may not be obtained, and if used excessively, rapid hardening will appear and sufficient The pot life may not be secured.
本発明では、セメントとセメント混和材を配合して、また、セメント、CFA化合物と脱酸素剤を配合してセメント組成物とする。 In the present invention, cement and a cement admixture are blended, and cement, a CFA compound, and an oxygen scavenger are blended to obtain a cement composition.
本発明のセメント組成物の水/セメント組成物比は、25〜70%が好ましく、30〜65%がより好ましい。水の配合量が少ないと、ポンプ圧送性や施工性が低下したり、収縮などの原因となる場合があり、水の配合量が過剰では強度発現性が低下する場合がある。ここで結合材とは、セメント、CFA化合物及び脱酸素剤の合計をいう。 The water / cement composition ratio of the cement composition of the present invention is preferably 25 to 70%, more preferably 30 to 65%. If the blending amount of water is small, the pumpability and workability may be reduced or shrinkage may be caused. If the blending amount of water is excessive, strength development may be degraded. Here, the binder means the total of cement, CFA compound and oxygen scavenger.
本発明のセメント混和材やセメント組成物は、それぞれの材料を施工時に混合しても良いし、あらかじめ一部あるいは全部を混合しておいても差し支えない。 In the cement admixture and cement composition of the present invention, the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance.
本発明では、セメント、セメント混和材、及び砂などの細骨材や砂利などの粗骨材の他に、膨張材、急硬材、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、従来の防錆剤、防凍剤、収縮低減剤、凝結調整剤、ベントナイトなどの粘土鉱物、ハイドロタルサイトなどのアニオン交換体、高炉水砕スラグ微粉末や高炉徐冷スラグ微粉末などのスラグ、石灰石微粉末などの混和材料からなる群のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で併用することが可能である。 In the present invention, in addition to cement, cement admixture, and fine aggregates such as sand and coarse aggregates such as gravel, expansion material, quick hard material, water reducing agent, AE water reducing agent, high performance water reducing agent, high performance AE Water reducing agent, antifoaming agent, thickening agent, conventional rust inhibitor, antifreeze agent, shrinkage reducing agent, setting modifier, clay minerals such as bentonite, anion exchanger such as hydrotalcite, granulated blast furnace slag fine powder It is possible to use one or two or more of the group consisting of slag such as blast furnace annealed slag fine powder and admixture materials such as limestone fine powder within a range that does not substantially impair the object of the present invention.
混合装置としては、既存の如何なる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、及びナウタミキサ等の使用が可能である。 As the mixing device, any existing device can be used, and for example, a tilting mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer can be used.
以下、実施例、比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an example and a comparative example are given and the contents are explained in detail, the present invention is not limited to these.
「実験例1」
表1に示すCFA化合物と脱酸素剤アを、質量比2/1で混合してセメント混和材を調製した。調製したセメント混和材を用いて、セメントとセメント混和材からなるセメント組成物100部中、セメント混和材15部を配合してセメント組成物を調製し、水/結合材比0.5のモルタルをJIS R 5201に準じて調製した。このモルタルの硬化体を用いて、防錆効果、圧縮強さ、塩化物浸透深さ、Caイオンの溶脱および自己治癒能力を調べた。結果を表1に併記する。
"Experiment 1"
CFA compounds and oxygen scavengers shown in Table 1 were mixed at a mass ratio of 2/1 to prepare a cement admixture. Using the prepared cement admixture, a cement composition was prepared by blending 15 parts of cement admixture in 100 parts of cement composition consisting of cement and cement admixture, and adding a mortar with a water / binder ratio of 0.5. It was prepared according to JIS R 5201. Using the cured mortar, the rust prevention effect, compressive strength, chloride penetration depth, Ca ion leaching and self-healing ability were examined. The results are also shown in Table 1.
(使用材料)
CFA化合物A:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定割合で配合し、Fe2O3含有量が3%となるように試薬1級の酸化鉄を配合し、1550℃で電気炉において焼成した後、徐冷して合成。CaO/Al2O3モル比0.1、ブレーン値4,000cm2/g
CFA化合物B:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定割合で配合し、Fe2O3含有量が3%となるように試薬1級の酸化鉄を配合し、1550℃で電気炉において焼成した後、徐冷して合成。CaO/Al2O3モル比0.15、ブレーン値4,000cm2/g
CFA化合物C:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定割合で配合し、Fe2O3含有量が3%となるように試薬1級の酸化鉄を配合し、1500℃で電気炉において焼成した後、徐冷して合成。CaO/Al2O3モル比0.15、ブレーン値4,000cm2/g
CFA化合物D:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定割合で配合し、Fe2O3含有量が3%となるように試薬1級の酸化鉄を配合し、1450℃で電気炉において焼成した後、徐冷して合成。CaO/Al2O3モル比0.6、ブレーン値4,000cm2/g
CFA化合物E:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定割合で配合し、Fe2O3含有量が3%となるように試薬1級の酸化鉄を配合し、1400℃で電気炉において焼成した後、徐冷して合成。CaO/Al2O3モル比0.7、ブレーン値4,000cm2/g
CFA化合物F:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定割合で配合し、Fe2O3含有量が3%となるように試薬1級の酸化鉄を配合し、1400℃で電気炉において焼成した後、徐冷して合成。CaO/Al2O3モル比0.9、ブレーン値4,000cm2/g
CFA化合物G:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定割合で配合し、Fe2O3成分は配合せずに、1550℃で電気炉において焼成した後、徐冷して合成。CaO/Al2O3モル比0.6、ブレーン値4,000cm2/g
脱酸素剤ア:海綿鉄粉100部と臭化ナトリウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
セメント:普通ポルトランドセメント、市販品
細骨材:JIS R 5201で使用する標準砂
水:水道水
(Materials used)
CFA Compound A: Reagent primary calcium carbonate and reagent primary aluminum oxide are blended at a predetermined ratio, and reagent primary iron oxide is blended so that the Fe 2 O 3 content is 3%, at 1550 ° C. After firing in an electric furnace, it is synthesized by slow cooling. CaO / Al 2 O 3 molar ratio 0.1, Blaine value 4,000 cm 2 / g
CFA Compound B: Reagent primary calcium carbonate and reagent primary aluminum oxide are blended at a predetermined ratio, and reagent primary iron oxide is blended so that the Fe 2 O 3 content is 3%, at 1550 ° C. After firing in an electric furnace, it is synthesized by slow cooling. CaO / Al 2 O 3 molar ratio 0.15, Blaine value 4,000 cm 2 / g
CFA compound C: Reagent primary calcium carbonate and reagent primary aluminum oxide are blended at a predetermined ratio, and reagent primary iron oxide is blended so that the Fe 2 O 3 content is 3%. At 1500 ° C. After firing in an electric furnace, it is synthesized by slow cooling. CaO / Al 2 O 3 molar ratio 0.15, Blaine value 4,000 cm 2 / g
CFA compound D: Reagent primary calcium carbonate and reagent primary aluminum oxide are blended at a predetermined ratio, and reagent primary iron oxide is blended so that the Fe 2 O 3 content is 3%, at 1450 ° C. After firing in an electric furnace, it is synthesized by slow cooling. CaO / Al 2 O 3 molar ratio 0.6, Blaine value 4,000 cm 2 / g
CFA compound E: Reagent primary calcium carbonate and reagent primary aluminum oxide are mixed at a predetermined ratio, and reagent primary iron oxide is mixed so that the Fe 2 O 3 content is 3%. After firing in an electric furnace, it is synthesized by slow cooling. CaO / Al 2 O 3 molar ratio 0.7, Blaine value 4,000 cm 2 / g
CFA compound F: Reagent primary calcium carbonate and reagent primary aluminum oxide are mixed at a predetermined ratio, and reagent primary iron oxide is mixed so that the Fe 2 O 3 content is 3%. After firing in an electric furnace, it is synthesized by slow cooling. CaO / Al 2 O 3 molar ratio 0.9, Blaine value 4,000 cm 2 / g
CFA compound G: Reagent primary calcium carbonate and reagent primary aluminum oxide are blended at a predetermined ratio, and Fe 2 O 3 component is not blended, and calcined in an electric furnace at 1550 ° C., and then slowly cooled to synthesize . CaO / Al 2 O 3 molar ratio 0.6, Blaine value 4,000 cm 2 / g
Deoxidizer A: Coated reduced iron powder cement obtained by mixing an aqueous solution containing 100 parts of sponge iron powder and 1.0 part of sodium bromide using an industrial mixer, drying by self-heating of the mixture, and cooling: Normal Portland cement, commercially available fine aggregate: Standard sand water used in JIS R 5201: Tap water
(評価方法)
防錆効果:内在塩化物イオンとして、10kg/m3となるように塩化物イオンを加えた、丸鋼の鉄筋を入れたモルタル供試体を作製し、一日後に脱型し、材齢7日まで20℃封緘養生を行った後、50℃に加温養生することによる促進試験で防錆効果を確認した。鉄筋に錆が発生しなかった場合は良、1/10の面積以内で錆が発生した場合は可、1/10の面積を超えて錆が発生した場合は不可とした。
圧縮強さ:JIS R 5201に準じて材齢1日と28日圧縮強さを測定。
塩化物浸透深さ:塩化物イオン浸透抵抗性を評価。塩化物イオンの遮蔽効果を示す10cmφ×20cmの円柱状のモルタル供試体を作製し、一日後に脱型し、速やかに30℃の塩分濃度3.5%の食塩水である擬似海水に12週間浸漬した後、塩化物浸透深さを測定。塩化物浸透深さはフルオロセイン−硝酸銀法により、モルタル供試体断面の茶変しなかった部分を塩化物浸透深さと見なし、ノギスで8点測定して平均値を求めた。
Caイオンの溶脱:4×4×16cmのモルタル供試体を作製し、一日後に脱型し、速やかに10リットルの純水に28日間浸漬し、液相中に溶解したCaイオン濃度を測定することにより判定した。
自己治癒能力:6mmのナイロン繊維を0.15質量%混合した10×10×40cmのモルタル供試体を作製し、一日後に脱型し、材齢7日まで20℃封緘養生を行った後、曲げ応力によって幅0.3mmのひび割れを導入した。擬似海水に180日間浸漬した後、ひび割れ幅を測定した。◎は完全にひび割れが塞がった、○は0.1mm以下にひび割れ幅が縮小化した、△は0.2mm程度までひび割れ幅が縮小。×はひび割れ幅が縮小化されないか、あるいは逆に広がったことを示す。
(Evaluation method)
Rust prevention effect: A mortar specimen containing round steel bars with chloride ions added to the internal chloride ion to 10 kg / m 3 was prepared, and it was removed from the mold one day later. After carrying out sealing curing at 20 ° C until 50 ° C, the rust prevention effect was confirmed by an accelerated test by heating to 50 ° C. The case where rust did not occur in the reinforcing bars was good, the case where rust occurred within an area of 1/10 was acceptable, and the case where rust occurred beyond an area of 1/10 was deemed impossible.
Compressive strength: Measures compressive strength at 1 day and 28 days of age according to JIS R 5201.
Chloride penetration depth: Evaluate chloride ion penetration resistance. A 10 cmφ × 20 cm columnar mortar specimen showing the shielding effect of chloride ions was prepared, demolded one day later, and immediately put into simulated seawater, which is a salt solution with a salt concentration of 3.5% at 30 ° C. for 12 weeks. After immersion, measure chloride penetration depth. The chloride penetration depth was determined by the fluorescein-silver nitrate method, the portion of the cross section of the mortar specimen where the tea did not change was regarded as the chloride penetration depth, and the average value was obtained by measuring 8 points with calipers.
Ca ion leaching: A 4 × 4 × 16 cm mortar specimen is prepared, demolded one day later, and immediately immersed in 10 liters of pure water for 28 days, and the concentration of dissolved Ca ions in the liquid phase is measured. It was judged by.
Self-healing ability: After producing a 10 × 10 × 40 cm mortar specimen mixed with 0.15% by mass of 6 mm nylon fiber, demolding after one day, and performing sealing at 20 ° C. until the age of 7 days, Cracks with a width of 0.3 mm were introduced by bending stress. After immersing in simulated seawater for 180 days, the crack width was measured. ◎ indicates that the crack is completely closed, ○ indicates that the crack width has been reduced to 0.1 mm or less, and △ indicates that the crack width has been reduced to approximately 0.2 mm. X indicates that the crack width has not been reduced or has expanded.
表1よりCFA化合物と脱酸素剤を併用することで、防錆効果、塩化物イオン浸透抑制効果を維持し、初期強度を増加することができ、さらに、Caイオンの溶脱抵抗性、自己治癒能力を向上することができる。 From Table 1, by using a CFA compound and an oxygen scavenger in combination, it is possible to maintain the rust prevention effect and chloride ion permeation suppression effect, increase the initial strength, and further, Ca ion leaching resistance and self-healing ability. Can be improved.
「実験例2」
表2に示す粉末度のCFA化合物Dと脱酸素剤アを併用したこと以外は実験例1と同様に行った。結果を表2に併記する。
"Experimental example 2"
The same procedure as in Experimental Example 1 was conducted except that the CFA compound D having a fineness shown in Table 2 and the oxygen scavenger A were used in combination. The results are also shown in Table 2.
表2より、CFA化合物の粉末度を調整することで、防錆効果、塩化物イオン浸透抑制効果を維持し、強度低下を抑制することができ、さらに、Caイオンの溶脱抵抗性、自己治癒能力を向上することができる。 From Table 2, by adjusting the fineness of the CFA compound, it is possible to maintain the rust prevention effect and the chloride ion permeation suppression effect, to suppress the strength reduction, and further, Ca ion leaching resistance, self-healing ability Can be improved.
「実験例3」
CFA化合物Dを使用し、表3に示す脱酸素剤を併用したこと以外は実験例1と同様に行った。結果を表3に併記する。
"Experiment 3"
The same procedure as in Experimental Example 1 was conducted except that CFA compound D was used and the oxygen scavenger shown in Table 3 was used in combination. The results are also shown in Table 3.
<使用材料>
脱酸素剤イ:海綿鉄粉100部と炭酸ナトリウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤ウ:海綿鉄粉100部と硫酸ナトリウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤エ:海綿鉄粉100部と水酸化カルシウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤オ:電解鉄粉100部と臭化ナトリウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤カ:電解鉄粉100部と炭酸ナトリウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤キ:電解鉄粉100部と硫酸ナトリウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤ク:電解鉄粉100部と水酸化カルシウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤ケ:アトマイズ鉄粉100部と臭化ナトリウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤コ:アトマイズ鉄粉100部と炭酸ナトリウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤サ:アトマイズ鉄粉100部と硫酸ナトリウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤シ:アトマイズ鉄粉100部と水酸化カルシウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤ス:破砕鉄粉100部と臭化ナトリウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤セ:破砕鉄粉100部と炭酸ナトリウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤ソ:破砕鉄粉100部と硫酸ナトリウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤タ:破砕鉄粉100部と水酸化カルシウム1.0部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤チ:海綿鉄粉100部
脱酸素剤ツ:電解鉄粉100部
脱酸素剤テ:アトマイズ鉄粉100部
脱酸素剤ト:破砕鉄粉100部
脱酸素剤ナ:海綿鉄粉100部と臭化ナトリウム0.1部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤ニ:海綿鉄粉100部と臭化ナトリウム0.2部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤ヌ:海綿鉄粉100部と臭化ナトリウム4部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
脱酸素剤ネ:海綿鉄粉100部と臭化ナトリウム10部を含む水溶液を工業用ミキサーを用いて混合し、混合物の自己発熱により乾燥させ、冷却して得た被覆還元鉄粉
<Materials used>
Deoxidizer A: Coated reduced iron powder oxygen absorber obtained by mixing an aqueous solution containing 100 parts of sponge iron powder and 1.0 part of sodium carbonate using an industrial mixer, drying by self-heating of the mixture, and cooling. C: Coated reduced iron powder oxygen scavenger obtained by mixing an aqueous solution containing 100 parts of sponge iron powder and 1.0 part of sodium sulfate using an industrial mixer, drying by self-heating of the mixture, and cooling. Coated reduced iron powder oxygen scavenger obtained by mixing an aqueous solution containing 100 parts of iron powder and 1.0 part of calcium hydroxide using an industrial mixer, drying the mixture by self-heating, and cooling it: electrolytic iron powder An aqueous solution containing 100 parts of sodium bromide and 1.0 part of sodium bromide was mixed using an industrial mixer, dried by self-heating of the mixture, and cooled to obtain a coated reduced iron powder oxygen scavenger: 100 parts of electrolytic iron powder And water solution containing 1.0 part of sodium carbonate Is mixed with an industrial mixer, dried by self-heating of the mixture, and cooled to obtain a coated reduced iron powder oxygen scavenger: an aqueous solution containing 100 parts of electrolytic iron powder and 1.0 part of sodium sulfate. Mixing with a mixer, drying by self-heating of the mixture, and cooling to obtain a coated reduced iron powder oxygen scavenger: An aqueous mixer containing 100 parts of electrolytic iron powder and 1.0 part of calcium hydroxide was added to an industrial mixer. Using an industrial mixer, an aqueous solution containing 100 parts of atomized iron powder and 1.0 part of sodium bromide was obtained by mixing and drying by self-heating of the mixture and cooling. An aqueous solution containing 100 parts of coated reduced iron powder oxygen scavenger co: atomized iron powder and 1.0 part of sodium carbonate obtained by mixing, drying by self-heating of the mixture and cooling was mixed using an industrial mixer, Self-heating of the mixture Coated reduced iron powder oxygen scavenger obtained by further drying and cooling: An aqueous solution containing 100 parts of atomized iron powder and 1.0 part of sodium sulfate was mixed using an industrial mixer and dried by self-heating of the mixture. Coated reduced iron powder oxygen scavenger obtained by cooling: An aqueous solution containing 100 parts of atomized iron powder and 1.0 part of calcium hydroxide was mixed using an industrial mixer, dried by self-heating of the mixture, and cooled. Coated reduced iron powder oxygen scavenger obtained by mixing an aqueous solution containing 100 parts of crushed iron powder and 1.0 part of sodium bromide using an industrial mixer, dried by self-heating of the mixture, and cooled. Obtained coated reduced iron powder oxygen scavenger: A coating obtained by mixing an aqueous solution containing 100 parts of crushed iron powder and 1.0 part of sodium carbonate using an industrial mixer, drying by self-heating of the mixture, and cooling. Reduced iron powder oxygen scavenger Coated reduced iron powder oxygen scavenger obtained by mixing an aqueous solution containing 100 parts of crushed iron powder and 1.0 part of sodium sulfate using an industrial mixer, drying by self-heating of the mixture, and cooling: crushed iron powder An aqueous solution containing 100 parts of calcium hydroxide and 1.0 part of calcium hydroxide was mixed using an industrial mixer, dried by self-heating of the mixture, and cooled to obtain a coated reduced iron powder oxygen scavenger: 100 parts of sponge iron powder Deoxygenating agent: 100 parts of electrolytic iron powder Deoxidizing agent Te: 100 parts of atomized iron powder Deoxygenating agent: 100 parts of crushed iron powder Deoxygenating agent Na: 100 parts of sponge iron powder and 0.1 part of sodium bromide An aqueous solution containing 100 parts of sponge iron powder and 0.2 part of sodium bromide was obtained by mixing the aqueous solution with an industrial mixer, drying by self-heating of the mixture, and cooling. Mix using an industrial mixer and mix Coated reduced iron powder oxygen scavenger obtained by drying and cooling by self-heating: Mixing an aqueous solution containing 100 parts of sponge iron powder and 4 parts of sodium bromide using an industrial mixer, and drying by self-heating of the mixture Coated reduced iron powder oxygen scavenger obtained by cooling: An aqueous solution containing 100 parts of sponge iron powder and 10 parts of sodium bromide is mixed using an industrial mixer, dried by self-heating of the mixture, and cooled. Coated reduced iron powder
表3より、いずれの脱酸素剤を使用しても、防錆効果、塩化物イオン浸透抑制効果を維持し、強度低下を抑制することができ、さらに、Caイオンの溶脱抵抗性、自己治癒能力を向上することができる。 From Table 3, even if any oxygen scavenger is used, the rust prevention effect and the chloride ion permeation suppression effect can be maintained, the strength reduction can be suppressed, and the Ca ion leaching resistance and self-healing ability can be maintained. Can be improved.
「実験例4」
CFA化合物Dと脱酸素剤アを用いて、表4に示す配合で混和材としたこと以外は実験例1と同様に行った。
"Experimental example 4"
The same procedure as in Experimental Example 1 was carried out except that the mixture shown in Table 4 was used as an admixture using CFA compound D and oxygen scavenger a.
表4より、本発明の混和材は、防錆効果、塩化物イオン浸透抑制効果を維持し、強度低下を抑制することができ、さらに、Caイオンの溶脱抵抗性、自己治癒能力を向上することができる。 From Table 4, the admixture of the present invention maintains the rust prevention effect and the chloride ion permeation suppression effect, can suppress the strength reduction, and further improve the leaching resistance and self-healing ability of Ca ions. Can do.
「実験例5」
CFA化合物Aと脱酸素剤アを、質量比2/1で混合して調製した混和材を使用して表5に示す使用量としたこと以外は実験例1と同様に行った。比較のために、従来の防錆材を用いて同様に行った。結果を表5に併記する。
“Experimental Example 5”
The experiment was conducted in the same manner as in Experimental Example 1 except that an admixture prepared by mixing CFA compound A and oxygen scavenger A at a mass ratio of 2/1 was used to obtain the usage amount shown in Table 5. For comparison, a conventional rust preventive material was used in the same manner. The results are also shown in Table 5.
(使用材料)
従来の防錆材イ:亜硝酸リチウム、市販品
従来の防錆材ロ:亜硝酸型ハイドロカルマイト、市販品
(Materials used)
Conventional rust-proofing material A: Lithium nitrite, commercial product Conventional rust-proofing material B: Nitrite-type hydrocalumite, commercial product
表5より、本発明の混和材の使用量を調整することで、防錆効果、塩化物イオン浸透抑制効果を維持し、強度低下を抑制することができ、さらに、Caイオンの溶脱抵抗性、自己治癒能力を向上することができる。 From Table 5, by adjusting the use amount of the admixture of the present invention, it is possible to maintain a rust prevention effect and a chloride ion permeation suppression effect, and to suppress a decrease in strength, and further, leaching resistance of Ca ions, Self-healing ability can be improved.
本発明のセメント混和材を使用することにより、優れた防錆効果と、塩化物イオンの遮蔽効果、Caイオンの溶脱抑制効果及び自己治癒能力を奏するため、主に、土木・建築業界等において海洋や河川の水利構造物、水槽、床版コンクリートなど広範な用途に適する。 By using the cement admixture of the present invention, it has excellent rust prevention effect, chloride ion shielding effect, Ca ion leaching suppression effect and self-healing ability. Suitable for a wide range of applications such as water irrigation structures, river tanks, and floor slab concrete.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011065162A JP5651055B2 (en) | 2011-03-24 | 2011-03-24 | Cement admixture and cement composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011065162A JP5651055B2 (en) | 2011-03-24 | 2011-03-24 | Cement admixture and cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012201522A true JP2012201522A (en) | 2012-10-22 |
JP5651055B2 JP5651055B2 (en) | 2015-01-07 |
Family
ID=47182887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011065162A Active JP5651055B2 (en) | 2011-03-24 | 2011-03-24 | Cement admixture and cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5651055B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012254896A (en) * | 2011-06-08 | 2012-12-27 | Denki Kagaku Kogyo Kk | Cement admixture, and cement composition |
CN114230215A (en) * | 2021-12-09 | 2022-03-25 | 南京广兰建材科技有限公司 | Preparation method for producing concrete by using production wastewater |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011140407A (en) * | 2010-01-05 | 2011-07-21 | Denki Kagaku Kogyo Kk | METHOD FOR PRODUCING CaO-Al2O3-Fe2O3-BASED COMPOUND |
WO2011108159A1 (en) * | 2010-03-01 | 2011-09-09 | 電気化学工業株式会社 | Calcium ferroaluminate compound, cement admixture and process for producing same, and cement composition |
-
2011
- 2011-03-24 JP JP2011065162A patent/JP5651055B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011140407A (en) * | 2010-01-05 | 2011-07-21 | Denki Kagaku Kogyo Kk | METHOD FOR PRODUCING CaO-Al2O3-Fe2O3-BASED COMPOUND |
WO2011108159A1 (en) * | 2010-03-01 | 2011-09-09 | 電気化学工業株式会社 | Calcium ferroaluminate compound, cement admixture and process for producing same, and cement composition |
WO2011108065A1 (en) * | 2010-03-01 | 2011-09-09 | 電気化学工業株式会社 | Cement admixture and cement composition |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012254896A (en) * | 2011-06-08 | 2012-12-27 | Denki Kagaku Kogyo Kk | Cement admixture, and cement composition |
CN114230215A (en) * | 2021-12-09 | 2022-03-25 | 南京广兰建材科技有限公司 | Preparation method for producing concrete by using production wastewater |
Also Published As
Publication number | Publication date |
---|---|
JP5651055B2 (en) | 2015-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5688073B2 (en) | Calcium ferroaluminate compound, cement admixture and method for producing the same, cement composition | |
JP2007153714A (en) | Cement admixture and cement composition | |
JP5259094B6 (en) | Hydrated hardened body excellent in neutralization resistance with rebar | |
JP5651055B2 (en) | Cement admixture and cement composition | |
JP5345821B2 (en) | Cement admixture and cement composition | |
JP4796424B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
JP5345820B2 (en) | Cement admixture and cement composition | |
JP4827580B2 (en) | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance | |
JP4827585B2 (en) | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance | |
JP4796419B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
JP4509015B2 (en) | Cement admixture and cement composition | |
JP5634683B2 (en) | Cement admixture and method for adjusting cement composition | |
JP5843105B2 (en) | Cement admixture, cement composition and method for producing the same | |
JP5801106B2 (en) | Cement admixture and cement composition | |
JP5313623B2 (en) | Cement admixture and cement composition | |
JP7062668B2 (en) | Cement admixture, cement composition and its manufacturing method | |
JP4791231B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
JP4827548B2 (en) | Hydrated cured body | |
JP5851343B2 (en) | Cement admixture, cement composition and method for producing the same | |
JP4827581B2 (en) | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance | |
JP4791226B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
JP4827582B2 (en) | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance | |
JP4796420B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
JP2010100472A (en) | Cement admixture and cement composition | |
JP2007153715A (en) | Cement admixture and cement composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141114 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5651055 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |