JP2012254896A - Cement admixture, and cement composition - Google Patents
Cement admixture, and cement composition Download PDFInfo
- Publication number
- JP2012254896A JP2012254896A JP2011128707A JP2011128707A JP2012254896A JP 2012254896 A JP2012254896 A JP 2012254896A JP 2011128707 A JP2011128707 A JP 2011128707A JP 2011128707 A JP2011128707 A JP 2011128707A JP 2012254896 A JP2012254896 A JP 2012254896A
- Authority
- JP
- Japan
- Prior art keywords
- cement
- compound
- polysiloxane compound
- admixture
- polysiloxane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004568 cement Substances 0.000 title claims abstract description 77
- 239000000203 mixture Substances 0.000 title claims abstract description 23
- -1 polysiloxane Polymers 0.000 claims abstract description 88
- 150000001875 compounds Chemical class 0.000 claims abstract description 67
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 60
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000011575 calcium Substances 0.000 claims abstract description 13
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 10
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 6
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 32
- 230000000694 effects Effects 0.000 abstract description 30
- 230000035515 penetration Effects 0.000 abstract description 14
- 229910001424 calcium ion Inorganic materials 0.000 abstract description 12
- 230000003014 reinforcing effect Effects 0.000 abstract description 10
- 230000000903 blocking effect Effects 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000003153 chemical reaction reagent Substances 0.000 description 18
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 18
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical group [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 15
- 239000000292 calcium oxide Substances 0.000 description 15
- 235000012255 calcium oxide Nutrition 0.000 description 15
- 239000004372 Polyvinyl alcohol Substances 0.000 description 13
- 229920002451 polyvinyl alcohol Polymers 0.000 description 13
- 230000002265 prevention Effects 0.000 description 13
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 12
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 12
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 238000002386 leaching Methods 0.000 description 10
- 239000000843 powder Substances 0.000 description 9
- 238000010304 firing Methods 0.000 description 7
- 239000004570 mortar (masonry) Substances 0.000 description 7
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 7
- 230000001629 suppression Effects 0.000 description 7
- 229940126062 Compound A Drugs 0.000 description 6
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 238000010583 slow cooling Methods 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 150000003839 salts Chemical group 0.000 description 5
- 239000002893 slag Substances 0.000 description 5
- 239000011398 Portland cement Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 3
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000002956 ash Substances 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical group [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000007798 antifreeze agent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- SHFAFEZLBIWABL-UHFFFAOYSA-L disilver 2-(3-oxido-6-oxoxanthen-9-yl)benzoate Chemical compound [Ag+].[Ag+].[O-]C(=O)c1ccccc1-c1c2ccc([O-])cc2oc2cc(=O)ccc12 SHFAFEZLBIWABL-UHFFFAOYSA-L 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- FVIZARNDLVOMSU-UHFFFAOYSA-N ginsenoside K Natural products C1CC(C2(CCC3C(C)(C)C(O)CCC3(C)C2CC2O)C)(C)C2C1C(C)(CCC=C(C)C)OC1OC(CO)C(O)C(O)C1O FVIZARNDLVOMSU-UHFFFAOYSA-N 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- IDNHOWMYUQKKTI-UHFFFAOYSA-M lithium nitrite Chemical compound [Li+].[O-]N=O IDNHOWMYUQKKTI-UHFFFAOYSA-M 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver nitrate Substances [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、主に、土木・建築業界において使用されるセメント混和材及びセメント組成物に関する。 The present invention mainly relates to a cement admixture and a cement composition used in the civil engineering and construction industries.
近年、土木や建築分野において、コンクリート構造物の耐久性向上に対する要望が高まっている。 In recent years, there has been an increasing demand for improving the durability of concrete structures in the civil engineering and construction fields.
コンクリート構造物の劣化要因の1つとして、塩化物イオンの存在によって鉄筋腐食が顕在化する塩害があり、その塩害を抑制するための方法として、コンクリート構造物に塩化物イオン浸透抵抗性を付与する手法がある。 As one of the deterioration factors of concrete structures, there is salt damage in which reinforcing steel corrosion becomes obvious due to the presence of chloride ions, and as a method to suppress the salt damage, imparts chloride ion penetration resistance to concrete structures. There is a technique.
コンクリート硬化体の内部への塩化物イオン浸透を抑制し、塩化物イオン浸透抵抗性を与える方法としては、水/セメント比を小さくする方法が知られている(非特許文献1参照)。しかしながら、水/セメント比を小さくする方法では、施工性が損なわれるだけでなく、抜本的な対策とはならない場合があった。 As a method for suppressing chloride ion penetration into the inside of a hardened concrete and imparting chloride ion penetration resistance, a method of reducing the water / cement ratio is known (see Non-Patent Document 1). However, in the method of reducing the water / cement ratio, not only the workability is impaired but also a drastic measure may not be provided.
また、セメントコンクリートに早強性を付与し、かつ、鉄筋の腐食を防止するなどの目的で、CaO・2Al2O3とセッコウを主体とし、ブレーン比表面積値が8,000cm2/g以上の微粉を含有するセメント混和材を使用する方法が提案されている(特許文献1参照)。 In addition, for the purpose of imparting early strength to cement concrete and preventing corrosion of reinforcing bars, the main component is CaO.2Al 2 O 3 and gypsum, and the Blaine specific surface area value is 8,000 cm 2 / g or more. A method of using a cement admixture containing fine powder has been proposed (see Patent Document 1).
さらに、CaO/Al2O3 モル比が0.3〜0.7、ブレーン比表面積が2000〜7000cm2/gのカルシウムアルミネートを含有するセメント混和材を使用し,優れた塩化物イオン浸透抵抗性を持ち,マスコンの温度ひび割れ抑制する方法が提案されている(特許文献2参照)。しかしながら、これらの混和材は初期の強度発現を阻害するため初期に十分な養生を必要とするものであった。 Furthermore, using a cement admixture containing calcium aluminate with a CaO / Al 2 O 3 molar ratio of 0.3 to 0.7 and a Blaine specific surface area of 2000 to 7000 cm 2 / g, excellent chloride ion penetration resistance A method for suppressing temperature cracks in mascons has been proposed (see Patent Document 2). However, these admixtures required sufficient curing at the beginning in order to inhibit the initial strength development.
一方、セメント組成物の撥水性向上を目的として、ポリシロキサン化合物を添加することが従来から提案されている(特許文献3参照)。しかしながら、これらはセメント組成物の撥水性向上のみを目的としており、鉄筋の防錆を目的としたものではなかった。さらに、ポリシロキサン化合物をセメント組成物に添加すると水和を阻害し、強度低下を引き起こすという課題を有していた。 On the other hand, for the purpose of improving the water repellency of the cement composition, it has been conventionally proposed to add a polysiloxane compound (see Patent Document 3). However, these are only intended to improve the water repellency of the cement composition, and are not intended to prevent rusting of the reinforcing bars. Furthermore, when a polysiloxane compound is added to the cement composition, it has a problem of inhibiting hydration and causing a decrease in strength.
鉄筋の防錆を目的として、亜硝酸塩などを添加する方法も提案されている(特許文献4、特許文献5参照)。しかしながら、亜硝酸塩は、防錆効果を発揮するものの、外部から侵入する塩化物イオンの遮蔽効果を発揮するものではなく、また、亜硝酸型ハイドロカルマイトは、防錆効果を発揮するものの、これを混和したセメント硬化体が多孔質になりやすく、むしろ、外部からの塩化物イオンの浸透を許容しやすいという課題を有していた。 A method of adding nitrite or the like has also been proposed for the purpose of rust prevention of reinforcing bars (see Patent Document 4 and Patent Document 5). However, although nitrite exhibits a rust prevention effect, it does not exert a shielding effect against chloride ions entering from the outside, and nitrite hydrocalumite exhibits a rust prevention effect. However, the hardened cement paste containing the material tends to be porous, but rather has a problem that it easily allows permeation of chloride ions from the outside.
本発明者らは、種々検討を重ねた結果、特定の組成のカルシウムフェロアルミネート化合物とポリシロキサン化合物を用いることにより、前述のような初期強度の低下と、塩化物イオンの遮蔽効果および鉄筋の腐食の課題を解決し、高耐久性のセメント混和材が得られる知見を得て、本発明を完成するに至った。 As a result of various studies, the present inventors have used a calcium ferroaluminate compound and a polysiloxane compound having a specific composition to reduce the initial strength as described above, the shielding effect of chloride ions, and the strength of reinforcing bars. The present invention has been completed by solving the problem of corrosion and obtaining the knowledge that a highly durable cement admixture can be obtained.
セメントコンクリート硬化体内部の鉄筋に優れた防錆効果を付与し、外部から侵入するセメントコンクリート硬化体への塩化物イオン浸透の遮蔽効果を有し、セメントコンクリート硬化体からのCaイオンの溶脱も少ないため多孔化も抑制でき、さらに、発生したひび割れを自ら閉塞する自己治癒能力を有するセメント組成物を提供する。 Provides excellent rust prevention effect to the reinforcing steel bars inside the hardened cement concrete, has the effect of shielding chloride ions from entering the hardened cement concrete, and less leaching of Ca ions from the hardened cement concrete Therefore, the present invention provides a cement composition that can suppress porosity and further has a self-healing ability to block generated cracks by itself.
本発明は、(1)CaO/Al2O3モル比が0.15〜0.7でFe2O3の含有量が0.5〜20質量%のカルシウムフェロアルミネート化合物とポリシロキサン化合物を含有するセメント混和材、(2)カルシウムフェロアルミネート化合物の粉末度が、ブレーン比表面積値で2,000〜7,000cm2/gである(1)のセメント混和材、(3)ポリシロキサン化合物が、炭素数1〜12個の疎水性アルキル基を有する(1)又は(2)のセメント混和材、(4)カルシウムフェロアルミネート化合物とポリシロキサン化合物との配合割合が、質量比で10/1〜1/10である(1)〜(3)のうちのいずれかのセメント混和材であり、(5)セメントと、(1)〜(4)のいずれかのセメント混和材を含有するセメント組成物、(6)セメントと、CaO/Al2O3モル比が0.15〜0.7でFe2O3の含有量が0.5〜20質量%のブレーン比表面積値で2,000〜7,000cm2/gであるカルシウムフェロアルミネート化合物と、ポリシロキサン化合物とを含有してなるセメント組成物、である。 The present invention provides (1) a calcium ferroaluminate compound and a polysiloxane compound having a CaO / Al 2 O 3 molar ratio of 0.15 to 0.7 and an Fe 2 O 3 content of 0.5 to 20% by mass. Cement admixture to be contained, (2) Cement admixture of (1) having a fineness of calcium ferroaluminate compound of 2,000 to 7,000 cm 2 / g in terms of Blaine specific surface area, (3) Polysiloxane compound Is a cement admixture of (1) or (2) having a hydrophobic alkyl group having 1 to 12 carbon atoms, and (4) the mixing ratio of the calcium ferroaluminate compound and the polysiloxane compound is 10 / by mass ratio. A cement admixture according to any one of (1) to (3), which is 1 to 1/10, comprising (5) cement and a cement admixture according to any one of (1) to (4) Composition, (6) cement and, CaO / Al 2 O 3 molar ratio of at Blaine specific surface area value content of 0.5 to 20 mass% of Fe 2 O 3 with 0.15 to 0.7 2,000 A cement composition containing a calcium ferroaluminate compound having a molecular weight of ˜7,000 cm 2 / g and a polysiloxane compound.
本発明のセメント混和材を使用することにより、優れた防錆効果と、外部から侵入する塩化物イオンの遮蔽効果を持ち、セメントコンクリート硬化体からのCaイオンの溶脱も少ないことから、多孔化も抑制でき、長期に渡り優れた遮塩性を発揮するなどの効果を奏する。 By using the cement admixture of the present invention, it has an excellent rust prevention effect and a shielding effect of chloride ions entering from the outside, and since there is little leaching of Ca ions from the hardened cement concrete, it can be made porous. It can be suppressed, and has the effect of exhibiting excellent salt blocking properties over a long period of time.
以下、本発明を詳細に説明する。
なお、本発明における部や%は、特に規定しない限り質量基準で示す。
また、本発明で云うセメントコンクリートとは、セメントペースト、セメントモルタル、及びコンクリートの総称である。
Hereinafter, the present invention will be described in detail.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.
The cement concrete referred to in the present invention is a general term for cement paste, cement mortar, and concrete.
本発明で使用するカルシウムフェロアルミネート化合物(以下、CFA化合物という)とは、カルシアを含む原料、アルミナを含む原料、フェライトを含む原料等を混合して、キルンでの焼成や電気炉での溶融等の熱処理をして得られる、CaO、Al2O3、Fe2O3を主成分とする化合物を総称するものである。
CFA化合物の組成は、CaO/Al2O3モル比が0.15〜0.7でFe2O3含有量が0.5〜20%である。CaO/Al2O3モル比が0.4〜0.6がより好ましい。0.15未満では、塩化物イオンの遮蔽効果が充分に得られない場合があり、逆に、0.7を超えると急硬性が現れるようになり、可使時間が確保できない場合がある。CFA化合物にFe2O3の含有量は、0.5〜20%が好ましく、1〜10%がより好ましく、3〜7%が最も好ましい。0.5%未満では、キルンで焼成した場合に未反応の酸化アルミニウムが多く残る可能性があり、20%を越えても効率的に反応を進行させる効果は頭うちとなり、塩化物イオン浸透抵抗性が悪くなる場合がある。
The calcium ferroaluminate compound (hereinafter referred to as CFA compound) used in the present invention is a mixture of a raw material containing calcia, a raw material containing alumina, a raw material containing ferrite, etc., and firing in a kiln or melting in an electric furnace. This is a generic term for compounds obtained by heat treatment such as CaO, Al 2 O 3 , and Fe 2 O 3 as main components.
The composition of the CFA compound is such that the CaO / Al 2 O 3 molar ratio is 0.15 to 0.7 and the Fe 2 O 3 content is 0.5 to 20%. The CaO / Al 2 O 3 molar ratio is more preferably 0.4 to 0.6. If it is less than 0.15, the chloride ion shielding effect may not be sufficiently obtained. Conversely, if it exceeds 0.7, rapid hardening may appear, and the pot life may not be secured. The content of Fe 2 O 3 in the CFA compound is preferably 0.5 to 20%, more preferably 1 to 10%, and most preferably 3 to 7%. If it is less than 0.5%, a large amount of unreacted aluminum oxide may remain when calcined in the kiln, and even if it exceeds 20%, the effect of allowing the reaction to proceed efficiently becomes a head, and chloride ion penetration resistance. May be worse.
CFA化合物の粉末度は、ブレーン比表面積値(以下、ブレーン値という)で2,000〜7,000cm2/gが好ましく、3,000〜6,000cm2/gがより好ましく、4,000〜5,000cm2/gが最も好ましい。CFA化合物が粗粒では充分な塩化物イオンの遮蔽効果が得られない場合があり、7,000cm2/gを超える微粉では急硬性が現れるようになり、可使時間が確保できない場合がある。 Fineness of CFA compounds, Blaine specific surface area value (hereinafter, referred to as Blaine value) is preferably 2,000~7,000cm 2 / g, the more preferably 3,000~6,000cm 2 / g, 4,000~ Most preferred is 5,000 cm 2 / g. If the CFA compound is coarse, a sufficient chloride ion shielding effect may not be obtained, and if it exceeds 7,000 cm 2 / g, rapid hardening will appear and the pot life may not be secured.
本発明では、CaO/Al2O3モル比が0.15〜0.7でFe2O3含有量が0.5〜20%のCFA化合物にポリシロキサン化合物を併用する。
本発明のポリシロキサン化合物とは、ケイ素と酸素が交互に結合してポリマーが形成されたシロキサン結合を有する有機ケイ素化合物のことを指す。ポリシロキサン化合物は、通常、コンクリートの撥水を目的としてセメント組成物に配合されるが、本発明のCFA化合物と併用することにより、鉄筋に優先的に吸着し、鉄筋の腐食の原因の一つである水の浸透を著しく抑制する。また、鉄筋に吸着しきれなかったポリシロキサン化合物はセメント中の水和物に吸着し、撥水効果を示す。つまり、水の移流を抑制することで鉄筋の腐食の原因の一つである塩化物の浸透も抑制することができる。
本発明のポリシロキサン化合物としては、特に限定されるものではないが、炭素数1〜12の疎水性アルキルを有することを特徴とする。炭素数1〜12の疎水性アルキル基を有していればいかなるものも使用可能であり、直鎖状、分岐状、環状のいずれでもよく、具体的には、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシルなどが挙げられる。中でも炭素数6〜10のヘキシル、ヘプチル、オクチル、ノニル、デシルがより好ましい。炭素数が12より大きい場合は撥水性が低下する場合がある。
本発明のポリシロキサン化合物の分子量(シロキサン単位の総数)は、3〜300が好ましく、3〜100がより好ましく、3〜50が最も好ましい。総数が3よりも小さいと、化合物が不安定となる場合があり、300を超えると、粘度上昇が過剰となり、作業性に悪影響を及ぼす。
また、本発明のポリシロキサン化合物は、本発明の効果を阻害しなければ、アミノ基、エポキシ基、フェニル基、アルコキシ基等の塩基を有していても問題ない。
さらに、本発明のポリシロキサン化合物は、分子量2000以下の一般的にシリコーンオイルと呼ばれるものを使用する。分子量2000以上のものはゴムの性質を示し、一般的にシリコーンゴムと呼ばれる。液状、粉末いずれのものでも差し支えないが、セメントにプレミックスできることからポリシラン化合物に対してポリビニルアルコール(以下、PVAという)などをバインダー(結合助剤)として適量混合し、100℃〜150℃の熱風中に噴霧乾燥(スプレードライ)することで得られるPVAを保護コロイドとしたカプセル化されたものや、アルミナやシリカなどの微粉末と混合した粉末状の物がより好ましい。
In the present invention, a polysiloxane compound is used in combination with a CFA compound having a CaO / Al 2 O 3 molar ratio of 0.15 to 0.7 and an Fe 2 O 3 content of 0.5 to 20%.
The polysiloxane compound of the present invention refers to an organosilicon compound having a siloxane bond in which a polymer is formed by alternately bonding silicon and oxygen. The polysiloxane compound is usually blended into a cement composition for the purpose of water repellency of concrete, but when used in combination with the CFA compound of the present invention, it is preferentially adsorbed to the reinforcing bar and is one of the causes of corrosion of the reinforcing bar. This significantly suppresses the penetration of water. In addition, the polysiloxane compound that could not be adsorbed to the reinforcing bar is adsorbed to the hydrate in the cement and exhibits a water repellent effect. That is, by suppressing the advection of water, it is possible to suppress the penetration of chloride, which is one of the causes of the corrosion of reinforcing bars.
Although it does not specifically limit as a polysiloxane compound of this invention, It has the C1-C12 hydrophobic alkyl, It is characterized by the above-mentioned. Any one having a hydrophobic alkyl group having 1 to 12 carbon atoms may be used, and may be any of linear, branched, and cyclic. Specifically, methyl, ethyl, propyl, butyl, Examples include pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and the like. Of these, hexyl, heptyl, octyl, nonyl, and decyl having 6 to 10 carbon atoms are more preferable. If the carbon number is larger than 12, water repellency may be lowered.
The molecular weight (total number of siloxane units) of the polysiloxane compound of the present invention is preferably 3 to 300, more preferably 3 to 100, and most preferably 3 to 50. When the total number is less than 3, the compound may become unstable, and when it exceeds 300, the increase in viscosity becomes excessive and adversely affects workability.
The polysiloxane compound of the present invention may have a base such as an amino group, an epoxy group, a phenyl group, or an alkoxy group as long as the effects of the present invention are not impaired.
Furthermore, the polysiloxane compound of the present invention uses what is generally called silicone oil having a molecular weight of 2000 or less. Those having a molecular weight of 2000 or more show the properties of rubber and are generally called silicone rubber. Either liquid or powder can be used, but since it can be premixed into cement, an appropriate amount of polyvinyl alcohol (hereinafter referred to as PVA) is mixed as a binder (binding aid) with the polysilane compound, and hot air at 100 ° C to 150 ° C. More preferable are capsules in which PVA obtained by spray drying (spray drying) is used as a protective colloid, and powders mixed with fine powders such as alumina and silica.
本発明のCFA化合物とポリシロキサン化合物との配合割合は、質量比で10/1〜1/10が好ましく、1/5〜5/1がより好ましい。1/10よりもポリシロキサン化合物が過剰になると、外部から侵入する塩化物イオンの遮蔽効果が充分でない場合があり、逆に、10/1よりも本CFA化合物が過剰になると、防錆効果が不充分になる場合がある。 The blending ratio of the CFA compound and the polysiloxane compound of the present invention is preferably 10/1 to 1/10, more preferably 1/5 to 5/1, in terms of mass ratio. If the polysiloxane compound is more than 1/10, the shielding effect of chloride ions entering from the outside may not be sufficient. Conversely, if the CFA compound is more than 10/1, the rust-preventing effect is obtained. It may be insufficient.
本発明で使用するセメントとしては、普通、早強、超早強、低熱、及び中庸熱などの各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、石灰石粉末や高炉徐冷スラグ微粉末などを混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)などのポルトランドセメントが挙げられ、これらのうちの一種又は二種以上が使用可能である。 As the cement used in the present invention, various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, various mixed cements obtained by mixing these portland cements with blast furnace slag, fly ash, or silica, Portland cement such as filler cement mixed with limestone powder and blast furnace slow-cooled slag fine powder, as well as environmentally friendly cement (eco-cement) manufactured from municipal waste incineration ash and sewage sludge incineration ash, etc. 1 type or 2 types or more can be used.
セメント混和材の使用量は、特に限定されるものではないが、通常、セメントとセメント混和材からなるセメント組成物100部中、1〜30部が好ましく、5〜20部がより好ましい。セメント混和材の使用量が少ないと充分な防錆効果、塩化物イオンの遮蔽効果、Caイオンの溶脱抑制効果が得られない場合があり、過剰に使用すると急硬性が現れるようになり、充分な可使時間が確保できない場合がある。 Although the usage-amount of a cement admixture is not specifically limited, Usually, 1-30 parts are preferable in a cement composition which consists of a cement and a cement admixture, and 5-20 parts are more preferable. If the amount of cement admixture is small, sufficient rust prevention effect, chloride ion shielding effect, Ca ion leaching suppression effect may not be obtained, and if used excessively, rapid hardening will appear and sufficient The pot life may not be secured.
本発明では、セメントとセメント混和材を配合して、また、セメント、CFA化合物及びポリシロキサン化合物を配合してセメント組成物とする。 In the present invention, cement and a cement admixture are blended, and cement, a CFA compound, and a polysiloxane compound are blended to obtain a cement composition.
本発明のセメント組成物の水/結合材比は、25〜70%が好ましく、30〜65%がより好ましい。水の配合量が少ないと、ポンプ圧送性や施工性が低下したり、収縮等の原因となる場合があり、水の配合量が過剰では強度発現性が低下する場合がある。ここで、結合材とは、セメント、CFA化合物及びポリシロキサン化合物の合計をいう。 The water / binder ratio of the cement composition of the present invention is preferably 25 to 70%, more preferably 30 to 65%. If the blending amount of water is small, the pumpability and workability may be reduced or shrinkage may be caused. If the blending amount of water is excessive, the strength development may be degraded. Here, the binder means the total of cement, CFA compound and polysiloxane compound.
本発明のセメント混和材やセメント組成物は、それぞれの材料を施工時に混合しても良いし、あらかじめ一部あるいは全部を混合しておいても差し支えない。 In the cement admixture and cement composition of the present invention, the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance.
本発明では、セメント、セメント混和材、及び砂などの細骨材や砂利等の粗骨材の他に、膨張材、急硬材、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、従来の防錆剤、防凍剤、収縮低減剤、凝結調整剤、ベントナイトなどの粘土鉱物、ハイドロタルサイトなどのアニオン交換体、高炉水砕スラグ微粉末や高炉徐冷スラグ微粉末などのスラグ、石灰石微粉末等の混和材料からなる群のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で併用することが可能である。 In the present invention, in addition to fine aggregates such as cement, cement admixtures, and coarse aggregates such as sand and gravel, etc., expansive materials, rapid hardening materials, water reducing agents, AE water reducing agents, high performance water reducing agents, high performance AEs. Water reducing agent, antifoaming agent, thickening agent, conventional rust inhibitor, antifreeze agent, shrinkage reducing agent, setting modifier, clay minerals such as bentonite, anion exchanger such as hydrotalcite, granulated blast furnace slag fine powder It is possible to use one or more of the group consisting of slag such as blast furnace annealed slag fine powder and admixture materials such as limestone fine powder within a range that does not substantially impair the object of the present invention.
混合装置としては、既存の如何なる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、及びナウタミキサ等の使用が可能である。 As the mixing device, any existing device can be used, and for example, a tilting mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer can be used.
以下、実施例、比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an example and a comparative example are given and the contents are explained in detail, the present invention is not limited to these.
「実験例1」
表1に示すCFA化合物とポリシロキサン化合物アを、質量比2/1で混合してセメント混和材を調製した。調製したセメント混和材を用いて、セメントとセメント混和材からなるセメント組成物100部中、セメント混和材10部を配合してセメント組成物を調製し、水/結合材比0.5のモルタルをJIS R 5201に準じて調製した。このモルタルを用いて、防錆効果、圧縮強さ、塩化物浸透深さ、Caイオンの溶脱および自己治癒能力を調べた。結果を表1に併記する。
"Experiment 1"
CFA compounds and polysiloxane compounds shown in Table 1 were mixed at a mass ratio of 2/1 to prepare a cement admixture. Using the prepared cement admixture, a cement composition was prepared by blending 10 parts of cement admixture in 100 parts of cement composition consisting of cement and cement admixture, and adding a mortar with a water / binder ratio of 0.5. It was prepared according to JIS R 5201. Using this mortar, the rust prevention effect, compressive strength, chloride penetration depth, Ca ion leaching and self-healing ability were examined. The results are also shown in Table 1.
(使用材料)
CFA化合物A:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定割合で配合し、Fe2O3含有量が3%となるように試薬1級の酸化鉄を配合し、1550℃で電気炉において焼成した後、徐冷して合成。CaO/Al2O3モル比0.1、ブレーン値4,000cm2/g
CFA化合物B:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定割合で配合し、Fe2O3含有量が3%となるように試薬1級の酸化鉄を配合し、1550℃で電気炉において焼成した後、徐冷して合成。CaO/Al2O3モル比0.2、ブレーン値4,000cm2/g
CFA化合物C:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定割合で配合し、Fe2O3含有量が3%となるように試薬1級の酸化鉄を配合し、1500℃で電気炉において焼成した後、徐冷して合成。CaO/Al2O3モル比0.4、ブレーン値4,000cm2/g
CFA化合物D:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定割合で配合し、Fe2O3含有量が3%となるように試薬1級の酸化鉄を配合し、1450℃で電気炉において焼成した後、徐冷して合成。CaO/Al2O3モル比0.6、ブレーン値4,000cm2/g
CFA化合物E:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定割合で配合し、Fe2O3含有量が3%となるように試薬1級の酸化鉄を配合し、1400℃で電気炉において焼成した後、徐冷して合成。CaO/Al2O3モル比0.7、ブレーン値4,000cm2/g
CFA化合物F:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定割合で配合し、Fe2O3含有量が3%となるように試薬1級の酸化鉄を配合し、1400℃で電気炉において焼成した後、徐冷して合成。CaO/Al2O3モル比0.9、ブレーン値4,000cm2/g
ポリシロキサン化合物ア:直鎖状ヘキシル基を有するシロキサン総数20のポリシロキサン化合物をPVAによりカプセル化したもの。
セメント:普通ポルトランドセメント、市販品
細骨材:JIS R 5201で使用する標準砂
水:水道水
(Materials used)
CFA Compound A: Reagent primary calcium carbonate and reagent primary aluminum oxide are blended at a predetermined ratio, and reagent primary iron oxide is blended so that the Fe 2 O 3 content is 3%, at 1550 ° C. After firing in an electric furnace, it is synthesized by slow cooling. CaO / Al 2 O 3 molar ratio 0.1, Blaine value 4,000 cm 2 / g
CFA Compound B: Reagent primary calcium carbonate and reagent primary aluminum oxide are blended at a predetermined ratio, and reagent primary iron oxide is blended so that the Fe 2 O 3 content is 3%, at 1550 ° C. After firing in an electric furnace, it is synthesized by slow cooling. CaO / Al 2 O 3 molar ratio 0.2, Blaine value 4,000 cm 2 / g
CFA compound C: Reagent primary calcium carbonate and reagent primary aluminum oxide are blended at a predetermined ratio, and reagent primary iron oxide is blended so that the Fe 2 O 3 content is 3%. At 1500 ° C. After firing in an electric furnace, it is synthesized by slow cooling. CaO / Al 2 O 3 molar ratio 0.4, Blaine value 4,000 cm 2 / g
CFA compound D: Reagent primary calcium carbonate and reagent primary aluminum oxide are blended at a predetermined ratio, and reagent primary iron oxide is blended so that the Fe 2 O 3 content is 3%, at 1450 ° C. After firing in an electric furnace, it is synthesized by slow cooling. CaO / Al 2 O 3 molar ratio 0.6, Blaine value 4,000 cm 2 / g
CFA compound E: Reagent primary calcium carbonate and reagent primary aluminum oxide are mixed at a predetermined ratio, and reagent primary iron oxide is mixed so that the Fe 2 O 3 content is 3%. After firing in an electric furnace, it is synthesized by slow cooling. CaO / Al 2 O 3 molar ratio 0.7, Blaine value 4,000 cm 2 / g
CFA compound F: Reagent primary calcium carbonate and reagent primary aluminum oxide are mixed at a predetermined ratio, and reagent primary iron oxide is mixed so that the Fe 2 O 3 content is 3%. After firing in an electric furnace, it is synthesized by slow cooling. CaO / Al 2 O 3 molar ratio 0.9, Blaine value 4,000 cm 2 / g
Polysiloxane compound A: A polysiloxane compound having a total of 20 siloxanes having a linear hexyl group encapsulated with PVA.
Cement: Ordinary Portland cement, commercially available fine aggregate: Standard sand water used in JIS R 5201: Tap water
(評価方法)
防錆効果:モルタルに内在塩化物イオンとして、10kg/m3となるように塩化物イオンを加え、丸鋼の鉄筋を入れて50℃に加温養生することによる促進試験で防錆効果を確認した。鉄筋に錆が発生しなかった場合は良、1/10の面積以内で錆が発生した場合は可、1/10の面積を超えて錆が発生した場合は不可とした。
圧縮強さ:JIS R 5201に準じて材齢1日と28日圧縮強さを測定。
塩化物浸透深さ:塩化物イオン浸透抵抗性を評価。塩化物イオンの遮蔽効果を示す10cmφ×20cmの円柱状のモルタル供試体を作製し、一日後に脱型し、速やかに30℃の塩分濃度3.5%の食塩水である擬似海水に12週間浸漬した後、塩化物浸透深さを測定。塩化物浸透深さはフルオロセイン−硝酸銀法により、モルタル供試体断面の茶変しなかった部分を塩化物浸透深さと見なし、ノギスで8点測定して平均値を求めた。
Caイオンの溶脱:4×4×16cmのモルタル供試体を10リットルの純水に28日間浸漬し、液相中に溶解したCaイオン濃度を測定することにより判定した。
自己治癒能力:6mmのナイロン繊維を0.15質量%混合した10×10×40cmのモルタル供試体を作製し、曲げ応力によって幅0.3mmのひび割れを導入した。擬似海水に180日間浸漬した後、ひび割れ幅を測定した。◎は完全にひび割れが塞がった、○は0.1mm以下にひび割れ幅が縮小化した、△は0.2mm程度までひび割れ幅が縮小。×はひび割れ幅が縮小化されないか、あるいは逆に広がったことを示す。
(Evaluation method)
Corrosion protection: as mortar endogenous chloride ions, confirm the anticorrosive effect in accelerated test by the 10 kg / m 3 and comprising as the chloride ion addition, it puts reinforcing steel round bars heated curing in 50 ° C. did. The case where rust did not occur in the reinforcing bars was good, the case where rust occurred within an area of 1/10 was acceptable, and the case where rust occurred beyond an area of 1/10 was deemed impossible.
Compressive strength: Measures compressive strength at 1 day and 28 days of age according to JIS R 5201.
Chloride penetration depth: Evaluate chloride ion penetration resistance. A 10 cmφ × 20 cm columnar mortar specimen showing the shielding effect of chloride ions was prepared, demolded one day later, and immediately put into simulated seawater, which is a salt solution with a salt concentration of 3.5% at 30 ° C. for 12 weeks. After immersion, measure chloride penetration depth. The chloride penetration depth was determined by the fluorescein-silver nitrate method, the portion of the cross section of the mortar specimen where the tea did not change was regarded as the chloride penetration depth, and the average value was obtained by measuring 8 points with calipers.
Ca ion leaching: Determination was made by immersing a 4 × 4 × 16 cm mortar specimen in 10 liters of pure water for 28 days and measuring the concentration of Ca ions dissolved in the liquid phase.
Self-healing ability: A 10 × 10 × 40 cm mortar specimen in which 0.15% by mass of 6 mm nylon fiber was mixed was prepared, and a crack having a width of 0.3 mm was introduced by bending stress. After immersing in simulated seawater for 180 days, the crack width was measured. ◎ indicates that the crack is completely closed, ○ indicates that the crack width is reduced to 0.1 mm or less, and △ indicates that the crack width is reduced to about 0.2 mm. X indicates that the crack width has not been reduced or has expanded.
表1より、CFA化合物とポリシロキサン化合物を併用することで、防錆効果、塩化物イオン浸透抑制効果を維持し、初期強度を増加することができ、さらに、Caイオンの溶脱抵抗性、自己治癒能力を向上することができることが分かる。 From Table 1, by using a CFA compound and a polysiloxane compound in combination, it is possible to maintain the rust prevention effect and the chloride ion permeation suppression effect, increase the initial strength, and further, Ca ion leaching resistance, self-healing It turns out that ability can be improved.
「実験例2」
表2に示す粉末度のCFA化合物Dとポリシロキサン化合物アを併用したこと以外は実験例1と同様に行った。結果を表2に併記する。
"Experimental example 2"
The same procedure as in Experimental Example 1 was conducted except that the CFA compound D having a fineness shown in Table 2 and the polysiloxane compound were used in combination. The results are also shown in Table 2.
表2より、CFA化合物の粉末度を調整することで、防錆効果、塩化物イオン浸透抑制効果を維持し、強度低下を抑制することができ、さらに、Caイオンの溶脱抵抗性、自己治癒能力を向上することができることが分かる。 From Table 2, by adjusting the fineness of the CFA compound, it is possible to maintain the rust prevention effect and the chloride ion permeation suppression effect, to suppress the strength reduction, and further, Ca ion leaching resistance, self-healing ability It can be seen that can be improved.
「実験例3」
CFA化合物Dを使用し、表3に示すポリシロキサン化合物を併用したこと以外は実験例1と同様に行った。結果を表3に併記する。
"Experiment 3"
The same procedure as in Experimental Example 1 was conducted except that CFA compound D was used and the polysiloxane compound shown in Table 3 was used in combination. The results are also shown in Table 3.
<使用材料>
ポリシロキサン化合物イ:直鎖状ヘキシル基を有するシロキサン総数5のポリシロキサン化合物をPVAによりカプセル化したもの
ポリシロキサン化合物ウ:直鎖状ヘキシル基を有するシロキサン総数30のポリシロキサン化合物をPVAによりカプセル化したもの
ポリシロキサン化合物エ:直鎖状ヘキシル基を有するシロキサン総数100のポリシロキサン化合物をPVAによりカプセル化したもの
ポリシロキサン化合物オ:直鎖状ヘキシル基を有するシロキサン総数300のポリシ
ロキサン化合物をPVAによりカプセル化したもの
ポリシロキサン化合物カ:直鎖状メチル基を有するシロキサン総数20のポリシロキサン化合物をPVAによりカプセル化したもの
ポリシロキサン化合物キ:直鎖状デシル基を有するシロキサン総数20のポリシロキサン化合物をPVAによりカプセル化したもの
ポリシロキサン化合物ク:直鎖状ドデシル基を有するシロキサン総数20のポリシロキサン化合物をPVAによりカプセル化したもの
ポリシロキサン化合物コ:環状ヘキシル基を有するシロキサン総数20のポリシロキサン化合物をPVAによりカプセル化したもの
ポリシロキサン化合物サ:分岐状ヘキシル基(iso−ヘキシル基)を有するシロキサン総数20のポリシロキサン化合物をPVAによりカプセル化したもの
ポリシロキサン化合物シ:直鎖状ヘキシル基とアミノ基を有するシロキサン総数20のポリシロキサン化合物をPVAによりカプセル化したもの
ポリシロキサン化合物ス:直鎖状ヘキシル基とアルコキシ基を有するシロキサン総数20のポリシロキサン化合物をPVAによりカプセル化したもの
ポリシロキサン化合物セ:直鎖状ヘキシル基を有するシロキサン総数20の液状ポリシロキサン化合物
<Materials used>
Polysiloxane compound A: Polysiloxane compound with a total of 5 siloxanes having linear hexyl groups encapsulated with PVA Polysiloxane compound C: Polysiloxane compound with a total of 30 siloxanes having linear hexyl groups encapsulated with PVA Polysiloxane compound d: Polysiloxane compound with 100 total siloxanes having linear hexyl groups encapsulated with PVA Polysiloxane compound E: Polysiloxane compound with 300 total siloxanes having linear hexyl groups with PVA Encapsulated polysiloxane compound F: Polysiloxane compound with a total of 20 siloxanes having linear methyl groups encapsulated with PVA Polysiloxane compound K: Total number of siloxanes with a linear decyl group Polysiloxane compound encapsulated with PVA polysiloxane compound C: Polysiloxane compound with a total of 20 siloxanes having linear dodecyl groups Polysiloxane compound co: Polysiloxane compound with a total of 20 siloxanes having cyclic hexyl groups Polysiloxane compound encapsulated with PVA Polysiloxane compound S: Polysiloxane compound with a total of 20 siloxanes having branched hexyl groups (iso-hexyl groups) encapsulated with PVA Polysiloxane compound S: Linear hexyl Polysiloxane compounds having 20 siloxane groups having amino groups and amino groups encapsulated by PVA Polysiloxane compounds: Polysiloxane compounds having 20 siloxane groups having linear hexyl groups and alkoxy groups Polysiloxane compound shall encapsulated by VA cell: liquid polysiloxane compound of siloxane total 20 having a linear hexyl
表3より、ポリシロキサンの総数、疎水性アルキル基の分子量を調製することで、防錆効果、塩化物イオン浸透抑制効果を維持し、強度低下を抑制することができ、さらに、Caイオンの溶脱抵抗性、自己治癒能力を向上することができることが分かる。 From Table 3, by preparing the total number of polysiloxanes and the molecular weight of the hydrophobic alkyl group, it is possible to maintain the rust prevention effect and the chloride ion permeation suppression effect, and to suppress the decrease in strength. It can be seen that resistance and self-healing ability can be improved.
「実験例4」
CFA化合物Dとポリシロキサン化合物アを用いて、表4に示す配合で混和材としたこと以外は実験例1と同様に行った。
"Experimental example 4"
The same procedure as in Experimental Example 1 was conducted except that CFA compound D and polysiloxane compound A were used as an admixture with the formulation shown in Table 4.
表4より、本発明の混和材は、防錆効果、塩化物イオン浸透抑制効果を維持し、強度低下を抑制することができ、さらに、Caイオンの溶脱抵抗性、自己治癒能力を向上することができることが分かる。 From Table 4, the admixture of the present invention maintains the rust prevention effect and the chloride ion permeation suppression effect, can suppress the strength reduction, and further improve the leaching resistance and self-healing ability of Ca ions. You can see that
「実験例5」
CFA化合物Aとポリシロキサン化合物アを、質量比2/1で混合して調製した混和材を使用して表5に示す使用量としたこと以外は実験例1と同様に行った。比較のために、従来の防錆材を用いて同様に行った。結果を表5に併記する。
“Experimental Example 5”
The experiment was performed in the same manner as in Experimental Example 1 except that an admixture prepared by mixing CFA compound A and polysiloxane compound A at a mass ratio of 2/1 was used to obtain the usage amount shown in Table 5. For comparison, a conventional rust preventive material was used in the same manner. The results are also shown in Table 5.
(使用材料)
従来の防錆材イ:亜硝酸リチウム、市販品
従来の防錆材ロ:亜硝酸型ハイドロカルマイト、市販品
(Materials used)
Conventional rust-proofing material A: Lithium nitrite, commercial product Conventional rust-proofing material B: Nitrite-type hydrocalumite, commercial product
表5より、本発明の混和材の使用量を調整することで、防錆効果、塩化物イオン浸透抑制効果を維持し、強度低下を抑制することができ、さらに、Caイオンの溶脱抵抗性、自己治癒能力を向上することができることが分かる。 From Table 5, by adjusting the use amount of the admixture of the present invention, it is possible to maintain a rust prevention effect and a chloride ion permeation suppression effect, and to suppress a decrease in strength, and further, leaching resistance of Ca ions, It turns out that self-healing ability can be improved.
本発明のセメント混和材を使用することにより、優れた防錆効果と、塩化物イオンの遮蔽効果、Caイオンの溶脱抑制効果及び自己治癒能力を奏するため、主に、土木・建築業界等において海洋や河川の水利構造物、水槽、床版コンクリートなど広範な用途に適する。 By using the cement admixture of the present invention, it has excellent rust prevention effect, chloride ion shielding effect, Ca ion leaching suppression effect and self-healing ability. Suitable for a wide range of applications such as water irrigation structures, river tanks, and floor slab concrete.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011128707A JP5801106B2 (en) | 2011-06-08 | 2011-06-08 | Cement admixture and cement composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011128707A JP5801106B2 (en) | 2011-06-08 | 2011-06-08 | Cement admixture and cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012254896A true JP2012254896A (en) | 2012-12-27 |
JP5801106B2 JP5801106B2 (en) | 2015-10-28 |
Family
ID=47526856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011128707A Active JP5801106B2 (en) | 2011-06-08 | 2011-06-08 | Cement admixture and cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5801106B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103558363A (en) * | 2013-11-04 | 2014-02-05 | 西南石油大学 | Method for evaluating self-repairing performance of well cementation cement sheath |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010046370A1 (en) * | 2008-10-24 | 2010-04-29 | Dow Corning Corporation | Composition containing a silicon-containing compound |
JP2010100473A (en) * | 2008-10-23 | 2010-05-06 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP2010180107A (en) * | 2009-02-06 | 2010-08-19 | Denki Kagaku Kogyo Kk | Spraying material, spraying method, and tunnel structure using the same |
WO2011108159A1 (en) * | 2010-03-01 | 2011-09-09 | 電気化学工業株式会社 | Calcium ferroaluminate compound, cement admixture and process for producing same, and cement composition |
JP2012201522A (en) * | 2011-03-24 | 2012-10-22 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP2012218977A (en) * | 2011-04-08 | 2012-11-12 | Denki Kagaku Kogyo Kk | Hydraulic cement composition |
-
2011
- 2011-06-08 JP JP2011128707A patent/JP5801106B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010100473A (en) * | 2008-10-23 | 2010-05-06 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
WO2010046370A1 (en) * | 2008-10-24 | 2010-04-29 | Dow Corning Corporation | Composition containing a silicon-containing compound |
JP2010180107A (en) * | 2009-02-06 | 2010-08-19 | Denki Kagaku Kogyo Kk | Spraying material, spraying method, and tunnel structure using the same |
WO2011108159A1 (en) * | 2010-03-01 | 2011-09-09 | 電気化学工業株式会社 | Calcium ferroaluminate compound, cement admixture and process for producing same, and cement composition |
WO2011108065A1 (en) * | 2010-03-01 | 2011-09-09 | 電気化学工業株式会社 | Cement admixture and cement composition |
JP2012201522A (en) * | 2011-03-24 | 2012-10-22 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP2012218977A (en) * | 2011-04-08 | 2012-11-12 | Denki Kagaku Kogyo Kk | Hydraulic cement composition |
Non-Patent Citations (1)
Title |
---|
JPN6014046342; J. A. IMLACH: 'Sub-Solidus Phase Relations in the System CaO-Al2O3-Fe-Fe2O3' Transactions and Journal Vol.70, No.6, 197109, pp.227-234, BRITISH CERAMIC SOCIETY * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103558363A (en) * | 2013-11-04 | 2014-02-05 | 西南石油大学 | Method for evaluating self-repairing performance of well cementation cement sheath |
Also Published As
Publication number | Publication date |
---|---|
JP5801106B2 (en) | 2015-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101799611B1 (en) | Calcium ferroaluminate compound, cement admixture and process for producing same, and cement composition | |
KR100835702B1 (en) | Waterproof admixture for concrete having a corrosion inhibition function | |
JP2007153714A (en) | Cement admixture and cement composition | |
JP5437044B2 (en) | Corrosion prevention method for reinforcing steel inside reinforced concrete | |
JP5345821B2 (en) | Cement admixture and cement composition | |
JP5801106B2 (en) | Cement admixture and cement composition | |
TWI734863B (en) | Cement admixture, cement composition using the same, and salt damage suppression processing method of concrete structure | |
JP5340692B2 (en) | Cement admixture and cement composition | |
JP5651055B2 (en) | Cement admixture and cement composition | |
JP5345820B2 (en) | Cement admixture and cement composition | |
JP2015063420A (en) | Salt damage-resistant cement hardened body | |
JP4509015B2 (en) | Cement admixture and cement composition | |
JP5843105B2 (en) | Cement admixture, cement composition and method for producing the same | |
JP5634683B2 (en) | Cement admixture and method for adjusting cement composition | |
JP2752108B2 (en) | Cement admixture, cement composition, cement mortar and concrete | |
JP5313623B2 (en) | Cement admixture and cement composition | |
JP5313624B2 (en) | Cement composition and cement concrete | |
JP6577785B2 (en) | Hardened concrete for salt damage prevention and manufacturing method thereof | |
JP7062668B2 (en) | Cement admixture, cement composition and its manufacturing method | |
JP5851343B2 (en) | Cement admixture, cement composition and method for producing the same | |
JP2022135751A (en) | Cement admixture and cement composition | |
JP2012218977A (en) | Hydraulic cement composition | |
JP2010100472A (en) | Cement admixture and cement composition | |
JP2002326854A (en) | Cement additive | |
JP2023028436A (en) | Cement admixture, cement composition, and concrete hardened body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140514 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150410 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150825 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150826 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5801106 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |