JP5437044B2 - Corrosion prevention method for reinforcing steel inside reinforced concrete - Google Patents

Corrosion prevention method for reinforcing steel inside reinforced concrete Download PDF

Info

Publication number
JP5437044B2
JP5437044B2 JP2009284830A JP2009284830A JP5437044B2 JP 5437044 B2 JP5437044 B2 JP 5437044B2 JP 2009284830 A JP2009284830 A JP 2009284830A JP 2009284830 A JP2009284830 A JP 2009284830A JP 5437044 B2 JP5437044 B2 JP 5437044B2
Authority
JP
Japan
Prior art keywords
sacrificial anode
anode material
concrete
reinforced concrete
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009284830A
Other languages
Japanese (ja)
Other versions
JP2011127157A (en
Inventor
賢司 山本
和人 田原
博敬 松久保
隆典 山岸
昭俊 荒木
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009284830A priority Critical patent/JP5437044B2/en
Publication of JP2011127157A publication Critical patent/JP2011127157A/en
Application granted granted Critical
Publication of JP5437044B2 publication Critical patent/JP5437044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2023Resistance against alkali-aggregate reaction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/24Sea water resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance
    • C04B2111/265Cathodic protection of reinforced concrete structures

Description

本発明は、主に、海洋環境下におけるコンクリート構造物の耐久性、すなわち、耐海水性及び耐食性の向上に関する。   The present invention mainly relates to improvement of durability of a concrete structure in a marine environment, that is, seawater resistance and corrosion resistance.

近年、土木や建築分野において、コンクリート構造物の耐久性向上に対する要望が高まっている。   In recent years, there has been an increasing demand for improving the durability of concrete structures in the civil engineering and construction fields.

コンクリート構造物の劣化要因の1つとして、塩化物イオンにより鉄筋が腐食する塩害がある。海洋構造物では、飛来塩分により鉄筋コンクリート内部に塩分が浸透して、鉄筋が発錆する。寒冷地の道路では、塩化ナトリウムや塩化カルシウム等の凍結防止剤の散布により、塩害が発生する。また、塩化物イオンを含む海砂や混和材を配合したコンクリートでは、内在塩分により塩害が発生する。
外部からの塩化物イオンの浸透を抑制する方法として、コンクリート構造物に塩化物イオン浸透抵抗性を付与する方法がある。
As one of the deterioration factors of concrete structures, there is salt damage in which reinforcing bars corrode by chloride ions. In offshore structures, salt infiltrates into reinforced concrete due to incoming salt, and the steel rusts. On roads in cold regions, salt damage occurs due to the application of anti-freezing agents such as sodium chloride and calcium chloride. Also, in concrete containing sea sand containing chloride ions and admixtures, salt damage occurs due to the internal salt content.
As a method of suppressing the penetration of chloride ions from the outside, there is a method of imparting chloride ion penetration resistance to a concrete structure.

コンクリート硬化体の内部への塩化物イオン浸透を抑制し、塩化物イオン浸透抵抗性を付与する方法としては、水/セメント比を小さくする方法が知られている(非特許文献1参照)。   As a method for suppressing chloride ion penetration into the hardened concrete and imparting chloride ion penetration resistance, a method of reducing the water / cement ratio is known (see Non-Patent Document 1).

また、セメントコンクリートに早強性を付与し、かつ、鉄筋の腐食を防止するなどの目的で、CaO・2Alとセッコウを主体とし、ブレーン比表面積値が8000cm/gの微粉を含有するセメント混和材を使用する方法(特許文献1参照)や、CaO/Alモル比が0.3〜0.7のカルシウムアルミネートを含有するセメント混和材を用いて塩化物イオン浸透抵抗性を向上させる方法(特許文献2参照)が提案されている。 Also, for the purpose of imparting early strength to cement concrete and preventing corrosion of reinforcing bars, it contains CaO.2Al 2 O 3 and gypsum as the main component and contains fine powder with a Blaine specific surface area value of 8000 cm 2 / g. Chloride ion permeation resistance using a cement admixture containing a calcium aluminate having a CaO / Al 2 O 3 molar ratio of 0.3 to 0.7 (see Patent Document 1) A method for improving the performance (see Patent Document 2) has been proposed.

鉄筋の防錆を目的として、亜硝酸塩、亜硝酸型ハイドロカルマイトを添加する方法が提案されている(特許文献3〜5参照)。亜硝酸塩は、防錆効果を発揮するものの、外部から侵入する塩化物イオンの遮蔽効果を発揮するものではなく、また、亜硝酸型ハイドロカルマイトは、防錆効果を発揮するものの、これを混和したセメント硬化体が多孔質になりやすく、むしろ、外部からの塩化物イオンの浸透を許容しやすい。   Methods for adding nitrite and nitrite hydrocalumite have been proposed for the purpose of rust prevention of reinforcing steel (see Patent Documents 3 to 5). Nitrite shows rust prevention effect, but does not show blocking effect of chloride ions entering from the outside, and nitrite type hydrocalumite shows rust prevention effect, but this is not mixed The cemented hardened body is likely to be porous, but rather to allow permeation of chloride ions from the outside.

一方、鉄筋の腐食を防止する方法として、金属の標準電極電位の差を利用した犠牲陽極材方式の電気防食工法が知られている。外部電極が不要で、メンテナンスが容易であり、長期防食性に優れるなどの特徴がある(特許文献6参照)。   On the other hand, as a method for preventing corrosion of reinforcing bars, a sacrificial anode material type cathodic protection method using a difference in standard electrode potential of metal is known. There are features such as no need for external electrodes, easy maintenance, and excellent long-term corrosion resistance (see Patent Document 6).

しかしながら、犠牲陽極材を特定のカルシウムアルミネートと併用した場合に、耐塩害性を高めることについては、全く知られていなかった。   However, when the sacrificial anode material is used in combination with a specific calcium aluminate, it has not been known at all about enhancing salt damage resistance.

本発明者らは、特定のカルシウムアルミネートを含むコンクリート硬化体の内部に犠牲陽極材を設置することにより、優れた耐塩害性が得られることを知見した。   The present inventors have found that excellent salt damage resistance can be obtained by installing a sacrificial anode material inside a hardened concrete body containing a specific calcium aluminate.

岸谷孝一、西澤紀昭他編、「コンクリートの耐久性シリーズ、塩害(I)」、技報堂出版、pp.59−63、1986年5月Koichi Kishitani, Noriaki Nishizawa et al., “Durability series of concrete, salt damage (I)”, Gihodo Publishing, pp. 59-63, May 1986

特開昭47−035020号公報JP 47-035020 A 特開2005−104828号公報JP 2005-104828 A 特開昭53−003423号公報JP-A-53-003423 特開平01−103970号公報Japanese Patent Laid-Open No. 01-103970 特開平04−154648号公報Japanese Patent Laid-Open No. 04-154648 特許第3099830号公報Japanese Patent No. 3099830

本発明は、塩害環境下における鉄筋コンクリート構造物の耐久性を向上させる方法を提供する。   The present invention provides a method for improving the durability of a reinforced concrete structure in a salt damage environment.

本発明は、(1)CaO/Alモル比が0.15〜0.7で、ブレーン比表面積値が2000〜7000cm/gのカルシウムアルミネート化合物と、セメント、及び水を練混ぜて硬化させたコンクリートの内部に犠牲陽極材を設置し、犠牲陽極材の周りに陽極の不導態の生成を避けるのに12以上のpHを持った電解質溶液を含有する多孔性材料を付設し、犠牲陽極材とコンクリート内部の鉄筋を電気的に接続してなり、犠牲陽極材の金属が、亜鉛、アルミニウム、及びマグネシウムからなる群より選ばれた一種又は二種以上を含む金属または合金である、鉄筋コンクリート内部の鉄筋の防食工法、(2)多孔性材料がアルカリシリカ反応抑制剤を含有してなる(1)の鉄筋コンクリート内部の鉄筋の防食工法、(3)アルカリシリカ反応抑制剤がリチウムイオンを含有してなる(2)の該鉄筋コンクリート内部の鉄筋の防食工法、である。 In the present invention, (1) a calcium aluminate compound having a CaO / Al 2 O 3 molar ratio of 0.15 to 0.7 and a brain surface area value of 2000 to 7000 cm 2 / g, cement, and water are mixed. A sacrificial anode material is installed inside the hardened concrete, and a porous material containing an electrolyte solution having a pH of 12 or more is attached around the sacrificial anode material in order to avoid the formation of a non-conductive state of the anode. , the sacrificial anode material and concrete interior rebar Ri Na electrically connected, the metal of the sacrificial anode material, zinc, aluminum, and a metal or an alloy including the selected one or two or more from the group consisting of magnesium there, reinforced concrete inside the steel reinforcement corrosion method, (2) a porous material anticorrosive method of reinforced concrete internal reinforcement of which comprises an alkali silica reaction inhibitor (1), (3) alk The reinforced concrete internal rebar corrosion method silica reaction inhibitor comprising lithium ions (2), is.

本発明は、鉄筋コンクリートに優れた防錆効果を付与し、鉄筋の腐食を抑制して耐塩害性を向上させる効果を奏する。   The present invention has an effect of imparting an excellent rust prevention effect to reinforced concrete and suppressing the corrosion of the reinforcing bars to improve the salt damage resistance.

以下、本発明を詳細に説明する。
なお、本発明における部や%は、特に規定しない限り質量基準で示す。
また、本発明で云うコンクリートとは、セメントペースト、モルタル、及びコンクリートの総称である。
Hereinafter, the present invention will be described in detail.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.
The concrete referred to in the present invention is a general term for cement paste, mortar, and concrete.

土木用途や建築用途では、通常、生コン工場から工事現場に生コンを輸送し、大量に打設する。このような使用形態では、可使時間が少なくとも1時間以上確保される必要があり、3時間以上確保されることが好ましい。   In civil engineering and construction applications, usually, raw concrete is transported from the raw concrete factory to the construction site and placed in large quantities. In such a usage pattern, the pot life needs to be secured for at least 1 hour, and preferably 3 hours or more.

本発明で使用するカルシウムアルミネート化合物(以下、CA化合物という)とは、カルシアを含む原料と、アルミナを含む原料等を混合して、キルンでの焼成や電気炉での溶融等の熱処理をして得られる、CaOとAlを主成分とする化合物を総称するものである。本発明は、CA化合物の化学組成がCaO/Alモル比で0.15〜0.7の範囲にある。CA化合物が、例えば、SiOやRO(Rはアルカリ金属)を含有していても、本発明の目的を損なわない限り使用可能である。
本発明のCA化合物のCaO/Alモル比は0.15〜0.7であり、0.4〜0.6がより好ましい。0.15未満では、塩化物イオンの遮蔽効果が充分に得られない場合があり、逆に、0.7を超えると急硬性が現れるようになり、可使時間が確保できない場合がある。
The calcium aluminate compound (hereinafter referred to as CA compound) used in the present invention is a mixture of calcia-containing raw material and alumina-containing raw material, and heat treatment such as firing in a kiln or melting in an electric furnace. This is a general term for compounds obtained mainly from CaO and Al 2 O 3 . In the present invention, the chemical composition of the CA compound is in the range of 0.15 to 0.7 in terms of a CaO / Al 2 O 3 molar ratio. Even if the CA compound contains, for example, SiO 2 or R 2 O (R is an alkali metal), it can be used as long as the object of the present invention is not impaired.
The CaO / Al 2 O 3 molar ratio of the CA compound of the present invention is 0.15 to 0.7, and more preferably 0.4 to 0.6. If it is less than 0.15, the chloride ion shielding effect may not be sufficiently obtained. Conversely, if it exceeds 0.7, rapid hardening may appear, and the pot life may not be secured.

CA化合物の粉末度は、ブレーン比表面積値(以下、ブレーン値という)で2000〜7000cm/gが好ましく、3000〜6000cm/gがより好ましい。ブレーン値が2000cm/g未満では、充分な塩化物イオンの遮蔽効果が得られない場合があり、7000cm/gを超えると急硬性が現れるようになり、可使時間が短くなる。 Fineness of CA compound, Blaine specific surface area value (hereinafter, referred to as Blaine value) is preferably 2000~7000cm 2 / g in, 3000~6000cm 2 / g is more preferable. If the brane value is less than 2000 cm 2 / g, a sufficient chloride ion shielding effect may not be obtained, and if it exceeds 7000 cm 2 / g, rapid hardening appears and the pot life is shortened.

セメントとしては、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、石灰石粉末や高炉徐冷スラグ微粉末等を混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)などのポルトランドセメントが挙げられ、これらのうちの1種又は2種以上が使用可能である。   As the cement, various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, various mixed cements in which blast furnace slag, fly ash, or silica is mixed with these portland cements, limestone powder and blast furnace slow Portland cement such as filler cement mixed with fine powder of cold slag, etc., and environmentally friendly cement (eco-cement) manufactured using municipal waste incineration ash and sewage sludge incineration ash as raw materials are listed. Or 2 or more types can be used.

本発明のCA化合物の使用量は、セメント100部に対して、CA化合物1〜30部が好ましく、5〜15部がより好ましい。1部未満の場合には、充分な防錆効果や塩化物イオンの遮蔽効果が少なく、30部を超えると急硬性が現れるようになり、可使時間が短くなる。   The amount of the CA compound used in the present invention is preferably 1 to 30 parts, more preferably 5 to 15 parts, per 100 parts of cement. If it is less than 1 part, there is little sufficient rust prevention effect and chloride ion shielding effect, and if it exceeds 30 parts, rapid hardening will appear and the pot life will be shortened.

本発明の水/結合材比は、25〜70%が好ましく、30〜65%がより好ましい。ここで結合材とは、セメントとCA化合物の合計をいう。水/結合材比が25%未満の場合、ポンプ圧送性や施工性が低下し、自己収縮に伴うひび割れが発生しやすくなり、耐塩害性が低下する場合がある。一方、70%を超えると硬化体中の空隙量が多くなり、耐塩害性が低下する場合がある。   The water / binder ratio of the present invention is preferably 25 to 70%, more preferably 30 to 65%. Here, the binder means the total of cement and CA compound. When the water / binder ratio is less than 25%, pumpability and workability are lowered, cracking due to self-shrinkage is likely to occur, and salt damage resistance may be lowered. On the other hand, if it exceeds 70%, the amount of voids in the cured body increases, and salt damage resistance may decrease.

本発明では、それぞれの材料を施工時に混合しても良いし、あらかじめ一部あるいは全部を混合しておいても差し支えない。   In the present invention, the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance.

混合装置としては、既存の如何なる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、及びナウタミキサ等の使用が可能である。   As the mixing device, any existing device can be used, and for example, a tilting mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer can be used.

本発明では、セメント、CA化合物の他に、砂等の細骨材や砂利等の粗骨材、膨張材、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、従来の防錆剤、防凍剤、収縮低減剤、高分子エマルジョン、凝結調整剤、ベントナイトなどの粘土鉱物、ハイドロタルサイトなどのアニオン交換体、高炉水砕スラグ微粉末や高炉徐冷スラグ微粉末などのスラグ、石灰石微粉末等の混和材料からなる群のうちの1種又は2種以上を、本発明の目的を実質的に阻害しない範囲で併用することが可能である。   In the present invention, in addition to cement and CA compound, fine aggregate such as sand, coarse aggregate such as gravel, expansion material, water reducing agent, AE water reducing agent, high performance water reducing agent, high performance AE water reducing agent, antifoaming agent , Thickeners, conventional rust inhibitors, antifreeze agents, shrinkage reducers, polymer emulsions, setting modifiers, clay minerals such as bentonite, anion exchangers such as hydrotalcite, granulated blast furnace slag fine powder and blast furnace gradual It is possible to use together 1 type or 2 types or more of the group which consists of admixture materials, such as slag and limestone fine powder, such as cold slag fine powder, in the range which does not inhibit the objective of this invention substantially.

本発明では、CA化合物、セメント、及び水を配合して練混ぜて硬化させたコンクリート硬化体の内部に犠牲陽極材を設置することにより、コンクリートの耐塩害性が一層向上する。   In the present invention, the salt damage resistance of the concrete is further improved by installing the sacrificial anode material inside the hardened concrete body which is prepared by mixing and kneading the CA compound, cement, and water.

なお、CA化合物を配合したコンクリート硬化体の効果と、犠牲陽極材をコンクリート硬化体の内部に設置した効果は、各々の場合に得られる効果に対して、併用した場合には相乗的により高い効果が得られる。   The effect of the hardened concrete blended with the CA compound and the effect of installing the sacrificial anode material inside the hardened concrete body are synergistically higher when combined with the effect obtained in each case. Is obtained.

本発明では、コンクリート内部の鉄筋を陰極とし、コンクリート内部に犠牲陽極材を設置して、両者を電気的に接続することにより、鉄筋に防食電流を供給し、鉄筋を防食する。ここで、犠牲電極材とは、鉄よりもイオン化傾向が高い金属を含み、鉄よりも先にイオン化することにより、鉄筋を防食する材料をいう。   In the present invention, the reinforcing bar in the concrete is used as a cathode, a sacrificial anode material is installed in the concrete, and the two are electrically connected to each other, thereby supplying an anticorrosion current to the reinforcing bar and preventing the reinforcing bar from being corroded. Here, the sacrificial electrode material refers to a material that contains a metal that has a higher ionization tendency than iron and that prevents corrosion of the reinforcing bars by ionization prior to iron.

犠牲陽極材を構成する金属としては、亜鉛、アルミニウム、及びマグネシウムからなる群より選ばれた一種又は二種以上を含む合金が挙げられる。   Examples of the metal constituting the sacrificial anode material include an alloy containing one or more selected from the group consisting of zinc, aluminum, and magnesium.

犠牲陽極材の不動態化を避けるため、金属の周囲を、充分なpHに保持する必要がある。例えば、亜鉛−アルミニウム合金の場合には、pH値は13.3以上が必要であり、使用する金属によって不動態化を抑えるためのpH値は異なるが、pH値は12以上が好ましい。   In order to avoid passivation of the sacrificial anode material, it is necessary to keep the surroundings of the metal at a sufficient pH. For example, in the case of a zinc-aluminum alloy, the pH value needs to be 13.3 or more, and the pH value for suppressing passivation is different depending on the metal used, but the pH value is preferably 12 or more.

犠牲陽極材の周りに付設された多孔性材料に含有する電解質溶液のpHが高いため、多孔性材料に隣接するコンクリート部分でアルカリシリカ反応が懸念される。そのため、電解質溶液にアルカリシリカ反応抑制剤を存在させることが好ましい。   Since the pH of the electrolyte solution contained in the porous material attached around the sacrificial anode material is high, there is a concern about the alkali silica reaction in the concrete portion adjacent to the porous material. Therefore, it is preferable that an alkali silica reaction inhibitor is present in the electrolyte solution.

アルカリシリカ反応抑制剤は、電解質溶液のpHの低下を避けるため、リチウムイオンが好ましく、水酸化リチウム、炭酸リチウム、又はリチウム型ゼオライトを添加することが好ましい。   The alkali silica reaction inhibitor is preferably lithium ions in order to avoid a decrease in pH of the electrolyte solution, and it is preferable to add lithium hydroxide, lithium carbonate, or lithium-type zeolite.

鉄筋と犠牲陽極材とを電気的に接続する方法は、鉄筋と犠牲陽極材を構成する金属とが電気的に導通されていればよく、特に限定されるものではないが、鉄等の金属線の一部を犠牲陽極材中の金属内に埋め込み、鉄筋に巻き付ける方法が実用上簡便である。   The method of electrically connecting the reinforcing bar and the sacrificial anode material is not particularly limited as long as the reinforcing bar and the metal constituting the sacrificial anode material are electrically connected to each other. A method of embedding a part of the metal in the metal in the sacrificial anode material and winding it around a reinforcing bar is practically simple.

本発明では、コンクリート構造物を部分的にはつった後、犠牲陽極材を設置し、鉄筋と電気的な接続を施すか、犠牲陽極材と鉄筋を電気的に接続した後、コンクリートを打設し、犠牲陽極材を埋め込む形でコンクリート構造物を構築するか、さらには、金属と鉄筋を電気的に接続した、金属表面を不導体被膜の生成を避けるのに充分なpHを持った電解質溶液を含有する多孔性材料で覆った後、コンクリートを打設し、犠牲陽極材を埋め込む形でコンクリート構造物を構築することによって、犠牲陽極材と鉄筋間に防食電流が流れ、コンクリート内の鉄筋が防食される。   In the present invention, after partially filling the concrete structure, the sacrificial anode material is installed and electrically connected to the reinforcing bar, or the sacrificial anode material and the reinforcing bar are electrically connected, and then the concrete is cast. An electrolyte solution having a pH sufficient to avoid the formation of a non-conductive coating on the metal surface, in which a concrete structure is constructed by embedding the sacrificial anode material, or the metal and the reinforcing bar are electrically connected. After covering with a porous material containing, the concrete is placed and the concrete structure is constructed by embedding the sacrificial anode material, so that an anticorrosion current flows between the sacrificial anode material and the reinforcing bar, and the reinforcing bars in the concrete are Corrosion protection.

本発明では、電位を測定することで、鉄筋の防食効果を確認することができる。
コンクリート内部の鉄筋に、それより標準電極電位の低い金属を電気的に接続すると、鉄筋自体の電位が低くなる。そのため、電位を測定することで、その数値から有効性を判断できる。
電位の測定は、コンクリート内部の鉄筋の犠牲陽極材を設置した面を測定点とし、鉛照合電極を用い測定する。このとき犠牲陽極材と鉄筋の接続を切り離せるようにしておき、接続を切り離した直後のインスタントオフ電位と、24時間経過後の電位(24時間後オフ電位)を測定し、これらの差から復極量を算出する。復極量が大きいほど鉄筋を防食する効果が大きい。
In the present invention, the anticorrosion effect of the reinforcing bars can be confirmed by measuring the potential.
When a metal having a lower standard electrode potential is electrically connected to the reinforcing bar in the concrete, the potential of the reinforcing bar itself is lowered. Therefore, the effectiveness can be judged from the numerical value by measuring the potential.
The electric potential is measured using the lead verification electrode with the surface where the sacrificial anode material of the reinforcing bar in the concrete is installed as the measurement point. At this time, the sacrificial anode material and the reinforcing bar can be disconnected, and the instant-off potential immediately after the disconnection and the potential after 24 hours (off-potential after 24 hours) are measured and recovered from these differences. Calculate the extreme amount. The greater the amount of depolarization, the greater the effect of preventing corrosion of the reinforcing bars.

以下、実施例、比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example and a comparative example are given and the contents are explained in detail, the present invention is not limited to these.

「実施例1」
セメント100部に対して、表1に示すCA化合物を10部混合し、水/結合材比50%としたコンクリート(モルタル)を調製し、10×10×40cmの試験体を作製した。試験体の軸方向の中央に鉄筋を配置し、試験体の内部に犠牲陽極材Iを設置した。鉄筋と犠牲陽極材にそれぞれリード線をつなぎ、コンクリート試験体の外部で、電気的接続のオン−オフ操作ができるようにした。
コンクリート内部の犠牲陽極材を設置した面で、鉄筋の中心に相当する点を測定点とし、鉛照合電極を用いて、インスタントオフ電位と24時間後オフ電位を測定し、それらの差から復極量を算出した。なお、復極量を測定するとき以外は、鉄筋と犠牲陽極材を電気的に接続した状態とした。また、防錆効果、圧縮強度、塩化物イオン浸透深さを調べた。結果を表1に併記する。
"Example 1"
10 parts of the CA compound shown in Table 1 was mixed with 100 parts of cement to prepare a concrete (mortar) having a water / binder ratio of 50%, and a 10 × 10 × 40 cm specimen was prepared. A reinforcing bar was placed in the center of the specimen in the axial direction, and a sacrificial anode material I was installed inside the specimen. Lead wires were connected to the reinforcing bar and sacrificial anode material, respectively, so that the electrical connection could be turned on and off outside the concrete specimen.
On the surface where the sacrificial anode material inside the concrete is installed, the point corresponding to the center of the reinforcing bar is taken as the measurement point, the lead-off reference electrode is used to measure the instant-off potential and the off-potential after 24 hours. The amount was calculated. Except when measuring the amount of depolarization, the rebar and the sacrificial anode material were electrically connected. In addition, the rust prevention effect, compressive strength, and chloride ion penetration depth were investigated. The results are also shown in Table 1.

<使用材料>
CA化合物A:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定の割合で配合し、電気炉で1650℃で焼成した後、徐冷して合成。CaO/Alモル比0.1、ブレーン値4000cm2/g
CA化合物B:CA化合物Aと同様に合成、CaO/Alモル比0.15、ブレーン値4000cm/g
CA化合物C:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定の割合で配合し、電気炉で1550℃で焼成した後、徐冷して合成。CaO/Alモル比0.4、ブレーン値4000cm2/
CA化合物D:CA化合物Cと同様に合成、CaO/Alモル比0.5、ブレーン値4000cm/g
CA化合物E:CA化合物Cと同様に合成、CaO/Alモル比0.6、ブレーン値4000cm/g
CA化合物F:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定の割合で配合し、電気炉で1450℃で焼成した後、徐冷して合成。CaO/Alモル比0.7、ブレーン値4000cm/g
CA化合物G:CA化合物Fと同様に合成、CaO/Alモル比0.9、ブレーン値4000cm/g
セメント:普通ポルトランドセメント、市販品
細骨材:川砂、表乾密度2.62g/cm
水:水道水
犠牲陽極材I:アルカリシリカ反応抑制剤としてLiOHを含有する多孔質モルタルで覆われた亜鉛塊(pH=13.5)
<Materials used>
CA compound A: Reagent primary calcium carbonate and reagent primary aluminum oxide were blended at a predetermined ratio, baked at 1650 ° C. in an electric furnace, and then slowly cooled to synthesize. CaO / Al 2 O 3 molar ratio 0.1, Blaine value 4000 cm 2 / g
CA compound B: synthesized in the same manner as CA compound A, CaO / Al 2 O 3 molar ratio 0.15, Blaine value 4000 cm 2 / g
CA compound C: Reagent primary calcium carbonate and reagent primary aluminum oxide were blended in a predetermined ratio, baked at 1550 ° C. in an electric furnace, and then slowly cooled to synthesize. CaO / Al 2 O 3 molar ratio 0.4, Blaine value 4000 cm 2 / g
CA compound D: synthesized in the same manner as CA compound C, CaO / Al 2 O 3 molar ratio 0.5, Blaine value 4000 cm 2 / g
CA compound E: synthesized in the same manner as CA compound C, CaO / Al 2 O 3 molar ratio 0.6, Blaine value 4000 cm 2 / g
CA compound F: Reagent grade 1 calcium carbonate and reagent grade 1 aluminum oxide are blended at a predetermined ratio, baked at 1450 ° C. in an electric furnace, and then slowly cooled to synthesize. CaO / Al 2 O 3 molar ratio 0.7, Blaine value 4000 cm 2 / g
CA compound G: synthesized in the same manner as CA compound F, CaO / Al 2 O 3 molar ratio 0.9, Blaine value 4000 cm 2 / g
Cement: Normal Portland cement, commercially available fine aggregate: river sand, surface dry density 2.62 g / cm 3
Water: Tap water sacrificial anode material I: Zinc block covered with porous mortar containing LiOH as alkali silica reaction inhibitor (pH = 13.5)

<測定方法>
防錆効果:コンクリート(モルタル)に内在塩化物イオンとして、塩化物イオン換算で10kg/mとなるように塩化ナトリウムを加えた。試験体を40℃に加温して鉄筋の腐食を促進させ、鉄筋の錆の有無を確認した。鉄筋に錆が発生しなかった場合は良、1/10の面積以内で錆が発生した場合は可、1/10の面積を超えて錆が発生した場合は不可とした。
圧縮強度:JIS R 5201に準じて材齢28日の圧縮強度を測定した。
塩化物イオン浸透深さ:塩化ナトリウムを加えない試験体を作製し、外部からの塩化物イオンの浸透に対する抵抗性を調べた。試験体を20℃で材齢28日まで水中養生した後、30℃で塩分濃度3.5%の食塩水に12週間浸漬して塩化物浸透深さを測定した。塩化物浸透深さはフルオロセイン−硝酸銀法により、モルタル供試体断面の茶変しなかった部分を塩化物浸透深さと見なし、ノギスで8点測定して平均値を求めた。
復極量:材齢6ヶ月において、鉛照合電極を用い、コンクリート内部の鉄筋と犠牲陽極材の電気的接続を切断した直後のインスタントオフ電位と、切断して24時間経過後の24時間後オフ電位を測定し、下式により復極量を算出した。
復極量(mV)=[Eio(mV)]−[Eof(mV)]
Eio:インスタントオフ電位
Eof:24時間後オフ電位
<Measurement method>
Rust prevention effect: Sodium chloride was added to the concrete (mortar) as an internal chloride ion so as to be 10 kg / m 3 in terms of chloride ion. The specimen was heated to 40 ° C. to promote the corrosion of the reinforcing bars, and the presence or absence of rusting of the reinforcing bars was confirmed. The case where rust did not occur in the reinforcing bars was good, the case where rust occurred within an area of 1/10 was acceptable, and the case where rust occurred beyond an area of 1/10 was deemed impossible.
Compressive strength: The compressive strength at the age of 28 days was measured according to JIS R 5201.
Chloride ion penetration depth: A test body to which sodium chloride was not added was prepared, and resistance to penetration of chloride ions from the outside was examined. The test specimen was cured in water at 20 ° C. until the age of 28 days, and then immersed in a saline solution having a salt concentration of 3.5% at 30 ° C. for 12 weeks, and the chloride penetration depth was measured. The chloride penetration depth was determined by the fluorescein-silver nitrate method, the portion of the cross section of the mortar specimen where the tea did not change was regarded as the chloride penetration depth, and the average value was obtained by measuring 8 points with calipers.
Depolarization amount: At 6 months of age, using a lead verification electrode, the instant-off potential immediately after disconnecting the electrical connection between the reinforcing steel inside the concrete and the sacrificial anode material, and OFF 24 hours after 24 hours have elapsed after cutting The potential was measured, and the amount of repolarization was calculated by the following equation.
Depolarization amount (mV) = [Eio (mV)] − [Eof (mV)]
Eio: Instant off potential Eof: Off potential after 24 hours

Figure 0005437044
Figure 0005437044

表1より、本発明によれば、コンクリート硬化体(モルタル)に、優れた防錆効果を付与し、耐塩害性が向上することが分かる。
また、実験No.1-1と1-2〜1-7より、CA化合物と犠牲陽極材を併用することにより、相乗的により高い効果が得られる。
From Table 1, it can be seen that according to the present invention, an excellent rust-preventing effect is imparted to the hardened concrete (mortar) and the salt damage resistance is improved.
From Experiments No. 1-1 and 1-2 to 1-7, the combined use of the CA compound and the sacrificial anode material provides a synergistically higher effect.

「実施例2」
表2に示す粉末度のCA化合物Dを併用したこと以外は実施例1と同様に行った。結果を表2に併記する。
"Example 2"
It carried out like Example 1 except having used together the CA compound D of the fineness shown in Table 2. The results are also shown in Table 2.

Figure 0005437044
Figure 0005437044

表2より、本発明によれば、コンクリート硬化体(モルタル)に、優れた防錆効果を付与し、耐塩害性が向上することが分かる。   From Table 2, it can be seen that according to the present invention, an excellent rust-preventing effect is imparted to the hardened concrete (mortar), and the salt damage resistance is improved.

「実施例3」
表3に示すように、セメント100部に対するCA化合物の使用量を変えたこと以外は、実施例1と同様に行った。比較のために、従来の防錆材を用いて同様に行った。結果を表3に併記する。
"Example 3"
As shown in Table 3, the same procedure as in Example 1 was performed except that the amount of CA compound used was changed with respect to 100 parts of cement. For comparison, a conventional rust preventive material was used in the same manner. The results are also shown in Table 3.

<使用材料>
市販の防錆材イ:亜硝酸リチウム
市販の防錆材ロ:亜硝酸型ハイドロカルマイト
<Materials used>
Commercially available rust preventive material A: Lithium nitrite Commercially available rust preventive material B: Nitrite type hydrocalumite

Figure 0005437044
Figure 0005437044

表3より、本発明によれば、コンクリート硬化体(モルタル)に、優れた防錆効果を付与し、耐塩害性が向上することが分かる。   From Table 3, it can be seen that according to the present invention, an excellent rust-preventing effect is imparted to the hardened concrete (mortar), and the salt damage resistance is improved.

実施例4
実験No.1-5で使用したコンクリート(モルタル)を使用し、表4に示す犠牲陽極材をコンクリート内部に設置し、アルカリシリカ反応性骨材を配合して、アルカリシリカ反応の抑制効果の有無を調べたこと以外は実施例1と同様に行った。なお、比較のために、犠牲陽極材を設置しない場合や、金属の周りの多孔性材料にアルカリシリカ反応抑制剤を含まない場合について調べた。結果を表4に併記する。
Example 4
Use the concrete (mortar) used in Experiment No.1-5, install the sacrificial anode material shown in Table 4 inside the concrete, mix the alkali silica reactive aggregate, and have the effect of suppressing the alkali silica reaction The same procedure as in Example 1 was conducted except that the above was investigated. For comparison, a case where no sacrificial anode material was installed or a case where an alkali silica reaction inhibitor was not included in the porous material around the metal was examined. The results are also shown in Table 4.

<測定方法>
アルカリシリカ反応抑制効果:試験体を40℃で養生して長さ変化率を測定し、材齢6ヶ月の長さ変化率が0.1%未満の場合は「有」、0.1%を超えた場合は「無」とした。
<Measurement method>
Alkali-silica reaction suppression effect: Curing the specimen at 40 ° C., measuring the rate of change in length. If the rate of change in length at 6 months of age is less than 0.1%, “Yes”, 0.1% When it exceeded, it was set as “None”.

<使用材料>
犠牲陽極材II:アルカリシリカ反応抑制剤としてLiOHを含有する多孔質モルタルで覆われた、亜鉛/アルミニウムの比が1/1である亜鉛アルミニウム合金(pH=13.5)
犠牲陽極材III:アルカリシリカ反応抑制剤としてLiOHを含有する多孔質モルタルで覆われた、アルミニウム塊(pH=13.5)
犠牲陽極材IV:アルカリシリカ反応抑制剤としてLiOHを含有する多孔質モルタルで覆われた、マグネシウム塊(pH=12.0)
犠牲陽極材V:アルカリシリカ反応抑制剤としてLiOHを含有する多孔質モルタルで覆われた、亜鉛/マグネシウムの比が1/1である亜鉛マグネシウム合金(pH=13.5)
犠牲陽極材VI:アルカリシリカ反応抑制剤としてLiOHを含有する多孔質モルタルで覆われた、アルミニウム/マグネシウムの比が1/1であるアルミニウムマグネシウム合金(pH=13.5)
犠牲陽極材VII:アルカリシリカ反応抑制剤としてLiOHを含有する多孔質モルタルで覆われた、亜鉛/アルミニウム/マグネシウムの比が1/1/1である亜鉛アルミニウムマグネシウム合金(pH=13.8)
犠牲陽極材VIII:アルカリシリカ反応抑制剤を含まない多孔質モルタルで覆われた亜鉛塊(pH=12.5)
<Materials used>
Sacrificial anode material II: zinc aluminum alloy (pH = 13.5) covered with porous mortar containing LiOH as an alkali silica reaction inhibitor and having a zinc / aluminum ratio of 1/1
Sacrificial anode material III: Aluminum lump (pH = 13.5) covered with porous mortar containing LiOH as an alkali silica reaction inhibitor
Sacrificial anode material IV: Magnesium lump (pH = 12.0) covered with porous mortar containing LiOH as an alkali silica reaction inhibitor
Sacrificial anode material V: Zinc magnesium alloy (pH = 13.5) covered with porous mortar containing LiOH as an alkali silica reaction inhibitor and having a zinc / magnesium ratio of 1/1
Sacrificial anode material VI: Aluminum magnesium alloy (pH = 13.5) covered with porous mortar containing LiOH as an alkali silica reaction inhibitor and having an aluminum / magnesium ratio of 1/1
Sacrificial anode material VII: Zinc-aluminum-magnesium alloy (pH = 13.8) covered with porous mortar containing LiOH as an alkaline silica reaction inhibitor and having a zinc / aluminum / magnesium ratio of 1/1/1
Sacrificial anode material VIII: zinc block covered with porous mortar containing no alkali silica reaction inhibitor (pH = 12.5)

Figure 0005437044
Figure 0005437044

表4より、本発明によれば、コンクリート硬化体(モルタル)に、優れた防錆効果を付与し、耐塩害性が向上することが分かる。実験No.4-7と4-1〜4-6より、CA化合物と犠牲陽極材を併用することにより、相乗的により高い効果が得られる。
また、実験No.4-8より、金属の周りの多孔性材料にアルカリシリカ反応抑制剤を含まない場合には、金属が不動態化するため復極量が小さくなり、アルカリシリカ反応を抑制する効果が見られない。
From Table 4, it can be seen that according to the present invention, the hardened concrete (mortar) is imparted with an excellent rust prevention effect, and the salt damage resistance is improved. From Experiment Nos. 4-7 and 4-1 to 4-6, the combined use of the CA compound and the sacrificial anode material provides a synergistically higher effect.
Also, from Experiment No. 4-8, when the porous material around the metal does not contain an alkali silica reaction inhibitor, the metal is passivated, so the amount of depolarization is reduced and the alkali silica reaction is suppressed. The effect is not seen.

本発明は、鉄筋コンクリートに、優れた防錆効果を付与し、耐塩害性を向上させるため、海洋構造物や寒冷地の道路床版などの用途に適する。   The present invention is suitable for applications such as offshore structures and road slabs in cold regions because it imparts an excellent rust prevention effect to reinforced concrete and improves salt damage resistance.

Claims (3)

CaO/Alモル比が0.15〜0.7で、ブレーン比表面積値が2000〜7000cm/gのカルシウムアルミネート化合物と、セメント、及び水を練混ぜて硬化させたコンクリートの内部に犠牲陽極材を設置し、犠牲陽極材の周りに陽極の不導態の生成を避けるのに12以上のpHを持った電解質溶液を含有する多孔性材料を付設し、犠牲陽極材とコンクリート内部の鉄筋を電気的に接続してなり、犠牲陽極材の金属が、亜鉛、アルミニウム、及びマグネシウムからなる群より選ばれた一種又は二種以上を含む金属または合金である、鉄筋コンクリート内部の鉄筋の防食工法。 In CaO / Al 2 O 3 molar ratio of 0.15 to 0.7, the internal Blaine specific surface area of the calcium aluminate compounds of 2000~7000cm 2 / g, cement, and water was allowed to cure kneading concrete A sacrificial anode material is placed on the inside of the sacrificial anode material, and a porous material containing an electrolyte solution having a pH of 12 or more is attached around the sacrificial anode material to avoid the formation of anode conduction. rebar Ri Na electrically connecting the metal of the sacrificial anode material, zinc, aluminum, and a metal or an alloy including one or two or more selected from the group consisting of magnesium, internal reinforced concrete rebar Anticorrosion method. 多孔性材料がアルカリシリカ反応抑制剤を含有してなる請求項1に記載の鉄筋コンクリート内部の鉄筋の防食工法。 The anticorrosion method for reinforcing bars in reinforced concrete according to claim 1, wherein the porous material contains an alkali silica reaction inhibitor. アルカリシリカ反応抑制剤がリチウムイオンを含有してなる請求項2に記載の鉄筋コンクリート内部の鉄筋の防食工法。 The anticorrosion method for reinforcing bars in reinforced concrete according to claim 2, wherein the alkali silica reaction inhibitor contains lithium ions.
JP2009284830A 2009-12-16 2009-12-16 Corrosion prevention method for reinforcing steel inside reinforced concrete Active JP5437044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009284830A JP5437044B2 (en) 2009-12-16 2009-12-16 Corrosion prevention method for reinforcing steel inside reinforced concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009284830A JP5437044B2 (en) 2009-12-16 2009-12-16 Corrosion prevention method for reinforcing steel inside reinforced concrete

Publications (2)

Publication Number Publication Date
JP2011127157A JP2011127157A (en) 2011-06-30
JP5437044B2 true JP5437044B2 (en) 2014-03-12

Family

ID=44290063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009284830A Active JP5437044B2 (en) 2009-12-16 2009-12-16 Corrosion prevention method for reinforcing steel inside reinforced concrete

Country Status (1)

Country Link
JP (1) JP5437044B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5653952B2 (en) * 2012-02-29 2015-01-14 電気化学工業株式会社 Method for constructing reinforced concrete structures
EP2875171B1 (en) * 2012-07-19 2024-01-03 Vector Corrosion Technologies Ltd Corrosion protection using a sacrificial anode
JP6353733B2 (en) * 2014-08-04 2018-07-04 デンカ株式会社 Spacer member having anti-corrosion function for steel in concrete and installation method thereof
JP6482969B2 (en) * 2015-06-30 2019-03-13 デンカ株式会社 Section repair method for concrete structures
CN115536435B (en) * 2022-10-14 2023-07-25 浙大宁波理工学院 Antibacterial and seepage-proofing treatment method for reinforced concrete and reinforced concrete

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4382614B2 (en) * 2003-09-10 2009-12-16 電気化学工業株式会社 Cement admixture and cement composition using the same
JP2005281112A (en) * 2004-03-30 2005-10-13 Port & Airport Research Institute Seawater-formulated type alumina cement concrete
JP2007153714A (en) * 2005-12-08 2007-06-21 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP4509015B2 (en) * 2005-12-09 2010-07-21 電気化学工業株式会社 Cement admixture and cement composition
JP5388435B2 (en) * 2007-10-18 2014-01-15 電気化学工業株式会社 Steel anticorrosive member used for electrochemical corrosion protection method of concrete using sacrificial anode material, and electrochemical corrosion protection method using the same

Also Published As

Publication number Publication date
JP2011127157A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5688073B2 (en) Calcium ferroaluminate compound, cement admixture and method for producing the same, cement composition
JP5437044B2 (en) Corrosion prevention method for reinforcing steel inside reinforced concrete
JP4382614B2 (en) Cement admixture and cement composition using the same
JP5631024B2 (en) Anti-corrosion method for reinforcing bars inside reinforced concrete structures
JP2007153714A (en) Cement admixture and cement composition
JP5345821B2 (en) Cement admixture and cement composition
JP5340692B2 (en) Cement admixture and cement composition
Jo et al. Investigation of corrosion assessment of hydrogen-rich water based cement mortars
JP5437045B2 (en) Control method of composite deterioration of reinforced concrete
JP5345820B2 (en) Cement admixture and cement composition
WO2018088405A1 (en) Cement admixture, cement composition using same, and processing method for preventing salt damage in concrete structure
JP5634683B2 (en) Cement admixture and method for adjusting cement composition
JP5651055B2 (en) Cement admixture and cement composition
JP4509015B2 (en) Cement admixture and cement composition
JP4882259B2 (en) Hydrated hardened body with rebar having excellent salt resistance
JP5313623B2 (en) Cement admixture and cement composition
JP7062668B2 (en) Cement admixture, cement composition and its manufacturing method
JP5843105B2 (en) Cement admixture, cement composition and method for producing the same
JP5653952B2 (en) Method for constructing reinforced concrete structures
JP5313624B2 (en) Cement composition and cement concrete
JP2007153715A (en) Cement admixture and cement composition
JP2006273689A (en) Hydrated hardened body containing reinforcing bar excellent in salt damage resistance
JP2010100472A (en) Cement admixture and cement composition
JP5851343B2 (en) Cement admixture, cement composition and method for producing the same
JP4827581B2 (en) Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R151 Written notification of patent or utility model registration

Ref document number: 5437044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250