JP6353733B2 - Spacer member having anti-corrosion function for steel in concrete and installation method thereof - Google Patents

Spacer member having anti-corrosion function for steel in concrete and installation method thereof Download PDF

Info

Publication number
JP6353733B2
JP6353733B2 JP2014158939A JP2014158939A JP6353733B2 JP 6353733 B2 JP6353733 B2 JP 6353733B2 JP 2014158939 A JP2014158939 A JP 2014158939A JP 2014158939 A JP2014158939 A JP 2014158939A JP 6353733 B2 JP6353733 B2 JP 6353733B2
Authority
JP
Japan
Prior art keywords
concrete
steel
spacer
spacer member
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014158939A
Other languages
Japanese (ja)
Other versions
JP2016035095A (en
Inventor
豊 上村
豊 上村
宮口 克一
克一 宮口
佐々木 崇
崇 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2014158939A priority Critical patent/JP6353733B2/en
Publication of JP2016035095A publication Critical patent/JP2016035095A/en
Application granted granted Critical
Publication of JP6353733B2 publication Critical patent/JP6353733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

本発明は、鉄筋コンクリート構造物を作る際に鉄筋と型枠の間、鉄筋と鉄筋の間、および既存コンクリートと鉄筋の間に所定の空間を保持するための鉄筋コンクリート用スペーサー部材に関するものであって、特に、鉄筋コンクリート構造物の内部に、該鋼材よりも標準電極電位の低い金属よりなるスペーサーブロック部材を含むスペーサー部材を設置し、コンクリート構造物内部の鋼材とスペーサーブロック部材を電気的に接続することにより、コンクリート内部の鋼材の腐食を防止する方法に関するものである。   The present invention relates to a reinforced concrete spacer member for maintaining a predetermined space between a reinforcing bar and a formwork, between a reinforcing bar and a reinforcing bar, and between an existing concrete and a reinforcing bar when making a reinforced concrete structure, In particular, by installing a spacer member including a spacer block member made of a metal having a lower standard electrode potential than the steel material inside the reinforced concrete structure, and electrically connecting the steel material inside the concrete structure and the spacer block member. The present invention relates to a method for preventing corrosion of steel materials inside concrete.

一般に、鉄筋コンクリート構造物は、コンクリートの中に鋼材を埋め込んで、外力に対してコンクリートと、その中の鋼材が一体となって働くものである。   In general, a reinforced concrete structure is a structure in which a steel material is embedded in the concrete, and the concrete and the steel material in the concrete work together against an external force.

よって、鉄筋コンクリート構造物は、内部に埋め込まれた鋼材の配置は重要であり、鉄筋コンクリート用スペーサー部材は、鉄筋に取り付けて、鉄筋と型枠、鉄筋と鉄筋、および鉄筋と既存コンクリートとの距離を所定の長さに保ちコンクリートを打設することにより、健全な鉄筋コンクリート構造物を構築するために用いられる。   Therefore, in the reinforced concrete structure, the arrangement of the steel material embedded inside is important, and the spacer member for the reinforced concrete is attached to the reinforcing bar, and the distance between the reinforcing bar and the formwork, the reinforcing bar and the reinforcing bar, and the reinforcing bar and the existing concrete is determined. It is used to construct a sound reinforced concrete structure by placing concrete with a length of.

さまざまな鉄筋コンクリート構造物に対応するために鉄筋コンクリート用スペーサー部材も目的によって多種多様なものが開発されている。そのような中、鉄筋コンクリート構造物中の鉄筋の位置を保つことに加え、新たな付加価値が求められており、特許文献1,2等が提案されている。   In order to cope with various reinforced concrete structures, various types of spacer members for reinforced concrete have been developed depending on the purpose. Under such circumstances, in addition to maintaining the position of the reinforcing bar in the reinforced concrete structure, new added value is required, and Patent Documents 1, 2 and the like have been proposed.

特開2006−307548号公報JP 2006-307548 A 特開2000−265619号公報JP 2000-265619 A

しかしながら、鉄筋コンクリート用スペーサー部材は、鉄筋と共に、鉄筋コンクリート楮物の内部に設置されるが、近年、鉄筋コンクリート構造物の劣化が大きな課題となっている。   However, although the spacer member for reinforced concrete is installed inside a reinforced concrete case together with the reinforcing bar, in recent years, deterioration of the reinforced concrete structure has become a major issue.

コンクリート構造物の代表的な劣化要因としては、中性化、塩害、凍害、アルカリ骨材反応、化学的侵食、および疲労等を挙げることができる。
このようにコンクリート構造物の耐久性の課題は、コンクリートそのものの耐久性のみでなく、併用する鋼材の耐久性(耐腐食性)の課題であることも多い。
Typical deterioration factors of concrete structures include neutralization, salt damage, frost damage, alkali aggregate reaction, chemical erosion, fatigue, and the like.
As described above, the problem of the durability of the concrete structure is often not only the durability of the concrete itself but also the durability (corrosion resistance) of the steel material used in combination.

コンクリート内の鋼材は、鋼材全体が、強アルカリ性のコンクリートで覆われるため、鋼材表面に不導体被膜を形成し、耐久性(耐腐食性)が向上する。しかしながら、鋼材がスペーサー部材等の強アルカリ性を呈さない材料と接した部分においては、不導体被膜が形成されない。   Since the steel material in concrete is entirely covered with strongly alkaline concrete, a non-conductive film is formed on the steel material surface, and durability (corrosion resistance) is improved. However, a non-conductive film is not formed in the portion where the steel material is in contact with a material that does not exhibit strong alkalinity such as a spacer member.

特に、コンクリート内部の鋼材の腐食は、コンクリートの中性化、コンクリートに含まれる塩分、並びに、外部からコンクリートに浸入してくる塩化物イオン、硫化物イオン、及び窒化物イオンなどの影響で、立地環境によっては比較的短期間で進行する場合がある。   In particular, the corrosion of steel inside concrete is affected by the neutralization of concrete, the salt content of concrete, and the influence of chloride ions, sulfide ions, and nitride ions entering the concrete from the outside. Depending on the environment, it may take a relatively short time.

さらには、前記の理由等により、コンクリート構造物の一部を部分的に補修した場合では、既設部の鋼材がアノード、補修部の鋼材がカソードとなり、新たにマクロセル腐食を生ずる場合がある等の課題があった。   Furthermore, when a part of a concrete structure is partially repaired due to the reasons described above, the steel material of the existing part becomes the anode and the steel material of the repaired part becomes the cathode, which may cause new macrocell corrosion. There was a problem.

本発明は、コンクリート内部の鋼材を確実に防食することが可能となる、スペーサー部材およびその設置方法を提供する。   The present invention provides a spacer member and a method for installing the spacer member, which can surely prevent corrosion of the steel material inside the concrete.

すなわち、本発明は、上記課題を解決するために、以下の手段を採用する。
(1)鉄筋コンクリート内に設置し、コンクリート内の鋼材の位置を適切にするために配置するスペーサー部材において、スペーサーブロック部材を構成する金属が亜鉛アルミニウム合金であり、コンクリート内の鋼材とスペーサーブロック部材を構成する金属が電気的に接続されており、金属の周りに金属表面の不動態被膜の生成を避けるのに充分なpHを持った電解質溶液を含有する多孔性材料を付設し、前記多孔性材料に1種類以上のアルカリ・シリカ反応抑制剤が含まれることを特徴とする鋼材のスペーサー部材
(2)コンクリート内の鋼材とスペーサーブロック部材を構成する金属の電気的接続において、金属部分と接合されたワイヤーを用いる前記(1)の鋼材のスペーサー部材
(3)前記アルカリ・シリカ反応抑制剤がリチウムイオンを含む前記(1)又は(2)の鋼材のスペーサー部材
(4)金属部分と接合されたワイヤーをコンクリート内の鋼材に巻き付け、コンクリート内の鋼材とスペーサー部材を固定する前記(1)〜(3)のいずれかの鋼材のスペーサー部材の設置方法
(5)前記(1)〜(3)のいずれかの鋼材のスペーサー部材をコンクリート内に設置し、電気化学的防食機能を付与してなる、鉄筋と型枠の間、鉄筋と鉄筋の間、および既存コンクリートと鉄筋の間の所定空間の保持方法
(6)前記(1)〜(3)のいずれかの鋼材のスペーサー部材を設置したコンクリート内の鋼材の自然電位の測定方法であって、コンクリート内の鋼材のスペーサー部材を設置した面と反対側の面を測定点とし、照合電極を用い、自然電位を測定することを特徴とするコンクリート内の鋼材の自然電位の測定方法。
(7)前記(1)〜(3)のいずれか鋼材のスペーサー部材を設置したコンクリート構造物。
That is, the present invention employs the following means in order to solve the above problems.
(1) In a spacer member that is installed in reinforced concrete and arranged to make the position of the steel material in the concrete appropriate, the metal constituting the spacer block member is a zinc aluminum alloy , and the steel material in the concrete and the spacer block member are A porous material containing an electrolyte solution having a pH sufficient to avoid the formation of a passive film on the metal surface is attached around the metal , and the porous material one or more alkali-silica reaction inhibitor include spacer members steel characterized by Rukoto to.
(2) The steel spacer member according to (1), wherein a wire joined to a metal portion is used in electrical connection between the steel material in the concrete and the metal constituting the spacer block member .
(3) The spacer member of the steel material according to (1) or (2) , wherein the alkali / silica reaction inhibitor contains lithium ions .
(4) The installation method of the spacer member of the steel material in any one of said (1) -(3) which winds the wire joined with the metal part around the steel material in concrete, and fixes the steel material and spacer member in concrete .
(5) The steel spacer member of any one of the above (1) to (3) is installed in concrete, and is provided with an electrochemical anticorrosion function, between the reinforcing bar and the formwork, between the reinforcing bar and the reinforcing bar, And a method for retaining a predetermined space between the existing concrete and the reinforcing bar .
(6) A method for measuring a natural potential of a steel material in a concrete in which the steel spacer member of any one of (1) to (3) is installed, which is opposite to the surface on which the steel spacer member in the concrete is installed. A method for measuring the natural potential of a steel material in concrete, wherein a natural potential is measured using a reference electrode as a measurement point and a reference electrode.
(7) A concrete structure provided with the steel spacer member of any one of (1) to (3) .

本発明の鋼材のスペーサーブロック部材を設置することによって、コンクリート内部の鋼材を確実に防食することが可能となる。   By installing the steel spacer block member of the present invention, it becomes possible to reliably prevent corrosion of the steel inside the concrete.

自然電位測定図Natural potential measurement diagram 電解質溶液を含有する多孔性材料と鋼材のスペーサー部材の外観図External view of porous material and steel spacer member containing electrolyte solution

1:スペーサー部材
2:鋼材(みがき鋼棒)
3:コンクリート
4:照合電極
5:リード線
6:多孔性材料
7:スペーサーブロック部材
1: Spacer member 2: Steel material (polished steel bar)
3: Concrete 4: Reference electrode 5: Lead wire 6: Porous material 7: Spacer block member

以下、本発明を詳細に説明する。
なお、本発明における部や%は特に規定しない限り質量基準で示す。
また、本発明におけるコンクリートとは、モルタルを含む場合もある。
Hereinafter, the present invention will be described in detail.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.
Moreover, the concrete in this invention may contain a mortar.

本発明の鋼材のスペーサー部材は、スペーサーとしての機能のみならず、コンクリート内部の鋼材を陰極とし、コンクリート内部に設置したスペーサーブロック部材を構成する金属を陽極として、両者を電気的に接続することにより、この陰極−陽極間に電気を流し、コンクリート内部の鋼材を防食するものである。
本発明の鋼材のスペーサー部材は、鉄筋と型枠の間、鉄筋と鉄筋の間、および既存コンクリートと鉄筋の間に所定空間を保持する機能を持つ。スペーサー部材の形状や大きさは、保持したい所定空間により任意に調整することが可能であり、特に限定されないが、通常、数mm〜数100mmである。
The steel spacer member of the present invention not only functions as a spacer, but also by electrically connecting the steel material inside the concrete as a cathode and the metal constituting the spacer block member installed inside the concrete as an anode. In this case, electricity is passed between the cathode and the anode to prevent corrosion of the steel material inside the concrete.
The steel spacer member of the present invention has a function of maintaining a predetermined space between the reinforcing bar and the formwork, between the reinforcing bar and the reinforcing bar, and between the existing concrete and the reinforcing bar. The shape and size of the spacer member can be arbitrarily adjusted depending on the predetermined space to be held, and are not particularly limited, but are usually several mm to several hundred mm.

本発明の鋼材のスペーサーブロック部材を構成する金属とは、亜鉛、アルミニウム、カドミウム、マグネシウムの内、1種又は2種以上含む合金がげられるが、亜鉛アルミニウム合金が好ましい。 The metal constituting the spacer block member of the steel material of the present invention, zinc, aluminum, cadmium, among magnesium, one or but more containing alloy can be mentioned up, zinc aluminum alloy.

本発明の鋼材のスペーサーブロック部材を構成する金属の不動態化を避けるため、金属の周りの全てまたは一部は適当な高いpHが維持されなければならない。亜鉛−アルミニウム合金の場合には適当なpH値は13.3以上であるが、他の材料の場合には、その材料の不動態化を避けるのに十分高いpHが必要である。   In order to avoid passivation of the metals that make up the steel spacer block members of the present invention, all or part of the surroundings of the metal must be maintained at a suitably high pH. In the case of a zinc-aluminum alloy, a suitable pH value is 13.3 or higher, but in the case of other materials, a sufficiently high pH is necessary to avoid passivation of the material.

しかしながら、スペーサーブロック部材を構成する金属に付設された多孔性材料に含有する電解質溶液のpHが高いため、多孔性材料に隣接するコンクリート部分でアルカリ・シリカ反応が懸念されることから、多孔性材料に含有する電解質溶液に少なくとも1種類のアルカリ・シリカ反応抑制剤の存在することが好ましい。   However, since the pH of the electrolyte solution contained in the porous material attached to the metal constituting the spacer block member is high, there is a concern about the alkali-silica reaction in the concrete portion adjacent to the porous material. It is preferable that at least one alkali / silica reaction inhibitor is present in the electrolyte solution contained.

アルカリ・シリカ反応抑制剤は、電解質溶液のpHの低下を抑制するためにはリチウムイオンが好ましく、水酸化リチウムの形態で添加することがさらに好ましい。   The alkali / silica reaction inhibitor is preferably lithium ion in order to suppress a decrease in pH of the electrolyte solution, and more preferably added in the form of lithium hydroxide.

鋼材とスペーサーブロック部材を電気的に接続する方法は、スペーサーブロック部材を構成する金属と鋼材が電気的に導通されていればよく特に限定されるものではないが、鉄等の金属線の一部を金属内に埋め込み、埋め込まれていない部分を、鋼材等に巻き付ける方法が実用上簡便である。   The method of electrically connecting the steel material and the spacer block member is not particularly limited as long as the metal constituting the spacer block member and the steel material are electrically connected to each other. However, a part of the metal wire such as iron is used. It is practically simple to wrap the metal in a metal and wrap the unembedded portion around a steel material or the like.

本発明では、コンクリート構造物の中に、スペーサー部材を設置し、鋼材とスペーサーブロック部材に電気的な接続を施した後、コンクリートを打設しスペーサー部材を埋め込む形でコンクリート構造物を構築するか、または、スペーサーブロック部材の金属表面を不動態被膜の生成を避けるのに充分なpHを持った電解質溶液を含有する多孔性材料で覆った後、スペーサーブロック部材と鋼材を電気的な接続をし、コンクリートを打設し、スペーサー部材を埋め込む形でコンクリート構造物を構築することによって、スペーサーブロック部材と鋼材間に防食電流が流れ、コンクリート内の鋼材が防食される。 In the present invention, a spacer member is installed in the concrete structure, and after the electrical connection is made between the steel material and the spacer block member, the concrete structure is constructed by placing concrete and embedding the spacer member. Alternatively, after covering the metal surface of the spacer block member with a porous material containing an electrolyte solution having a pH sufficient to avoid the formation of a passive film, the spacer block member and the steel material are electrically connected. By constructing the concrete structure by placing concrete and embedding the spacer member, an anticorrosion current flows between the spacer block member and the steel material, and the steel material in the concrete is anticorrosive.

本発明では、自然電位を測定することで、効果を確認することができる。
すなわち、コンクリート内部の鋼材に、それより標準電極電位の低い金属を電気的に接続すると、コンクリート内部の鋼材自体の自然電位が低くなる。そのため、自然電位を測定することで、その数値から、陽極電極層の有効性が判断できる。
自然電位の測定は、コンクリート内部の鋼材のスペーサー部材を設置した面と反対側の面を測定点とし、銅照合電極を用い測定する。このときスペーサーブロック部材と鋼材の接続を切り離せるようにしておき、接続を切り離した直後のインスタントオフ電位と24時間経過後の電位(24時間後オフ電位)を測定し、これらの差から復極量を算出する。復極量が大きいほど鋼材を防食する効果が大きい。
In the present invention, the effect can be confirmed by measuring the natural potential.
That is, when a metal having a lower standard electrode potential is electrically connected to the steel material inside the concrete, the natural potential of the steel material itself inside the concrete is lowered. Therefore, the effectiveness of the anode electrode layer can be determined from the numerical value by measuring the natural potential.
The natural potential is measured using a copper reference electrode on the surface opposite to the surface on which the spacer member of the steel material inside the concrete is installed. At this time, the spacer block member and the steel material can be disconnected, and the instant-off potential immediately after disconnecting and the potential after 24 hours (off-potential after 24 hours) are measured. Calculate the amount. The greater the amount of depolarization, the greater the effect of preventing corrosion of steel.

ここで、鉛照合電極により測定した電位Em(mV)は、以下により飽和硫酸銅電極基準の値に換算される。
Ecse=Em−800
Ecse :飽和硫酸銅電極基準換算値鉛(mV)
Em :照合電極で測定した値(mV)
復極量(mV)=[Eio(mV)]−[Eof(mV)]
Eio :インスタントオフ電位
Eof :24時間後、オフ電位
Here, the potential Em (mV) measured by the lead verification electrode is converted into a value based on the saturated copper sulfate electrode as follows.
Ecse = Em-800
Ecse: Saturated copper sulfate electrode reference value lead (mV)
Em: Value measured with reference electrode (mV)
Depolarization amount (mV) = [Eio (mV)] − [Eof (mV)]
Eio: Instant off potential Eof: Off potential after 24 hours

以下、本発明の実験例に基づいて、本発明をさらに説明する。なお、実験例1(実施例1)、実験例2(実施例2)は、参考例である。 Hereinafter, the present invention will be further described based on experimental examples of the present invention. Experimental Example 1 (Example 1) and Experimental Example 2 (Example 2) are reference examples.

「実験例1」
図1に実験に用いた試験体の概要を示す。100×100×500mmの直方体のコンクリートの試験体において、亜鉛の周りに金属表面の不動態被膜の生成を避けるのに充分なpHを持った電解質溶液を含有する多孔性材料を付設した幅40mm×長さ60mm×厚さ40mmスペーサー部材1を直方体の長辺の端部に設置し、100×100の面に垂直となるように、長さ400mmのD19みがき丸鋼2を配置し、成形体を作製した。鋼材およびスペーサーブロック部材からリード線5を配し、鋼材とスペーサーブロック部材の電気的接続は試験体の外で行い、任意にon−off動作を出来るようにした。
図2に実験に用いたスペーサー部材1の構成を示す。スペーサーブロック部材7(亜鉛)の周りに、亜鉛表面の不動態被膜の生成を避けるのに充分なpHを持った電解質溶液を含有する多孔性材料6を付設した。また、スペーサーブロック部材7と電気的接続されたワイヤーを設置している。
作製した成形体に使用したコンクリート3は、1m当たり10kgの塩素イオンを含有させ、鋼材腐食環境下のコンクリート構造物を模したコンクリートの試験体を作製した。
試験体は3日水中、4日乾燥の乾湿繰り返し養生とした。
コンクリート内部のスペーサー部材1を設置した面で鉄筋の中心に相当する点を測定点とし、銅照合電極4を用い測定した。また、インスタントオフ電位と通電を停止してから24時間後のオフ電位を測定し復極量を算出した。自然電位測定結果を表1に示す(実施例1)。
"Experiment 1"
FIG. 1 shows an outline of the test body used in the experiment. In a 100 × 100 × 500 mm rectangular concrete specimen, a width 40 mm × with a porous material containing an electrolyte solution having a pH sufficient to avoid the formation of a passive film on the metal surface around zinc A spacer member 1 having a length of 60 mm × a thickness of 40 mm is placed at the end of the long side of the rectangular parallelepiped, and a D19 polished round steel 2 having a length of 400 mm is arranged so as to be perpendicular to the surface of 100 × 100. Produced. Lead wires 5 were arranged from the steel material and the spacer block member, and the electrical connection between the steel material and the spacer block member was performed outside the test body so that an on-off operation was arbitrarily possible.
FIG. 2 shows the configuration of the spacer member 1 used in the experiment. Around the spacer block member 7 (zinc), a porous material 6 containing an electrolyte solution having a pH sufficient to avoid the formation of a passive film on the zinc surface was attached. Moreover, the wire electrically connected with the spacer block member 7 is installed.
The concrete 3 used for the produced molded body contained 10 kg of chlorine ions per 1 m 3 , and a concrete test body imitating a concrete structure in a steel material corrosive environment was produced.
The test specimen was repeatedly dried and wet for 3 days in water and 4 days.
The point corresponding to the center of the reinforcing bar on the surface where the spacer member 1 inside the concrete was installed was taken as a measurement point, and measurement was performed using the copper reference electrode 4. In addition, the instant off potential and the off potential 24 hours after stopping the energization were measured to calculate the amount of repolarization. The natural potential measurement results are shown in Table 1 (Example 1).

「実験例2」
スペーサーブロック部材7の金属が、亜鉛/アルミニウムの比が1/1である亜鉛アルミニウム合金であること以外は、実験例1と同様の試験体を作製し、測定を行った。自然電位測定結果を表1に示す(実施例2)。
"Experimental example 2"
Except that the metal of the spacer block member 7 is a zinc-aluminum alloy having a zinc / aluminum ratio of 1/1, a test specimen similar to that of Experimental Example 1 was produced and measured. The natural potential measurement results are shown in Table 1 (Example 2).

「実験例3」
アルカリ・シリカ反応抑制剤(ゼオライト系アルカリ・シリカ反応抑制剤(水沢化学工業社製、商品名アルカット))を多孔性材料に含有(質量比で多孔性材料の5%)させたこと以外は、実験例2と同様の試験体を作製し、測定を行った。自然電位測定結果を表1に示す(実施例3)。
"Experiment 3"
Except for containing an alkali / silica reaction inhibitor (zeolite alkali / silica reaction inhibitor (manufactured by Mizusawa Chemical Industry Co., Ltd., trade name Arcut)) in the porous material (5% of the porous material by mass ratio) A test specimen similar to that of Experimental Example 2 was produced and measured. The natural potential measurement results are shown in Table 1 (Example 3).

「実験例4」
試験体のスペーサーブロック部材7を取り付けないこと以外は、実験例1と同様の試験体を作製し、測定を行った(比較例1)。自然電位測定結果を表1に示す。
"Experimental example 4"
Except not attaching the spacer block member 7 of a test body, the test body similar to Experimental example 1 was produced, and it measured (comparative example 1). The natural potential measurement results are shown in Table 1.

Figure 0006353733
Figure 0006353733

本発明のスペーサーブロック部材を使用することにより、コンクリート構造物の鋼材に、安定で、かつ均質な防食電流を得ることができるので、主に、土木・建築業界等における、海洋構造物や護岸構造物等のコンクリート構造物の高耐久化の用途に適する。   By using the spacer block member of the present invention, a stable and homogeneous anticorrosion current can be obtained for the steel material of the concrete structure. Therefore, mainly in the civil engineering / building industry, etc., marine structures and revetment structures Suitable for high durability use of concrete structures such as objects.

Claims (7)

鉄筋コンクリート内に設置し、コンクリート内の鋼材の位置を適切にするために配置するスペーサー部材において、スペーサーブロック部材を構成する金属が亜鉛アルミニウム合金であり、コンクリート内の鋼材とスペーサーブロック部材を構成する金属が電気的に接続されており、金属の周りに金属表面の不動態被膜の生成を避けるのに充分なpHを持った電解質溶液を含有する多孔性材料を付設し、前記多孔性材料に1種類以上のアルカリ・シリカ反応抑制剤が含まれることを特徴とする鋼材のスペーサー部材。 In spacer members installed in reinforced concrete and arranged to position steel materials in concrete appropriately, the metal that constitutes the spacer block member is a zinc aluminum alloy , and the metal that constitutes the spacer material and the steel material in the concrete Are electrically connected, and a porous material containing an electrolyte solution having a pH sufficient to avoid the formation of a passive film on the metal surface is attached around the metal, and one kind of the porous material is provided. spacer members of steel, characterized in Rukoto contains more alkali-silica reaction inhibitors. コンクリート内の鋼材とスペーサーブロック部材を構成する金属の電気的接続において、金属部分と接合されたワイヤーを用いる請求項1に記載の鋼材のスペーサー部材。   The steel spacer member according to claim 1, wherein a wire joined to the metal portion is used in electrical connection between the steel material in the concrete and the metal constituting the spacer block member. 前記アルカリ・シリカ反応抑制剤がリチウムイオンを含むことを特徴とする請求項1又は2に記載の鋼材のスペーサー部材。 The spacer member for steel according to claim 1 or 2 , wherein the alkali-silica reaction inhibitor contains lithium ions. 金属部分と接合されたワイヤーをコンクリート内の鋼材に巻き付け、コンクリート内の鋼材とスペーサー部材を固定する請求項1〜3のいずれか1項に記載の鋼材のスペーサー部材の設置方法。 The installation method of the spacer member of the steel materials of any one of Claims 1-3 which wind the wire joined with the metal part around the steel materials in concrete, and fix the steel materials and spacer member in concrete. 求項1〜のいずれか1項に記載の鋼材のスペーサー部材をコンクリート内に設置し、電気化学的防食機能を付与してなる、鉄筋と型枠の間、鉄筋と鉄筋の間、および既存コンクリートと鉄筋の間の所定空間の保持方法。 Established the Motomeko 1 spacer member of the steel according to any one of 3 in the concrete, made by applying the electrochemical corrosion prevention capabilities, between the reinforcing bars and the formwork between the reinforcing bars and reinforcing bars, and A method for maintaining a predetermined space between existing concrete and steel bars. 請求項1〜3のいずれか1項に記載の鋼材のスペーサー部材を設置したコンクリート内の鋼材の自然電位の測定方法であって、コンクリート内の鋼材のスペーサー部材を設置した面と反対側の面を測定点とし、照合電極を用い、自然電位を測定することを特徴とするコンクリート内の鋼材の自然電位の測定方法。It is a measuring method of the natural potential of the steel material in the concrete which installed the steel spacer member of any one of Claims 1-3, Comprising: The surface on the opposite side to the surface which installed the steel spacer member in concrete A method for measuring the natural potential of a steel material in concrete, wherein the natural potential is measured using a reference electrode as a measurement point. 請求項1〜3のいずれか1項に記載の鋼材のスペーサー部材を設置したコンクリート構造物。 The concrete structure which installed the spacer member of the steel materials of any one of Claims 1-3 .
JP2014158939A 2014-08-04 2014-08-04 Spacer member having anti-corrosion function for steel in concrete and installation method thereof Active JP6353733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014158939A JP6353733B2 (en) 2014-08-04 2014-08-04 Spacer member having anti-corrosion function for steel in concrete and installation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014158939A JP6353733B2 (en) 2014-08-04 2014-08-04 Spacer member having anti-corrosion function for steel in concrete and installation method thereof

Publications (2)

Publication Number Publication Date
JP2016035095A JP2016035095A (en) 2016-03-17
JP6353733B2 true JP6353733B2 (en) 2018-07-04

Family

ID=55523135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014158939A Active JP6353733B2 (en) 2014-08-04 2014-08-04 Spacer member having anti-corrosion function for steel in concrete and installation method thereof

Country Status (1)

Country Link
JP (1) JP6353733B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107806211B (en) * 2017-10-08 2020-10-16 俞昊天 Building concrete reinforcement node corrosion-resistant connecting sleeve

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9312431D0 (en) * 1993-06-16 1993-07-28 Aston Material Services Ltd Improvements in and relating to protecting reinforced concrete
US6165346A (en) * 1999-02-05 2000-12-26 Whitmore; David Cathodic protection of concrete
JP2000265619A (en) * 1999-03-17 2000-09-26 Nishimatsu Constr Co Ltd Corrosion preventing method for reinforced concrete structure and corrosion-prevention reinforced concrete structure
WO2003027356A1 (en) * 2001-09-26 2003-04-03 J.E. Bennett Consultants, Inc. Cathodic protection system
JP3556631B2 (en) * 2001-10-23 2004-08-18 鹿島建設株式会社 Corrosion protection for concrete reinforcement
JP2003129262A (en) * 2001-10-23 2003-05-08 Kajima Corp Electric protection part for corrosion prevention of concrete steel material
JP3521195B2 (en) * 2001-11-27 2004-04-19 電気化学工業株式会社 Method for preventing corrosion of steel material of mortar or concrete member and material for preventing corrosion of steel material used therefor
JP2006336394A (en) * 2005-06-06 2006-12-14 Pm Kogyo Kk Spacer for reinforcing bar
JP5388435B2 (en) * 2007-10-18 2014-01-15 電気化学工業株式会社 Steel anticorrosive member used for electrochemical corrosion protection method of concrete using sacrificial anode material, and electrochemical corrosion protection method using the same
JP5437044B2 (en) * 2009-12-16 2014-03-12 電気化学工業株式会社 Corrosion prevention method for reinforcing steel inside reinforced concrete
JP5437045B2 (en) * 2009-12-16 2014-03-12 電気化学工業株式会社 Control method of composite deterioration of reinforced concrete
JP5631024B2 (en) * 2010-03-09 2014-11-26 電気化学工業株式会社 Anti-corrosion method for reinforcing bars inside reinforced concrete structures

Also Published As

Publication number Publication date
JP2016035095A (en) 2016-03-17

Similar Documents

Publication Publication Date Title
CA2880235C (en) Galvanic anode and method of corrosion protection
US11519077B2 (en) Galvanic anode and method of corrosion protection
CN102618875B (en) Treatment process for concrete
CZ20031118A3 (en) Concrete structure with double protected reinforcing elements
Jeong et al. Tidal water effect on the hybrid cathodic protection systems for marine concrete structures
JP2012144771A (en) Electric anticorrosion method for reinforced concrete structure
JP5388435B2 (en) Steel anticorrosive member used for electrochemical corrosion protection method of concrete using sacrificial anode material, and electrochemical corrosion protection method using the same
JP6353733B2 (en) Spacer member having anti-corrosion function for steel in concrete and installation method thereof
JP6951053B2 (en) Monitoring method of sacrificial anode method in concrete structure
JP2003129262A (en) Electric protection part for corrosion prevention of concrete steel material
JP7483190B2 (en) Sacrificial anode monitoring sensor and monitoring method
US20190390353A1 (en) Anode assembly for selective corrosion protection of metal parts in concrete
JP2003129669A (en) Method for repairing cross section of concrete structure
Parthiban et al. Cathodic protection of concrete structures using magnesium alloy anode
PL221433B1 (en) System for wasted anodes for cathodic protection of steel reinforcement in reinforced concrete and a method for assembling anode wasted system
Busan Impressed current cathodic protection behavior of reinforced concrete specimen using MMO Ti-Mesh anode
JP2012207251A (en) Electric protection method
de Rincón et al. Sacrificial Anodes for Reinforced Concrete Structures: A Review
Jeong et al. Impressed current cathodic protection behavior of reinforced concrete specimen using MMO Ti-Mesh anode
KR20110077429A (en) Preparation of anti-corrosive zn series plating material on steel bar for embedded concrete by hot-dip galvanizing method
Aoyama et al. Properties of Pre-Tensioned Prestressed Concrete Members Supplied with Cathodic Protection for Ten Years
JP2017181363A (en) Backfill structure of galvanic anode and generation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R150 Certificate of patent or registration of utility model

Ref document number: 6353733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250