JP2012144771A - Electric anticorrosion method for reinforced concrete structure - Google Patents

Electric anticorrosion method for reinforced concrete structure Download PDF

Info

Publication number
JP2012144771A
JP2012144771A JP2011003657A JP2011003657A JP2012144771A JP 2012144771 A JP2012144771 A JP 2012144771A JP 2011003657 A JP2011003657 A JP 2011003657A JP 2011003657 A JP2011003657 A JP 2011003657A JP 2012144771 A JP2012144771 A JP 2012144771A
Authority
JP
Japan
Prior art keywords
reinforced concrete
concrete
concrete structure
anode
reinforcing bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011003657A
Other languages
Japanese (ja)
Other versions
JP5894365B2 (en
Inventor
Akio Ishigami
暁郎 石神
Kenji Okubo
謙治 大久保
Hiroshi Ikeda
啓士 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sho Bond Corp
Original Assignee
Sho Bond Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sho Bond Corp filed Critical Sho Bond Corp
Priority to JP2011003657A priority Critical patent/JP5894365B2/en
Publication of JP2012144771A publication Critical patent/JP2012144771A/en
Application granted granted Critical
Publication of JP5894365B2 publication Critical patent/JP5894365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric anticorrosion method for a reinforced concrete structure, which can prevent reinforcing rods arranged in concrete from corroding too much in an external power source system by stabilizing electrical resistance rate of reinforced concrete, and which can prevent excessive consumption of the sacrificial anode in a galvanic anode system.SOLUTION: In the method, mud, dirt, dust and the like are removed from the surface where a surface impregnation material 7h is coated to make sure that the water content ratio of a coated surface is 8 (%) or less. Next, a standard coating amount e.g., 0.2 to 0.25 (kg/m) of the surface impregnation material 7h is coated once. After coating, the surface coated with the surface impregnation material 7h is cured for 48 hours and hardened in a state that it is not directly wetted by rainwater or the like. Then, by connecting the titanium ribbon mesh electrode as an anode material 7f to the anode side of the external power source and by connecting the stirrup iron rod, not shown in the figure, to the cathode side, an energization test or depolarization test is carried out to determine the appropriate energization amount.

Description

本発明は、鉄筋コンクリート構造物に於ける躯体を構成するコンクリートの含水率を低くかつ一定に保持して、該コンクリートの電気抵抗率を安定化させることにより、外部電源方式に於いては該コンクリート内に配置された鉄筋の過防食を防止すること、及び流電陽極方式に於いては犠牲陽極の過大な消耗を防止することを可能にした鉄筋コンクリート構造物に於ける電気防食工法に関するものである。 The present invention maintains the moisture content of the concrete constituting the frame in the reinforced concrete structure at a low and constant level and stabilizes the electrical resistivity of the concrete. The present invention relates to an anticorrosion method in a reinforced concrete structure that can prevent over-corrosion of the reinforcing bars arranged in the galvanized steel and prevents excessive consumption of the sacrificial anode in the galvanic anode method.

この種の鉄筋コンクリート構造物の電気防食工法に於ける一つの例として図7に示す特開2006−23255号公開特許公報に開示された技術がある。
これについて説明すれば、鉄筋コンクリート構造物のコンクリート1の表面1aに、リチウム塩を含有する表面被覆材2を均質に塗布する。例えばチタンメッシュ等の陽極3をコンクリート中に設置する段階の前に、予めコンクリート表面にリチウム塩を含有する表面処理材2を塗布することにより、コンクリート1とチタンメッシュ等の陽極3との間に保水性が付与され、これによって均質な通電性が確保できる。
One example of this type of reinforced concrete structure in an anticorrosion method is disclosed in Japanese Patent Laid-Open No. 2006-23255 shown in FIG.
If it demonstrates about this, the surface coating | covering material 2 containing lithium salt will be uniformly apply | coated to the surface 1a of the concrete 1 of a reinforced concrete structure. For example, before the step of installing the anode 3 such as titanium mesh in the concrete, the surface treatment material 2 containing lithium salt is applied in advance to the concrete surface, so that the concrete 1 and the anode 3 such as titanium mesh are interposed between them. Water retention is imparted, thereby ensuring a uniform electrical conductivity.

図7においては、表面被覆材2を模式的に表しており、実際は表面被覆材2がリチウム塩水溶液の場合には、塗布した後にコンクリート1内部に浸透するものであり、またセメント、樹脂、リチウム塩を含有するセメント系組成物の表面被覆材の場合には、当該セメント系組成物の層がコンクリート1の表面1aと陽極3との間に形成されることとなる。 In FIG. 7, the surface covering material 2 is schematically shown. Actually, when the surface covering material 2 is a lithium salt aqueous solution, the surface covering material 2 penetrates into the inside of the concrete 1 after being applied, and cement, resin, lithium In the case of a surface coating material of a cement-based composition containing salt, a layer of the cement-based composition is formed between the surface 1 a of the concrete 1 and the anode 3.

表面処理材2としては、リチウム塩の水溶液や、セメント、リチウム塩及び樹脂を含有するリチウム塩含有セメント系組成物等が挙げられる。いずれのリチウム塩を含有する表面被覆材2も、コンクリート1の表面1aへの塗布により、表面1aの吸湿性が増大し、結果としてコンクリート表面の体積抵抗が低下し、通電性の向上を図れる。リチウム塩としては、水酸化リチウム、炭酸リチウム、亜硝酸リチウム及び硝酸リチウム等の吸湿性のリチウム塩を用いることができ、当該リチウム塩を単独、または複数混合して用いることもできるが、亜硝酸イオンによる防錆効果と毛細管充填による硬化体強度の向上の観点から亜硝酸リチウムを好適に使用できる。 Examples of the surface treatment material 2 include an aqueous solution of a lithium salt, a cement, a lithium salt-containing cement-based composition containing a lithium salt, and a resin. The surface covering material 2 containing any lithium salt also increases the hygroscopicity of the surface 1a by application to the surface 1a of the concrete 1, resulting in a decrease in the volume resistance of the concrete surface and an improvement in electrical conductivity. As the lithium salt, hygroscopic lithium salts such as lithium hydroxide, lithium carbonate, lithium nitrite and lithium nitrate can be used, and these lithium salts can be used alone or in combination. Lithium nitrite can be suitably used from the viewpoint of the rust prevention effect by ions and the improvement of the strength of the cured product by capillary filling.

また、吸湿性を有するリチウム塩を用いることにより、リチウムイオンが空気中の水分と結合し、この空気中の水分が集まってくることによりコンクリート1の表面1aの保水性高め、導電性が向上するという作用を得られる。
尚、4は直流電源装置、5は鉄筋コンクリート構造物に配置された鉄筋である。
Further, by using a lithium salt having hygroscopicity, lithium ions are combined with moisture in the air, and the moisture in the air is collected, thereby increasing the water retention of the surface 1a of the concrete 1 and improving the conductivity. The effect that can be obtained.
In addition, 4 is a DC power supply device, and 5 is a reinforcing bar arranged in a reinforced concrete structure.

特開2006−232559号公開特許公報Japanese Patent Laid-Open No. 2006-232559

従来の技術は、叙上した構成であるので次の課題が存在した。
すなわち、従来の技術の外部電源方式の電気防食工法は、陽極材を設置するに先立って鉄筋コンクリート構造物の躯体を構成するコンクリートにリチウム塩系の表面処理材を塗布・含浸することにより該コンクリートと陽極材との間の保水性を向上させ、コンクリートの導電性を向上させて防食電流を確保している。ところが、鉄筋コンクリート構造物の内部又は鉄筋コンクリート構造物の背面からの水分の供給があるとコンクリートの電気抵抗率が変化してしまいその分布が均一ではなくなる。その結果、該コンクリート内に於いて均一な電気抵抗率を確保できなくなり、特に含水率の高い部位に於いては電気防食をするための適正電流を超えて過大な電流が流れ過防食状態を生じさせる。
Since the conventional technology has the above-described configuration, the following problems existed.
In other words, the conventional external power source type cathodic protection method is to apply a lithium salt-based surface treatment material to and impregnate the concrete constituting the reinforced concrete structure prior to installing the anode material. The water retention between the anode material is improved, the electrical conductivity of the concrete is improved, and the anticorrosion current is secured. However, if moisture is supplied from the inside of the reinforced concrete structure or from the back side of the reinforced concrete structure, the electrical resistivity of the concrete changes and the distribution is not uniform. As a result, it is impossible to ensure a uniform electrical resistivity in the concrete, and particularly in areas where the moisture content is high, excessive current flows exceeding the appropriate current for electrocorrosion, resulting in overcorrosion. Let

この過防食状態においては、コンクリート内の水が電気分解して陰極を構成する鉄筋等の鋼材の外周部に水素が発生する。生成した水素の大部分は水素ガスとなり鉄筋コンクリート構造物の外部に放出されるが、一部の水素がコンクリート内の鉄筋に侵入・吸収され鉄筋の靭性や強度を急激に低下させる。この現象は水素脆化と呼称され、鉄筋を構成する鋼材の降伏強さが高くなるほど水素脆化を起こし易く少量の水素でも脆性破壊を生ずるので、鉄筋コンクリート構造物に於いては鉄筋の過防食を発生させてはならない。 In this overcorrosion state, the water in the concrete is electrolyzed and hydrogen is generated at the outer periphery of a steel material such as a reinforcing bar constituting the cathode. Most of the generated hydrogen is converted into hydrogen gas and released to the outside of the reinforced concrete structure, but some hydrogen penetrates and is absorbed by the reinforcing bars in the concrete, and the toughness and strength of the reinforcing bars are rapidly reduced. This phenomenon is called hydrogen embrittlement, and the higher the yield strength of the steel constituting the rebar, the more easily hydrogen embrittlement occurs and even a small amount of hydrogen causes brittle fracture, so over-corrosion of the rebar is prevented in reinforced concrete structures. Do not let it occur.

従って鉄筋コンクリート構造物としてのプレテンション方式及びポストテンション方式のPCコンクリート構造物、例えば橋梁の主桁などは高強度の鋼材を使用したPC鋼材を用いかつ該PC鋼材に予備引張り荷重を印加してあるので、脆性破壊を生ずる過防食の危険を避ける為に一般的な電気防食工法を適用することは困難である。特に従来の技術が示すような単にコンクリートと陽極材との間の保水性を向上させ過防食を起こし易い電気防食工法をPC鋼材を用いたPCコンクリート構造物に適用することは難しいという問題点があった。 Therefore, pre-tensioned and post-tensioned PC concrete structures as reinforced concrete structures, such as main girders of bridges, are made of PC steel using high-strength steel, and a pre-tension load is applied to the PC steel. Therefore, it is difficult to apply a general cathodic protection method in order to avoid the risk of over-corrosion causing brittle fracture. In particular, it is difficult to apply to the PC concrete structure using PC steel an electro-corrosion-proof method that improves the water retention between the concrete and the anode material and easily causes over-corrosion as shown in the prior art. there were.

本発明に係る鉄筋コンクリート構造物に於ける電気防食工法は叙上の問題を解決すべく発明したものであり、次の構成、手段から成立する。 The anticorrosion method for a reinforced concrete structure according to the present invention has been invented to solve the above-mentioned problems, and has the following constitution and means.

すなわち、請求項1記載の発明によれば、鉄筋コンクリート構造物の電気防食工法において、鉄筋コンクリート構造物のコンクリートの表面にシラン系、シロキサン系及びシラン・シロキシサン系のいずれか一種を含有する表面含浸材を塗布することを特徴とする。 That is, according to the invention described in claim 1, in the cathodic protection method for a reinforced concrete structure, the surface impregnating material containing any one of silane, siloxane and silane / siloxysan is provided on the concrete surface of the reinforced concrete structure. It is characterized by applying.

請求項2記載の発明によれば、請求項1記載の発明に於いて、鉄筋コンクリート構造物の電気防食工法が、コンクリートの表面と鉄筋間に溝部を形成し、チタンリボンメッシュ電極(陽極材)を設置し、該溝部の空隙にモルタル又は注入材を充填した外部電源方式であることを特徴とする。 According to the second aspect of the present invention, in the first aspect of the present invention, the cathodic protection method for the reinforced concrete structure is formed with a groove between the concrete surface and the reinforcing bar, and a titanium ribbon mesh electrode (anode material) is provided. The external power supply system is characterized in that it is installed and the gap in the groove is filled with mortar or injection material.

請求項3記載の発明によれば、請求項1記載の発明に於いて、鉄筋コンクリート構造物の電気防食工法が、露出した鉄筋に適宜の間隔で亜鉛を含有する犠牲陽極材を該鉄筋と導通した埋め込み型犠牲陽極方式であることを特徴とする。 According to a third aspect of the present invention, in the first aspect of the invention, the cathodic protection method for a reinforced concrete structure electrically connects a sacrificial anode material containing zinc at an appropriate interval to the exposed rebar. It is a buried sacrificial anode method.

本発明に係る鉄筋コンクリート構造物に於ける電気防食工法は、叙上の構成を有するので次の効果がある。
すなわち、請求項1記載の発明によれば、鉄筋コンクリート構造物の電気防食工法において、鉄筋コンクリート構造物のコンクリートの表面にシラン系、シロキサン系及びシラン・シロキシサン系のいずれか一種を含有する表面含浸材を塗布することを特徴とする鉄筋コンクリート構造物に於ける電気防食工法を提供する。
このような構成としたので、塩水や雨水特に酸性雨など鉄筋を腐食させる物質がコンクリートの内部に侵入することを防止でき、鉄筋コンクリート構造物の製造時に不純物として塩分がコンクリートに混入している場合でも電気防食工法に於けるアノード反応で発生する塩素ガスやカソード反応で発生する水蒸気を前記表面含浸材を透過して鉄筋コンクリート構造物の外部に放散することができるので、塩素ガスや水蒸気が表面含浸材を破壊することがなく表面含浸材が長期間に亘り鉄筋コンクリート構造物の表面を保護することができ、表面含浸材が鉄筋コンクリート構造物の表面を被覆するので鉄筋コンクリート構造物の内部の含水率が低くかつ均一に安定的に保持されて、その結果、鉄筋に均一な防食電流を流過することができるので過防食を防止でき、過防食が発生しないので鉄筋が水素脆化を生ずることがなく鉄筋コンクリート構造物、特にPCコンクリート構造物の強度に於ける信頼性を維持しかつ強度を長期間に亘り保持できるという効果がある。
Since the anticorrosion method in the reinforced concrete structure according to the present invention has the above-described configuration, the following effects are obtained.
That is, according to the invention described in claim 1, in the cathodic protection method for a reinforced concrete structure, the surface impregnating material containing any one of silane, siloxane and silane / siloxysan is provided on the concrete surface of the reinforced concrete structure. An anticorrosion method for a reinforced concrete structure is provided.
Because of this structure, it can prevent substances that corrode rebar such as salt water and rain water, especially acid rain, from entering the inside of the concrete, even when salt is mixed into the concrete as impurities during the manufacture of reinforced concrete structures. In the cathodic protection method, chlorine gas generated in the anode reaction and water vapor generated in the cathode reaction can be transmitted to the outside of the reinforced concrete structure through the surface impregnated material. The surface impregnating material can protect the surface of the reinforced concrete structure for a long time without destroying the surface, and the surface impregnating material covers the surface of the reinforced concrete structure, so the moisture content inside the reinforced concrete structure is low and Since it is held uniformly and stably, as a result, a uniform anti-corrosion current can be passed through the reinforcing bars. Corrosion prevention can be prevented, and over-corrosion does not occur, so the rebar does not cause hydrogen embrittlement and can maintain the reliability in the strength of reinforced concrete structures, especially PC concrete structures, and can maintain the strength for a long time. effective.

請求項2記載の発明によれば、鉄筋コンクリート構造物の電気防食工法が、コンクリートの表面と鉄筋間に溝部を形成し、チタンリボンメッシュ電極(陽極材)を設置し、該溝部の空隙にモルタル又は注入材を充填した外部電源方式であることを特徴とする請求項1に記載の鉄筋コンクリート構造物に於ける電気防食工法を提供する。
このような構成としたので、請求項1記載の発明の効果に加えて、鉄筋コンクリート構造物に於けるコンクリートの表面に溝を切削加工し、陽極材としての線状のチタンリボンメッシュ電極を埋設することで該陽極材が陰極材としての鉄筋と短絡を起こす不具合を生じることなく電気防食工法を完成でき、施工の信頼性の向上と省力化をできるという効果がある。
According to the second aspect of the present invention, the cathodic protection method for the reinforced concrete structure is such that a groove is formed between the surface of the concrete and the reinforcing bar, a titanium ribbon mesh electrode (anode material) is installed, and mortar or The external anti-corrosion method for a reinforced concrete structure according to claim 1, which is an external power supply system filled with an injection material.
Since it was set as such a structure, in addition to the effect of invention of Claim 1, a groove | channel is cut into the surface of the concrete in a reinforced concrete structure, and the linear titanium ribbon mesh electrode as an anode material is embed | buried. Thus, the cathodic protection method can be completed without causing a problem that the anode material causes a short circuit with the reinforcing bar as the cathode material, and there is an effect that construction reliability can be improved and labor can be saved.

請求項3記載の発明によれば、鉄筋コンクリート構造物の電気防食工法が、露出した鉄筋に適宜の間隔で亜鉛を含有する亜鉛製の犠牲陽極材を該鉄筋と導通した埋め込み型犠牲陽極方式であることを特徴とする請求項1に記載の鉄筋コンクリート構造物に於ける電気防食工法を提供する。
このような構成としたので、請求項1記載の発明の効果に加えて、表面含浸材が鉄筋コンクリート構造物に於けるコンクリートの表面を被覆するので、該コンクリートの内部の含水率を低くかつ均一に安定的に保持することができるので、亜鉛を含有する犠牲陽極材の消耗が抑制され長期間に亘り亜鉛を含有する犠牲陽極材の交換及び増設が不要となり鉄筋コンクリート構造物の電気防食に係る維持・管理が容易になるという効果がある。
According to the invention described in claim 3, the cathodic protection method for the reinforced concrete structure is a buried sacrificial anode system in which a zinc sacrificial anode material containing zinc at an appropriate interval to the exposed reinforcing bar is connected to the reinforcing bar. An anticorrosion method for a reinforced concrete structure according to claim 1 is provided.
Since it was set as such a structure, in addition to the effect of invention of Claim 1, since the surface impregnation material coat | covers the surface of the concrete in a reinforced concrete structure, the moisture content inside the concrete is made low and uniform. Since it can be held stably, the consumption of the sacrificial anode material containing zinc is suppressed, and replacement and expansion of the sacrificial anode material containing zinc is not required for a long period of time. There is an effect that management becomes easy.

本発明に係る鉄筋コンクリート構造物の垂直断面図である。It is a vertical sectional view of a reinforced concrete structure according to the present invention. 図1のA部に於ける詳細を示す垂直断面図である。FIG. 2 is a vertical sectional view showing details in part A of FIG. 1. シラン系の表面含浸材をコンクリートの表面に塗布し、該コンクリートを垂直に切断して前記シラン系の表面含浸材がコンクリートの表面に含浸していることを示す垂直断面図である。FIG. 2 is a vertical sectional view showing that a silane-based surface impregnating material is applied to a concrete surface, the concrete is cut vertically, and the concrete surface is impregnated with the silane-based surface impregnating material. 表面処理条件の異なる複数のコンクリート供試体を外気曝露試験に供する状態を示した斜視図である。It is the perspective view which showed the state which uses for the external air exposure test the some concrete test body from which surface treatment conditions differ. 表面処理条件の異なる複数のコンクリート供試体を外気曝露試験に供した結果、曝露期間(週)に対するコンクリート供試体の重量変化(g)の関係特性図である。It is a related characteristic figure of the weight change (g) of a concrete test piece with respect to an exposure period (week) as a result of having provided the several concrete test piece from which surface treatment conditions differ to an external air exposure test. 本発明に係る実施例を示す鉄筋コンクリート構造物の垂直断面図であって、(a)はコンクリートのハツリ落しを行って鉄筋を露出し、該鉄筋に犠牲陽極を付設した状態を示す部分垂直断面図、(b)は犠牲陽極を付設した鉄筋をモルタルで埋め戻した後に表面含浸材を塗布した状態を示す部分垂直断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a vertical sectional view of the reinforced concrete structure which shows the Example which concerns on this invention, Comprising: (a) is a partial vertical sectional view which shows the state which removed the concrete and exposed the reinforcing bar, and attached the sacrificial anode to this reinforcing bar (B) is the partial vertical sectional view which shows the state which apply | coated the surface impregnation material after refilling the reinforcing bar which attached the sacrificial anode with mortar. 従来の技術に於けるコンクリート構造物の電気防食工法の説明概要図である。It is an explanatory outline figure of the cathodic protection method of a concrete structure in conventional technology.

以下、本発明に係る鉄筋コンクリート構造物に於ける電気防食工法の実施の形態について添付図面に基づき詳細に説明する。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of an anticorrosion construction method in a reinforced concrete structure according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明に係る鉄筋コンクリート構造物の垂直断面図を示している。図2は図1のA部に於ける詳細を示す垂直断面図である。
6は鉄筋コンクリート構造物としてのPC橋であって、大概してPC桁7と、地覆9とで構成されPC桁7の下端面は図示しない橋台の上端面に設置してある。PC橋の支間長すなわち橋台と橋台の間隔は20ないし40(m)程度であり、PC桁7の橋軸方向の長さも概ね20ないし40(m)程度である。PC桁7はポストテンション方式のPC桁である。PC桁7の内部は図示しない鉄筋を全域に配筋するとともに、特にPC桁7の下部7C、7Dに図2に示すように複数のシース7aで被覆したPC鋼材7b、7b・・・を配筋している。PC鋼材7b、7b・・・はプレストレストコンクリートすなわちPCに圧縮力を付与する部材であって、PC鋼線すなわち直径8(mm)以下の高強度鋼、PC鋼棒すなわち直径10(mm)以上の高強度鋼、及びPC鋼撚り線すなわちPC鋼線を撚り合わせた高強度撚り線などがあり、これらを総称してPC鋼材と呼ぶ。シース7aの材料は薄肉鋼管であり、PC鋼材7b、7b・・・は外部電源方式の電気防食工法に於いて、スターラップ鉄筋を介して図示しない外部電源の陰極に接続してある。尚、7cはPC鋼材7b、7b、・・・とシース7aとの間隙に注入・充填したグラウトであって、グラウト7cの材料は無収縮セメントペースト又は無収縮モルタルである。
FIG. 1 shows a vertical sectional view of a reinforced concrete structure according to the present invention. FIG. 2 is a vertical cross-sectional view showing details in part A of FIG.
A PC bridge 6 as a reinforced concrete structure is generally composed of a PC girder 7 and a ground cover 9, and the lower end surface of the PC girder 7 is installed on the upper end surface of an abutment (not shown). The span length of the PC bridge, that is, the distance between the abutment and the abutment is about 20 to 40 (m), and the length of the PC girder 7 in the bridge axis direction is also about 20 to 40 (m). The PC girder 7 is a post tension type PC girder. Inside the PC girder 7, reinforcing bars (not shown) are arranged in the whole area, and in particular, PC steel members 7b, 7b,... Covered with a plurality of sheaths 7a as shown in FIG. It is streaked. PC steel materials 7b, 7b ... are prestressed concrete, that is, members that apply compressive force to PC, PC steel wire, that is, high strength steel having a diameter of 8 (mm) or less, PC steel rod, that is, steel having a diameter of 10 (mm) or more. There are high-strength steel and high-strength stranded wire obtained by twisting PC steel stranded wire, that is, PC steel wire, and these are collectively referred to as PC steel. The material of the sheath 7a is a thin-walled steel pipe, and the PC steel materials 7b, 7b,... Are connected to a cathode of an external power source (not shown) via a stirrup rebar in an external power source type cathodic protection method. In addition, 7c is a grout injected and filled in the gap between the PC steel materials 7b, 7b,... And the sheath 7a, and the material of the grout 7c is a non-shrinkage cement paste or a nonshrinkage mortar.

7eはコンクリート7dの表面に橋軸方向に連続してコンクリートカッター等の工具で加工した溝であり、シース7aの近傍でかつシース7aにまで貫通しない深さに加工する。
7fは前記溝7eに埋設した陽極材であって、チタンリボンメッシュによって作成し、図示しない外部電源の陽極側に接続してある。7gは陽極材7fとしてのチタンリボンメッシュ電極を溝7eに固定するための無収縮モルタルである。7hはコンクリート7dの表面に刷毛やローラ等で塗布した例えば、1液性反応性シラン系の表面含浸材である。該表面含浸材7hはコンクリート7dの表面から内部に浸透してコンクリート7dが透水及び吸水することを防止する。表面含浸材7hはシラン系のほかシロキサン系又はシラン・シランシロキシサン系の表面含浸材であってもよい。
7e is a groove formed on the surface of the concrete 7d by a tool such as a concrete cutter continuously in the bridge axis direction, and is processed in the vicinity of the sheath 7a and not penetrating to the sheath 7a.
Reference numeral 7f denotes an anode material embedded in the groove 7e, which is made of a titanium ribbon mesh and connected to the anode side of an external power source (not shown). 7g is a non-shrink mortar for fixing the titanium ribbon mesh electrode as the anode material 7f to the groove 7e. 7h is, for example, a one-component reactive silane-based surface impregnating material applied to the surface of the concrete 7d with a brush or a roller. The surface impregnating material 7h penetrates from the surface of the concrete 7d and prevents the concrete 7d from permeating and absorbing water. The surface impregnating material 7h may be a siloxane-based or silane-silane-siloxysan-based surface impregnated material in addition to the silane-based material.

次に、当該1液性反応性シラン系の表面含浸材7hの特性について、図3ないし図5を用いて詳細に説明する。
図3はシラン系の表面含浸材7hをコンクリート7dの表面に塗布し、該コンクリート7dを垂直に切断して前記シラン系の表面含浸材7hがコンクリート7dの表面に含浸している状態を示す垂直断面図である。図3から分かるように表面含浸材7hはコンクリート7dの表面から2(mm)ないし4(mm)の深さまで含浸している。
Next, the characteristics of the one-component reactive silane-based surface impregnated material 7h will be described in detail with reference to FIGS.
FIG. 3 shows a vertical state in which a silane-based surface impregnating material 7h is applied to the surface of the concrete 7d, the concrete 7d is cut vertically, and the surface of the concrete 7d is impregnated with the silane-based surface impregnating material 7h. It is sectional drawing. As can be seen from FIG. 3, the surface impregnated material 7h is impregnated from the surface of the concrete 7d to a depth of 2 (mm) to 4 (mm).

図4は断面寸法100(mm)×100(mm)、長さ400(mm)の直方体形状を有するコンクリート供試体10を外気曝露試験に供した状態を示す斜視図である。6個のコンクリート供試体10について、試験開始に先立って2個ずつ3種の同一の表面処理条件を与えた上で、約14週間にわたり外気曝露試験を行なった。3種の表面処理条件とは、無処理すなわちコンクリート素地のままの状態、ケイ酸塩系改質材を0.25(kg/m)の割合でコンクリート供試体10に塗布したもの、及びシラン系の表面含浸材7hを0.25(kg/m)の割合でコンクリート供試体10に塗布したものの3種である。そして、1週間から2週間ごとに6個のコンクリート供試体10の重量をそれぞれ測定して重量の変化を表したものが図5である。図5の曲線a及びbは前記無処理のコンクリート供試体10の重量の変化を表す。図5の曲線c及びdは前記ケイ酸塩系改質材を0.25(kg/m)の割合で塗布したコンクリート供試体10の重量の変化を表す。図5の曲線e及びfは前記シラン系の表面含浸材7hを0.25(kg/m)の割合で塗布したコンクリート供試体10の重量の変化を表す。 FIG. 4 is a perspective view showing a state in which a concrete specimen 10 having a rectangular parallelepiped shape having a cross-sectional dimension of 100 (mm) × 100 (mm) and a length of 400 (mm) is subjected to an outside air exposure test. The six concrete specimens 10 were subjected to an outside air exposure test for about 14 weeks after giving the same three surface treatment conditions two by two prior to the start of the test. The three types of surface treatment conditions are as follows: untreated, that is, as it is in a concrete base, a silicate-based modifier applied to the concrete specimen 10 at a rate of 0.25 (kg / m 2 ), and silane There are three types of the surface impregnated material 7h applied to the concrete specimen 10 at a rate of 0.25 (kg / m 2 ). FIG. 5 shows the change in weight by measuring the weight of each of the six concrete specimens 10 every one to two weeks. Curves a and b in FIG. 5 represent changes in the weight of the untreated concrete specimen 10. Curves c and d in FIG. 5 represent changes in the weight of the concrete specimen 10 coated with the silicate-based modifier at a rate of 0.25 (kg / m 2 ). Curves e and f in FIG. 5 represent changes in the weight of the concrete specimen 10 coated with the silane-based surface impregnating material 7h at a rate of 0.25 (kg / m 2 ).

約14週間の試験期間中に図5に示すように3回の雨天があり、6個のコンクリート供試体10は雨に濡れた。図5から分かるように、無処理のコンクリート供試体10及びケイ酸塩系改質材を0.25(kg/m)の割合で塗布したコンクリート供試体10は雨に濡れると雨水を吸水したために重量が増加し、好天の時には吸水した雨水を放出して乾燥して重量が減少し、当該コンクリート供試体10の内部の水分量が安定化しないことが分かる。一方シラン系の表面含浸材7hを0.25(kg/m)の割合で塗布したコンクリート供試体10はシラン系の表面含浸材7hの透水及び吸水防止作用によって、天候に拘らず雨天のときも雨水を吸収することなく、その重量は常に漸減傾向を保持してコンクリート供試体10の内部の水分量がコンクリートの打設時よりも減少しつつ安定化していることが理解できる。 During the test period of about 14 weeks, there were three rains as shown in FIG. 5, and the six concrete specimens 10 were wet. As can be seen from FIG. 5, the untreated concrete specimen 10 and the concrete specimen 10 coated with a silicate-based modifier at a rate of 0.25 (kg / m 2 ) absorbed rainwater when wet. When the weather is fine, the rainwater absorbed is discharged and dried to decrease the weight, and the moisture content inside the concrete specimen 10 is not stabilized. On the other hand, the concrete specimen 10 coated with the silane surface impregnating material 7h at a rate of 0.25 (kg / m 2 ) is rainy regardless of the weather due to the water permeability and water absorption preventing action of the silane surface impregnating material 7h. Further, it can be understood that the weight always keeps a gradual decreasing tendency without absorbing rain water, and the amount of water in the concrete specimen 10 is stabilized while being reduced compared with the time of placing concrete.

また、コンクリート7dに塗布したシラン系の表面含浸材7hは塩水や雨水、特に酸性雨など鉄筋を腐食させる物質がコンクリート7dの内部に侵入することを防止できると共にガス透過性を有するので、PC橋6のPC桁7の製造時に細骨材に付着した不純物としての塩分がコンクリート7dに混入している場合でも、電気防食工法に於けるアノード反応で発生する塩素ガスやカソード反応で発生する水蒸気を前記表面含浸材7hを透過してPC桁7の外部に放散することができる。 The silane-based surface impregnating material 7h applied to the concrete 7d can prevent substances that corrode the reinforcing bars such as salt water and rain water, particularly acid rain, from entering the concrete 7d and has gas permeability. 6 Even when salt as an impurity adhering to fine aggregates is mixed into the concrete 7d when the PC girder 7 is manufactured, chlorine gas generated by the anode reaction and water vapor generated by the cathode reaction in the cathodic protection method are generated. The surface impregnating material 7h can be transmitted and diffused outside the PC beam 7.

よって、コンクリート7dに発生した塩素ガスや水蒸気が表面含浸材7hを物理的に破壊することがなく表面含浸材7hが長期間に亘りコンクリート7dの表面を保護することができ、表面含浸材7hがコンクリート7dの表面を被覆しているのでコンクリート7dの内部の含水率が低くかつ均一に安定的に保持される。その結果、PC鋼材7b、7b・・・に均一な防食電流を流過することができるので過防食を防止できる。 Therefore, the chlorine gas or water vapor generated in the concrete 7d does not physically destroy the surface impregnating material 7h, and the surface impregnating material 7h can protect the surface of the concrete 7d over a long period of time. Since the surface of the concrete 7d is covered, the moisture content inside the concrete 7d is low and uniformly and stably maintained. As a result, a uniform anticorrosion current can be passed through the PC steel materials 7b, 7b.

従って、PC鋼材7b、7b・・・に対して過防食が発生しないのでPC鋼材7b、7b・・・が水素脆化を生ずることがなくPC橋6の強度に於ける信頼性を維持しかつ強度を長期間に亘り保持可能である。
尚、PC鋼材7b、7b・・・を例に説明したが、本発明に係る鉄筋コンクリート構造物に於ける電気防食工法はPC鋼材7b、7b・・・に限らず、一般の鉄筋コンクリート構造物に於ける鉄筋に対しても過防食の防止について同様の効果を有する。
Therefore, the PC steel materials 7b, 7b,... Do not cause over-corrosion prevention, so that the PC steel materials 7b, 7b,... Do not cause hydrogen embrittlement and maintain the reliability in the strength of the PC bridge 6. The strength can be maintained for a long time.
In addition, although PC steel materials 7b, 7b... Have been described as an example, the anticorrosion method in the reinforced concrete structure according to the present invention is not limited to the PC steel materials 7b, 7b. This also has the same effect on prevention of over-corrosion protection against reinforcing bars.

次に本発明に係る鉄筋コンクリート構造物に於ける電気防食工法の実施の形態について、その施工方法・手順等を説明する。
先ず鉄筋コンクリート構造物に於ける電気防食工法を施工する鉄筋コンクリート構造物に於いて、電磁誘導方式やX線探査方式を用いてコンクリート7dの内部を探査して、シース7aや鉄筋の位置やコンクリート7dの表面からシース7aや鉄筋までの深さ、すなわちコンクリート7dのかぶりを測定する。そしてコンクリートカッター等の工具を用いて前記シース7aや鉄筋を損傷又は切断することがないように注意して、コンクリート7dの表面から20(mm)程度の溝7eを加工する。 該溝7eは前記シース7aや鉄筋の長手方向に沿って図1に示すように複数本を加工する。そして、溝7eを加工した後に、番線などの異物が溝7eの露出していると、後工程の陽極材7fとしてのチタンリボンメッシュ電極と短絡して、正常に防食電流を流すことができないので、番線などの異物と陽極材7fとしてのチタンリボンメッシュ電極が短絡しないことを確認する。
Next, the construction method, procedure, etc. of the embodiment of the anticorrosion method in the reinforced concrete structure according to the present invention will be described.
First, in a reinforced concrete structure for which an anticorrosion method is applied to a reinforced concrete structure, the inside of the concrete 7d is explored using an electromagnetic induction method or an X-ray exploration method, and the position of the sheath 7a, the reinforcing bar, or the concrete 7d The depth from the surface to the sheath 7a and the reinforcing bar, that is, the fog of the concrete 7d is measured. Then, using a tool such as a concrete cutter, a groove 7e of about 20 mm is processed from the surface of the concrete 7d, taking care not to damage or cut the sheath 7a or the reinforcing bar. A plurality of the grooves 7e are processed along the longitudinal direction of the sheath 7a and the reinforcing bar as shown in FIG. And after processing the groove | channel 7e, if foreign matters, such as a number wire, have exposed the groove | channel 7e, it will short-circuit with the titanium ribbon mesh electrode as the anode material 7f of a post process, and since a corrosion-proof electric current cannot be sent normally, It is confirmed that the foreign matter such as the wire and the titanium ribbon mesh electrode as the anode material 7f are not short-circuited.

次に溝7eに陽極材7fとしてのチタンリボンメッシュ電極の先端部を被覆し無収縮モルタル7gを充填してから、その無収縮モルタル7gの中に陽極材7fとしてのチタンリボンメッシュ電極を埋設する。更に該陽極材7fとしてのチタンリボンメッシュ電極が外気に全く露出しないように陽極材7fとしてのチタンリボンメッシュ電極の上から無収縮モルタル7gを被覆する。そして、養生して無収縮モルタル7gを硬化させる。 Next, the groove 7e is covered with the tip of a titanium ribbon mesh electrode as the anode material 7f and filled with 7g of non-shrink mortar, and then the titanium ribbon mesh electrode as the anode material 7f is embedded in the non-shrink mortar 7g. . Further, the non-shrink mortar 7g is coated on the titanium ribbon mesh electrode as the anode material 7f so that the titanium ribbon mesh electrode as the anode material 7f is not exposed to the outside air. Then, curing is performed to cure 7 g of the non-shrink mortar.

次に、鉄筋コンクリート構造物に於けるシラン系の表面含浸材7hの塗布範囲を確定する。
表面含浸材7hの塗布範囲は降雨や降雪で濡れ易くまた降雨や降雪が滞留して乾燥しにくい部位を対象にする。具体的には図1に示すように、PC桁7の下部7C、7Dの外周部及びPC桁7の中間部7Eの左側7E1の縦の面に表面含浸材7hを塗布する。
Next, the application range of the silane surface impregnating material 7h in the reinforced concrete structure is determined.
The application range of the surface impregnating material 7h is intended for a portion that is easily wetted by rainfall or snowfall and that is difficult to dry due to retention of rain or snowfall. Specifically, as shown in FIG. 1, a surface impregnating material 7h is applied to the vertical surfaces of the lower portions 7C and 7D of the PC beam 7 and the left side 7E1 of the intermediate portion 7E of the PC beam 7.

該塗布範囲に於いてPC桁7の中間部7Eの右側7E2及びPC桁7の中間部7Fの両側7F1、7F2を塗布しないのは、当該部位が構造上、降雨又は降雪11によってほとんど水濡れすることがない為である。また、PC桁7の下部7C、7Dの外周部全体に表面含浸材7hを塗布するのは、強風雨や強風雪の天候の際に下方から雨水や雪が吹き上がってPC桁7の下部7C、7Dを濡らすことを防止するためである。尚、上部構造下面、側面に表面含浸材7hを塗布する場合もある。 In the coating range, the right side 7E2 of the middle part 7E of the PC girder 7 and the both sides 7F1 and 7F2 of the middle part 7F of the PC girder 7 are not coated. This is because there is nothing. Further, the surface impregnating material 7h is applied to the entire outer periphery of the lower portions 7C and 7D of the PC girder 7 when rainwater or snow blows up from below when the weather is strong or rainy. This is to prevent wetting of 7D. In some cases, the surface impregnating material 7h is applied to the lower surface and the side surface of the upper structure.

そして、外部電源の陽極側に陽極材7fとしてのチタンリボンメッシュ電極を、陰極側にPC鋼材7b、7b・・・を接続して通電試験や復極試験を行い適正な通電量を決定して通電を開始する。
而して、鉄筋コンクリート構造物に於けるコンクリート7dの表面に溝7eを切削加工し、陽極材7fとしての線状のチタンリボンメッシュ電極を埋設することで該陽極材7fが陰極材としてのPC鋼材7b、7b・・・と短絡を起こす不具合を生じることなく電気防食工法を完成でき、施工の信頼性の向上と省力化を実現できる。
And the titanium ribbon mesh electrode as the anode material 7f is connected to the anode side of the external power source, and the PC steel materials 7b, 7b,... Start energization.
Thus, by cutting the groove 7e on the surface of the concrete 7d in the reinforced concrete structure and embedding a linear titanium ribbon mesh electrode as the anode material 7f, the anode material 7f is a PC steel material as a cathode material. It is possible to complete the anticorrosion method without causing a short circuit with 7b, 7b, etc., and to realize improvement in construction reliability and labor saving.

次に、表面含浸材7hの作業手順を説明する。
先ず表面含浸材7hを塗布する面に付着している泥やほこり等をディスクサンダー、ワイヤブラシ、不織布研磨材等で除去する。そして塗布する面の表面含水率を測定して表面含水率が8(%)以下であることを確認する。次に表面含浸材7hを標準的な塗布量、例えば0.2から0.25(kg/m)をローラ刷毛等で1回塗布する。塗布後は表面含浸材7hの塗布面が直接雨水等で濡れないように養生して48時間放置し硬化させる。
そして、表面含浸材7hによって塩水や酸性を含んだ降雨又は降雪11などのPC鋼材7b、7b・・・を腐食させる物質がコンクリート7dの内部に侵入することを防止でき、PC桁7の製造時に不純物として塩分がコンクリート7dに混入している場合でも電気防食工法に於けるアノード反応で発生する塩素ガスやカソード反応で発生する水蒸気を表面含浸材7hを透過してPC桁7の外部に放散することができるので、塩素ガスや水蒸気が表面含浸材7hを破壊することがなく表面含浸材7hが長期間に亘りPC桁7の表面を保護することができ、表面含浸材7hがPC桁7の表面を被覆するのでPC桁7の内部の含水率が低くかつ均一に安定的に保持されて、その結果、PC鋼材7b、7b・・・に均一な防食電流を流過することができるので過防食を防止でき、過防食が発生しないのでPC鋼材7b、7b・・・が水素脆化を生ずることがなくPCコンクリート構造物の強度に於ける信頼性を維持しかつ強度を長期間に亘り保持することが可能である。
Next, the work procedure of the surface impregnating material 7h will be described.
First, mud, dust and the like adhering to the surface to which the surface impregnating material 7h is applied are removed with a disk sander, a wire brush, a non-woven fabric abrasive or the like. And the surface moisture content of the surface to apply | coat is measured and it is confirmed that the surface moisture content is 8 (%) or less. Next, the surface impregnating material 7h is applied once with a standard coating amount, for example, 0.2 to 0.25 (kg / m 2 ) with a roller brush or the like. After coating, the coated surface of the surface impregnating material 7h is cured so that it is not directly wetted by rainwater or the like, and allowed to stand for 48 hours to be cured.
And the surface impregnating material 7h can prevent the substance that corrodes the PC steel materials 7b, 7b,... Such as rain or snow 11 containing salt water or acid from entering the concrete 7d. Even when salt is mixed into the concrete 7d as an impurity, chlorine gas generated by the anode reaction and water vapor generated by the cathode reaction in the cathodic protection method permeate through the surface impregnating material 7h and dissipate outside the PC girder 7. Therefore, the surface impregnating material 7h can protect the surface of the PC girder 7 over a long period of time without damaging the surface impregnating material 7h. Since the surface is covered, the moisture content inside the PC girder 7 is kept low and uniform and stable, and as a result, a uniform anticorrosive current can be passed through the PC steel materials 7b, 7b. Can prevent over-corrosion, and does not generate over-corrosion, so the PC steel materials 7b, 7b, etc. do not cause hydrogen embrittlement and maintain the reliability in the strength of the PC concrete structure and maintain the strength for a long time. It is possible to hold for a long time.

次に本発明に係る鉄筋コンクリート構造物に於ける電気防食工法の実施例について図6に基づき説明する。
図6は、本発明に係る実施例を示す鉄筋コンクリート構造物の垂直断面図であって、(a)はコンクリートのハツリ落しを行って鉄筋を露出し、該鉄筋に犠牲陽極を付設した状態を示す垂直断面図、(b)はハツリ落しした鉄筋をモルタルで埋め戻して表面含浸材を塗布した状態を示す垂直断面図である。
12は例えば鉄筋コンクリート構造物を構成する現場打ちの鉄筋コンクリート桁である。該鉄筋コンクリート桁12は鉄筋コンクリート構造物の水平方向に架けられ、図示しない橋台、橋脚に支えられ、床の荷重を伝えており、主に鉛直方向の荷重を負担している。 鉄筋コンクリート桁12はその自重と共に鉛直方向に床の荷重が印加されると下に凸となる撓みを生じ、上側はわずかに縮み、逆に下側は伸びるように変形する。コンクリート材料は脆性材料であるから一般的に圧縮荷重を負担することはできるが、引張り荷重を負担することはできずに破断する材料である。そこで鉄筋コンクリート桁12に於いては引張側すなわち下側に多数本の延性材料としての鉄筋13を入れることで鉄筋13に引張り荷重を負担させて補強して鉄筋コンクリート桁12の破断を防止している。
Next, an embodiment of the cathodic protection method in the reinforced concrete structure according to the present invention will be described with reference to FIG.
FIG. 6 is a vertical sectional view of a reinforced concrete structure showing an embodiment according to the present invention, in which (a) shows a state in which the reinforcing bar is exposed by removing the concrete and a sacrificial anode is attached to the reinforcing bar. A vertical sectional view, (b) is a vertical sectional view showing a state in which a reinforced reinforced reinforced bar is filled with a surface impregnating material.
Reference numeral 12 denotes, for example, a reinforced concrete girder on site that constitutes a reinforced concrete structure. The reinforced concrete girder 12 is laid in the horizontal direction of the reinforced concrete structure, is supported by an abutment and a pier (not shown), transmits the load on the floor, and mainly bears the load in the vertical direction. When a floor load is applied in the vertical direction together with its own weight, the reinforced concrete girder 12 is bent downward and is deformed so that the upper side is slightly shrunk and the lower side is extended. Since a concrete material is a brittle material, it can generally bear a compressive load, but cannot break a tensile load and breaks. Therefore, in the reinforced concrete girder 12, a number of reinforcing bars 13 as ductile materials are placed on the tension side, that is, the lower side, so that the reinforcing bars 13 are reinforced by bearing a tensile load to prevent the reinforced concrete girder 12 from being broken.

しかしながら鉄筋コンクリート桁12は打設後、地震等の大きな変動負荷やコンクリート材料自体の乾燥収縮等により、鉄筋コンクリート桁12の特に下側に微細な亀裂を生ずることは避けられない。鉄筋コンクリート桁12の下側に微細な亀裂が生じるとその亀裂から雨水等が鉄筋コンクリート桁12の内部に滲み込む。 However, after the reinforced concrete girder 12 is placed, it is inevitable that fine cracks are generated particularly on the lower side of the reinforced concrete girder 12 due to a large fluctuating load such as an earthquake and drying shrinkage of the concrete material itself. When a fine crack occurs on the lower side of the reinforced concrete girder 12, rainwater or the like penetrates into the reinforced concrete girder 12 from the crack.

鉄筋コンクリート桁12を構成するセメントはアルカリ性を呈するので、このアルカリ環境下に於いて鉄筋13は該鉄筋13の表面に不動態被膜という薄い膜を形成しており、鉄筋13は腐食しない。ところがセメントの中に塩化物が存在すると不動態被膜は破壊されて鉄筋13は腐食が進行する。腐食原因の塩化物としては海岸からの飛来塩分や路面からの凍結防止剤等が上げられる。これらが鉄筋コンクリート桁12の下側の亀裂に侵入し鉄筋13の周囲に存在すると鉄筋13は腐食が進行する。また、鉄筋コンクリート桁12を打設した際に用いる細骨材すなわち砂に海砂が使われ、その海砂の塩分除去が不十分であると鉄筋コンクリート桁12に亀裂を生じていなくても、鉄筋コンクリート桁12に含有する水分によって塩化物が鉄筋13の不動態被膜を破壊して鉄筋13は腐食が進行する。 Since the cement constituting the reinforced concrete girder 12 exhibits alkalinity, the rebar 13 forms a thin film called a passive film on the surface of the rebar 13 in this alkaline environment, and the rebar 13 does not corrode. However, if chloride is present in the cement, the passive film is destroyed and corrosion of the rebar 13 proceeds. Corrosion-causing chlorides include incoming salt from the coast and antifreezing agents from the road surface. If these penetrate into the cracks on the lower side of the reinforced concrete girder 12 and exist around the reinforcing bars 13, the reinforcing bars 13 undergo corrosion. Further, when fine sand aggregate, that is, sand used for placing reinforced concrete girders 12, sea sand is used, and if the salt content of the sea sand is insufficient, the reinforced concrete girders 12 may be cracked. The chloride breaks the passive film of the reinforcing bar 13 by the moisture contained in the reinforcing bar 13, and the reinforcing bar 13 is corroded.

鉄筋13の不動態被膜が破壊されると鉄筋13に電位の低い部分すなわちアノード部と電位の高い部分すなわちカソード部が発生して、化学反応が生じて局部的な腐食電池が形成される。この腐食電池の部分で発生する水酸化第二鉄がさびに変化して体積が2ないし4倍に膨張する。この体積膨張による膨張圧によって鉄筋13の周囲に鉄筋コンクリート桁12にひび割れが発生し、鉄筋コンクリート桁12の表面が剥落するなどの異常が発生する。 When the passive film of the reinforcing bar 13 is destroyed, a low potential portion, that is, an anode portion and a high potential portion, that is, a cathode portion are generated in the reinforcing bar 13 and a chemical reaction occurs to form a local corrosion battery. The ferric hydroxide generated in the portion of the corrosion cell changes to rust and the volume expands 2 to 4 times. Due to the expansion pressure due to the volume expansion, cracks occur in the reinforced concrete girder 12 around the rebar 13 and abnormalities such as peeling of the surface of the reinforced concrete girder 12 occur.

14は表面が剥落するなどの異常が発生した鉄筋コンクリート桁12の表面をハツリ作業で人為的にハツリ落しを行なったハツリ落し部である。15は亜鉛を含有する犠牲陽極材である。16は犠牲陽極材15を鉄筋13に電気的に接続するワイヤである。
犠牲陽極材15をワイヤ16を介して鉄筋13に接続すると鉄筋13の鉄と犠牲陽極材15の亜鉛の間に発生する電位差に基づき、亜鉛が
Zn → Zn2+ + 2e
に示す反応によって鉄筋コンクリート梁12に含まれる水分中に溶解する。このときに発生する電子(2e)が鉄筋13の高電位にあるカソード部に引き寄せられカソード部の電位を低下させる。この電子(2e)の供給が充分であれば鉄筋13のカソードとアノードの電位差が消失して鉄筋13の腐食が停止する。
Denoted at 14 is a chipped portion where the surface of the reinforced concrete girder 12 in which an abnormality such as the surface is peeled off has been artificially removed by a chipping operation. Reference numeral 15 denotes a sacrificial anode material containing zinc. Reference numeral 16 denotes a wire for electrically connecting the sacrificial anode material 15 to the reinforcing bar 13.
When the sacrificial anode material 15 is connected to the reinforcing bar 13 via the wire 16, the zinc is Zn → Zn 2+ + 2e based on the potential difference generated between the iron of the reinforcing bar 13 and the zinc of the sacrificial anode material 15.
It dissolves in the moisture contained in the reinforced concrete beam 12 by the reaction shown in FIG. Electrons (2e ) generated at this time are attracted to the cathode portion at a high potential of the reinforcing bar 13 to lower the potential of the cathode portion. If the supply of the electrons (2e ) is sufficient, the potential difference between the cathode and anode of the reinforcing bar 13 disappears and corrosion of the reinforcing bar 13 stops.

17は犠牲陽極材15を鉄筋13に接続したあと鉄筋13と犠牲陽極材15を覆って外気から遮断する覆設用の無収縮モルタルである。18は無収縮モルタル17が硬化した後に塗布・含浸するシラン系の表面含浸材である。表面含浸材18はシラン系のほかシロキサン系又はシラン・シランシロキシサン系の表面含浸材であってもよい。 Reference numeral 17 denotes a non-shrinking mortar for covering the reinforcing bar 13 and the sacrificial anode material 15 after connecting the sacrificial anode material 15 to the reinforcing bar 13 and blocking it from the outside air. A silane-based surface impregnating material 18 is applied and impregnated after the non-shrink mortar 17 is cured. The surface impregnating material 18 may be a siloxane-based or silane-silane siloxysan-based surface impregnated material in addition to the silane-based material.

次に本発明に係る鉄筋コンクリート構造物に於ける電気防食工法の実施例について、その施工方法・手順等を説明する。
先ず、表面が剥落するなどの異常が発生した鉄筋コンクリート桁12は、鉄筋13が埋設されている近傍において表面の剥落や亀裂、また鉄筋13のサビ水による変色が顕著であるからこれらの異常を呈する部位において、コンクリートを剥がすハツリ作業を行なう。このハツリ作業は鉄筋13の周辺及び鉄筋13の裏側のコンクリートを、鉄筋13に発錆がない健全部が露出するまで行い、かつ錆びの発生していない鉄筋13が50(mm)以上コンクリートから露出するまで行なう。そして露出した鉄筋13の全体の中で、犠牲陽極材15を接続したワイヤ16を巻付ける部位は完全に錆びを落し、サンドペーパー等で鉄筋13の金属地金が得られるまで研磨する。
Next, the construction method, the procedure, etc. will be described with respect to an embodiment of the cathodic protection method in the reinforced concrete structure according to the present invention.
First, the reinforced concrete girder 12 in which an abnormality such as the surface peeling occurs has such an abnormality because the surface peeling or cracking in the vicinity where the reinforcing bar 13 is embedded and the discoloration of the reinforcing bar 13 due to rust water are remarkable. At the site, perform a chiseling operation to remove the concrete. This chipping work is performed on the concrete around the reinforcing bar 13 and the back side of the reinforcing bar 13 until the healthy part without rusting is exposed on the reinforcing bar 13, and the reinforcing bar 13 without rusting is exposed from the concrete by 50 mm or more. Do until you do. And the part which winds the wire 16 which connected the sacrificial anode material 15 in the whole exposed rebar 13 is completely rusted and polished until a metal bar of the rebar 13 is obtained with sandpaper or the like.

鉄筋13の研磨を終了したらワイヤ16で速やかに犠牲陽極材15を鉄筋13に電気的に接続する。そして、回路テスター等のプローブを鉄筋13とワイヤ16に接触させて鉄筋13とワイヤ16の接続部の電気抵抗が犠牲陽極材15の規定値、例えば0.3オーム以下であることを確認する。図6に示すように犠牲陽極材15は鉄筋13に複数個を接続するが、犠牲陽極材15の使用量は鉄筋13の配筋量によって適宜決定する。全ての犠牲陽極材15を鉄筋13に接続したら、犠牲陽極材15を接続した鉄筋13及びその周辺のコンクリートに充分に水を散布する。そして図6(b)に示すように無収縮モルタル17を埋め戻す。無収縮モルタル17を養生して硬化させた後、無収縮モルタル17の表面含水率が8(%)以下であることを確認する。そして表面含浸材7hを標準的な塗布量、例えば0.2から0.25(kg/m)をローラ刷毛等で1回塗布する。塗布後は表面含浸材7hの塗布面が直接雨水等で濡れないように養生して48時間放置し硬化させる。
而して、表面含浸材7hが鉄筋コンクリート桁12の表面を被覆するので、該鉄筋コンクリート桁12の内部の含水率を低くかつ均一に安定的に保持することができるので、犠牲陽極材15の過大な消耗が抑制されて、長期間に亘り犠牲陽極材15の交換及び増設が不要であり鉄筋コンクリート桁12の電気防食に係る維持・管理を容易にすることができる。
When the polishing of the reinforcing bar 13 is completed, the sacrificial anode material 15 is quickly electrically connected to the reinforcing bar 13 by the wire 16. Then, a probe such as a circuit tester is brought into contact with the reinforcing bar 13 and the wire 16 to confirm that the electrical resistance of the connecting portion between the reinforcing bar 13 and the wire 16 is a specified value of the sacrificial anode material 15, for example, 0.3 ohms or less. As shown in FIG. 6, a plurality of sacrificial anode materials 15 are connected to the reinforcing bars 13, and the usage amount of the sacrificial anode materials 15 is appropriately determined according to the amount of reinforcing bars 13. When all the sacrificial anode materials 15 are connected to the reinforcing bars 13, water is sufficiently sprayed on the reinforcing bars 13 to which the sacrificial anode materials 15 are connected and the surrounding concrete. Then, the non-shrink mortar 17 is backfilled as shown in FIG. After curing and curing the non-shrink mortar 17, it is confirmed that the surface moisture content of the non-shrink mortar 17 is 8 (%) or less. Then, the surface impregnation material 7h is applied once with a standard application amount, for example, 0.2 to 0.25 (kg / m 2 ) with a roller brush or the like. After coating, the coated surface of the surface impregnating material 7h is cured so that it is not directly wetted by rainwater or the like, and allowed to stand for 48 hours to be cured.
Thus, since the surface impregnating material 7h covers the surface of the reinforced concrete girder 12, the moisture content inside the reinforced concrete girder 12 can be kept low and uniformly stable, so that the sacrificial anode material 15 is excessively large. Consumption is suppressed, replacement and expansion of the sacrificial anode material 15 is unnecessary for a long period of time, and maintenance and management related to the anticorrosion of the reinforced concrete girder 12 can be facilitated.

本発明は道路橋等の鉄筋コンクリート構造物やPCコンクリート構造物などに応用が可能である。 The present invention can be applied to reinforced concrete structures such as road bridges and PC concrete structures.

6 PC橋
7 PC桁
7C PC桁7の下部
7D PC桁7の下部
7E PC桁7の中間部
7E1 PC桁7の中間部の左側
7E2 PC桁7の中間部の右側
7F PC桁7の中間部
7F1 PC桁7の中間部の左側
7F2 PC桁7の中間部の右側
7G PC桁7の上部
7H PC桁7の上部
7a シース
7b PC鋼材
7c グラウト
7d コンクリート
7e 溝
7f 陽極材(チタンリボンメッシュ電極)
7g 無収縮モルタル
7h 表面含浸材
9 地覆
10 コンクリート供試体10
11 降雨又は降雪
12 鉄筋コンクリート桁
13 鉄筋
14 ハツリ落し部
15 犠牲陽極材
16 ワイヤ
17 無収縮モルタル
18 表面含浸材
6 PC Bridge
7 PC digit 7C PC digit 7 lower part 7D PC digit 7 lower part 7E PC digit 7 middle part 7E1 PC digit 7 middle part left 7E2 PC digit 7 middle part right 7F PC digit 7 middle part 7F1 PC digit 7F2 left middle 7G2 right middle 7G PC 7 upper 7G PC 7 upper 7H PC 7 upper 7a sheath 7b PC steel 7c grout 7d concrete 7e groove 7f anode material (titanium ribbon mesh electrode)
7g Non-shrink mortar 7h Surface impregnating material 9 Ground cover 10 Concrete specimen 10
11 Rain or Snow 12 Reinforced concrete girder 13 Reinforcing bar 14 Detachment 15 Sacrificial anode material 16 Wire 17 Non-shrink mortar 18 Surface impregnated material

Claims (3)

鉄筋コンクリート構造物の電気防食工法において、鉄筋コンクリート構造物のコンクリート表面にシラン系、シロキサン系及びシラン・シロキシサン系のいずれか一種を含有する表面含浸材を塗布することを特徴とする鉄筋コンクリート構造物に於ける電気防食工法。 In a reinforced concrete structure, a surface impregnating material containing any one of silane, siloxane, and silane / siloxysan is applied to the concrete surface of the reinforced concrete structure in an anticorrosion method for the reinforced concrete structure. An anti-corrosion method. 鉄筋コンクリート構造物の電気防食工法が、コンクリート表面と鉄筋間に溝部を形成し、チタンリボンメッシュ電極(陽極材)を設置し、該溝部の空隙にモルタル又は注入材を充填した外部電源方式であることを特徴とする請求項1に記載の鉄筋コンクリート構造物に於ける電気防食工法。 The cathodic protection method for the reinforced concrete structure is an external power supply system in which a groove is formed between the concrete surface and the reinforcing bar, a titanium ribbon mesh electrode (anode material) is installed, and the gap in the groove is filled with mortar or injection material. The cathodic protection method for a reinforced concrete structure according to claim 1. 鉄筋コンクリート構造物の電気防食工法が、露出した鉄筋に適宜の間隔で亜鉛を含有する犠牲陽極材を該鉄筋と導通した埋め込み型鉄筋コンクリート犠牲陽極方式であることを特徴とする請求項1に記載の鉄筋コンクリート構造物に於ける電気防食工法。










2. The reinforced concrete according to claim 1, wherein the cathodic protection method for the reinforced concrete structure is a buried reinforced concrete sacrificial anode method in which a sacrificial anode material containing zinc is connected to the exposed reinforcing bar at an appropriate interval. A cathodic protection method for structures.










JP2011003657A 2011-01-12 2011-01-12 Cathodic protection method for reinforced concrete structures Active JP5894365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011003657A JP5894365B2 (en) 2011-01-12 2011-01-12 Cathodic protection method for reinforced concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003657A JP5894365B2 (en) 2011-01-12 2011-01-12 Cathodic protection method for reinforced concrete structures

Publications (2)

Publication Number Publication Date
JP2012144771A true JP2012144771A (en) 2012-08-02
JP5894365B2 JP5894365B2 (en) 2016-03-30

Family

ID=46788631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003657A Active JP5894365B2 (en) 2011-01-12 2011-01-12 Cathodic protection method for reinforced concrete structures

Country Status (1)

Country Link
JP (1) JP5894365B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014136809A (en) * 2013-01-15 2014-07-28 Nippon Telegr & Teleph Corp <Ntt> Hydrogen invasion prevention method
JP2015004113A (en) * 2013-06-21 2015-01-08 住友大阪セメント株式会社 Concrete structure
CN109797873A (en) * 2019-01-21 2019-05-24 上海岐海防腐工程技术有限公司 A kind of Tidal zone concrete component is wrapped means of defence
JP2020056168A (en) * 2018-09-28 2020-04-09 日鉄ケミカル&マテリアル株式会社 Reinforcing method for reinforced concrete structure
CN113664952A (en) * 2021-07-02 2021-11-19 夏保胜 Anticorrosion treatment process for building wallboard

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001549A (en) * 2006-06-21 2008-01-10 Sakakibara Yasuhiro Concrete structure protective agent, its manufacturing method and protective method of concrete structure
JP2009263739A (en) * 2008-04-28 2009-11-12 Sho Bond Constr Co Ltd Electric corrosion protection method of reinforced concrete structure
JP2010138686A (en) * 2008-11-13 2010-06-24 Sumitomo Osaka Cement Co Ltd Electrode for electric protection and method for burying the same
JP2011236485A (en) * 2010-05-12 2011-11-24 Sumitomo Osaka Cement Co Ltd Electrolytic protection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001549A (en) * 2006-06-21 2008-01-10 Sakakibara Yasuhiro Concrete structure protective agent, its manufacturing method and protective method of concrete structure
JP2009263739A (en) * 2008-04-28 2009-11-12 Sho Bond Constr Co Ltd Electric corrosion protection method of reinforced concrete structure
JP2010138686A (en) * 2008-11-13 2010-06-24 Sumitomo Osaka Cement Co Ltd Electrode for electric protection and method for burying the same
JP2011236485A (en) * 2010-05-12 2011-11-24 Sumitomo Osaka Cement Co Ltd Electrolytic protection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014136809A (en) * 2013-01-15 2014-07-28 Nippon Telegr & Teleph Corp <Ntt> Hydrogen invasion prevention method
JP2015004113A (en) * 2013-06-21 2015-01-08 住友大阪セメント株式会社 Concrete structure
JP2020056168A (en) * 2018-09-28 2020-04-09 日鉄ケミカル&マテリアル株式会社 Reinforcing method for reinforced concrete structure
CN109797873A (en) * 2019-01-21 2019-05-24 上海岐海防腐工程技术有限公司 A kind of Tidal zone concrete component is wrapped means of defence
CN113664952A (en) * 2021-07-02 2021-11-19 夏保胜 Anticorrosion treatment process for building wallboard

Also Published As

Publication number Publication date
JP5894365B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5894365B2 (en) Cathodic protection method for reinforced concrete structures
CA2880235C (en) Galvanic anode and method of corrosion protection
US8157983B2 (en) Composite anode for cathodic protection
US20180037999A1 (en) Method of producing cathodic corrosion protection for protection of reinforcing steel in a ferroconcrete structure
US5366670A (en) Method of imparting corrosion resistance to reinforcing steel in concrete structures
US6387244B1 (en) Cathodic protection of reinforced concrete with impregnated corrosion inhibitor
JP2003129262A (en) Electric protection part for corrosion prevention of concrete steel material
WO2008118589A1 (en) Composite anode for cathodic protection
US9969656B2 (en) Method of repairing steel reinforced concrete structure affected by chloride induced corrosion
US20190390353A1 (en) Anode assembly for selective corrosion protection of metal parts in concrete
JP4602719B2 (en) Anticorrosion and repair methods for reinforced concrete structures
EP2132360A1 (en) Composite anode for cathodic protection background of the invention
JP3521195B2 (en) Method for preventing corrosion of steel material of mortar or concrete member and material for preventing corrosion of steel material used therefor
JP6353733B2 (en) Spacer member having anti-corrosion function for steel in concrete and installation method thereof
Van Tittelboom et al. Self-healing of concrete cracks by the release of embedded water repellent agents and corrosion inhibitors to reduce the risk for reinforcement corrosion
Galvanic Galvanic cathodic protection of reinforced and prestressed concrete using a thermally sprayed aluminum coating
Chauvin et al. Evaluation of electrochemical chloride extraction (ECE) and fiber reinforced polymer (FRP) wrap technology
Schwarz et al. Maintenance and repair of steel reinforced concrete structures by simultaneous galvanic corrosion protection and chloride extraction
JP2003129669A (en) Method for repairing cross section of concrete structure
Parthiban et al. Cathodic protection of concrete structures using magnesium alloy anode
JP5192739B2 (en) Desalination method for reinforced concrete floor slabs
ElSafty et al. CONCRETE REPAIR AND CATHODIC PROTECTION OF CORRODED REINFORCED CONCRETE STRUCTURE
JP6575908B2 (en) PC steel corrosion inhibition structure of prestressed concrete structure
Sadeghi-Pouya et al. Electrochemical Performance of Organic Zinc-Rich Coating as an Impressed Current Anode System
Funahashi et al. Cathodic protection of prestressed bridge members—Full-scale testing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150327

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150904

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160226

R150 Certificate of patent or registration of utility model

Ref document number: 5894365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250