JP3958090B2 - Hydrated cured body - Google Patents

Hydrated cured body Download PDF

Info

Publication number
JP3958090B2
JP3958090B2 JP2002087603A JP2002087603A JP3958090B2 JP 3958090 B2 JP3958090 B2 JP 3958090B2 JP 2002087603 A JP2002087603 A JP 2002087603A JP 2002087603 A JP2002087603 A JP 2002087603A JP 3958090 B2 JP3958090 B2 JP 3958090B2
Authority
JP
Japan
Prior art keywords
slag
mass
ash
blast furnace
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002087603A
Other languages
Japanese (ja)
Other versions
JP2003055025A (en
Inventor
聖司 細原
克則 高橋
正人 高木
多穂 谷敷
新谷  登
直 齋藤
正夫 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Chugoku Electric Power Co Inc
Toa Corp
Original Assignee
JFE Steel Corp
Chugoku Electric Power Co Inc
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Chugoku Electric Power Co Inc, Toa Corp filed Critical JFE Steel Corp
Priority to JP2002087603A priority Critical patent/JP3958090B2/en
Publication of JP2003055025A publication Critical patent/JP2003055025A/en
Application granted granted Critical
Publication of JP3958090B2 publication Critical patent/JP3958090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/021Ash cements, e.g. fly ash cements ; Cements based on incineration residues, e.g. alkali-activated slags from waste incineration ; Kiln dust cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00758Uses not provided for elsewhere in C04B2111/00 for agri-, sylvi- or piscicultural or cattle-breeding applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【0001】
【発明の属する技術分野】
本発明は、水和硬化体に係わり、詳しくは、鉄鋼スラグのうちの製鋼スラグ、とりわけ路盤材等として有効利用することが困難であった粉粒状の溶銑予備処理スラグ及び石炭灰等の燃焼灰といった産業副生物を多量に有効利用して製造した従来より軽量な水和硬化体に関する。
【0002】
【従来の技術】
製鋼工程で発生するスラグは、塩基度(例えば、CaO/SiO2で評価)が高く、遊離CaOを多量に含有するため、水分を吸って膨張し易く、高炉スラグのような土木・建設資材としての用途には向かず、その処理に難儀している。そこで、このような製鋼スラグを積極的に活用する試みが従来より幾つかなされている。
【0003】
例えば、特開平10−152364号公報は、製鋼スラグを含有する骨材と、潜在水硬性を有するシリカ含有物質及びポゾラン反応性を有するシリカ含有物質のうち1種又は2種を50%以上含有する結合材とを有してなる製鋼スラグを利用した水和硬化体を開示している。また、特開平2−233539号公報は、結合材、細骨材、粗骨材の全てを、粉砕及び破砕した鉄鋼スラグとすると共に、前記結合材としての鉄鋼スラグには、高炉スラグと製鋼スラグとを混合したものを用いるようにしたスラグ・ブロックを開示している。
【0004】
【発明が解決しようとする課題】
しかしながら、本発明者が上記の従来技術を用いて、製鋼スラグを原料とする水和硬化体(以下、単に硬化体という)を試作しようとしたところ、下記のような問題点が明らかとなった。
【0005】
まず、特開平10−152364号公報記載の方法によれば、製鋼スラグとして転炉スラグを用いると、20℃の水中養生の際に硬化体が崩壊し、満足できる硬化体が得られない場合があった。そこで、この原因を詳細に調査したところ、近年は、転炉の内張り耐火物を保護する所謂スラグ・コーティングのためにスラグ中に添加しているドロマイトやマグネシア・クリンカ等に起因して、転炉スラグ中のMgO濃度が高くなっているが、このようなMgO濃度が高い転炉スラグを用いた場合には、該転炉スラグに含まれているfree−MgOが水中養生の際に水和膨張し、製造される硬化体が崩壊することが判明した。
【0006】
一方、特開平2−233593号公報記載の方法で転炉スラグを原料とした硬化体を製造するには、スラグを微粉砕する必要がある。しかしながら、転炉スラグ中には、上記したようにfree−MgOが相が含まれているため、スラグ自体が固くて微粉になり難く、反応性の高い微粉にまで粉砕するには、粉砕コストが膨大になる問題があった。そこで、free−MgOを含有しない溶銑予備処理スラグを用いることを想到し、前記特開平2−233593号公報記載の原料配合に従って硬化体の製造を試みた。ところが、この場合も硬化体の強度が不足したり、多数のひび割れが発生し、特に強度と外観の美麗さが要求されるようなブロック状の建設用スラグ硬化体の原料には、到底使用に堪えないことが判明した。
【0007】
このような製鋼スラグを原料の一部として使用して製造した硬化体の強度不足、ひび割れの発生、free―MgOに起因する膨張や、粉砕の困難性等の問題を解消するため、本出願人のうちの一部は、先に特願2000−88858号にて対策技術を提案した。それは、製鋼スラグとして粉粒状の溶銑予備処理スラグ、潜在水硬性を有するSiO2含有物質として高炉スラグ微粉末を使用すると共に、水を除く全配合成分中における粒径1.18mm以下の溶銑予備処理スラグの含有率を15〜55mass%、高炉スラグ微粉末の含有率を5〜40mass%とするものである。また、別配合として、高炉スラグ微粉末の含有率を3〜36mass%、フライアッシュの含有率を1.5〜30mass%とし、且つ高炉スラグとフライアッシュの合計含有量に対するフライアッシュの含有量の質量比が0.1〜0.75とするものである。これらの対策技術によって、上記問題点はいずれも解決することができ、資源の再利用、環境の向上等を図ることができた。その点で、この特願2000−88858号にて提案した対策技術は、十分満足できるものであった。
【0008】
しかしながら、この対策技術では、粒径1.18mm以下の溶銑予備処理スラグ含有率の下限が15mass%であるため、粗粒側を含めた溶銑予備処理スラグの全配合量は、凡そ60mass%以上に達している。そのため、製造した硬化体の比重は、コンクリートと同等かむしろそれ以上となり、コンクリートの代替品や海洋ブロックに適したものとなっている。一方、現在の土木関係の工事においては、比重の重い硬化体の使用が良いとは限らず、逆に比重の軽いものが求められることも多い。例えば、軟弱地盤用に設置するブロック等は、比重が重すぎると、徐々に沈み込んでしまい、役目を果たさなくなるという問題点が生じている。また、コンクリートの裏込め材料等は、その比重が重いと、壁にかかる圧力が大きくなるため、できるだけ軽いものが望まれている。これは、軽い方が施工体の全体としての経済性が極めて高くなるからである。
【0009】
このように、スラグを利用した水和硬化体としては、軽量なものができれば、さらにその用途の拡大が期待できる。そのため、気泡剤等の化学混和剤を利用して軽量化を図る方法も開発されている。しかしながら、この方法は、高価な化学混和剤を使用するため、経済性にやや劣るので、配合原料の選択だけで軽量化することが望ましい。そこで、特願2000−88858号にて提案した対策技術において、配合原料中の比重の重い溶銑予備処理スラグの比率を下げることができれば、軽量な硬化体をつくることができると考えられる。しかしながら、粒径1.18mm以下の溶銑予備処理スラグが15mass%以下となった場合には、硬化体の強度が不足気味になるという問題点があった。
【0010】
本発明は、かかる事情に鑑み、製鋼スラグを原料に使用しても、従来より軽量な水和硬化体を提供することを目的としている。
【0011】
【課題を解決するための手段】
発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。
【0012】
すなわち、本発明は、粉粒状の製鋼スラグと潜在水硬性を有するSiO2含有物質とを水で混練してなる水和硬化体であって、前記製鋼スラグとして粉粒状の溶銑予備処理スラグを、前記潜在水硬性を有するSiO2含有物質として高炉スラグ微粉末及び燃焼灰を使用すると共に、水を除く全配合原料中の高炉スラグ微粉末の含有率を10〜40mass%、燃焼灰の含有率をl0〜50mass%、粒径1.18mm以下の溶銑予備処理スラグの含有率を3〜15mass%とし、且つ、高炉スラグ微粉末及び燃焼灰の合計含有率が50mass%超80mass%未満で、さらに前記全配合原料に、アルカリ金属、アルカリ土類金属の酸化物、水酸化物、硫酸塩、塩化物及びセメントから選ばれた1種又は2種以上を、高炉スラグ微粉末及び燃焼灰の合計含有量に対して1〜10mass%添加すると共に、該高炉スラグ微粉末と該燃焼灰の合計含有量に対する燃焼灰含有量の比を0.3〜0.75にしてなることを特徴とする水和硬化体である。
【0013】
この場合、前記燃焼灰としてフライアッシュ及び/又は加圧流動床式石炭燃焼設備から発生した石炭灰を使用したり、あるいはさらに空気中28日以上養生したときの単位容積あたりの質量が、2000kg/m3以下であるのが好ましい。また、前記水で混練した後、水蒸気を含む40〜105℃の雰囲気下で0.5〜24時間養生すると一層好ましい。
【0014】
本発明によれば、製鋼スラグを原料に使用しても、従来より軽量な水和硬化体を安定して提供できるようになる。
【0015】
【発明の実施の形態】
以下に、本発明の実施の形態を詳しく説明する。
【0016】
まず、本発明では、製鋼スラグとして特に溶銑予備処理スラグを使用する。その理由は、以下の通りである。
(1)溶銑予備処理では精錬剤としてMgOを添加しないので、発生するスラグは、元来MgO濃度が低く、且つCaO/SiO2が低い。また、若干含まれるMgOもほとんどCa2MgSi27として存在し、free−MgO相がほとんど存在しない。従って,従来エージングが不十分な転炉スラグを原料として使用した場合に生じていたfree−MgOの水和膨張による硬化体の割れ、粉化、変形、強度低下等の問題を一掃できる可能性がある
(2)溶銑予備処理スラグは、上記のようにCaO/SiO2が低く、且つP25濃度が高いので、free−CaO濃度が低い。そのため、free−CaOによる水和膨張性も低く、製鋼スラグ中のfree−CaOの水和膨張に起因する硬化体の割れ、粉化、変形、強度低下等の問題も一掃できる可能性がある
(3)また、微粉が多く、反応性が高いので、それ自体が他の配合物質である高炉スラグ微粉末や燃焼灰の代替になり得る
(4)さらに、上記したように、free−MgO相がほとんど存在しないので、スラグ自体が柔らかく、他の転炉スラグに比較してはるかに粉砕し易い
(5)加えて、微粉の働きで、この溶銑予備処理スラグと高炉スラグ微粉末や燃焼灰との反応が起き易くなり、硬化体がより高強度になる
(6)さらに加えて、比重が2.6〜3.1であり、転炉スラグ(3.4以上)等に比べて比重が軽い
本発明では、上記の製鋼スラグと反応させて硬化させるSiO2含有物質として、高炉スラグ微粉末及び燃焼灰を使用するようにした。ここでいう燃焼灰は、SiO2を含有していることが必要であり、そのような観点から、石炭を燃焼させた際に発生する石炭灰のごとき燃焼灰が好ましい。特に、元来微粉であるフライアッシュや加圧流動床式石炭燃焼設備から発生する石炭灰がより好ましい。
【0017】
また、本発明では、このような溶銑予備処理スラグを使用するにあたって、そのうちの粒径1.18mm以下の部分が、水を除く全配合原料中における含有率が3〜15mass%となるように配合する。溶銑予備処理スラグのうちで硬化反応に寄与の大きな部分は、粒径1.18mm以下の範囲において特に反応性が良好で、得られる硬化体の強度が高くなり、しかもひび割れの発生が著しく小さくなるからである。そのため、本発明は、配合原料中の溶銑予備処理スラグに含まれる粒径1.18mm以下の粒度の部分を、特に限定したのである。なお、このことは、配合する溶銑予備処理スラグの中に、これよりも粒度の大きい溶銑予備処理スラグが含まれていることを妨げるものではない。粒度の大きい溶銑予備処理スラグは、粉砕の過程で粉砕され難くかったことを意味するだけで、それ自体が強度を有しているので、骨材あるいは増量剤としての寄与があり得るからである。
【0018】
粒径1.18mm以下の溶銑予備処理スラグの量を限定する理由は、上述の通りであるが、その含有量は、以下のように限定する。
【0019】
溶銑予備処理スラグの比重は、2.65〜3.1程度であるのに対して、燃焼灰として代表的なものであるフライアッシュは、JISの規定により1.95以上で(一般のものは2.2程度)、高炉スラグ微粉末は、2.8程度であり、溶銑予備処理スラグもしくは高炉スラグ微粉末が、硬化体を重くする原因になっていると考えられる。そこで、本発明では、硬化体の軽量化の観点から、溶銑予備処理スラグの含有率を減らすことにして、上限として、粒径1.18mm以下の溶銑予備処理スラグの含有率を15mass%以下にした。また、1.18mmより粒径の大きい骨材が増えた場合も、硬化体の比重が重くなるため、残りの潜在水硬性を有するSiO2含有物質である高炉スラグ微粉末と燃焼灰の合計含有量を50mass%超にする必要があった。
【0020】
一方、溶銑予備処理スラグをさらに減らした場合、硬化体の強度低下が起こるだけでなく、硬化体の収縮が大きくなり、亀裂の発生が起り好ましくない。そこで、この問題を避けるため、本発明では、下限として、粒径1.18mm以下の溶銑予備処理スラグの含有率を3mass%以上とし、残りの潜在水硬性を有するSiO2含有物質である高炉スラグ微粉末と燃焼灰の合計含有量を80mass%未満とした。
【0021】
次に、本発明では、上記のような粒径1.18mm以下の溶銑予備処理スラグに対して配合する原料は、溶銑予備処理スラグと反応して潜在水硬性を示すSiO2含有物質とした。この潜在水硬性を有するSiO2含有物質としては、高炉スラグ微粉末単独、あるいは高炉スラグ微粉末と燃焼灰との混合物が好ましいが、骨材に相当する溶銑予備処理スラグが少ない条件では、高炉スラグ微粉末と燃焼灰との混合物の使用がより望ましい。
【0022】
高炉スラグ微粉末は、JIS A 6206に規定されているように、コンクリート用混和材として実績のある材料である上に、適切なアルカリ刺激を加えることにより、単独でも固化する潜在水硬性をもった材料である。そのため、溶銑予備処理スラグから供給されるCaOを固定する作用があり、且つ、硬化時の強度発現の主体となる。その量は、溶銑予備処理スラグ中の水和膨張を有するCaOを固定するだけのためであれば、比較的少ない量でも良いが、硬化体の強度確保のためには、10mass%以上の配合が必要であった。一方、高炉スラグ微粉末の量が40mass%を超えると、相対的にSiO2を固定させるアルカリ・イオンの供給が不足気味となり、硬化体の強度を向上させる効果がほとんど期待できなくなる。さらに、高炉スラグ微粉末は、今回の原料のなかでは粒度が細かいものに相当するので、硬化体の収縮傾向を大きくしてしまう。そこで、本発明では、溶銑予備処理スラグが、硬化体中において骨材の役割を果たすようにした。つまり、コンクリートでいうところの、砂や砂利に当たるものであり、硬化体の強度保持だけではなく、形態安定性すなわち収縮抑制に大きな作用を発揮するからである。
【0023】
上記のように、本発明では、軽量化のために溶銑予備処理スラグの使用量を従来に比べて少量に限定する必要があった。その反面で、硬化体収縮の悪影響が出易くなっており、これを抑制するには、高炉スラグ微粉末の配合量は、最大で40mass%必要であった。ただし、高炉スラグ微粉末を40mass%以下とし、さらに上述したように、硬化体の収縮によるひび割れ等を抑制するための必須条件として、粒径1.18mm以下の溶銑予備処理スラグの含有率を3mass%以上という条件を示した。ところが、そのような限定を行っても、硬化体の収縮は完全には抑制し切れなかった。例えば、高炉スラグ微粉末のみで上記の溶銑予備処理スラグの配合条件で硬化させた場合、ひび割れの進入を防ぐのは難しかった。
【0024】
ひび割れの抑制策として、一般に繊維等を原料に混入させる方法が考えられる。しかし、それは経済的に不利である。そこで、本発明では、燃焼灰を使用することにした。一定条件で燃焼灰を混入させることによって、硬化体の収縮特性を大幅に改善することができたからである。特に、その含有量が10mass%以上になるか、又は、高炉スラグ微粉末及び燃焼灰の合計含有量に対する燃焼灰の含有量の比が0.3以上の範囲において有効である。これは、比較的高い含有レベルではあるが、骨材量の不足を補うために適切な量である。また、燃焼灰のメリットとして、比重が軽いことがあげられる。高炉スラグ微粉末の場合、上述のように比重が2.8と重いのに対し、例えば微粉炭燃焼式の火力発電所等で石炭の燃焼によって生成する飛灰のフライアッシュは、比重が1.95以上(一般的なものは2.2前後)と軽い原料である。従って、これを混入させることは、硬化体の軽量化にも有効に作用する。そのなかでも、特にフライアッシュや加圧流動床式石炭灰の使用が有効である。加えて、フライアッシュは、JISで規定されている通り、比表面積が2500cm2/g以上、45μmふるい残分40%以下と、それ自体が極めて微粉であり、これを使用することにより、溶銑予備処理スラグとの反応性が一層向上し、長時間養生後の硬化体強度の向上が可能となる。さらに加えて、JISに規定されていることからも理解できるように、品質が安定しており、硬化体の特性も一定の範囲にコントロールし易くなる。
【0025】
しかしながら、燃焼灰を際限なく増やすことは出来ない。その理由は、燃焼灰の常温での初期の硬化性が高炉スラグ微粉末よりも劣る傾向があるからである。その観点では、燃焼灰の上限は、その含有量が50mass%を超え、または、高炉スラグ微粉末及び燃焼灰の合計含有量に対する燃焼灰の含有量の比が0.75を超えると、硬化体全体としての硬化を遅らせることとなり、好ましくない。そのため、本発明では、燃焼灰の含有量は、10〜50mass%で、高炉スラグ微粉末及び燃焼灰の合計含有量に対する燃焼灰含有量の比を0.3〜0.75とする。
【0026】
さらに、本発明では、水和硬化体を製造する配合原料に、アルカリ金属、アルカリ土類金属の酸化物、水酸化物、硫酸塩、塩化物及びセメントから選ばれた1種または2種以上を、高炉スラグ微粉末及び燃焼灰の合計含有量に対して1〜10mass%添加する。本発明の原料配合は、比較的SiO2が富んだ配合となっているため、アルカリ・イオンを呈する物質によって高炉スラグ微粉末や燃焼灰の反応を刺激することが好ましいからである。特に、燃焼灰の強度発現は遅いことは知られており、加えて、CaOを供給し、アルカリ源となりうる溶銑予備処理スラグの配合量が少ないため、これを補うために、アルカリ金属、アルカリ土類金属の酸化物、水酸化物、硫酸塩、塩化物及びセメントから選ばれた1種または2種以上を1mass%以上添加して、硬化体の硬化を促進し、養生に要する時間を短縮するのである。しかしながら、10mass%を超えて添加してもその効果の割合が減り、また、資源の再利用の観点からもあまり添加することは好ましくなく、さらに、過剰に入れ過ぎると、硬化体を設置した近傍がアルカリ性を呈することになるため、10mass%を上限とする。
【0027】
なお、本発明では、セメントを利用することも含めたが、その量は、高炉スラグ微粉末と燃焼灰に対して10mass%を上限としており、硬化体の主体は、高炉スラグ微粉末と燃焼灰であり、本発明は、従来あるような、セメントの一部を高炉スラグ微粉末及び/又はフライアッシュで置換したような混和材利用のセメントとは全く異なる技術である。セメントを主体とした場合、長期にわたって周辺を強アルカリ性に変じてしまうが、本発明のように、添加剤として使用することによって、アルカリ化の影響も大幅に減じることができ、住環境、植生環境にも寄与することができる。また、このような配合に基づいて硬化体を製造した場合、単位容積質量が2000kg/m3の軽量な硬化体を、気泡剤などの化学混和剤や人工軽量骨材を使わずに得ることができる。そのような硬化体は、既述したように、軟弱地盤用に設置するブロックや、コンクリートの裏込め材料などの、軽量性が要求される部材に利用することが可能である。
【0028】
さらに、本発明では、これを水で混練した後、水蒸気を含む40〜105℃の雰囲気下で0.5〜24時間養生する。水蒸気を含む40〜105℃の雰囲気下で0.5〜24時間養生することにより、短時間で著しく強度が高くなるためである。水蒸気を含む雰囲気とは、大気中に水蒸気を含む雰囲気はもちろんのこと、例えば窒素ガス、CO2ガス等、又はこれらの混合ガスに水蒸気を含む雰囲気である。この時の相対湿度は60%とするのが好ましい。より短時間で強度がたかくなるからである。また、空気等の他のガスを含まない水蒸気100%の雰囲気、すなわち水蒸気を直接吹き込んでも良い。なお、飽和水蒸気40℃未満では、強度向上の効果が低く、また105℃以上では、不経済となるため好ましくない。さらに、混練物を型枠に流し込んだ後、すぐに水蒸気を含む40〜105℃の雰囲気下で0.5〜24時間養生しても良く、あるいは脱枠可能な強度になるまで大気中等で養生後、脱枠した後に水蒸気を含む40〜105℃の雰囲気下で0.5〜24時間養生しても良く、さらに加えて、即時脱枠することで成形後に水蒸気を含む40〜105℃の雰囲気下で0.5〜24時間養生しても良い。なお、水蒸気を含む40〜105℃の雰囲気で0.5〜24時間養生後の養生方法については特に限定しない。
【0029】
【実施例】
以下に、表1に組成を示す溶銑予備処理スラグ(脱珪スラグA,脱珪スラグB,脱燐スラグA及び脱燐スラグB)と転炉スラグを用いての実施例及び比較例を説明する。
(実施例)
配合原料として粉砕した溶銑予備処理スラグ、JIS A 6206に規定される高炉スラグ微粉末、微粉炭燃焼式火力発電所から発生するフライアッシュ(粒径0.1mm以下)、加圧流動床式石炭燃焼設備から発生する石炭灰(粒径0.1mm)及びアルカリ刺激剤を水で混練して型枠に流し込み、これを20℃の水中で養生をして硬化体を製造した。配合原料中の各原料の含有量、比率、混練水の添加量を表1に示す。得られた硬化体の28日養生後の強度、表面乾燥比重、表面ひび割れ本数、91日養生後の強度を表2及び表3に示す。
【0030】
【表1】

Figure 0003958090
【0031】
【表2】
Figure 0003958090
【0032】
【表3】
Figure 0003958090
【0033】
(比較例)
配合原料として粉砕した溶銑予備処理スラグ、粒径0.1mm以下に微粉砕した高炉スラグ微粉末、フライアッシュ、アルカリ刺激剤を、本発明範囲から外れる含有率の下において水で混練して型枠に流し込み、これを20℃の水中で養生をして硬化体を製造した。配合物中の各原料の含有量、比率、混練水の添加量を表4に示す。得られた硬化体の28日養生後の強度、表面乾燥比重、表面ひび割れ本数、91日養生後の強度を表5に示す。
【0034】
【表4】
Figure 0003958090
【0035】
【表5】
Figure 0003958090
【0036】
表5より、溶銑予備処理スラグの配合量が本発明の範囲内であるものの、高炉スラグ微粉末が多い比較例1では、硬化体の強度は十分であったが、表面のひび割れが2.5本/cm2であることが明らかである。これは、そのような硬化体は、美観やハンドリング性に問題があり、また長期耐久性の観点からも適当ではないことを意味している。また、フライアッシュが多い比較例2では、逆に硬化体の強度がほとんど出ず、硬化体としての評価がほとんど困難に近いレベルであった。また、予備処理スラグの量が少ない比較例3では、一見違いが無かったものの、詳細に観察すると微細なひび割れが数多く入っていることが確認された。さらに、予備処理スラグの量が多い比較例4では、硬化体としての特性は十分であり、用途によっては使用できるが、やや重量が重くなってしまうという欠点が見られた。加えて、スラグ種を転炉スラグに変えた比較例6では、28日から91日と養生期間が延びても圧縮強度がほとんど伸びなかった。表面を観察すると、比較的深いひび割れが入っており、これによって強度が伸びなかったものと推定される。これは、free−CaOもしくはfree−MgOに起因する膨張のためと判断された。
【0037】
これらの比較例に対し、溶銑予備処理スラグ、高炉スラグ微粉末、フライアッシュ共に本発明の範囲内にある実施例では、硬化体の強度は、表2及び表3より明らかなように、いずれも12N/mm2をクリアしており、長期的にも上昇する傾向が確認され、また、表面のひびもほとんど見られなかった。
【0038】
また、表2の実施例23、28の配合について、表6に示す条件A〜E及び条件F〜Hで蒸気養生を実施した水硬体の7日強度の値を表7に示す。なお、表7には、蒸気養生を行わない場合の28日強度との比も合わせて示す。表7より、蒸気養生条件であるA〜Eについては、蒸気養生後7日で蒸気養生しない場合の28日強度に相当する強度が得られているが、条件F〜Hでは、その強度に達しておらず、強度発現の促進が不十分であることが明らかである。
【0039】
【表6】
Figure 0003958090
【0040】
【表7】
Figure 0003958090
【0041】
【発明の効果】
以上述べたように、本発明により、製鋼スラグを用いても、高炉スラグ微粉末及び燃焼灰の利用により、軽量で、且つ、ひび割れの問題がなく、且つ10N/mm2レベル以上の強度を有する水和硬化体が得られるようになる。これによって、原料のほとんどに産業副生物を用いつつ、化学混和剤等を利用せずに軽量な資材を提供できることになる。かかるスラグ−燃焼灰硬化体は、路盤材、土木材、人工石、海洋ブロック、その他コンクリート製品の代替品として使用可能であり、とりわけ、軽量性が要求される軟弱地盤へ設置する海洋ブロック、漁礁やコンクリート裏込め材として有効であり、本発明は、資源の再利用、環境の向上等に寄与するところが大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrated hardened body, and more specifically, steelmaking slag of steel slag, in particular, powdered hot metal pretreatment slag and combustion ash such as coal ash, which have been difficult to effectively use as roadbed materials, etc. The present invention relates to a hydrated and cured product that is lighter than before and is manufactured by effectively using a large amount of such industrial byproducts.
[0002]
[Prior art]
Slag generated in the steelmaking process, basicity (e.g., rated at CaO / SiO 2) is high, for containing free CaO in a large amount, easily expands sucking water, a civil engineering and construction materials such as blast furnace slag It is not suitable for use and is difficult to process. Thus, several attempts have been made to actively utilize such steelmaking slag.
[0003]
For example, JP-A-10-152364 discloses 50% or more of one or two of an aggregate containing steelmaking slag, a silica-containing material having latent hydraulic properties, and a silica-containing material having pozzolanic reactivity. The hydration hardening body using the steelmaking slag which has a binder is disclosed. JP-A-2-233539 discloses steel slag obtained by pulverizing and crushing all of the binder, fine aggregate, and coarse aggregate. The steel slag as the binder includes blast furnace slag and steelmaking slag. A slag block that uses a mixture of the slag and the like is disclosed.
[0004]
[Problems to be solved by the invention]
However, when the present inventor tried to prototype a hydrated hardened body (hereinafter simply referred to as a hardened body) using steelmaking slag as a raw material using the above-described conventional technology, the following problems were revealed. .
[0005]
First, according to the method described in JP-A No. 10-152364, when a converter slag is used as the steelmaking slag, the cured body may collapse during water curing at 20 ° C., and a satisfactory cured body may not be obtained. there were. Therefore, the cause of this was investigated in detail. In recent years, the converter was caused by dolomite, magnesia clinker, etc. added to the slag for the so-called slag coating that protects the refractory lining of the converter. The MgO concentration in the slag is high, but when such a converter slag having a high MgO concentration is used, the free-MgO contained in the converter slag is hydrated and expanded during water curing. And it turned out that the hardened | cured material manufactured disintegrates.
[0006]
On the other hand, in order to produce a cured body using converter slag as a raw material by the method described in JP-A-2-233593, it is necessary to pulverize the slag. However, since the converter slag contains the phase of free-MgO as described above, the slag itself is hard and difficult to be pulverized. There was a huge problem. Accordingly, the inventors have conceived of using hot metal pretreatment slag that does not contain free-MgO, and attempted to produce a cured body according to the raw material composition described in JP-A-2-233593. However, in this case as well, the strength of the hardened body is insufficient or many cracks occur, and it is extremely suitable for raw materials for block-shaped construction slag hardened bodies that require beautiful strength and appearance. It turned out to be unbearable.
[0007]
In order to solve problems such as insufficient strength, cracking, expansion due to free-MgO, and difficulty in crushing of a hardened body manufactured using such steelmaking slag as part of the raw material, Some of them previously proposed countermeasure technology in Japanese Patent Application No. 2000-88858. It uses powdered hot metal pretreatment slag as steelmaking slag, blast furnace slag fine powder as SiO 2 -containing material with latent hydraulic properties, and hot metal pretreatment with a particle size of 1.18 mm or less in all ingredients except water The slag content is 15 to 55 mass%, and the blast furnace slag fine powder content is 5 to 40 mass%. Further, as a separate formulation, the content of the blast furnace slag fine powder is 3 to 36 mass%, the content of fly ash is 1.5 to 30 mass%, and the content of fly ash with respect to the total content of blast furnace slag and fly ash The mass ratio is 0.1 to 0.75. With these countermeasure technologies, all of the above problems could be solved, and resources could be reused and the environment improved. In that respect, the countermeasure technique proposed in Japanese Patent Application No. 2000-88858 was sufficiently satisfactory.
[0008]
However, in this countermeasure technique, since the lower limit of the hot metal pretreatment slag content rate of particle size 1.18 mm or less is 15 mass%, the total amount of hot metal pretreatment slag including the coarse grain side is about 60 mass% or more. Has reached. Therefore, the specific gravity of the produced hardened body is equal to or higher than that of concrete, and is suitable for concrete substitutes and marine blocks. On the other hand, in current civil engineering-related construction, it is not always good to use a hardened body having a high specific gravity, and conversely, a light specific gravity is often required. For example, if the specific gravity of a block or the like installed for soft ground is too heavy, it gradually sinks, causing a problem that it does not play a role. In addition, a concrete backfilling material or the like is desired to be as light as possible because the pressure applied to the wall increases when the specific gravity is heavy. This is because the lighter one becomes extremely economical as the entire construction body.
[0009]
Thus, if a hydrated cured body using slag can be made light, further expansion of its application can be expected. Therefore, a method for reducing the weight by using a chemical admixture such as a foaming agent has been developed. However, since this method uses an expensive chemical admixture, it is somewhat inferior in economic efficiency, so it is desirable to reduce the weight only by selecting a blending raw material. Therefore, in the countermeasure technique proposed in Japanese Patent Application No. 2000-88858, if the ratio of the hot metal pretreatment slag having a high specific gravity in the blended raw material can be reduced, it is considered that a lightweight cured body can be produced. However, when the hot metal pretreatment slag having a particle size of 1.18 mm or less becomes 15 mass% or less, there is a problem that the strength of the cured body becomes insufficient.
[0010]
In view of such circumstances, an object of the present invention is to provide a hydrated hardened body that is lighter than conventional steelmaking slag even if it is used as a raw material.
[0011]
[Means for Solving the Problems]
The inventor has intensively studied to achieve the above object, and the results have been embodied in the present invention.
[0012]
That is, the present invention is a hydrated hardened body obtained by kneading a granular steelmaking slag and a SiO 2 -containing substance having latent hydraulic properties with water, and a granular hot metal pretreatment slag as the steelmaking slag, The blast furnace slag fine powder and combustion ash are used as the SiO 2 -containing material having the latent hydraulic property, and the content of the blast furnace slag fine powder in all the blended raw materials excluding water is 10 to 40 mass%, and the content of combustion ash is 10 to 50 mass%, the content of hot metal pretreatment slag having a particle size of 1.18 mm or less is 3 to 15 mass%, and the total content of blast furnace slag fine powder and combustion ash is more than 50 mass% and less than 80 mass%, One or two or more selected from alkali metals, alkaline earth metal oxides, hydroxides, sulfates, chlorides, and cement are added to all blended raw materials, and blast furnace slag fine powder. And 1 to 10 mass% of the total content of combustion ash, and the ratio of the combustion ash content to the total content of the blast furnace slag fine powder and the combustion ash is 0.3 to 0.75. Is a hydrated cured product characterized by
[0013]
In this case, before Ki燃 or using coal ash generated from the fly ash and / or pressurized fluidized bed type coal burning facility as sintered ash, or mass per unit volume when further cured for 28 days or more in the air, It is preferably 2000 kg / m 3 or less. Further, it is more preferable that the mixture is kneaded with water and then cured in an atmosphere containing water vapor at 40 to 105 ° C. for 0.5 to 24 hours.
[0014]
ADVANTAGE OF THE INVENTION According to this invention, even if it uses steelmaking slag as a raw material, a hydration hardening body lighter than before can be provided stably.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0016]
First, in the present invention, a hot metal pretreatment slag is particularly used as a steelmaking slag. The reason is as follows.
(1) Since MgO is not added as a refining agent in the hot metal pretreatment, the generated slag originally has a low MgO concentration and a low CaO / SiO 2 content. Moreover, MgO contained slightly is also present as Ca 2 MgSi 2 O 7 and there is almost no free-MgO phase. Therefore, there is a possibility that problems such as cracking, pulverization, deformation, and strength reduction of the cured body due to hydration expansion of free-MgO, which have occurred when using converter slag with insufficient aging as a raw material, may be eliminated. Certain (2) hot metal pretreatment slag has a low free-CaO concentration because CaO / SiO 2 is low and the P 2 O 5 concentration is high as described above. Therefore, the hydration expansion property by free-CaO is also low, and there is a possibility that problems such as cracking, pulverization, deformation, and strength reduction of the hardened body due to the hydration expansion of free-CaO in steelmaking slag may be eliminated ( 3) Moreover, since there are many fine powders and high reactivity, it can substitute for the blast furnace slag fine powder and combustion ash which are other compounding substances themselves (4) Furthermore, as mentioned above, the free-MgO phase is Since there is almost no slag, the slag itself is soft and much easier to pulverize than other converter slags. (5) In addition, the action of fine powder makes this hot metal pretreatment slag, blast furnace slag fine powder and combustion ash (6) In addition, the specific gravity is 2.6 to 3.1, and the specific gravity is lighter than that of converter slag (3.4 or more). In the invention, it reacts with the above steelmaking slag. As SiO 2 containing material to cure Te, and to use the blast furnace slag and ash. The combustion ash here needs to contain SiO 2 , and from such a viewpoint, combustion ash such as coal ash generated when coal is burned is preferable. In particular, fly ash which is originally fine powder and coal ash generated from a pressurized fluidized bed coal combustion facility are more preferable.
[0017]
Further, in the present invention, when using such hot metal pretreatment slag, a portion having a particle size of 1.18 mm or less is blended so that the content ratio in all blended raw materials excluding water is 3 to 15 mass%. To do. The portion of the hot metal pretreatment slag that contributes to the curing reaction has particularly good reactivity in the particle size range of 1.18 mm or less, the strength of the resulting cured body is increased, and the occurrence of cracks is significantly reduced. Because. Therefore, in the present invention, the portion of the particle size of 1.18 mm or less contained in the hot metal pretreatment slag in the blended raw material is particularly limited. This does not preclude that the hot metal pretreatment slag to be mixed contains hot metal pretreatment slag having a larger particle size. This is because the hot metal pretreatment slag having a large particle size simply means that it was difficult to be pulverized during the pulverization process, and because it has its own strength, it can contribute as an aggregate or a bulking agent. .
[0018]
The reason for limiting the amount of hot metal pretreatment slag having a particle size of 1.18 mm or less is as described above, but the content is limited as follows.
[0019]
While the specific gravity of hot metal pretreatment slag is about 2.65 to 3.1, fly ash, which is typical as combustion ash, is 1.95 or more according to JIS regulations. The blast furnace slag fine powder is about 2.8, and it is considered that the hot metal pretreatment slag or the blast furnace slag fine powder causes the hardened body to be heavy. Therefore, in the present invention, from the viewpoint of reducing the weight of the cured body, the content rate of the hot metal pretreatment slag is reduced, and as the upper limit, the content rate of the hot metal pretreatment slag having a particle size of 1.18 mm or less is set to 15 mass% or less. did. Further, when the aggregate having a particle size larger than 1.18 mm increases, the specific gravity of the cured body becomes heavy, so that the total content of blast furnace slag fine powder and combustion ash, which is the remaining SiO 2 -containing material having latent hydraulic properties, is included. The amount needed to be greater than 50 mass%.
[0020]
On the other hand, when the hot metal pretreatment slag is further reduced, not only the strength of the cured body is lowered, but also the shrinkage of the cured body is increased, and cracks are generated. Therefore, in order to avoid this problem, in the present invention, as the lower limit, the content of the hot metal pretreatment slag having a particle size of 1.18 mm or less is set to 3 mass% or more, and the remaining blast furnace slag which is a SiO 2 -containing material having latent hydraulic properties. The total content of fine powder and combustion ash was less than 80 mass%.
[0021]
Next, in the present invention, raw materials to be blended relative to the particle size 1.18mm or less hot metal pretreatment slag as described above, was SiO 2 containing material showing a latent hydraulic react with molten iron pretreatment slag. As the SiO 2 -containing substance having latent hydraulic properties, blast furnace slag fine powder alone or a mixture of blast furnace slag fine powder and combustion ash is preferable, but under the condition that the hot metal pretreatment slag corresponding to the aggregate is small, The use of a mixture of fine powder and combustion ash is more desirable.
[0022]
As specified in JIS A 6206, blast furnace slag fine powder has a proven hydraulic property as an admixture for concrete, and has a latent hydraulic property that solidifies alone by applying an appropriate alkali stimulus. Material. Therefore, there exists an effect | action which fixes CaO supplied from hot metal pretreatment slag, and becomes a main body of strength expression at the time of hardening. The amount may be relatively small as long as it only fixes CaO having hydration expansion in the hot metal pretreatment slag, but in order to ensure the strength of the cured body, a blending amount of 10 mass% or more is required. It was necessary. On the other hand, if the amount of fine blast furnace slag powder exceeds 40 mass%, the supply of alkali ions for relatively fixing SiO 2 becomes insufficient, and the effect of improving the strength of the cured body can hardly be expected. Furthermore, since the blast furnace slag fine powder corresponds to a fine particle size among the raw materials this time, the shrinkage tendency of the cured body is increased. Therefore, in the present invention, the hot metal pretreatment slag plays a role of an aggregate in the cured body. In other words, it corresponds to sand or gravel, which is referred to as concrete, and not only maintains the strength of the cured body but also exerts a great effect on form stability, that is, shrinkage suppression.
[0023]
As described above, in the present invention, it has been necessary to limit the amount of hot metal pretreatment slag used to a small amount as compared with the prior art in order to reduce the weight. On the other hand, the adverse effect of the cured body shrinkage is likely to occur, and in order to suppress this, the blending amount of the blast furnace slag fine powder needs to be 40 mass% at the maximum. However, the blast furnace slag fine powder is set to 40 mass% or less, and as described above, as an essential condition for suppressing cracks due to shrinkage of the cured body, the content ratio of the hot metal pretreatment slag having a particle size of 1.18 mm or less is 3 mass. % Or more condition was shown. However, even if such a limitation was made, the shrinkage of the cured body could not be completely suppressed. For example, when only the blast furnace slag fine powder is cured under the blending conditions of the hot metal pretreatment slag, it is difficult to prevent cracks from entering.
[0024]
As a measure for suppressing cracks, a method of mixing fibers or the like into the raw material is generally considered. However, it is economically disadvantageous. Therefore, in the present invention, combustion ash is used. It is because the shrinkage | contraction characteristic of the hardening body was able to be improved significantly by mixing combustion ash on fixed conditions. In particular, it is effective when the content is 10 mass% or more, or the ratio of the content of combustion ash to the total content of blast furnace slag fine powder and combustion ash is 0.3 or more. Although this is a relatively high content level, it is an appropriate amount to compensate for the lack of aggregate amount. Moreover, the specific gravity is light as a merit of combustion ash. In the case of blast furnace slag fine powder, the specific gravity is as heavy as 2.8 as described above, whereas fly ash fly ash generated by coal combustion in a pulverized coal combustion type thermal power plant or the like has a specific gravity of 1. It is a light material of 95 or more (generally around 2.2). Therefore, mixing this effectively acts to reduce the weight of the cured body. Of these, the use of fly ash and pressurized fluidized bed coal ash is particularly effective. In addition, fly ash, as specified by JIS, has a specific surface area of 2500 cm 2 / g or more and 45 μm sieve residue of 40% or less, and itself is extremely fine powder. The reactivity with the treatment slag is further improved, and the strength of the cured body after long-term curing can be improved. In addition, as can be understood from the fact that it is defined in JIS, the quality is stable and the characteristics of the cured product can be easily controlled within a certain range.
[0025]
However, combustion ash cannot be increased without limit. The reason is that the initial curability of combustion ash at room temperature tends to be inferior to that of blast furnace slag fine powder. In that respect, the upper limit of the combustion ash is such that when the content exceeds 50 mass%, or the ratio of the content of combustion ash to the total content of blast furnace slag fine powder and combustion ash exceeds 0.75, the cured body This will delay the curing as a whole, which is not preferable. Therefore, in this invention, content of combustion ash is 10-50 mass%, and ratio of combustion ash content with respect to the total content of blast furnace slag fine powder and combustion ash shall be 0.3-0.75.
[0026]
Furthermore, in the present invention, one or more selected from alkali metals, alkaline earth metal oxides, hydroxides, sulfates, chlorides, and cements are added as raw materials for producing a hydrated cured product. 1-10 mass% is added with respect to the total content of blast furnace slag fine powder and combustion ash. This is because the raw material composition of the present invention is a composition rich in SiO 2 , and it is preferable to stimulate the reaction of blast furnace slag fine powder and combustion ash with a substance exhibiting alkali ions. In particular, it is known that the strength development of combustion ash is slow. In addition, since the blending amount of hot metal pretreatment slag that can supply CaO and become an alkali source is small, to supplement this, alkali metal, alkaline earth Add 1 mass% or more of one or more selected from oxides, hydroxides, sulfates, chlorides and cements of similar metals to promote hardening of the cured body and shorten the time required for curing It is. However, even if added over 10 mass%, the proportion of the effect is reduced, and it is not preferable to add too much from the viewpoint of resource reuse. Will exhibit alkalinity, and the upper limit is 10 mass%.
[0027]
In the present invention, the use of cement is included, but the amount is limited to 10 mass% with respect to blast furnace slag fine powder and combustion ash, and the main body of the hardened body is blast furnace slag fine powder and combustion ash. Therefore, the present invention is a technology that is completely different from conventional cements using admixtures in which a part of the cement is replaced with fine blast furnace slag powder and / or fly ash. When cement is the main component, the surrounding area changes to strong alkalinity over a long period of time, but as in the present invention, by using it as an additive, the influence of alkalinity can be greatly reduced, and the living environment and vegetation environment Can also contribute. Moreover, when a hardened body is manufactured based on such a composition, a light-weight hardened body having a unit volume mass of 2000 kg / m 3 can be obtained without using a chemical admixture such as a foaming agent or an artificial lightweight aggregate. it can. As described above, such a cured body can be used for a member required to be lightweight, such as a block installed for soft ground or a concrete backfill material.
[0028]
Furthermore, in this invention, after kneading | mixing this with water, it hardens for 0.5 to 24 hours in 40-105 degreeC atmosphere containing water vapor | steam. This is because the strength is remarkably increased in a short time by curing for 0.5 to 24 hours in an atmosphere of 40 to 105 ° C. containing water vapor. The atmosphere containing water vapor is, of course, an atmosphere containing water vapor in the air, for example, nitrogen gas, CO 2 gas, or a mixed gas thereof. The relative humidity at this time is preferably 60%. This is because the strength increases in a shorter time. Further, an atmosphere of 100% water vapor that does not contain other gas such as air, that is, water vapor may be directly blown. If the saturated water vapor is less than 40 ° C., the effect of improving the strength is low. Furthermore, after pouring the kneaded material into the mold, it may be immediately cured in an atmosphere containing water vapor at 40 to 105 ° C. for 0.5 to 24 hours, or it is cured in the atmosphere or the like until the strength can be removed. Thereafter, after deframed, the film may be cured for 0.5 to 24 hours in an atmosphere containing water vapor at 40 to 105 ° C. In addition, an atmosphere at 40 to 105 ° C. containing water vapor after forming by immediate deframement. It may be cured under 0.5-24 hours. In addition, the curing method after curing for 0.5 to 24 hours in an atmosphere of 40 to 105 ° C. containing water vapor is not particularly limited.
[0029]
【Example】
Below, the hot metal pretreatment slag (desiliconization slag A, desiliconization slag B, dephosphorization slag A and dephosphorization slag B) having the composition shown in Table 1 and examples and comparative examples using converter slag will be described. .
(Example)
Hot metal pretreatment slag crushed as a raw material, blast furnace slag fine powder as defined in JIS A 6206, fly ash generated from pulverized coal combustion thermal power plant (particle size 0.1 mm or less), pressurized fluidized bed coal combustion Coal ash (particle size: 0.1 mm) generated from the equipment and an alkaline stimulant were kneaded with water, poured into a mold, and cured in water at 20 ° C. to produce a cured product. Table 1 shows the content and ratio of each raw material in the blended raw material, and the amount of kneading water added. Table 2 and Table 3 show the strength after curing for 28 days, the surface dry specific gravity, the number of surface cracks, and the strength after 91 days curing of the obtained cured product.
[0030]
[Table 1]
Figure 0003958090
[0031]
[Table 2]
Figure 0003958090
[0032]
[Table 3]
Figure 0003958090
[0033]
(Comparative example)
Kneaded hot metal pretreated slag pulverized as a raw material, blast furnace slag fine powder pulverized to a particle size of 0.1 mm or less, fly ash, and alkali stimulant are kneaded with water under a content outside the scope of the present invention. The cured product was produced by curing in 20 ° C. water. Table 4 shows the content and ratio of each raw material in the blend and the amount of kneading water added. Table 5 shows the strength after curing for 28 days, the surface dry specific gravity, the number of surface cracks, and the strength after 91 days of curing of the obtained cured product.
[0034]
[Table 4]
Figure 0003958090
[0035]
[Table 5]
Figure 0003958090
[0036]
From Table 5, although the compounding quantity of the hot metal pretreatment slag is within the range of the present invention, in Comparative Example 1 where there are many fine powders of blast furnace slag, the strength of the cured body was sufficient, but the surface crack was 2.5. It is clear that this is a book / cm 2 . This means that such a cured product has problems in aesthetics and handling properties and is not suitable from the viewpoint of long-term durability. Moreover, in Comparative Example 2 with a lot of fly ash, on the contrary, the strength of the cured body hardly appeared, and the evaluation as a cured body was almost difficult. Further, in Comparative Example 3 in which the amount of the pretreatment slag was small, although there was no difference at first glance, it was confirmed that many fine cracks were included when observed in detail. Furthermore, in Comparative Example 4 with a large amount of pretreatment slag, the characteristics as a cured product were sufficient, and although it could be used depending on the application, there was a disadvantage that the weight was slightly increased. In addition, in Comparative Example 6 in which the slag type was changed to converter slag, the compression strength hardly increased even when the curing period was extended from 28 days to 91 days. When the surface is observed, it is presumed that relatively deep cracks are present and the strength does not increase. This was judged to be due to expansion due to free-CaO or free-MgO.
[0037]
In contrast to these comparative examples, in the examples in which the hot metal pretreatment slag, the blast furnace slag fine powder, and the fly ash are within the scope of the present invention, the strength of the cured body is clear from Tables 2 and 3, respectively. 12N / mm 2 was cleared, and a tendency to increase in the long term was confirmed, and almost no cracks were observed on the surface.
[0038]
Also, the formulation of Example 23 and 28 in Table 2 shows the values of the 7 days strength of hydraulic body embodying the steam curing under conditions A to E beauty condition F. to H shown in Table 6 to Table 7. Table 7 also shows the ratio with the 28-day intensity when steam curing is not performed. From Table 7, for A~E a steam curing conditions, the intensity corresponding to 28 days strength when no steam curing at 7 days after steam curing is obtained, the condition F to H, the intensity It is clear that the enhancement of strength is insufficient.
[0039]
[Table 6]
Figure 0003958090
[0040]
[Table 7]
Figure 0003958090
[0041]
【The invention's effect】
As described above, according to the present invention, even when steelmaking slag is used, the use of blast furnace slag fine powder and combustion ash makes it lightweight, free from cracking problems, and has a strength of 10 N / mm 2 level or more. A hydrated cured product can be obtained. This makes it possible to provide lightweight materials without using chemical admixtures or the like while using industrial by-products as most of the raw materials. Such hardened slag-burning ash can be used as a substitute for roadbed materials, earth and wood, artificial stone, marine blocks, and other concrete products, and in particular, marine blocks and fishing reefs installed on soft ground where light weight is required. It is effective as a concrete backing material, and the present invention greatly contributes to the reuse of resources, the improvement of the environment, and the like.

Claims (4)

粉粒状の製鋼スラグと潜在水硬性を有するSiO2含有物質とを水で混練してなる水和硬化体であって、
前記製鋼スラグとして粉粒状の溶銑予備処理スラグを、前記潜在水硬性を有するSiO2含有物質として高炉スラグ微粉末及び燃焼灰を使用すると共に、水を除く全配合原料中の高炉スラグ微粉末の含有率を10〜40mass%、燃焼灰の含有率をl0〜50mass%、粒径1.18mm以下の溶銑予備処理スラグの含有率を3〜15mass%とし、且つ、高炉スラグ微粉末及び燃焼灰の合計含有率が50mass%超80mass%未満で、さらに前記全配合原料に、アルカリ金属、アルカリ土類金属の酸化物、水酸化物、硫酸塩、塩化物及びセメントから選ばれた1種又は2種以上を、高炉スラグ微粉末及び燃焼灰の合計含有量に対して1〜10mass%添加すると共に、該高炉スラグ微粉末と該燃焼灰の合計含有量に対する燃焼灰含有量の比を0.3〜0.75にしてなることを特徴とする水和硬化体。
A hydrated and cured product obtained by kneading a granular steel-making slag and a SiO 2 -containing substance having latent hydraulic properties with water,
Use of powdered hot metal pretreatment slag as the steelmaking slag, blast furnace slag fine powder and combustion ash as the SiO 2 containing material having latent hydraulic properties, and inclusion of fine blast furnace slag powder in all blended raw materials excluding water The rate is 10 to 40 mass%, the content of combustion ash is 10 to 50 mass%, the content of hot metal pretreatment slag having a particle size of 1.18 mm or less is 3 to 15 mass%, and the total of blast furnace slag fine powder and combustion ash The content is more than 50 mass% and less than 80 mass%, and further, one or more selected from alkali metals, alkaline earth metal oxides, hydroxides, sulfates, chlorides, and cements as the above-mentioned all blended raw materials and with the addition 1~10Mass% of the total content of ground granulated blast furnace slag and ash, fuel to the total content of the high furnace slag and combustion ash Hydrated hardened body, characterized in that formed by the ratio of the ash content in the 0.3 to 0.75.
前記燃焼灰としてフライアッシュ及び/又は加圧流動床式石炭燃焼設備から発生した石炭灰を使用することを特徴とする請求項1記載の水和硬化体。The hydrated cured product according to claim 1, wherein coal ash generated from fly ash and / or a pressurized fluidized bed coal combustion facility is used as the combustion ash. 空気中28日以上養生したときの単位容積あたりの質量が、2000kg/mMass per unit volume when cured in air for 28 days or more is 2000 kg / m 3Three 以下であることを特徴とする請求項1又は2に記載の水和硬化体。The hydrated and cured product according to claim 1 or 2, wherein: 前記水で混練した後、水蒸気を含む40〜105℃の雰囲気下で0.5〜24時間養生してなることを特徴とする請求項1〜3のいずれかに記載の水和硬化体。The hydrated cured product according to any one of claims 1 to 3, which is kneaded with water and then cured in an atmosphere containing water vapor at 40 to 105 ° C for 0.5 to 24 hours.
JP2002087603A 2001-06-08 2002-03-27 Hydrated cured body Expired - Fee Related JP3958090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087603A JP3958090B2 (en) 2001-06-08 2002-03-27 Hydrated cured body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-174302 2001-06-08
JP2001174302 2001-06-08
JP2002087603A JP3958090B2 (en) 2001-06-08 2002-03-27 Hydrated cured body

Publications (2)

Publication Number Publication Date
JP2003055025A JP2003055025A (en) 2003-02-26
JP3958090B2 true JP3958090B2 (en) 2007-08-15

Family

ID=26616626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087603A Expired - Fee Related JP3958090B2 (en) 2001-06-08 2002-03-27 Hydrated cured body

Country Status (1)

Country Link
JP (1) JP3958090B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141112B2 (en) * 2003-01-31 2006-11-28 Douglas C Comrie Cementitious materials including stainless steel slag and geopolymers
JP5041706B2 (en) * 2006-01-27 2012-10-03 中国電力株式会社 Sulfuric acid resistant structure and sulfuric acid resistant repair material
JP4791200B2 (en) * 2006-02-10 2011-10-12 Jfeスチール株式会社 Hydrated cured body and method for producing the same
JP4791228B2 (en) * 2006-03-31 2011-10-12 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791230B2 (en) * 2006-03-31 2011-10-12 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791227B2 (en) * 2006-03-31 2011-10-12 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791229B2 (en) * 2006-03-31 2011-10-12 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791231B2 (en) * 2006-03-31 2011-10-12 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP4791226B2 (en) * 2006-03-31 2011-10-12 Jfeスチール株式会社 Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
CN100450949C (en) * 2006-08-15 2009-01-14 中国石油天然气集团公司 High-activity alkali ore slag fly ash inorganic polymer gel material and manufacturing method thereof
JP2008230869A (en) * 2007-03-16 2008-10-02 Chugoku Electric Power Co Inc:The Concrete composition
CN104003688A (en) * 2013-02-22 2014-08-27 聪明太华有限公司 Sulphur solidification forming object manufacturing system and manufacturing method
CN103803825A (en) * 2013-12-20 2014-05-21 江苏苏隆水泥有限公司 Concrete additive
JP6160833B2 (en) * 2014-02-28 2017-07-12 Jfeスチール株式会社 Manufacturing method of artificial stone
JP2015157290A (en) * 2015-05-29 2015-09-03 株式会社トクヤマ Treatment method and treatment apparatus of incineration ash

Also Published As

Publication number Publication date
JP2003055025A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
JP3654122B2 (en) Method for producing hardened slag
JP5080714B2 (en) Cement composition
JP3958090B2 (en) Hydrated cured body
JP4560887B2 (en) Underwater hardened body made from steelmaking slag
WO2008013694A2 (en) Slag concrete manufactured aggregate
EP2514727B1 (en) An alkali activated limestone concrete composition and use of composition in concrete casting
KR101372676B1 (en) Concrete composition with iron and steelmaking slag
KR101889783B1 (en) Solidified agent and making method of it using high-calcium fly ash and steel making slags
JP2004299922A (en) Method for producing set object
JP4088434B2 (en) Hydrated cured body
TWI543957B (en) Method for manufacturing hydrated solidified body and hydrated solidified body
JP4644965B2 (en) Method for producing hardened slag
JP4171200B2 (en) Method for producing concrete solidified body using steelmaking slag
JP4171173B2 (en) Concrete using slag aggregate
JP2016216274A (en) Artificial stone material
JP5195866B2 (en) Method for producing hardened slag
JP6292257B2 (en) Hydrated solidified product using desulfurized slag
KR101482329B1 (en) Fill-up Materials using iron and steelmaking slag
JP3823815B2 (en) Method for producing a steelmaking slag hardened body
KR102140060B1 (en) Solidifying composition for improving soft ground
JP4399953B2 (en) Seaweed formation block
JP4655337B2 (en) Roadbed material made from steelmaking slag
JPH07121821B2 (en) Admixture for concrete or mortar and kneaded product containing the same
JP2003146732A (en) Method of producing slag hardened body
KR101727728B1 (en) Blended concrete composite using silica fume and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070509

R150 Certificate of patent or registration of utility model

Ref document number: 3958090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees