JP5041706B2 - Sulfuric acid resistant structure and sulfuric acid resistant repair material - Google Patents

Sulfuric acid resistant structure and sulfuric acid resistant repair material Download PDF

Info

Publication number
JP5041706B2
JP5041706B2 JP2006018457A JP2006018457A JP5041706B2 JP 5041706 B2 JP5041706 B2 JP 5041706B2 JP 2006018457 A JP2006018457 A JP 2006018457A JP 2006018457 A JP2006018457 A JP 2006018457A JP 5041706 B2 JP5041706 B2 JP 5041706B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
resistant
sulfate
sand
pfbc ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006018457A
Other languages
Japanese (ja)
Other versions
JP2007197263A (en
Inventor
誠 市坪
慎也 牧
嵩 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006018457A priority Critical patent/JP5041706B2/en
Publication of JP2007197263A publication Critical patent/JP2007197263A/en
Application granted granted Critical
Publication of JP5041706B2 publication Critical patent/JP5041706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、結合材、細骨材、及び水を含むモルタル組成物により構成される耐硫酸性構造物、及び、耐硫酸性補修用材料に関する。 The present invention relates to a sulfate-resistant structure composed of a mortar composition containing a binder, a fine aggregate, and water , and a sulfate-resistant repair material .

石炭火力発電所からは、フライアッシュやクリンカアッシュ等の様々な種類の石炭灰が排出される。フライアッシュは、コンクリートの長期強度を向上させ、或いは乾燥収縮を減少させるために、ダムや道路舗装でのコンクリート混和材として広く利用されている。また、クリンカアッシュは、水分保持力が大きいことや硬くつぶれにくいことから、透水性歩道の路盤や雨水貯留材として利用されている。   Various types of coal ash such as fly ash and clinker ash are discharged from coal-fired power plants. Fly ash is widely used as a concrete admixture in dams and road pavements to improve the long-term strength of concrete or reduce drying shrinkage. In addition, clinker ash is used as a roadbed for a permeable sidewalk or as a rainwater storage material because it has a high water retention capacity and is hard to crush.

しかしながら、石炭火力発電所の副産物の全てが有効に利用されているわけではない。中でも、石炭と石灰石を加圧流動床で燃焼(Pressurized Fluidized Bed Combustion)させた後に残った灰(「PFBC灰」と称される)は、フライアッシュに比べてSiOの含有率が低く、CaO及びSOの含有率が多いことから、フライアッシュのJIS規格を満たさず、フライアッシュのように有効利用されていない。 However, not all by-products of coal-fired power plants are being used effectively. Among them, ash (referred to as “PFBC ash”) remaining after burning coal and limestone in a pressurized fluidized bed (called “PFBC ash”) has a lower SiO 2 content than that of fly ash. and since the content of sO 2 is often not satisfy the JIS standard fly ash, not effectively utilized as fly ash.

PFBC灰の利用例としては、下記の文献に記載されているように、一般的なコンクリート組成物に含まれるセメント及び細骨材の代替材料、或いは混和材として、PFBC灰をセメントに混ぜて使用することが知られている。   As an example of the use of PFBC ash, as described in the following document, PFBC ash is mixed with cement as an alternative material or admixture for cement and fine aggregate contained in general concrete compositions. It is known to do.

特許文献1では、セメントのおよそ 60 重量% をPFBC灰で代替し、実用上十分な圧縮強度を有するコンクリート組成物が提案されている。   Patent Document 1 proposes a concrete composition having a practically sufficient compressive strength in which approximately 60% by weight of cement is replaced with PFBC ash.

特許文献2では、PFBC灰からなる混和材が提案されている。すなわち、コンクリート組成物における混和材として、脱硫のための石炭を石灰石粉と共に加圧流動床において燃焼反応させた後に集塵設備から採取した石炭灰が使用される。また、この混和材を、コンクリートのセメント成分の 15 重量% 〜 30 重量% を置換する割合で使用することにより、コンクリート強度を 10 % 〜30 % 程度改善できることが示されている。   Patent Document 2 proposes an admixture made of PFBC ash. That is, as an admixture in a concrete composition, coal ash collected from a dust collection facility after coal for desulfurization is combusted together with limestone powder in a pressurized fluidized bed. It has also been shown that the strength of concrete can be improved by about 10% to 30% by using this admixture at a rate of replacing 15% to 30% by weight of the cement component of concrete.

特開平11−147747号公報Japanese Patent Laid-Open No. 11-147747 特開平11−012000号公報Japanese Patent Laid-Open No. 11-012000

しかしながら、上記特許文献1、2の発明は、いずれもセメントを含むコンクリート組成物において、セメントの一部をPFBC灰で代替するものである。すなわち、公知の技術では、コンクリート組成物の結合材としてセメントを含有することが必須であり、たとえPFBC灰を使用しても、従来の一般的な(PFBC灰を使用しない)コンクリート組成物と同程度の強度、或いはそれ以上の強度を有することが要求されるため、PFBC灰は、セメントの一部を代替して使用されるに過ぎず、当然セメント全部を代替するものではなく、それができるとも考えられていなかった。従って、従来のコンクリート組成物において、PFBC灰の使用量は限られていた。   However, in the inventions of Patent Documents 1 and 2 described above, in a concrete composition containing cement, a part of the cement is replaced with PFBC ash. That is, in the known technology, it is essential to contain cement as a binder for the concrete composition, and even if PFBC ash is used, it is the same as a conventional general (not using PFBC ash) concrete composition. PFBC ash is only used as a substitute for part of the cement because it is required to have a certain degree of strength or higher, and naturally it is not a substitute for the whole cement and it can Neither was considered. Therefore, in the conventional concrete composition, the amount of PFBC ash used is limited.

本発明者は、PFBC灰をより有効に利用するには、セメント全部を代替する材料として使用することが望ましいとの観点から、セメントを使用しているモルタル組成物に着目した。モルタル組成物は、その用途によりコンクリート組成物と同程度の強度を有する必要はないため、モルタルのセメント全部をPFBC灰で代替しても、JIS規格を満たす強度を有するモルタル組成物が得られると考えられる。   The present inventor has paid attention to a mortar composition using cement from the viewpoint that it is desirable to use PFBC ash more effectively as a substitute material for the entire cement in order to use PFBC ash more effectively. Because the mortar composition does not need to have the same strength as the concrete composition depending on its use, even if the mortar cement is entirely replaced with PFBC ash, a mortar composition having a strength satisfying the JIS standard can be obtained. Conceivable.

本発明は、以上の点に鑑み、PFBC灰を使用して実用性のあるモルタル組成物から構成される耐硫酸性構造物及び耐硫酸性補修用材料を提供することを目的とする。 In view of the above, an object of the present invention is to provide a sulfate-resistant structure and a sulfate-resistant repair material composed of a practical mortar composition using PFBC ash.

本発明は、硫酸に接触する環境下で使用される耐硫酸性構造物であって、PFBC灰と高炉スラグ微粉末とを含む結合材、細骨材、及び水を含み、セメントを含まないモルタル組成物により構成されたことを特徴とする。 The present invention relates to a sulfate-resistant structure used in an environment where it comes into contact with sulfuric acid , and includes a binder containing PFBC ash and blast furnace slag fine powder , a fine aggregate, and mortar containing no cement. It is characterized by comprising a composition.

本発明の耐硫酸性構造物を構成するモルタル組成物において、水に対する結合材の割合(以下「結合材水比」という)は 1.7 〜 2.3 で、細骨材に対する結合材の割合(以下「結合材細骨材比」という)は 3.0 程度であることが好ましい。ただし、これらの割合は、結合材や細骨材の種類に応じて適宜増減できる。 In the mortar composition constituting the sulfate-resistant structure of the present invention, the ratio of the binder to water (hereinafter referred to as “binder water ratio”) is 1.7 to 2.3, and the ratio of the binder to fine aggregate (hereinafter referred to as “bond”). The “fine aggregate ratio”) is preferably about 3.0. However, these ratios can be appropriately increased or decreased depending on the type of the binder or fine aggregate.

また、本発明の耐硫酸性構造物において、前記モルタル組成物は、材齢28日で圧縮強度が 18 N/mm2 以上、曲げ強度が圧縮強度の 1/5 〜 1/7 程度以上有することを特徴とする。 In the sulfuric acid resistant structure of the present invention , the mortar composition has a compressive strength of 18 N / mm2 or more at a material age of 28 days, and a bending strength of about 1/5 to 1/7 or more of the compressive strength. Features.

さらに、本発明の耐硫酸性構造物は、前記PFBC灰がアルカリ刺激材として働くことにより、潜在水硬性を発現させ、緻密な硬化体組織を有することを特徴とする。
また、本発明は、硫酸に接触する環境下で使用される耐硫酸性構造物に適用される耐硫酸性補修用材料であって、PFBC灰と高炉スラグ微粉末とを含む結合材、細骨材、及び水を含み、セメントを含まないモルタル組成物により構成されたことを特徴とする。
Furthermore, the sulfate-resistant structure of the present invention is characterized in that the PFBC ash acts as an alkali stimulating agent, thereby developing latent hydraulic properties and having a dense hardened body structure.
The present invention also relates to a sulfate-resistant repair material applied to a sulfate-resistant structure that is used in an environment that is in contact with sulfuric acid, the binder comprising fine PFBC ash and blast furnace slag fine powder , fine bone A mortar composition containing a material and water and not containing cement is characterized.

本発明の耐硫酸性構造物及び耐硫酸性補修用材料は、結合材としてセメントを使用せず、従来含有していたセメント全部をPFBC灰及び高炉スラグ微粉末で代替するので、PFBC灰の使用を増進し、その有効利用を飛躍的に向上させるものである。また、セメントに代えて、廃棄物であるPFBC灰を使用するので、安価な耐硫酸性構造物及び耐硫酸性補修用材料を提供できる。 Since the sulfate-resistant structure and the sulfate-resistant repair material of the present invention do not use cement as a binder, and replace all the conventional cement with PFBC ash and blast furnace slag fine powder , use of PFBC ash The effective use is greatly improved. Moreover, since PFBC ash which is a waste is used instead of cement, an inexpensive sulfuric acid resistant structure and a sulfuric acid resistant repair material can be provided.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples.

下記の実施例は、モルタル組成物として十分な強度と優れた耐硫酸性を有し、モルタル組成物が、下水道関連施設及び温泉地等の硫酸に接触する環境下で使用される本発明の耐硫酸性構造物及び耐硫酸性補修用材料として活用できることを示す。
The following examples have a sulfuric acid and excellent sufficient strength as a mortar composition, mortar composition, resistance of the present invention used in an environment in contact with the sulfuric acid, such as sewage-related facilities and spas It shows that it can be used as a material for sulfuric acid structures and sulfuric acid resistance repair .

実施例は、結合材としてPFBC灰及び高炉スラグ微粉末、細骨材として混合砂をそれぞれ使用して作製したモルタル組成物であり、その圧縮強度及び曲げ強度を測定した。混合砂は、海砂と山砂を1:1の割合で混合したものである。   The examples are mortar compositions prepared using PFBC ash and blast furnace slag fine powder as the binder and mixed sand as the fine aggregate, and the compressive strength and bending strength thereof were measured. Mixed sand is a mixture of sea sand and mountain sand in a ratio of 1: 1.

また、比較例として、PFBC灰の代わりに普通ポルトランドセメント(以下「普通セメント」という)を使用して作製したモルタル組成物についても、同様に強度を測定した。   Further, as a comparative example, the strength was similarly measured for a mortar composition prepared using ordinary Portland cement (hereinafter referred to as “ordinary cement”) instead of PFBC ash.

まず、実施例、比較例でそれぞれ使用された結合材と細骨材の比表面積、密度、及び吸水率を、表1に示す。   First, Table 1 shows specific surface areas, densities, and water absorption rates of the binders and fine aggregates used in Examples and Comparative Examples, respectively.

次に、実施例、比較例において使用された結合材(PFBC灰、普通セメント、高炉スラグ)及び細骨材(混合砂、高炉スラグ水砕砂)の化学組成を、表2に示す。 Next, Table 2 shows the chemical composition of the binder (PFBC ash, ordinary cement, blast furnace slag) and fine aggregate (mixed sand, blast furnace slag granulated sand) used in Examples and Comparative Examples.

更に、実施例、比較例のモルタル組成物の示方配合量を、表3に示す。示方配合とは、所定の品質のコンクリートが得られるような配合で、仕様書又は責任技術者によって指示される配合のことである。 Further, Table 3 shows the blending amounts of the mortar compositions of Examples and Comparative Examples. Indication blending is a blending that gives concrete of a predetermined quality, and that is specified by a specification or a responsible engineer.

表3において、「17100」のように5桁の供試体番号を有する供試体は、結合材としてPFBC灰と高炉スラグ微粉末を使用した供試体であり、上2桁は結合材水比を、下3桁はPFBC灰高炉スラグ微粉末比を示す。また、「RE17」のように4桁の供試体番号を有する供試体は、結合材として普通セメントと高炉スラグ微粉末を使用した供試体であり、下2桁は結合材水比を示す。 In Table 3, a specimen having a 5-digit specimen number such as “17100” is a specimen using PFBC ash and blast furnace slag fine powder as a binder, and the upper two digits are the binder water ratio. The last three digits indicate the PFBC ash blast furnace slag fine powder ratio. A specimen having a 4-digit specimen number such as “RE17” is a specimen using ordinary cement and blast furnace slag fine powder as a binder, and the lower two digits indicate a binder water ratio.

表3に示される配合で調製し硬化させて、モルタル組成物を作製した。養生条件としては、所定の日数(7、28、91 日)まで 20 ℃ で水中標準養生とした。得られたモルタル組成物について、圧縮強度及び曲げ強度をJIS R 5201に準拠して測定した。   Prepared with the formulation shown in Table 3 and cured to prepare a mortar composition. As curing conditions, underwater standard curing was performed at 20 ° C until the specified number of days (7, 28, 91 days). About the obtained mortar composition, compressive strength and bending strength were measured based on JIS R5201.

上記の実施例及び比較例のモルタル組成物について、圧縮強度試験の結果を表4、曲げ強度試験の結果を表5に示す。   About the mortar composition of said Example and a comparative example, the result of a compressive strength test is shown in Table 4, and the result of a bending strength test is shown in Table 5.

表4から、PFBC灰が使用された供試体はいずれも、普通セメントが使用された供試体と比較して強度が 55 % 〜 60 % 程度劣っているものの、材齢 28 日で 18 N/mm2 前後となり、JIS A 5308(材齢 28 日における予備強度が18 N/mm2 以上)を満たすことがわかる。また、表5から、PFBC灰が使用された供試体はいずれも、普通セメントが使用された供試体と比較して強度が 35 % 〜50 % 程度劣っているものの、材齢 28 日で 5 N/mm2 前後となり、下記の文献1)及び2)に記載されている曲げ強度の条件(圧縮強度の 1/5 〜 1/7 程度以上)を満たすことがわかる。 From Table 4, all specimens using PFBC ash were 18 N / mm at 28 days of age, although the strength was about 55% to 60% inferior to those using ordinary cement. It is about 2 and it can be seen that JIS A 5308 (preliminary strength at the age of 28 days is 18 N / mm 2 or more) is satisfied. Also, from Table 5, all the specimens using PFBC ash were 5 N at the age of 28 days, although the strength was 35% to 50% inferior to the specimens using ordinary cement. / mm 2 becomes longitudinal, or 1/5 - 1/7 of the condition (compressive strength bending strength are described in the literature 1) and 2) below) it can be seen that satisfy.

1)竹村和夫ほか共著:建設材料、森北出版、p.88、1998
2)田澤栄一編著:エース コンクリート工学、朝倉書店、p.81、2004
従って、PFBC灰が使用されたモルタル組成物は、実用上十分な強度を有し、用途によってPFBC灰を普通セメントの代替材料として使用できることがわかる。
1) Co-authored by Takemura Kazuo et al .: Construction Materials, Morikita Publishing, p.88, 1998
2) Eiichi Tazawa: Ace Concrete Engineering, Asakura Shoten, p.81, 2004
Therefore, it can be seen that the mortar composition in which PFBC ash is used has sufficient strength for practical use, and PFBC ash can be used as an alternative material for ordinary cement depending on the application.

次に、PFBC灰が使用されたモルタル組成物の結合材水比と強度の関係を説明する。図1は、実施例のモルタル組成物の結合材水比と圧縮強度の関係を示す図である。図2は、実施例のモルタル組成物の結合材水比と曲げ強度の関係を示す図である。条件を揃えるために、高炉スラグ微粉末に対するPFBC灰の割合(以下「PFBC灰/高炉スラグ微粉末比」という)が 1.0 である供試体のデータがプロットされている。   Next, the relationship between the binder water ratio and strength of the mortar composition in which PFBC ash is used will be described. FIG. 1 is a diagram showing the relationship between the binder water ratio and the compressive strength of the mortar compositions of the examples. FIG. 2 is a graph showing the relationship between the binder water ratio and the bending strength of the mortar compositions of the examples. In order to make the conditions uniform, data of a specimen having a ratio of PFBC ash to blast furnace slag fine powder (hereinafter referred to as “PFBC ash / blast furnace slag fine powder ratio”) of 1.0 is plotted.

図1及び図2から、PFBC灰が使用された供試体において、圧縮強度と結合材水比、及び曲げ強度と結合材水比には、それぞれ線形関係が成立しているので、モルタル組成物に使用されるPFBC灰の量が増えるほど、圧縮強度及び曲げ強度が向上することがわかる。   From FIG. 1 and FIG. 2, in the specimens using PFBC ash, a linear relationship is established between the compressive strength and the binder water ratio, and the bending strength and the binder water ratio. It can be seen that as the amount of PFBC ash used increases, the compressive strength and bending strength improve.

以上から、PFBC灰が使用されたモルタル組成物は、実用上十分な強度を有しており、用途によってPFBC灰を普通セメントの代替材料として使用できること、そしてモルタル組成物に使用されるPFBC灰の量が増えるほど、圧縮強度及び曲げ強度が向上することがわかる。   From the above, the mortar composition in which PFBC ash is used has a practically sufficient strength, and PFBC ash can be used as an alternative material for ordinary cement depending on the application, and the PFBC ash used in the mortar composition can be used. It can be seen that as the amount increases, the compressive strength and bending strength improve.

次に、結合材にはPFBC灰及び高炉スラグ微粉末を使用する一方、細骨材には混合砂又はこれに代えて高炉スラグ水砕砂を使用したモルタル組成物を作製し、その耐硫酸性を測定した。また、比較例として、PFBC灰の代わりに普通セメントを使用して作製したモルタル組成物についても測定した。なお、実施例のモルタル組成物に使用された原料は、前記強度試験で使用された原料と同じものである。   Next, while using PFBC ash and fine powder of blast furnace slag as a binder, a mortar composition using mixed sand or ground granulated blast furnace slag instead of fine aggregate is prepared, and its sulfuric acid resistance is improved. It was measured. Moreover, it measured also about the mortar composition produced using the normal cement instead of PFBC ash as a comparative example. In addition, the raw material used for the mortar composition of an Example is the same as the raw material used by the said strength test.

この実施例及び比較例のモルタル組成物の示方配合量を、表6に示す。表3との違いは、高炉スラグ水砕砂の列が追加されていることと、示方配合量の値である。   Table 6 shows the blending amounts of the mortar compositions of this example and the comparative example. The difference from Table 3 is that a row of blast furnace slag granulated sand is added and the value of the indicated blending amount.

表6で、「n20050」のように6桁の供試体番号を有する供試体は、結合材としてPFBC灰と高炉スラグ微粉末とが使用された供試体であり、「NCn」のように3桁の供試体番号を有する供試体は、結合材として普通セメントが使用された供試体であることを示す。また、「n」、「b」は、細骨材としてそれぞれ混合砂、高炉スラグ水砕砂が使用されたことを示す。 In Table 6, a specimen having a 6-digit specimen number such as “n20050” is a specimen in which PFBC ash and fine powder of blast furnace slag are used as a binder, and 3 digits such as “NCn”. The specimens having the specimen number of ## EQU1 ## indicate that specimens in which ordinary cement is used as the binder. “N” and “b” indicate that mixed sand and blast furnace slag granulated sand were used as fine aggregates, respectively.

表6に示される配合で調製し、4 × 4 × 4 cm3 に成型し、硬化させて、モルタル組成物を作製した。養生条件としては、材齢 21 日まで 20 ℃ で水中標準養生とした。得られたモルタル組成物を 10%硫酸溶液に浸漬し、所定の日数毎(0、1、2、4、8、16、32 日)に質量を測定した。 It was prepared with the formulation shown in Table 6, molded to 4 × 4 × 4 cm 3 and cured to prepare a mortar composition. The curing conditions were standard underwater curing at 20 ° C up to 21 days of age. The obtained mortar composition was immersed in a 10% sulfuric acid solution, and the mass was measured every predetermined number of days (0, 1, 2, 4, 8, 16, 32 days).

図3は、細骨材に混合砂を使用した実施例及び比較例のモルタル組成物の耐硫酸性試験結果を示し、図4は、高炉スラグ水砕砂を使用した実施例及び比較例のモルタル組成物の耐硫酸性試験結果を示す図である。   FIG. 3 shows the sulfuric acid resistance test results of the mortar compositions of Examples and Comparative Examples using mixed sand as fine aggregates, and FIG. 4 shows the mortar compositions of Examples and Comparative Examples using blast furnace slag granulated sand. It is a figure which shows the sulfuric acid resistance test result of a thing.

図3から、PFBC灰が使用された供試体(n20050、n20100、n20125)は、普通セメントが使用された供試体(NCn)に比べて質量減少率が約 20 % 小さく、耐硫酸性が高いことがわかる。また、PFBC灰の使用量が多いほど質量減少率が小さく、耐硫酸性が高くなることがわかる。   From Fig. 3, the specimens using PFBC ash (n20050, n20100, n20125) have a mass reduction rate of about 20% smaller than that of specimens using ordinary cement (NCn) and have high sulfuric acid resistance. I understand. It can also be seen that the greater the amount of PFBC ash used, the smaller the mass reduction rate and the higher the sulfuric acid resistance.

また、図4から、PFBC灰が使用された供試体(b20050、b20100、b20125)は、普通セメントが使用された供試体(NCb)に比べて質量減少率が約 10 % 小さく、耐硫酸性が高いことがわかる。また、PFBC灰の使用量が多いほど、質量減少率が大きく、耐硫酸性が低くなることがわかる。   In addition, from FIG. 4, the specimens using PFBC ash (b20050, b20100, b20125) have a mass reduction rate of about 10% smaller than that of specimens using ordinary cement (NCb), and are resistant to sulfuric acid. I understand that it is expensive. It can also be seen that the greater the amount of PFBC ash used, the greater the mass reduction rate and the lower the sulfuric acid resistance.

最後に、先述の耐硫酸性試験の質量減少率と結合材及び細骨材の化学成分との関係について説明する。図5は、重回帰分析結果を示す図であり、(A)は重回帰式を示す表、(B)は精度を示す表、(C)は分散分析を示す表である。   Finally, the relationship between the mass reduction rate of the aforementioned sulfuric acid resistance test and the chemical components of the binder and fine aggregate will be described. FIG. 5 is a diagram showing the results of multiple regression analysis, (A) is a table showing multiple regression equations, (B) is a table showing accuracy, and (C) is a table showing analysis of variance.

先述の耐硫酸性試験の 32 日目の質量減少率の値について、結合材及び細骨材を構成する化学成分の中で主成分であるSiO及びCaOを、説明変数(独立変数)として選定し、重回帰分析を実施した。なお、有意水準は 0.05 であり、分析精度は良いと判断できる。 Regarding the value of mass reduction rate on the 32nd day of the above-mentioned sulfuric acid resistance test, SiO 2 and CaO as the main components among the chemical components constituting the binder and fine aggregate are selected as explanatory variables (independent variables). Multiple regression analysis. The significance level is 0.05, and it can be judged that the analysis accuracy is good.

分析の結果、図5(C)中の決定係数が 0.9662 であり 1 に十分近いので、これら4つの成分(結合材中のSiO、結合材中のCaO、細骨材中のSiO、細骨材中のCaO)が耐硫酸性に寄与すると考えられる。 As a result of the analysis, since the coefficient of determination in FIG. 5 (C) is located sufficiently close to 1 at 0.9662, these four components (SiO 2 in the binder, CaO in the binding material, SiO 2 in fine aggregate, fine It is thought that CaO in the aggregate contributes to sulfuric acid resistance.

図5(A)中の偏回帰係数は、耐硫酸性に及ぼす説明変数の影響力を意味する。正の値は耐硫酸性を低下させることを意味し、負の値は耐硫酸性を向上させることを意味する。従って、正の値を示している結合材中のSiOと細骨材中のCaOが耐硫酸性を向上させ、負の値を示している結合材中のCaOと細骨材中のSiOが耐硫酸性を低下させることがわかる。また、図5(A)中の標準偏回帰係数は、耐硫酸性に及ぼす説明変数の相対的な影響力を意味し、絶対値の大きい負の値は耐硫酸性を向上させることを意味する。従って、絶対値の大きい負の値を示している細骨材中のCaOが耐硫酸性を向上させることがわかる。 The partial regression coefficient in FIG. 5 (A) means the influence of explanatory variables on sulfuric acid resistance. A positive value means a decrease in sulfuric acid resistance, and a negative value means an improvement in sulfuric acid resistance. Accordingly, SiO 2 in the binder showing a positive value and CaO in the fine aggregate improve the sulfuric acid resistance, and CaO in the binder showing a negative value and SiO 2 in the fine aggregate. It can be seen that reduces sulfuric acid resistance. Further, the standard partial regression coefficient in FIG. 5A means the relative influence of explanatory variables on sulfuric acid resistance, and a negative value having a large absolute value means improving sulfuric acid resistance. . Therefore, it can be seen that CaO in the fine aggregate showing a negative value having a large absolute value improves the sulfuric acid resistance.

この重回帰分析結果は、先述の耐硫酸性試験結果と一致する。すなわち、PFBC灰が使用された供試体(n20050、b20050等)が、普通セメントが使用された供試体(NCn、NCb)に比べて耐硫酸性に優れるのは、PFBC灰は普通セメントに比べてSiOの含有量が多く、CaOの含有量が少ないためだと考えられる。また、高炉スラグ水砕砂が使用された供試体(b20050)が、混合砂が使用された供試体(n20050)に比べて耐硫酸性に優れるのは、高炉スラグ水砕砂は混合砂に比べてCaOの含有量が多いためだと考えられる。 This multiple regression analysis result is in agreement with the above-mentioned sulfuric acid resistance test result. That is, specimens using PFBC ash (n20050, b20050, etc.) are superior in sulfuric acid resistance to specimens using ordinary cement (NCn, NCb). This is probably because the content of SiO 2 is large and the content of CaO is small. In addition, the specimen (b20050) using blast furnace slag granulated sand is superior in sulfuric acid resistance to the specimen (n20050) using mixed sand. This is probably due to the high content of.

実施例のモルタル組成物の結合材水比と圧縮強度の関係を示す図である。It is a figure which shows the relationship between the binder water ratio of the mortar composition of an Example, and compressive strength. 実施例のモルタル組成物の結合材水比と曲げ強度の関係を示す図である。It is a figure which shows the relationship between the binder water ratio of the mortar composition of an Example, and bending strength. 混合砂が使用された、実施例及び比較例のモルタル組成物の耐硫酸性試験結果を示す図である。It is a figure which shows the sulfuric acid resistance test result of the mortar composition of an Example and a comparative example in which mixed sand was used. 高炉スラグ水砕砂が使用された、実施例及び比較例のモルタル組成物の耐硫酸性試験結果を示す図である。It is a figure which shows the sulfuric acid resistance test result of the mortar composition of an Example and a comparative example in which blast furnace slag granulated sand was used. 重回帰分析結果を示す図であり、(A)は重回帰式を示す表、(B)は精度を示す表、(C)は分散分析を示す表である。It is a figure which shows a multiple regression analysis result, (A) is a table | surface which shows a multiple regression equation, (B) is a table | surface which shows an accuracy, (C) is a table | surface which shows an analysis of variance.

Claims (10)

硫酸に接触する環境下で使用される耐硫酸性構造物であって、PFBC灰と高炉スラグ微粉末とを含む結合材、細骨材、及び水を含み、セメントを含まないモルタル組成物により構成されたことを特徴とする耐硫酸性構造物。 A sulfuric acid resistant structure used in an environment where it comes into contact with sulfuric acid , comprising a binder containing fine PFBC ash and blast furnace slag fine powder , fine aggregate, and water, and comprising a cement-free mortar composition A sulfate-resistant structure characterized in that 請求項記載の耐硫酸性構造物において、前記細骨材は海砂と山砂を1:1の割合で混合した砂であることを特徴とする耐硫酸性構造物。 2. The sulfuric acid resistant structure according to claim 1 , wherein the fine aggregate is sand in which sea sand and mountain sand are mixed at a ratio of 1: 1. 請求項記載の耐硫酸性構造物において、前記細骨材は高炉スラグ水砕砂であることを特徴とする耐硫酸性構造物。 2. The sulfuric acid resistant structure according to claim 1 , wherein the fine aggregate is blast furnace slag granulated sand. 請求項1乃至のいずれか記載の耐硫酸性構造物において、前記モルタル組成物は、材齢28 日で18 N/mm2以上の圧縮強度と、該圧縮強度の 1/5 〜 1/7 程度以上の曲げ強度とを有することを特徴とする耐硫酸性構造物。 The sulfate-resistant structure according to any one of claims 1 to 3 , wherein the mortar composition has a compressive strength of 18 N / mm 2 or more at a material age of 28 days, and 1/5 to 1/7 of the compressive strength. A sulfate-resistant structure characterized by having a bending strength of at least a degree. 請求項1乃至のいずれか記載の耐硫酸性構造物において、前記PFBC灰がアルカリ刺激材として働くことにより緻密な硬化体組織を有することを特徴とする耐硫酸性構造物。 The sulfate-resistant structure according to any one of claims 1 to 4 , wherein the PFBC ash has a dense hardened body structure by acting as an alkali stimulating material. 硫酸に接触する環境下で使用される耐硫酸性構造物に適用される耐硫酸性補修用材料であって、
PFBC灰と高炉スラグ微粉末とを含む結合材、細骨材、及び水を含み、セメントを含まないモルタル組成物により構成されたことを特徴とする耐硫酸性補修用材料。
A sulfuric acid resistant repair material applied to a sulfuric acid resistant structure used in an environment in contact with sulfuric acid,
A sulfate-resistant repair material comprising a binder, fine aggregate, and water containing PFBC ash and blast furnace slag fine powder , and a mortar composition containing no cement.
請求項記載の耐硫酸性補修用材料において、前記細骨材は海砂と山砂を1:1の割合で混合した砂であることを特徴とする耐硫酸性補修用材料。 The sulfate-resistant repair material according to claim 6 , wherein the fine aggregate is sand in which sea sand and mountain sand are mixed at a ratio of 1: 1. 請求項記載の耐硫酸性補修用材料において、前記細骨材は高炉スラグ水砕砂であることを特徴とする耐硫酸性補修用材料。 The sulfuric acid-resistant repair material according to claim 6 , wherein the fine aggregate is blast furnace slag granulated sand. 請求項乃至のいずれか記載の耐硫酸性補修用材料において、前記モルタル生成物は、材齢28 日で18 N/mm2以上の圧縮強度と、該圧縮強度の 1/5 〜 1/7 程度以上の曲げ強度とを有することを特徴とする耐硫酸性補修用材料。 The sulfate-resistant repair material according to any one of claims 6 to 8 , wherein the mortar product has a compressive strength of 18 N / mm 2 or more at a material age of 28 days, and 1/5 to 1 / of the compressive strength. A sulfate-resistant repair material characterized by having a bending strength of about 7 or more. 請求項乃至のいずれか記載の耐硫酸性補修用材料において、前記PFBC灰がアルカリ刺激材として働くことにより緻密な硬化体組織を有することを特徴とする耐硫酸性補修用材料。 In sulfuric acid repairing material according to any one of claims 6 to 9, sulfuric acid repairing material, wherein the PFBC ash has a dense cured product tissues by acting as alkali activator material.
JP2006018457A 2006-01-27 2006-01-27 Sulfuric acid resistant structure and sulfuric acid resistant repair material Active JP5041706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018457A JP5041706B2 (en) 2006-01-27 2006-01-27 Sulfuric acid resistant structure and sulfuric acid resistant repair material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018457A JP5041706B2 (en) 2006-01-27 2006-01-27 Sulfuric acid resistant structure and sulfuric acid resistant repair material

Publications (2)

Publication Number Publication Date
JP2007197263A JP2007197263A (en) 2007-08-09
JP5041706B2 true JP5041706B2 (en) 2012-10-03

Family

ID=38452231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018457A Active JP5041706B2 (en) 2006-01-27 2006-01-27 Sulfuric acid resistant structure and sulfuric acid resistant repair material

Country Status (1)

Country Link
JP (1) JP5041706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111517752A (en) * 2020-04-28 2020-08-11 山西大学 Sulfur-fixing ash ceramsite and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137826A (en) * 2007-11-15 2009-06-25 Makoto Ichitsubo Method for manufacturing concrete secondary product and the concrete secondary product
JP5143653B2 (en) * 2007-11-15 2013-02-13 誠 市坪 Manufacturing method of concrete secondary product and concrete secondary product
JP5111083B2 (en) * 2007-12-07 2012-12-26 中国電力株式会社 Leakage repair method
JP5274055B2 (en) * 2008-03-03 2013-08-28 中国電力株式会社 Filler
JP2011088800A (en) * 2009-10-26 2011-05-06 Chugoku Electric Power Co Inc:The Concrete member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244808A (en) * 1988-03-28 1989-09-29 Showa Shell Sekiyu Kk Manufacture of cement molded matter having high strength and precise structure
JP3936777B2 (en) * 1997-06-19 2007-06-27 中国電力株式会社 Coal ash hardened body composition
JP2002274899A (en) * 2001-03-13 2002-09-25 Chugoku Electric Power Co Inc:The Coal ash-containing composition and method for constructing roadbed of road using the same composition
JP3958090B2 (en) * 2001-06-08 2007-08-15 Jfeスチール株式会社 Hydrated cured body
JP4088434B2 (en) * 2001-10-11 2008-05-21 中国電力株式会社 Hydrated cured body
JP4048351B2 (en) * 2002-02-06 2008-02-20 攻 池田 Structural material using pressurized fluidized bed boiler ash
JP4201265B2 (en) * 2003-12-01 2008-12-24 電気化学工業株式会社 Ultra-fast hardening / high flow mortar composition and super fast hardening / high flow mortar composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111517752A (en) * 2020-04-28 2020-08-11 山西大学 Sulfur-fixing ash ceramsite and preparation method thereof
CN111517752B (en) * 2020-04-28 2021-05-14 山西大学 Sulfur-fixing ash ceramsite and preparation method thereof

Also Published As

Publication number Publication date
JP2007197263A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
Elinwa et al. Ash from timber waste as cement replacement material
JP5041706B2 (en) Sulfuric acid resistant structure and sulfuric acid resistant repair material
US6682595B1 (en) Settable composition containing potassium sulfate
JP4135743B2 (en) Cement composition
US7247201B2 (en) Pre-blend cement compositions containing non-chloride accelerators
JP3953469B2 (en) Acid resistant concrete
KR20190020232A (en) Composition for solidifying ground using biomass ash
JP2008230869A (en) Concrete composition
JP6980552B2 (en) Cement composition
US6746531B1 (en) Pre-blend settable composition containing calcium chloride
JP4906374B2 (en) Secondary concrete product and method for determining its composition
KR101879269B1 (en) Expansible contraction reduction type of crack prevention composite for cement mortar
Kaya A study on blended bottom ash cements
JP6282408B2 (en) Hydraulic composition
JP6926582B2 (en) Cement composition and its manufacturing method
US6939401B2 (en) Settable composition containing potassium chloride
JP3283094B2 (en) Mixed cement
JP6867801B2 (en) Cement composition
US6780236B2 (en) Settable composition containing sodium chloride
Abubakar et al. Mechanical Properties of concrete containing Corn cob ash
JP2004292296A (en) Method of manufacturing slag hardened body
KR100406218B1 (en) cement blend compound furtherance to do the chief ingredient for slag powder
JP7017965B2 (en) How to improve the strength development of fly ash mixed cement
JP6516658B2 (en) Cement clinker
JP2008156231A (en) Cement composition

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20090109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Ref document number: 5041706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250