JP4048351B2 - Structural material using pressurized fluidized bed boiler ash - Google Patents

Structural material using pressurized fluidized bed boiler ash Download PDF

Info

Publication number
JP4048351B2
JP4048351B2 JP2002028921A JP2002028921A JP4048351B2 JP 4048351 B2 JP4048351 B2 JP 4048351B2 JP 2002028921 A JP2002028921 A JP 2002028921A JP 2002028921 A JP2002028921 A JP 2002028921A JP 4048351 B2 JP4048351 B2 JP 4048351B2
Authority
JP
Japan
Prior art keywords
fluidized bed
structural material
bed boiler
pressurized fluidized
boiler ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002028921A
Other languages
Japanese (ja)
Other versions
JP2003226569A (en
Inventor
攻 池田
新谷  登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2002028921A priority Critical patent/JP4048351B2/en
Publication of JP2003226569A publication Critical patent/JP2003226569A/en
Application granted granted Critical
Publication of JP4048351B2 publication Critical patent/JP4048351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、歩道ブロックや建材ボード等として有効利用できる、加圧流動床ボイラ灰を用いた構造材料に関する。
【0002】
【従来の技術】
石炭焚火力発電設備等の石炭焚ボイラとして、現在、微粉石炭を空気と一緒に炉内に吹き込み大気圧下で燃焼させる微粉炭燃焼ボイラが多く採用されているが、最近、低品位石炭の活用と発電効率の向上を目指し、更には環境保護の観点から、加圧流動床ボイラが採用され始めている。加圧流動床ボイラは、塊状の石炭と石灰石を混合した燃料を流動層化させて加圧下で燃焼させるものであり、微粉炭燃焼ボイラと比べ、ボイラ内の燃焼温度を低くすることができるため、窒素酸化物(NOX)や硫黄酸化物(SOX)の排出量が少なく、また、低品位石炭の使用が可能であり、熱効率が高いという特徴を有するが、排出される石炭灰(以下、PFBC灰と略記する)の性質も従来のものとは顕著に異なる。
【0003】
即ち、微粉炭燃焼ボイラは、1500℃前後の高温で微粉石炭を瞬時に燃焼させるのに対して、加圧流動床ボイラは、800℃前後の温度でゆっくりと低温燃焼させるため、NOXの発生はなく、SOXは石灰に吸収され、排出されるPFBC灰はカルシウムと硫黄に富む成分となる。また、微粉炭燃焼ボイラ−は灰の融点を超える燃焼領域で燃焼させるため、排出される灰は、溶融しガラス状態で回収され、微小球の形態を呈する灰(このような灰を伝統的にフライアッシュと呼ぶ)である。一方、加圧流動床ボイラは低温燃焼のため灰の融点を超えることはなく、PFBC灰もフライアッシュの一種であるが、角ばった微粉状態で回収される。前者はガラスを主体とするが、石英(SiO2)やムライト(3Al2O3.2SiO2)、時には磁鉄鉱(Fe3O4)などの鉱物を少量含む。後者は灰長石(CaO.Al2O3.2SiO2)や珪灰石(CaO.SiO2)等のCaO-Al2O3-SiO2系鉱物のほか、これらが硫黄や水と結合した水酸エレスタ−ダイト(6CaO.3SiO2.3CaSO4.CaO(OH)2)を含む場合がある。また、石灰は遊離状態でも存在し、PFBC灰は生石灰(CaO)や硬石膏(CaSO4)を含むのが特徴である。
【0004】
かかる石炭焚ボイラから排出される灰は大量であり、廃棄物の減量、廃棄コスト削減及び環境保護の観点から、種々の有効利用・資源化技術が検討されている。微粉炭燃焼ボイラから発生するフライアッシュは、フライアッシュセメント、セメント原料、道路路盤材、地盤改良材、土木工事用、人工軽量骨材、建材ボード用等に利用されているが、その多くは添加剤(材)としての利用であり、大量に排出されるフライアッシュの全てを利用できるものではなく、また、材料強度、特に曲げ強度が余り高くないため、構造材料として利用するのは困難であるという問題もあった。そこで、本発明者は、先に、フライアッシュに珪酸ナトリウム水溶液を加え常温養生又は蒸気養生によりブロック化し、表面硬度及び材料強度の高い構造材料を得る技術(特開平08-301639号公報)を提案した。
【0005】
一方、新規のフライアッシュであるPFBC灰の有効利用・資源化技術に関しては、未だ有効に実施できる技術が殆ど開発されていない状況にある。例えば、特開平11-172247号公報には、PFBC灰を有効成分として5〜100重量%配合した土壌改良材が開示され、特開平11-147747号公報には、セメントの概ね50重量%をPFBC灰で代替したコンクリート組成物が開示されているが、これらの従来技術は主として添加剤(材)としての利用であり、大量のPFBC灰を有効利用するためには他の利用技術の開発が必要である。また、特開平09-155314号公報と特開平09-075890号公報には、PFBC灰を加圧成形機で粒径10〜60mmに圧密成形し、成形物をそのまま或いは成形物を破砕して粒径を石炭灰の数十〜数百倍に調整したもの、若しくは両者混合物を、フライアッシュ等と混合して埋め立てる処理方法が開示されているが、この技術は廃棄コスト削減を目的とした減容処理方法であって、PFBC灰を有効利用するものではない。
【0006】
【発明が解決しようとする課題】
本発明は、大量に排出される加圧流動床ボイラ灰の処理に係わる上述の状況に鑑み、加圧流動床ボイラ灰を経済的且つ有効に利用でき、更には環境保護に寄与できる加圧流動床ボイラ灰を用いた構造材料を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明者は鋭意研究を重ねた結果、加圧流動床ボイラ灰を主な固体原料とし、水ガラス溶液等を固化剤として用いて固化したブロック体が構造材料として利用できることを見出し、本発明を完成するに至ったものである。即ち、請求項1の発明は、本発明の加圧流動床ボイラ灰を用いた構造材料であって、加圧流動床ボイラ灰を主な固体原料とし、該固体原料を、水ガラス溶液、苛性カリ溶液、又は苛性ソ−ダ溶液のいずれかを固化剤として用いて固化しブロック体としたものである。
【0008】
請求項2の発明は、前記固体原料を、高炉スラグ又はカオリン等粘土鉱物のうち少なくとも1種を10〜30重量%含む固体原料としたものであり、請求項3の発明は、前記固体原料を、微粉炭燃焼ボイラから発生するフライアッシュを10〜30重量%含む固体原料とした加圧流動床ボイラ灰を用いた構造材料である。
【0009】
請求項4の発明は、前記固化剤を前記水ガラス溶液とした場合の好ましい形態に係わる発明であり、前記水ガラス溶液を、比重が概ね1.27の1号水ガラス溶液(化学組成Na2O.2SiO2.aq)とした加圧流動床ボイラ灰を用いた構造材料である。
【0010】
請求項5の発明は、好ましい製造プロセスに係わる発明であって、本発明の加圧流動床ボイラ灰を用いた構造材料は、好ましくは、前記固体原料に前記溶液を加え混練する工程と、混練した流体を型枠に流し込む工程と、流し込んだ流体を型枠内で所定期間養生し固化する工程と、固化したブロック体を型枠から離型する工程と、離型したブロック体を所定期間養生し材料強度を増大させる工程と、を含み製造した構造材料である。
【0011】
請求項6の発明は、前記好ましい製造プロセスに係わり、前記固化する工程の養生及び/又は前記材料強度を増大させる工程の養生を、室温に放置・放冷して行う養生とした発明であり、請求項7の発明は、前記固化する工程の所定期間を概ね1日とし、前記材料強度を増大させる工程の所定期間を概ね4週間とした発明であり、請求項8の発明は、前記混練を、振動締固成型の機器を用いて行うことを特徴とする加圧流動床ボイラ灰を用いた構造材料である。
【0012】
請求項9の発明は、好ましい材料強度に係わる発明であって、本発明の加圧流動床ボイラ灰を用いた構造材料は、好ましくは、セメントモルタル試験のJIS規格(4×4×16cm、スパン距離10cm)による曲げ試験で5MPa以上の曲げ強度を有するブロック体である。
【0013】
【発明の実施の形態】
石炭焚火力発電設備等の加圧流動床ボイラから排出される石炭灰は、燃焼ガスと共にボイラ上部に飛散する灰を電気集塵機等で捕集した灰と、飛散せずボイラの底部から収集可能な灰とがあり、本発明で主な固体原料とする加圧流動床ボイラ灰(PFBC灰)とは、前者を意味するが、後者のボイラ底部から収集した灰を本発明の副原料として有効利用することができる。
【0014】
本発明者は、産業廃棄物等を固化し有用な産業資材として利用できる構造材料を得ることを目的とした研究に永らく従事し、既に、前述のように、フライアッシュを固化した構造材料(特開平08-301639号公報)を提案し、また、カオリン質粉体を固化した構造材料(特開平08-301638号公報)を提案してきた。
【0015】
本発明は、かかる永年の研究に基づくものであり、PFBC灰を主な固体原料とし、水ガラス溶液等を固化剤とし、室温に放置・放冷するという簡易な製造プロセスによって製造したブロック体が、高い材料強度を有し、歩道ブロックや建材ボード等の構造材料として利用できることを見出したものである。即ち、本発明の加圧流動床ボイラ灰を用いた構造材料は、加圧流動床ボイラ灰を主な固体原料とし、水ガラス溶液、苛性カリ溶液、又は苛性ソ−ダ溶液のいずれかを固化剤として用いて固化しブロック体としたものであり、そのブロック体は、歩道ブロックや建材ボード等の構造材料として利用できる。
【0016】
その際、固体原料に、高炉スラグ又はカオリン等の粘土鉱物のうち少なくとも1種を10〜30重量%添加することにより、本発明の構造材料の材料強度を向上させることができる。この添加する重量%は、特に本発明を限定するものではないが、10重量%より少なくすると材料強度の向上が得られ難く、30重量%より添加する割合を極端に大きくすることはコスト高になると同時に、出来るだけ多くのPFBC灰を有効利用するという本発明の趣旨にもそぐわない。
【0017】
本発明は又、前述のように、未だ十分には有効利用できていない微粉炭燃焼ボイラから発生するフライアッシュを10〜30重量%添加した固体原料として実施することもできる。その添加する重量%は、特に本発明を限定するものではないが、10重量%より少なくするとフライアッシュの利用量が減少し、30重量%より多くすると、材料強度、特に曲げ強度が低下する。
【0018】
固化剤として水ガラス溶液を用いる場合は、例えば、3号水ガラス(化学組成Na2O.3SiO2.aq)等、現在、工業的に生産されている全ての水ガラス(1号、2号、3号及び4号)を含めて使用可能であり、本発明を限定するものではないが、この中では1号と3号が好ましく、特に、1号水ガラス溶液が好適であり、その比重は概ね1.27が好ましい。低い濃度の溶液を使用すると養生に要する期間が長くなり、もっと濃い溶液を用いると得られた構造材料の材料強度は向上するが、コスト高や混練に要する動力が増大するなどの問題が生じる。
【0019】
次に、本発明のPFBC灰を用いた構造材料を得るための好ましい製造プロセスについて説明する。本発明の構造材料は、例えば、PFBC灰を主とした固体原料に水ガラス溶液等を固化剤として加え混練し、混練した流体を型枠に流し込み、流し込んだ流体を型枠内で所定期間養生して固化させ、固化したブロック体を型枠から離型して、離型したブロック体を所定期間養生し材料強度を増大させることにより製造することができる。また、型枠内で所定期間養生して固化させた後、型枠から離型せず、そのまま更に所定期間養生し材料強度を増大させ、しかる後に型枠から離型して製品となすこともできるが、出来るだけ短時間で離型し型枠の操業回転率を上げるのが望ましく、前記のように2段階で養生を行うのが好ましい。なお、固体原料に加える固化剤の量は、使用する固化剤の種類とその濃度、副固体原料の有無とその種類及び添加量など、種々の条件によって選定すべきパラメータであり、本発明を限定するものではないが、例えば、比重が概ね1.27の1号水ガラス溶液を用いてPFBC灰を固化する際には、1号水ガラス溶液とPFBC灰との重量比を、概ね0.75:1とするのが好適である。
【0020】
型枠内で固化させる際の養生、及び材料強度を増大させる際の養生は、室温に放置・放冷するという極めて簡易な方法で行うことができ、その養生期間は、使用する固化剤の種類等、種々の条件によって選定すべきパラメータであり、本発明を限定するものではないが、例えば、比重が概ね1.27の1号水ガラス溶液を用いてPFBC灰を固化する際には、前者の養生期間は概ね1日、後者の養生期間は概ね4週間が好適であり、これにより、歩道ブロックや建材ボード等に利用できる構造材料を得ることができる。混練は、特に本発明を限定するものではないが、混練流込成型の機器を用いて行うよりも振動締固成型の機器を用いて行うのが好ましく、振動締固成型の方が、水/固体比を軽減でき、飛躍的に高い材料強度を有する構造材料が得られる。
【0021】
かかる実施の形態によって得られる本発明のPFBC灰を用いた構造材料は、固体原料の成分構成や使用する固化剤の種類等にもよるが、セメントモルタル試験のJIS規格(4×4×16cm、スパン距離10cm)による曲げ試験で5MPa以上の曲げ強度を有するブロック体として得ることができ、これは歩道ブロックとして使用できる曲げ強度を有する構造材料であることを意味する。
【0022】
以上、詳細に説明した実施の形態により、本発明は、従来、その多くを多大な労力と費用を要し埋め立て処理していたPFBC灰を、水ガラス溶液等を固化剤として、室温に放置・放冷するという極めて簡易な製造プロセスによって、歩道ブロックや建材ボード等に利用できるブロック体として提供するものであり、大量に排出される加圧流動床ボイラ灰を経済的且つ有効に利用でき、更には環境保護に寄与できる加圧流動床ボイラ灰を用いた構造材料を提供することができる。
【0023】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明がこれらの実施例に限定されるものではないことは言うまでもない。
【0024】
本実施例で使用した固体原料は、加圧流動床ボイラから排出されたPFBC灰と、微粉炭燃焼ボイラから排出されたフライアッシュであり、その化学組成(重量%)を表1に示し物理特性を表2に示す。また、図1と図2には、レーザー回折式粒度分布測定装置で測定した、加圧流動床ボイラから排出されたPFBC灰と、微粉炭燃焼ボイラから排出されたフライアッシュの粒度分布をそれぞれ示す。なお、表中において、(A)はPFBC灰を意味し、(B)はフライアッシュを意味する。以下、同様である。なお、表1中のLOIは、灼熱減量を意味する。
【0025】
【表1】

Figure 0004048351
【0026】
【表2】
Figure 0004048351
使用した固化剤は、比重1.27の1号水ガラス溶液(化学組成Na2O.2SiO2.aq)である。
【0027】
本実施例で使用した固体原料(PFBC(A)とフライアッシュ(B))の調合割合、及び固体原料とこれに加えた1号水ガラス溶液との重量比を表3に示す。
【0028】
【表3】
Figure 0004048351
調合した各試料をスパ−テルを用いて室温で2分間混練し、混練した流体を型枠(寸法:2×2×8cm)に流し込み、これを概ね1日、室温に放置・放冷して固化したブロック体を得た。なお、ブロック体は、養生期間と曲げ強度との関係を測定するために、各試料3個作成した。その後、ブロック体を型枠から離型し、これを室温に放置・放冷して、養生期間との関係として曲げ強度を測定した。
【0029】
曲げ強度の測定は、東京試験製作所製の1トン材料試験機、製造番号19848を用いて、スパン距離5cmとし3個取りで行ったものであり、その結果を表4に示す。なお、表4の曲げ強度は、3点曲げ試験の平均値であり、その単位はMPaである。本実施例の曲げ強度の測定は、実験の都合により、前述のセメントモルタル試験のJIS規格(4×4×16cm、スパン距離10cm)の2分の1サイズで行ったものであり、若干その測定精度は落ちるが、大きな誤差は生じない。
【0030】
【表4】
Figure 0004048351
表4は、フライアッシュの割合を大きくすると共に曲げ強度が低下する傾向を有するが、20重量%(PF08)までは極端な低下は生じず、概ね4週間で、歩道ブロックとして使用できる曲げ強度5 MPa以上の構造材料が得られることを示している。これに対し、フライアッシュを30重量%(PF07)以上にした場合には、曲げ強度の低下が大きく、また、フライアッシュの混合割合と曲げ強度との関係の系統性が失われており、高い曲げ強度を必要とする構造材料を得る条件には適さないことを示している。
【0031】
本実施例によれば、PFBC灰にフライアッシュを20重量%までの範囲で添加した固体原料に1号水ガラス溶液を固化剤として加えて混練し、混練した流体を型枠に流し込み、1日間、室温に放置・放冷して固化させ、固化したブロック体を型枠から離型して、4週間、室温に放置・放冷するという極めて簡易な製造プロセスによって、歩道ブロックとして利用できる高い材料強度を有する構造材料が得られた。即ち、本実施例によれば、大量に排出される加圧流動床ボイラ灰を経済的且つ有効に利用でき、更には環境保護に寄与できる加圧流動床ボイラ灰を用いた構造材料を提供することができる。
以上、本発明の実施例を説明したが、特許請求の範囲で規定された本発明の精神と範囲から逸脱することなく、その形態や細部に種々の変更がなされても良いことは明らかである。
【0032】
例えば、実施例では、固化剤として比重1.27の1号水ガラス溶液を用いた例について説明したが、異なる濃度のものを用いても良く、1号水ガラス溶液以外の水ガラス溶液、例えば、3号水ガラス溶液を用いても良く、更には、水ガラス溶液以外の、苛性カリ溶液又は苛性ソ−ダ溶液を用いても良い。
【0033】
また、実施例では、微粉炭燃焼ボイラから発生するフライアッシュを副原料とした例を説明したが、高炉スラグ又はカオリン等粘土鉱物を加えることもでき、その際は、10〜30重量%の範囲で添加するのが好ましく、これにより得られる構造材料の材料強度を高めることができる。
【0034】
【発明の効果】
本発明は、従来、その多くを多大な労力と費用を要し埋め立て処理していたPFBC灰を、水ガラス溶液等を固化剤として、室温に放置・放冷するという極めて簡易な製造プロセスによって、歩道ブロックや建材ボード等に利用できるブロック体として提供するものであり、大量に排出される加圧流動床ボイラ灰を経済的且つ有効に利用でき、更には環境保護に寄与できる加圧流動床ボイラ灰を用いた構造材料を提供できる効果がある。
【図面の簡単な説明】
【図1】本発明の実施例で使用した加圧流動床ボイラから排出されたPFBC灰の粒度分布を示した図である。
【図2】本発明の実施例で使用した微粉炭燃焼ボイラから排出されたフライアッシュの粒度分布を示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structural material using pressurized fluidized bed boiler ash that can be effectively used as a sidewalk block or a building material board.
[0002]
[Prior art]
As coal fired boilers for coal fired thermal power generation facilities, many pulverized coal fired boilers are currently used that blow pulverized coal into the furnace together with air and burn it at atmospheric pressure. In order to improve power generation efficiency, and from the viewpoint of environmental protection, pressurized fluidized bed boilers are beginning to be adopted. A pressurized fluidized bed boiler is a fluidized bed of a mixture of massive coal and limestone that is burned under pressure. Because it can lower the combustion temperature in the boiler compared to a pulverized coal combustion boiler. The emission of nitrogen oxides (NO X ) and sulfur oxides (SO X ) is low, and low-grade coal can be used, and the thermal efficiency is high. The abbreviation of PFBC ash) is also significantly different from the conventional one.
[0003]
In other words, pulverized coal combustion boilers instantly burn pulverized coal at high temperatures around 1500 ° C, whereas pressurized fluidized bed boilers slowly burn at low temperatures around 800 ° C, generating NO X Rather, SO X is absorbed by lime, and the PFBC ash discharged is a component rich in calcium and sulfur. In addition, since pulverized coal combustion boilers burn in the combustion region that exceeds the melting point of ash, the discharged ash is melted and recovered in a glass state, and ash in the form of microspheres (such ash is traditionally used). Called fly ash). On the other hand, a pressurized fluidized bed boiler does not exceed the melting point of ash because of low-temperature combustion, and PFBC ash is also a kind of fly ash, but is recovered in an angular fine powder state. The former is mainly made of glass but contains a small amount of minerals such as quartz (SiO 2 ), mullite (3Al 2 O 3 .2SiO 2 ), and sometimes magnetite (Fe 3 O 4 ). The latter includes CaO-Al 2 O 3 -SiO 2 minerals such as anorthite (CaO.Al 2 O 3 .2SiO 2 ) and wollastonite (CaO.SiO 2 ), as well as hydroxides that combine with sulfur and water. It may contain Elesta-Dite (6CaO.3SiO 2 .3CaSO 4 .CaO (OH) 2 ). Also, lime is present in a free state, and PFBC ash is characterized by containing quicklime (CaO) and anhydrite (CaSO 4 ).
[0004]
The amount of ash discharged from such coal fired boilers is large, and various effective utilization / resource recycling technologies are being studied from the viewpoints of waste reduction, disposal cost reduction, and environmental protection. Fly ash generated from pulverized coal fired boilers is used for fly ash cement, cement raw materials, road base materials, ground improvement materials, civil engineering works, artificial lightweight aggregates, building material boards, etc. It is used as an agent (material), and not all fly ash discharged in large quantities can be used, and it is difficult to use as a structural material because its material strength, especially bending strength, is not so high. There was also a problem. Therefore, the present inventor previously proposed a technology (Japanese Patent Laid-Open No. 08-301639) for obtaining a structural material having high surface hardness and material strength by adding a sodium silicate aqueous solution to fly ash and blocking it by room temperature curing or steam curing. did.
[0005]
On the other hand, regarding the effective utilization / recycling technology of PFBC ash, which is a new fly ash, there are few technologies that can be effectively implemented yet. For example, Japanese Patent Application Laid-Open No. 11-172247 discloses a soil conditioner containing 5 to 100% by weight of PFBC ash as an active ingredient, and Japanese Patent Application Laid-Open No. 11-147747 discloses approximately 50% by weight of PFBC. Although concrete compositions substituted with ash are disclosed, these conventional technologies are mainly used as additives (materials), and in order to effectively use a large amount of PFBC ash, it is necessary to develop other utilization technologies It is. In JP-A-09-155314 and JP-A-09-075890, PFBC ash is compacted to a particle size of 10 to 60 mm with a pressure molding machine, and the molded product is granulated as it is or by crushing the molded product. Disclosed is a treatment method in which the diameter is adjusted to several tens to several hundred times that of coal ash, or a mixture of both is mixed with fly ash, etc., but this technology reduces volume for the purpose of reducing disposal costs. It is a treatment method and does not effectively use PFBC ash.
[0006]
[Problems to be solved by the invention]
In view of the above-mentioned situation relating to the treatment of pressurized fluidized bed boiler ash discharged in large quantities, the present invention can utilize the pressurized fluidized bed boiler ash economically and effectively, and can further contribute to environmental protection. An object is to provide a structural material using floor boiler ash.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor has conducted extensive research, and as a result, a block body solidified using a pressurized fluidized bed boiler ash as a main solid material and a water glass solution or the like as a solidifying agent is used as a structural material. The present invention has been found out and can be completed. That is, the invention of claim 1 is a structural material using the pressurized fluidized bed boiler ash of the present invention, wherein the pressurized fluidized bed boiler ash is a main solid raw material, and the solid raw material is a water glass solution, caustic potash. Either a solution or a caustic soda solution is solidified using a solidifying agent to form a block body.
[0008]
Invention of Claim 2 makes the said solid raw material the solid raw material which contains 10-30 weight% of at least 1 sort (s) among clay minerals, such as blast furnace slag or kaolin, The invention of Claim 3 makes the said solid raw material into It is a structural material using pressurized fluidized bed boiler ash that is a solid raw material containing 10 to 30% by weight of fly ash generated from a pulverized coal combustion boiler.
[0009]
The invention of claim 4 is an invention according to a preferred embodiment when the solidifying agent is the water glass solution. The water glass solution is a No. 1 water glass solution having a specific gravity of approximately 1.27 (chemical composition Na 2 O. 2SiO 2 .aq) is a structural material using pressurized fluidized bed boiler ash.
[0010]
The invention of claim 5 is an invention relating to a preferred manufacturing process, and the structural material using the pressurized fluidized bed boiler ash of the present invention is preferably a step of adding and kneading the solution to the solid raw material, and kneading A step of pouring the fluid into the mold, a step of curing and solidifying the poured fluid in the mold for a predetermined period, a step of releasing the solidified block body from the mold, and a curing of the released block body for a predetermined period. And a step of increasing the material strength.
[0011]
The invention of claim 6 relates to the preferred manufacturing process, and is an invention as a curing in which the curing in the solidifying step and / or the curing in the step of increasing the material strength is performed by leaving the mixture to stand at room temperature. The invention of claim 7 is an invention in which the predetermined period of the solidifying step is approximately 1 day, and the predetermined period of the step of increasing the material strength is approximately 4 weeks, and the invention of claim 8 is the invention in which the kneading is performed. It is a structural material using pressurized fluidized bed boiler ash, which is performed using a vibration compacting device.
[0012]
The invention of claim 9 is an invention relating to a preferred material strength, and the structural material using the pressurized fluidized bed boiler ash of the present invention is preferably a JIS standard (4 × 4 × 16 cm, span of cement mortar test). It is a block body having a bending strength of 5 MPa or more in a bending test at a distance of 10 cm).
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Coal ash discharged from pressurized fluidized bed boilers such as coal-fired thermal power generation facilities can be collected from the ash collected by the electric dust collector, etc., from the bottom of the boiler without being scattered with the combustion gas Pressurized fluidized bed boiler ash (PFBC ash), which is the main solid raw material in the present invention, means the former, but effectively uses the ash collected from the bottom of the latter boiler as an auxiliary raw material of the present invention. can do.
[0014]
The present inventor has long engaged in research aimed at obtaining a structural material that can be used as a useful industrial material by solidifying industrial waste and the like. (Kaihei 08-301639) and a structural material obtained by solidifying kaolinic powder (Japanese Patent Laid-Open No. 08-301638).
[0015]
The present invention is based on such long-standing research, and a block body manufactured by a simple manufacturing process in which PFBC ash is a main solid raw material, a water glass solution or the like is a solidifying agent, and is allowed to stand and cool at room temperature. It has been found that it has high material strength and can be used as a structural material such as sidewalk blocks and building material boards. That is, the structural material using the pressurized fluidized bed boiler ash of the present invention uses the pressurized fluidized bed boiler ash as the main solid raw material, and solidifies the water glass solution, the caustic potash solution, or the caustic soda solution. The block body can be used as a structural material such as a sidewalk block or a building material board.
[0016]
At that time, the material strength of the structural material of the present invention can be improved by adding 10 to 30% by weight of at least one of clay minerals such as blast furnace slag or kaolin to the solid raw material. The weight% to be added does not particularly limit the present invention, but if it is less than 10% by weight, it is difficult to obtain an improvement in material strength, and it is expensive to increase the ratio of addition from 30% by weight. At the same time, it does not match the purpose of the present invention to effectively use as much PFBC ash as possible.
[0017]
As described above, the present invention can also be implemented as a solid raw material to which 10 to 30% by weight of fly ash generated from a pulverized coal combustion boiler that has not been sufficiently effectively utilized yet. The added weight% is not particularly limited to the present invention, but if it is less than 10% by weight, the amount of fly ash used is reduced, and if it is more than 30% by weight, the material strength, particularly the bending strength is lowered.
[0018]
When a water glass solution is used as the solidifying agent, for example, all water glasses currently produced industrially (No. 1, No. 2, No. 2, No. 3 water glass (chemical composition Na 2 O.3SiO 2 .aq), etc.) 3 and 4), and is not intended to limit the present invention. Among them, No. 1 and No. 3 are preferable, and No. 1 water glass solution is particularly preferable. Is generally preferably 1.27. When a solution with a low concentration is used, the period required for curing is lengthened, and when a stronger solution is used, the material strength of the obtained structural material is improved, but there are problems such as an increase in cost and power required for kneading.
[0019]
Next, a preferable manufacturing process for obtaining a structural material using the PFBC ash of the present invention will be described. The structural material of the present invention is, for example, a solid material mainly composed of PFBC ash, kneaded by adding a water glass solution or the like as a solidifying agent, and the kneaded fluid is poured into a mold, and the poured fluid is cured in the mold for a predetermined period. The solidified block body is released from the mold, and the released block body is cured for a predetermined period to increase the material strength. In addition, after curing for a predetermined period in the mold and solidifying, it is not released from the mold, but is further cured for a predetermined period to increase the material strength, and then released from the mold to become a product. However, it is desirable to release the mold in as short a time as possible to increase the operation rotation rate of the mold, and it is preferable to perform curing in two stages as described above. The amount of the solidifying agent added to the solid raw material is a parameter to be selected according to various conditions such as the type and concentration of the solidifying agent to be used, the presence / absence of the secondary solid raw material, the type and addition amount, and the present invention is limited For example, when solidifying PFBC ash using No. 1 water glass solution having a specific gravity of about 1.27, the weight ratio of No. 1 water glass solution to PFBC ash is about 0.75: 1. Is preferred.
[0020]
Curing when solidifying in the mold and curing when increasing material strength can be performed by an extremely simple method of leaving at room temperature and allowing to cool, and the curing period depends on the type of solidifying agent used. However, the present invention is not limited thereto.For example, when solidifying PFBC ash using No. 1 water glass solution having a specific gravity of approximately 1.27, the former curing is used. The period is preferably about 1 day, and the latter curing period is preferably about 4 weeks, so that a structural material that can be used for sidewalk blocks, building material boards, and the like can be obtained. The kneading is not particularly limited to the present invention, but is preferably performed using a vibration compaction device rather than using a kneading cast molding device. The solid material ratio can be reduced, and a structural material having dramatically high material strength can be obtained.
[0021]
The structural material using the PFBC ash of the present invention obtained by such an embodiment depends on the JIS standard for cement mortar test (4 × 4 × 16 cm, depending on the composition of the solid raw material and the type of solidifying agent used, etc. It can be obtained as a block body having a bending strength of 5 MPa or more by a bending test with a span distance of 10 cm), which means a structural material having a bending strength that can be used as a sidewalk block.
[0022]
As described above, according to the embodiment described in detail, the present invention is to leave PFBC ash, which has been conventionally landfilled with a lot of labor and cost, left at room temperature using a water glass solution or the like as a solidifying agent. It is provided as a block body that can be used for sidewalk blocks, building material boards, etc. by an extremely simple manufacturing process of allowing to cool, and the pressurized fluidized bed boiler ash discharged in large quantities can be used economically and effectively. Can provide a structural material using pressurized fluidized bed boiler ash that can contribute to environmental protection.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, it cannot be overemphasized that this invention is not what is limited to these Examples.
[0024]
The solid raw materials used in this example are PFBC ash discharged from a pressurized fluidized bed boiler and fly ash discharged from a pulverized coal combustion boiler. The chemical composition (% by weight) is shown in Table 1 and the physical characteristics. Is shown in Table 2. 1 and 2 show the particle size distributions of PFBC ash discharged from a pressurized fluidized bed boiler and fly ash discharged from a pulverized coal combustion boiler, respectively, measured with a laser diffraction particle size distribution measuring device. . In the table, (A) means PFBC ash, and (B) means fly ash. The same applies hereinafter. In Table 1, LOI means loss of ignition.
[0025]
[Table 1]
Figure 0004048351
[0026]
[Table 2]
Figure 0004048351
The solidifying agent used was No. 1 water glass solution (chemical composition Na 2 O.2SiO 2 .aq) having a specific gravity of 1.27.
[0027]
Table 3 shows the blending ratio of the solid raw materials (PFBC (A) and fly ash (B)) used in this example, and the weight ratio of the solid raw materials to the No. 1 water glass solution added thereto.
[0028]
[Table 3]
Figure 0004048351
Each prepared sample is kneaded at room temperature for 2 minutes using a spatula, and the kneaded fluid is poured into a mold (dimensions: 2 × 2 × 8 cm). A solidified block was obtained. In addition, in order to measure the relationship between a curing period and bending strength, three samples of each block were prepared. Thereafter, the block body was released from the formwork, left standing at room temperature and allowed to cool, and the bending strength was measured in relation to the curing period.
[0029]
The bending strength was measured using a 1-ton material testing machine manufactured by Tokyo Test Manufacturing Co., Ltd., production number 19488, with a span distance of 5 cm and three pieces taken, and the results are shown in Table 4. In addition, the bending strength of Table 4 is an average value of a three-point bending test, and its unit is MPa. The measurement of the bending strength in this example was performed at a half size of the JIS standard (4 × 4 × 16 cm, span distance 10 cm) of the cement mortar test described above for convenience of experiment. Although accuracy is reduced, no significant error occurs.
[0030]
[Table 4]
Figure 0004048351
Table 4 shows that bending strength tends to decrease with increasing fly ash ratio, but there is no extreme decrease up to 20% by weight (PF08), and bending strength that can be used as a sidewalk block in about 4 weeks. It shows that a structural material of MPa or higher can be obtained. On the other hand, when fly ash is set to 30% by weight (PF07) or more, the decrease in bending strength is large, and the systematic relationship between the mixing ratio of fly ash and bending strength is lost, which is high. It shows that it is not suitable for obtaining a structural material that requires bending strength.
[0031]
According to this example, No. 1 water glass solution was added as a solidifying agent to a solid raw material in which fly ash was added to PFBC ash in a range of up to 20% by weight, and the kneaded fluid was poured into a mold for 1 day. High material that can be used as a sidewalk block by a very simple manufacturing process that is allowed to stand and cool at room temperature to solidify, and the solidified block body is released from the mold and left to stand at room temperature for 4 weeks. A structural material having strength was obtained. That is, according to the present embodiment, there is provided a structural material using pressurized fluidized bed boiler ash that can economically and effectively use a large amount of pressurized fluidized bed boiler ash that is discharged and that can contribute to environmental protection. be able to.
As mentioned above, although the Example of this invention was described, it is clear that various changes may be made to the form and detail, without deviating from the spirit and scope of this invention prescribed | regulated by the claim. .
[0032]
For example, in the examples, an example in which a No. 1 water glass solution having a specific gravity of 1.27 was used as a solidifying agent was described. However, water glass solutions other than No. 1 water glass solution may be used, for example, 3 A water glass solution may be used, and a caustic potash solution or a caustic soda solution other than the water glass solution may be used.
[0033]
In addition, in the examples, an example was described in which fly ash generated from a pulverized coal combustion boiler was used as an auxiliary material, but clay minerals such as blast furnace slag or kaolin can also be added, and in this case, a range of 10 to 30% by weight It is preferable to add in order to increase the material strength of the resulting structural material.
[0034]
【The invention's effect】
In the present invention, PFBC ash, which has been previously landfilled with a lot of labor and cost, has been conventionally allowed to stand at room temperature using a water glass solution or the like as a solidifying agent, and allowed to cool, Pressurized fluidized bed boiler, which is provided as a block body that can be used for sidewalk blocks, building material boards, etc., can use the pressurized fluidized bed boiler ash discharged in large quantities economically and effectively, and can further contribute to environmental protection There is an effect of providing a structural material using ash.
[Brief description of the drawings]
FIG. 1 is a graph showing the particle size distribution of PFBC ash discharged from a pressurized fluidized bed boiler used in an example of the present invention.
FIG. 2 is a graph showing the particle size distribution of fly ash discharged from a pulverized coal combustion boiler used in an example of the present invention.

Claims (9)

加圧流動床ボイラ灰を主な固体原料とし、該固体原料を、水ガラス溶液、苛性カリ溶液、又は苛性ソ−ダ溶液のいずれかを固化剤として用いて固化したブロック体であることを特徴とする加圧流動床ボイラ灰を用いた構造材料。Pressurized fluidized bed boiler ash is a main solid raw material, and the solid raw material is a block body solidified using either a water glass solution, a caustic potash solution, or a caustic soda solution as a solidifying agent. Structural material using pressurized fluidized bed boiler ash. 前記固体原料は、高炉スラグ又はカオリン等粘土鉱物のうち少なくとも1種を10〜30重量%含む固体原料であることを特徴とする請求項1記載の加圧流動床ボイラ灰を用いた構造材料。2. The structural material using pressurized fluidized bed boiler ash according to claim 1, wherein the solid raw material is a solid raw material containing 10 to 30% by weight of at least one of clay minerals such as blast furnace slag or kaolin. 前記固体原料は、微粉炭燃焼ボイラから発生するフライアッシュを10〜30重量%含む固体原料であることを特徴とする請求項1又は請求項2記載の加圧流動床ボイラ灰を用いた構造材料。3. The structural material using pressurized fluidized bed boiler ash according to claim 1, wherein the solid material is a solid material containing 10 to 30% by weight of fly ash generated from a pulverized coal combustion boiler. . 前記水ガラス溶液は、比重が概ね1.27の1号水ガラス溶液(化学組成Na2O.2SiO2.aq)であることを特徴とする請求項1乃至請求項3のいずれかに記載の加圧流動床ボイラ灰を用いた構造材料。The water glass solution is pressurized according to any one of claims 1 to 3, wherein the specific gravity of approximately 1.27 1 water glass solution (chemical composition Na 2 O.2SiO 2 .aq) Structural material using fluidized bed boiler ash. 前記構造材料は、前記固体原料に前記溶液を加え混練する工程と、該混練した流体を型枠に流し込む工程と、該流し込んだ流体を該型枠内で所定期間養生し固化する工程と、該固化したブロック体を該型枠から離型する工程と、該離型したブロック体を所定期間養生し材料強度を増大させる工程と、を含み製造した構造材料であることを特徴とする請求項1乃至請求項4のいずれかに記載の加圧流動床ボイラ灰を用いた構造材料。The structural material includes a step of adding the solution to the solid raw material and kneading; a step of pouring the kneaded fluid into a mold; a step of curing and solidifying the poured fluid in the mold for a predetermined period; and 2. A structural material produced by including a step of releasing the solidified block body from the mold and a step of curing the released block body for a predetermined period to increase the material strength. A structural material using the pressurized fluidized bed boiler ash according to claim 4. 前記固化する工程の養生及び/又は前記材料強度を増大させる工程の養生は、室温に放置・放冷して行う養生であることを特徴とする請求項5記載の加圧流動床ボイラ灰を用いた構造材料。6. The pressurized fluidized bed boiler ash according to claim 5, wherein the curing in the solidifying step and / or the curing in the step of increasing the material strength is a curing performed by leaving at room temperature and allowing to cool. The structural material that was. 前記固化する工程の所定期間は概ね1日であり、前記材料強度を増大させる工程の所定期間は概ね4週間であることを特徴とする請求項5又は請求項6記載の加圧流動床ボイラ灰を用いた構造材料。The pressurized fluidized bed boiler ash according to claim 5 or 6, wherein a predetermined period of the solidifying step is approximately one day, and a predetermined period of the step of increasing the material strength is approximately four weeks. Structural material using 前記混練は、振動締固成型の機器を用いて行う混練であることを特徴とする請求項5乃至請求項7のいずれかに記載の加圧流動床ボイラ灰を用いた構造材料。The structural material using the pressurized fluidized bed boiler ash according to any one of claims 5 to 7, wherein the kneading is kneading performed using a vibration compacting apparatus. 前記構造材料は、セメントモルタル試験のJIS規格(4×4×16cm、スパン距離10cm)による曲げ試験で5MPa以上の曲げ強度を有するブロック体であることを特徴とする請求項1乃至請求項8のいずれかに記載の加圧流動床ボイラ灰を用いた構造材料。9. The structure material according to claim 1, wherein the structural material is a block body having a bending strength of 5 MPa or more in a bending test according to a JIS standard (4 × 4 × 16 cm, span distance 10 cm) of a cement mortar test. A structural material using the pressurized fluidized bed boiler ash according to any one of the above.
JP2002028921A 2002-02-06 2002-02-06 Structural material using pressurized fluidized bed boiler ash Expired - Fee Related JP4048351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002028921A JP4048351B2 (en) 2002-02-06 2002-02-06 Structural material using pressurized fluidized bed boiler ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002028921A JP4048351B2 (en) 2002-02-06 2002-02-06 Structural material using pressurized fluidized bed boiler ash

Publications (2)

Publication Number Publication Date
JP2003226569A JP2003226569A (en) 2003-08-12
JP4048351B2 true JP4048351B2 (en) 2008-02-20

Family

ID=27749936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002028921A Expired - Fee Related JP4048351B2 (en) 2002-02-06 2002-02-06 Structural material using pressurized fluidized bed boiler ash

Country Status (1)

Country Link
JP (1) JP4048351B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5041706B2 (en) * 2006-01-27 2012-10-03 中国電力株式会社 Sulfuric acid resistant structure and sulfuric acid resistant repair material
JP2007238380A (en) * 2006-03-09 2007-09-20 Chugoku Electric Power Co Inc:The Prestress concrete product and concrete structure
JP2008230869A (en) * 2007-03-16 2008-10-02 Chugoku Electric Power Co Inc:The Concrete composition
JP5055550B2 (en) * 2007-03-28 2012-10-24 国立大学法人 名古屋工業大学 Ceramic solidification method, ceramic solidified body, and activated ceramic powder
JP5143653B2 (en) * 2007-11-15 2013-02-13 誠 市坪 Manufacturing method of concrete secondary product and concrete secondary product
JP2009137826A (en) * 2007-11-15 2009-06-25 Makoto Ichitsubo Method for manufacturing concrete secondary product and the concrete secondary product
JP2010095444A (en) * 2010-02-04 2010-04-30 Nagoya Institute Of Technology Solidification method of ceramics
TWI491579B (en) * 2010-12-21 2015-07-11 Ruentex Eng & Constr Co Ltd A cementation method of low calcium fly ash in room temperature
JP2014028727A (en) * 2012-07-31 2014-02-13 Maeda Corp Method for preparing a geopolymer composition and method for building a structure using the geopolymer composition
CN104446309A (en) * 2014-11-25 2015-03-25 沈阳建筑大学 Quick repairing material for buildings and preparation method of quick repairing material

Also Published As

Publication number Publication date
JP2003226569A (en) 2003-08-12

Similar Documents

Publication Publication Date Title
KR101941328B1 (en) Production method for cement composition
CN110818294B (en) Cementing material containing waste incineration fly ash and steel slag and slag, preparation method and application
US20020033119A1 (en) Fly ash composition for use in concrete mix
EP0022318A1 (en) Method for the production of cementitious compositions and aggregate derivatives from said compositions, and cementitious compositions and aggregates produced thereby
CN113264715B (en) Heavy metal curing baking-free brick based on household garbage incineration fly ash and preparation method thereof
JP4048351B2 (en) Structural material using pressurized fluidized bed boiler ash
WO2008050484A1 (en) Cement clinker and cement
JP2014028728A (en) Ion exchanger using a geopolymer composition, method for preparing the ion exchanger, and ion exchanging block using the ion exchanger
KR101416005B1 (en) Nature-friendly block using non-sintering inorgarnic binder and manufacturing method thereof
CZ299539B6 (en) Binder-filler mixture for producing solid, water stable and non-inflammable building materials and products
KR101845274B1 (en) High active cement clinker, high active cement and high-early-strength cement composition
JP2019014617A (en) Geopolymer composition and geopolymer-cured body
JP2002086121A (en) Method of treating steel making slag and sand-washing sludge
JPH1029841A (en) Production of artificial aggregate
JPH0693260A (en) Soil additive
JPH081126A (en) Manufacture of coal ash solid matter
JPH04187551A (en) Roadbed material and its production
JP2003024914A (en) Method for solidifying incineration ash and fly ash with addition of coal cinders of pressurized fluid bed, and method for utilizing solid material
JPH08259946A (en) Method of utilizing coal ash, surplus soil of construction and slag
JPH0629159B2 (en) Method for producing a cured body using fluidized bed combustion ash as a raw material
JP2011157253A (en) Method for producing recycled aggregate from burned ash including scrap tire ash, and recycled aggregate produced thereby
KR20240047715A (en) Concrete block composition containing calcium carbonate and manufacturing method thereof
JP2023080618A (en) Fired product, hydraulic composition, and carbonated hardening product
JP4077226B2 (en) Method for producing hydrothermal solidified body
JP2023092536A (en) Burned product, hydraulic composition, cement composition, and method for producing burned product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050120

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Ref document number: 4048351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees