WO2022044890A1 - Cement composition, production method, method for inhibiting carbonation of steel-reinforced concrete by adding said cement composition, and method for keeping beautiful appearance of surface of steel-reinforced concrete by adding said cement composition - Google Patents

Cement composition, production method, method for inhibiting carbonation of steel-reinforced concrete by adding said cement composition, and method for keeping beautiful appearance of surface of steel-reinforced concrete by adding said cement composition Download PDF

Info

Publication number
WO2022044890A1
WO2022044890A1 PCT/JP2021/030074 JP2021030074W WO2022044890A1 WO 2022044890 A1 WO2022044890 A1 WO 2022044890A1 JP 2021030074 W JP2021030074 W JP 2021030074W WO 2022044890 A1 WO2022044890 A1 WO 2022044890A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement composition
cement
reinforced concrete
sio
hydraulic compound
Prior art date
Application number
PCT/JP2021/030074
Other languages
French (fr)
Japanese (ja)
Inventor
泰一郎 森
拓海 前田
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2022044890A1 publication Critical patent/WO2022044890A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/345Hydraulic cements not provided for in one of the groups C04B7/02 - C04B7/34
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention relates to a cement composition used in the fields of civil engineering, construction, etc.
  • Ultra-fast hard cement hardens in a short time and has excellent initial strength development, so it is used for emergency repair work and construction in cold regions.
  • As ultrafast-hardening cement cement in which a hard-hardening material such as amorphous calcium aluminate is mixed with Portland cement and ultrafast-hardening cement having a special clinker composition are known.
  • the ultrafast-hardening cement having a special clinker composition specifically contains compounds such as calcium fluoroaluminate (C11 A7 / CaF 2 ) and elimite ( 3CaO / 3Al2O3 / CaSO4 ) as the main components. do.
  • compounds such as calcium fluoroaluminate (C11 A7 / CaF 2 ) and elimite ( 3CaO / 3Al2O3 / CaSO4 ) as the main components. do.
  • SAC calcium sulfate cement
  • Patent Document 1 proposes a cement composition containing elimite heat-treated in a carbon dioxide gas atmosphere, and by using the cement composition, the amount of CO 2 emitted during production is smaller than before. It is described that the curing time can be shortened and the fluctuation of the curing time is reduced even if it is stored for a long period of time.
  • Patent Document 2 ⁇ -2CaO ⁇ SiO 2 ( ⁇ -C 2 S), one or two kinds of steelmaking slag powder, and Portland cement are contained as powder components, and ⁇ accounts for the above total content.
  • a concrete kneaded product having a composition in which the total of -C 2S and steelmaking slag powder is 25 to 95% by mass and the water-cement ratio W / C is 80 to 250 % by mass has been proposed.
  • Precast concrete with significantly reduced total CO 2 emissions compared to conventional general concrete by utilizing the reduction of CO 2 emissions by controlling the amount of cement used and the absorption of CO 2 by carbonation curing. It states that the product has become feasible.
  • Patent Document 1 and Patent Document 2 do not disclose this neutralization at all. Further, when the cured product is formed, a powder blowing phenomenon due to elimite may occur, and it is preferable to reduce such a phenomenon from the viewpoint of maintaining the aesthetic appearance.
  • the present invention has been made to solve the above-mentioned problems, maintains good strength, exhibits excellent neutralization resistance, and reduces powder blowing when made into a cured product. It is an object of the present invention to provide a cement composition which can be produced.
  • the present inventors have found a cement composition containing a specific non-hydraulic compound and sulfoaluminate cement and containing the non-hydraulic compound in a predetermined ratio.
  • the present invention is as follows.
  • One or more non-hydraulic compounds selected from the group consisting of ⁇ -2CaO ⁇ SiO 2 , 3CaO ⁇ 2SiO 2 , ⁇ -CaO ⁇ SiO 2 , and calcium magnesium silicate, and sulfate cement.
  • the mass ratio of the non-hydraulic compound to the elimite contained in the sulfate cement and the non-hydraulic compound (non-hydraulic compound / (non-hydraulic compound + elimite) ⁇ 100) is 10 to 90 mass. %.
  • [3] The cement composition according to [1] or [2], wherein the non-hydraulic compound is ⁇ -2CaO ⁇ SiO 2 .
  • [4] The method for producing a cement composition according to any one of [1] to [3], wherein the non-hydraulic compound and the sulfate cement are simultaneously pulverized and mixed.
  • a method for producing a cement composition including.
  • [5] A method for suppressing neutralization of reinforced concrete, which comprises the cement composition according to any one of [1] to [3] as the cement composition constituting the reinforced concrete.
  • [6] A method for preserving the surface aesthetics of reinforced concrete, which comprises the cement composition according to any one of [1] to [3] as the cement composition constituting the reinforced concrete.
  • the cement composition according to the present embodiment is one or more non-hydraulic compounds selected from the group consisting of ⁇ -2CaO ⁇ SiO 2 , 3CaO ⁇ 2SiO 2 , ⁇ -CaO ⁇ SiO 2 , and calcium magnesium silicate. And contains sulfated cement. Good strength can be maintained by combining a non-hydraulic compound with a sulfoluminate cement. In addition, the carbonation reaction promotes densification of the non-hydraulic compound. In particular, when the content of the non-hydraulic compound is 5 to 40%, excellent neutralization resistance, which is one of the effects of promoting carbonation (salt), is exhibited.
  • ⁇ -2CaO ⁇ SiO 2 is a compound represented by 2CaO ⁇ SiO 2 , which is known as a low temperature phase, and is a high temperature phase ⁇ -2CaO ⁇ SiO 2 or ⁇ '-2CaO ⁇ SiO 2 , It is completely different from ⁇ -2CaO ⁇ SiO 2 . All of these are represented by 2CaO ⁇ SiO 2 , but their crystal structures and densities are different.
  • 3CaO ⁇ 2SiO 2 ) 3CaO ⁇ 2SiO 2 is a mineral containing CaO in pseudo-calcium ash and is called lanquinite. Although it is a chemically stable mineral with no hydration activity, it has a large effect of promoting carbonation (saltation).
  • ⁇ -CaO ⁇ SiO 2 ⁇ -CaO ⁇ SiO 2 ( ⁇ -type wallastnite) is a compound represented by CaO ⁇ SiO 2 , which is known as a high temperature phase, and ⁇ -CaO ⁇ SiO 2 which is a low temperature phase. It's completely different. All of these are represented by CaO ⁇ SiO 2 , but their crystal structures and densities are different.
  • the naturally occurring wallastnite is ⁇ -CaO ⁇ SiO 2 in the low temperature phase.
  • ⁇ -CaO ⁇ SiO 2 has needle-like crystals and is used as an inorganic fibrous substance such as wallastonite fiber, but carbonic acid (such as ⁇ -CaO ⁇ SiO 2 according to the present embodiment). There is no effect of promoting salting.
  • Calsim magnesium silicate is a general term for CaO-MgO-SiO 2 compounds, but in the present embodiment, it is Merwinite represented by 3CaO ⁇ MgO ⁇ 2SiO 2 (C 3 MS 2 ).
  • C 3 MS 2 Merwinite represented by 3CaO ⁇ MgO ⁇ 2SiO 2
  • a large carbonation (salt) promoting effect is achieved.
  • the non-hydraulic compound as described above may be one kind or two or more kinds, but contains 5 to 40% in the cement composition. If it is less than 5%, the neutralization suppressing effect and the surface aesthetic retention effect cannot be imparted, and if it exceeds 40%, the initial strength development is lowered.
  • the content of the non-hydraulic compound in the cement composition is preferably 7 to 35%, more preferably 10 to 30%. When there are two or more types of non-hydraulic compounds, the above-mentioned content means the total amount of two or more types of non-hydraulic compounds.
  • ⁇ -2CaO ⁇ SiO 2 in particular has a pulverization phenomenon called dusting at the time of production, so that it requires less energy for pulverization than other compounds, and is carbonated (salted) for a long period of time. It is preferable in that it has a large promoting effect and a large neutralization suppressing effect.
  • the content of ⁇ -2CaO / SiO 2 in the non-hydraulic compound is preferably 25% or more, more preferably 30% or more.
  • the non-hydraulic compound according to the present embodiment is obtained by appropriately blending a CaO raw material, a SiO 2 raw material, an MgO raw material and the like in a predetermined molar ratio and heat-treating.
  • the CaO raw material include calcium carbonate such as limestone, calcium hydroxide such as slaked lime, acetylene by-product slaked lime, and fine powder generated from waste concrete lumps.
  • the SiO 2 raw material include silica stone and clay, and various silica dusts generated as industrial by-products such as silica fume and fly ash.
  • the MgO raw material include magnesium hydroxide, basic magnesium carbonate, dolomite and the like.
  • the heat treatment method is not particularly limited, but can be performed by, for example, a rotary kiln or an electric furnace.
  • the heat treatment temperature is not uniquely determined, but is usually carried out in the range of about 1,000 to 1,800 ° C., and is often carried out in the range of about 1,200 to 1,600 ° C.
  • an industrial by-product containing the above-mentioned non-hydraulic compound can also be used.
  • impurities coexist.
  • industrial by-products include steelmaking slag and the like.
  • the CaO raw material, the SiO 2 raw material, and the MgO raw material may contain impurities, but this does not cause any particular problem as long as the effects of the present invention are not impaired.
  • impurities include, for example, Al 2 O 3 , Fe 2 O 3 , TiO 2 , MnO, Na 2 O, K 2 O, S, P 2 O 5 , F, B 2 O 3 , fluorine, chlorine and the like.
  • the coexisting compounds include free calcium oxide, calcium hydroxide, calcium aluminate, calcium aluminosilicate, calcium ferrite, calcium aluminoferrite, calcium phosphate, calcium borate, magnesium silicate, and leucite ( K2O, Na 2 ) .
  • O) ⁇ Al 2 O 3 ⁇ SiO 2 , spinel MgO ⁇ Al 2 O 3 and magnetite Fe 3 O 4 and the like can be mentioned.
  • hydraulic 2CaO / SiO 2 can be mixed in the cement composition, and can be mixed up to 35%.
  • Examples of the method for quantifying the non-hydrophilic compound include a method of identifying the crystal phase by the powder X-ray diffraction method and then calculating each crystal phase from the chemical analysis value, and a Rietveld method by the powder X-ray diffraction method. ..
  • the specific surface area of the brain of the non-hydraulic compound is not particularly limited, but is preferably 1,500 cm 2 / g or more, and the upper limit is preferably 8,000 cm 2 / g or less. Among them, 2,000 to 6,000 cm 2 / g is more preferable, and 3,000 to 6,000 cm 2 / g is most preferable.
  • the brain specific surface area is 2,000 cm 2 / g or more, good material separation resistance is obtained, and the carbonation (salting) promoting effect is sufficient. Further, when it is 8,000 cm 2 / g or less, the crushing power at the time of crushing is not increased and it is economical, and weathering is suppressed and deterioration of quality with time can be suppressed.
  • the non-hydraulic compound is ⁇ -2CaO ⁇ SiO 2 , it is particularly preferably 2,000 to 3,800 cm 2 / g, and 3,000 to 3,800 cm 2 / g in the above range. It is more preferably g.
  • Sulfoaluminate cement is obtained by mixing calcia raw material , alumina raw material, sulfur trioxide raw material, etc., and firing it in a kiln, or melting and cooling it in an electric furnace. It is a hydraulic cement crushed by adding an appropriate amount of limestone and gypsum to a clinker containing 2CaO / SiO 2 (Blite) as the main components. It is a cement specified in.
  • Sulfoaluminate cement is classified into hard-hardening type sulfoaluminate cement, low-alkali type sulfoaluminate cement, and self-stress type sulfoaluminate cement, and commercially available ones can be used.
  • a part of CaO and Al2O3 of the sulfoaluminate cement is an alkali metal oxide, an alkaline earth metal oxide, silicon oxide, titanium oxide, iron oxide, an alkali metal halide, and the like.
  • Compounds substituted with alkaline earth metal halides, alkali metal sulfates, alkaline earth metal sulfates, etc., or compounds containing CaO and Al2O3 as main components , in which a small amount of these are solid-dissolved are also available. Can be used.
  • the particle size of the sulfoluminate cement is preferably a brain specific surface area of 3,000 cm 2 / g or more, and more preferably 3,500 cm 2 / g or more in terms of initial strength development. If it is less than 3,000 cm 2 / g, the curing time becomes long and the initial strength development may decrease.
  • the mass ratio of the non-hydraulic compound to the elimite and the non-hydraulic compound contained in the sulfoluminate cement (non-hydraulic compound / (non-hydraulic compound + elimite) x 100) has the effect of suppressing neutralization and the surface aesthetics. From the viewpoint of the retention effect, it is preferably 10 to 90%, more preferably 20 to 80%.
  • the content of sulfate cement in the cement composition of the present embodiment is preferably 50% or more, more preferably 60 to 95%, from the viewpoint of initial strength development.
  • the amount of water used for the cement composition of the present embodiment is not particularly limited, and a normal range of use is used. Specifically, the amount of water is preferably 25 to 60 parts with respect to a total of 100 parts of the cement and the present admixture. Sufficient workability can be obtained when the amount is 25 parts or more, and strength development and carbonation (salting) promoting effect can be sufficiently obtained when the amount is 60 parts or less.
  • the particle size of the cement composition of the present embodiment is not particularly limited because it depends on the purpose and use of use, but usually, the brain specific surface area is preferably 2,500 to 8,000 cm 2 / g, and 3, More preferably, 000 to 6,000 cm 2 / g. When it is 2,500 cm 2 / g or more, sufficient strength development can be obtained, and when it is 8,000 cm 2 / g or less, workability can be improved.
  • aggregates such as sand and gravel, blast furnace granulated slag fine powder, blast furnace slow cooling slag powder, limestone fine powder, fly ash, and admixture materials such as natural pozzolan such as silica fume and volcanic ash, expansion.
  • the object of the present invention is substantially the same. It can be used within a range that does not inhibit the slag.
  • the cement composition of the present embodiment contains the above aggregate, the aggregate (more specifically, sand or gravel having a maximum particle size of 5 mm or less) in the cement composition may be 95% or less. It is preferably 90% or less, and more preferably 90% or less. When it is 95% or less, it is possible to exhibit better strength development while maintaining excellent neutralization resistance.
  • the cement composition of the present embodiment may be prepared by mixing the respective materials at the time of construction, or may be partially or wholly mixed in advance, but at least a non-hydraulic compound and sulfoluminum may be mixed. It is preferable to go through a pulverizing and mixing step of pulverizing and mixing the nate cement at the same time. By going through this step, a uniform surface aesthetic can be ensured after carbonation (salting).
  • the pulverizing and mixing method is not particularly limited. For example, a method using a crusher such as a roller mill, a jet mill, a tube mill, a ball mill, or a vibration mill can be mentioned.
  • each material and water is not particularly limited, and each material may be mixed at the time of construction, or a part or all of them may be mixed in advance. Alternatively, a part of the material may be mixed with water and then the rest of the material may be mixed.
  • any existing device can be used, for example, a tilting mixer, an omni mixer, a Henschel mixer, a V-type mixer, a nauta mixer, and the like can be used.
  • the curing method of the cement composition of the present embodiment is not particularly limited, and outdoor curing, underwater curing, aerial dry curing, steam curing, autoclave curing, forced carbonation (salt) curing, etc. may be adopted. It is possible.
  • the cement composition of the present invention as described above is contained as a cement composition constituting reinforced concrete and applied to a method for suppressing neutralization of reinforced concrete. It is preferable to contain it as a cement composition constituting reinforced concrete and apply it to a method for preserving the surface aesthetics of reinforced concrete.
  • Non-hydraulic compound B 3CaO ⁇ 2SiO 2 .
  • Calcium carbonate of the first grade of the reagent and silicon dioxide of the first grade of the reagent were mixed at a molar ratio of 3: 2, heat-treated at 1,400 ° C. for 2 hours, and left to room temperature to prepare.
  • the brain specific surface area was 3,500 cm 2 / g.
  • Non-hydraulic compound C ⁇ -CaO ⁇ SiO 2 .
  • Calcium carbonate of the first grade of the reagent and silicon dioxide of the first grade of the reagent were mixed at a molar ratio of 1: 1 and heat-treated at 1,500 ° C. for 2 hours, and left to room temperature to prepare.
  • the brain specific surface area was 3,500 cm 2 / g.
  • Non-hydraulic compound D 3CaO, MgO, 2SiO 2 .
  • Reagent 1st grade calcium carbonate, Reagent 1st grade magnesium oxide and Reagent 1st grade silicon dioxide are mixed at a molar ratio of 3: 1: 2, heat treated at 1,400 ° C. for 2 hours, and left to room temperature. did.
  • the brain specific surface area was 3,500 cm 2 / g.
  • Non-hydraulic compound E Non-hydraulic compound A and non-hydraulic compound B were mixed to prepare non-hydraulic compound E containing 50% of each.
  • the brain specific surface area was 3,500 cm 2 / g.
  • Non-hydraulic compound F Non-hydraulic compound E containing 33.4%, 33.3%, and 33.3% of a mixture of non-hydraulic compound A, non-hydraulic compound B, and non-hydraulic compound C, respectively. was produced. The brain specific surface area was 3,500 cm 2 / g.
  • Hydraulic compound G ⁇ -2CaO ⁇ SiO 2 .
  • Reagent 1st grade calcium carbonate and reagent 1st grade silicon dioxide are mixed at a molar ratio of 2: 1, heat treated at 1,400 ° C. for 2 hours, left at room temperature, crushed, and ⁇ -2CaO ⁇ SiO in XRD. The same heat treatment was repeated until the peak of 2 was no longer confirmed. After the peak of only ⁇ -2CaO ⁇ SiO 2 was confirmed, a hydraulic compound E having a brain specific surface area of 3,500 cm 2 / g was prepared.
  • a cement composition was prepared by mixing, and a mortar having a water / powder ratio of 0.5 was prepared according to JIS R 5201 “Physical test method for cement”. Using this mortar, compressive strength, neutralization resistance, and surface aesthetics were investigated. The results are also shown in Table 1. The environmental temperature of the test was 20 ° C.
  • the above-mentioned "powder” refers to a combination of non-hydraulic compounds A to F or hydraulic compounds G and sulfate cement.
  • each material is as follows.
  • -Sulfoluminate cement manufactured by Chungzhou Wangro Cement Industry Co., Ltd., product name "Low alkaline sulfoaluminate cement hardened type 42.5 grade", brain specific surface area 4000 cm 2 / g, SO 3 / Al 2 O 3 Molar ratio 0.6, elimite content 40%
  • the alcohol solution was sprayed and the maximum length of the non-discolored region from the surface to the inside of the specimen was measured using a caliper as the carbon dioxide depth. The smaller the carbonation depth, the higher the neutralization resistance.
  • -Aesthetic After evaluating the neutralization resistance, one surface of 4 cm x 16 cm was rubbed 10 times with a "turtle scrubbing brush", and the powdery material that had peeled off was measured with a measuring instrument. When it was 0.1 g or less, it was rated as “no”, and when it exceeded 0.1 g, it was rated as “yes”.
  • the mass ratio (X / (X + Y)) in Tables 1 to 3 is the non-hydraulic compounds A to F or the non-hydraulic compounds A to F or the non-hydraulic compounds A to F or the non-hydraulic compounds A to F contained in the sulfoluminate cement. It is the mass ratio of the hydraulic compound F, and the unit is%.
  • Example 2 A cement composition and a mortar were prepared in the same manner as in Experimental Example 1 except that the mixing ratio of the sulfoluminate cement and the non-hydraulic compound A was changed so as to have the composition shown in Table 2. Using this mortar, the compressive strength, neutralization resistance, and surface aesthetics were examined in the same manner as in Experimental Example 1. The results are shown in Table 2.
  • the sulfoaluminate cement B was prepared in the same manner as in the preparation of the sulfoluminate cement A except that the composition was such that the elimite content was 15%.
  • Sulfoluminate cement C was prepared in the same manner as in the preparation of sulphoaluminate cement A except that the composition was such that the elimite content was 7%.
  • the cement composition and mortar were prepared in the same manner as in Experimental Example 1 except that the type and composition of the sulfoluminate cement were changed as shown in Table 3. Using this mortar, the compressive strength, neutralization resistance, and surface aesthetics were examined in the same manner as in Experimental Example 1. The results are shown in Table 3.
  • the “X” of the type of sulphoaluminate cement in Table 3 refers to the sulphoaluminate cement used in Experimental Example 1.
  • the present invention can be suitably used as a cement composition particularly used in the fields of civil engineering, construction and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

A cement composition comprising one nonhydraulic compound or two or more nonhydraulic compounds selected from the group consisting of γ-2CaO・SiO2, 3CaO・2SiO2, α-CaO・SiO2 and calcium magnesium silicate and sulfoaluminate cement, in which the content of the nonhydraulic compound/compounds is 5 to 40% by mass.

Description

[規則37.2に基づきISAが決定した発明の名称] セメント組成物、製造方法、該セメント組成物を含有させる鉄筋コンクリートの中性化抑制方法及び該セメント組成物を含有させる鉄筋コンクリートの表面美観保持方法[Name of the invention determined by ISA based on Rule 37.2.] Cement composition, manufacturing method, neutralization suppression method for reinforced concrete containing the cement composition, and surface aesthetic preservation method for reinforced concrete containing the cement composition.
 本発明は、土木分野、建築分野等で用いられるセメント組成物に関する。 The present invention relates to a cement composition used in the fields of civil engineering, construction, etc.
 超速硬セメントは短時間で硬化し、初期強度発現性に優れることから緊急補修工事や寒冷地での施工で使用される。超速硬セメントとしては、ポルトランドセメントに非晶質カルシウムアルミネート等の急硬材を混和したセメントや、特殊なクリンカー組成を有する超速硬セメントが知られている。 Ultra-fast hard cement hardens in a short time and has excellent initial strength development, so it is used for emergency repair work and construction in cold regions. As ultrafast-hardening cement, cement in which a hard-hardening material such as amorphous calcium aluminate is mixed with Portland cement and ultrafast-hardening cement having a special clinker composition are known.
 特殊なクリンカー組成を有する超速硬セメントは、具体的にはカルシウムフロロアルミネート(C11・CaF)や、イーリマイト(3CaO・3Al・CaSO)等の化合物を主成分として含有する。これらのうち、焼成温度を低くしたり、製造時の二酸化炭素排出量を少なくしたりすることが可能という理由から、イーリマイトを含有するカルシウムサルフォアルミネートセメント(「SAC」ともいう)の研究が盛んに行われるようになった。 The ultrafast-hardening cement having a special clinker composition specifically contains compounds such as calcium fluoroaluminate (C11 A7 / CaF 2 ) and elimite ( 3CaO / 3Al2O3 / CaSO4 ) as the main components. do. Of these, research on calcium sulfate cement (also referred to as "SAC") containing elimite has been conducted because it is possible to lower the firing temperature and reduce carbon dioxide emissions during manufacturing. It has become popular.
 例えば、特許文献1では、炭酸ガス雰囲気で加熱処理したイーリマイトを含有してなるセメント組成物が提案され、当該セメント組成物を使用することにより、製造時のCO排出量が少なく、従来よりも硬化時間を短縮でき、長期間貯蔵しても硬化時間の変動が少なくなることが記載されている。 For example, Patent Document 1 proposes a cement composition containing elimite heat-treated in a carbon dioxide gas atmosphere, and by using the cement composition, the amount of CO 2 emitted during production is smaller than before. It is described that the curing time can be shortened and the fluctuation of the curing time is reduced even if it is stored for a long period of time.
 また特許文献2では、粉体成分として、γ-2CaO・SiO(γ-CS)、製鋼スラグ粉末の1種または2種と、ポルトランドセメントを含有し、上記の合計含有量に占めるγ-CS、製鋼スラグ粉末の合計が25~95質量%であり、水セメント比W/Cが80~250質量%である配合のコンクリート混練物が提案されている。そして、セメント使用量の抑制によるCO排出量の削減、及び炭酸化養生によるCOの吸収を利用して、従来一般的なコンクリートと比べ、トータルのCO排出量を大幅に低減したプレキャストコンクリート製品が実現可能となったことが記載されている。 Further, in Patent Document 2, γ-2CaO · SiO 2 (γ-C 2 S), one or two kinds of steelmaking slag powder, and Portland cement are contained as powder components, and γ accounts for the above total content. A concrete kneaded product having a composition in which the total of -C 2S and steelmaking slag powder is 25 to 95% by mass and the water-cement ratio W / C is 80 to 250 % by mass has been proposed. Precast concrete with significantly reduced total CO 2 emissions compared to conventional general concrete by utilizing the reduction of CO 2 emissions by controlling the amount of cement used and the absorption of CO 2 by carbonation curing. It states that the product has become feasible.
特開2016-17025号公報Japanese Unexamined Patent Publication No. 2016-17205 特開2011-168436号公報Japanese Unexamined Patent Publication No. 2011-168436
 しかしながら、炭酸ガスがコンクリート内に浸入すると、アルカリ性物質と反応し、中性化が進む。鉄筋周辺のコンクリートが中性化すると、鉄筋の腐食抑制効果が損なわれる。鉄筋が腐食することで生じる錆は、膨張することでコンクリートにひび割れを生じさせるため、コンクリートの耐久性が低下する。 However, when carbon dioxide gas infiltrates into concrete, it reacts with alkaline substances and neutralization progresses. When the concrete around the reinforcing bar is neutralized, the corrosion suppressing effect of the reinforcing bar is impaired. Rust caused by corrosion of reinforcing bars causes cracks in concrete due to expansion, which reduces the durability of concrete.
 特許文献1及び特許文献2はこの中性化ついては何ら開示していない。また、硬化物とした際に、イーリマイトに起因する粉吹きの現象が発生することがあり、美観維持の観点から、そのような現象は低減されることが好ましい。 Patent Document 1 and Patent Document 2 do not disclose this neutralization at all. Further, when the cured product is formed, a powder blowing phenomenon due to elimite may occur, and it is preferable to reduce such a phenomenon from the viewpoint of maintaining the aesthetic appearance.
 以上から本発明は、上記のような問題を解決するためになされたものであり、良好な強度を維持し、優れた中性化抵抗性を発揮し、硬化物とした際に粉吹きを低減できるセメント組成物を提供することを目的とする。 From the above, the present invention has been made to solve the above-mentioned problems, maintains good strength, exhibits excellent neutralization resistance, and reduces powder blowing when made into a cured product. It is an object of the present invention to provide a cement composition which can be produced.
 本発明者らは、上記問題を解決するために鋭意研究を行った結果、特定の非水硬性化合物とサルフォアルミネートセメントとを含み、非水硬性化合物を所定割合で含有するセメント組成物が上記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明は、下記のとおりである。 As a result of diligent research to solve the above problems, the present inventors have found a cement composition containing a specific non-hydraulic compound and sulfoaluminate cement and containing the non-hydraulic compound in a predetermined ratio. We have found that the above problems can be solved, and have completed the present invention. That is, the present invention is as follows.
[1] γ-2CaO・SiO、3CaO・2SiO、α-CaO・SiO、及びカルシウムマグネシウムシリケートからなる群から選ばれる1種又は2種以上の非水硬性化合物と、サルフォアルミネートセメントとを含み、前記非水硬性化合物の含有量が5~40質量%であるセメント組成物。
[2] 前記サルフォアルミネートセメントに含まれるイーリマイトと前記非水硬性化合物に対する前記非水硬性化合物の質量割合(非水硬性化合物/(非水硬性化合物+イーリマイト)×100)が10~90質量%である[1]に記載のセメント組成物。
[3] 前記非水硬性化合物がγ-2CaO・SiOである[1]又は[2]に記載のセメント組成物。
[4] [1]~[3]のいずれかに記載に記載のセメント組成物の製造方法であって、前記非水硬性化合物と前記サルフォアルミネートセメントを同時に粉砕して混合する粉砕混合工程を含むセメント組成物の製造方法。
[5] 鉄筋コンクリートを構成するセメント組成物として、[1]~[3]のいずれかに記載に記載のセメント組成物を含有させる鉄筋コンクリートの中性化抑制方法。
[6] 鉄筋コンクリートを構成するセメント組成物として、[1]~[3]のいずれかに記載に記載のセメント組成物を含有させる鉄筋コンクリートの表面美観保持方法。
[1] One or more non-hydraulic compounds selected from the group consisting of γ-2CaO · SiO 2 , 3CaO · 2SiO 2 , α-CaO · SiO 2 , and calcium magnesium silicate, and sulfate cement. A cement composition containing 5 to 40% by mass of the non-hydraulic compound.
[2] The mass ratio of the non-hydraulic compound to the elimite contained in the sulfate cement and the non-hydraulic compound (non-hydraulic compound / (non-hydraulic compound + elimite) × 100) is 10 to 90 mass. %. The cement composition according to [1].
[3] The cement composition according to [1] or [2], wherein the non-hydraulic compound is γ-2CaO · SiO 2 .
[4] The method for producing a cement composition according to any one of [1] to [3], wherein the non-hydraulic compound and the sulfate cement are simultaneously pulverized and mixed. A method for producing a cement composition including.
[5] A method for suppressing neutralization of reinforced concrete, which comprises the cement composition according to any one of [1] to [3] as the cement composition constituting the reinforced concrete.
[6] A method for preserving the surface aesthetics of reinforced concrete, which comprises the cement composition according to any one of [1] to [3] as the cement composition constituting the reinforced concrete.
 本発明によれば、良好な強度を維持し、優れた中性化抵抗性を発揮し、硬化物とした際に粉吹きを低減できるセメント組成物を提供することができる。 According to the present invention, it is possible to provide a cement composition that maintains good strength, exhibits excellent neutralization resistance, and can reduce powder blowing when it is made into a cured product.
 以下、本発明の実施形態(本実施形態)について詳細に説明する。なお、本明細書で使用する部や%は特に規定のない限り質量基準である。 Hereinafter, an embodiment of the present invention (the present embodiment) will be described in detail. The parts and% used in this specification are based on mass unless otherwise specified.
 本実施形態に係るセメント組成物は、γ-2CaO・SiO、3CaO・2SiO、α-CaO・SiO、及びカルシウムマグネシウムシリケートからなる群から選ばれる1種又は2種以上の非水硬性化合物と、サルフォアルミネートセメントとを含む。
 非水硬性化合物とサルフォアルミネートセメントとを組み合わせることで、良好な強度を維持することができる。また、炭酸化反応により非水硬性化合物の緻密化が進行する。特に非水硬性化合物の含有量が5~40%であることで、炭酸(塩)化促進効果の一つである、優れた中性化抵抗性が発揮される。さらに、硬化物とした際に、エトリンガイト(イーリマイトとセッコウ等の水和反応から生成)の炭酸化反応等に起因する粉吹きの現象を低減できる。
 以下、各成分等について説明する。
The cement composition according to the present embodiment is one or more non-hydraulic compounds selected from the group consisting of γ-2CaO · SiO 2 , 3CaO · 2SiO 2 , α-CaO · SiO 2 , and calcium magnesium silicate. And contains sulfated cement.
Good strength can be maintained by combining a non-hydraulic compound with a sulfoluminate cement. In addition, the carbonation reaction promotes densification of the non-hydraulic compound. In particular, when the content of the non-hydraulic compound is 5 to 40%, excellent neutralization resistance, which is one of the effects of promoting carbonation (salt), is exhibited. Further, when it is made into a cured product, it is possible to reduce the phenomenon of powder blowing caused by the carbonation reaction of ettringite (produced from the hydration reaction of elimite and sekkou).
Hereinafter, each component and the like will be described.
(γ-2CaO・SiO
 γ-2CaO・SiOとは、2CaO・SiOで表される化合物のうちで、低温相として知られるものであり、高温相であるα-2CaO・SiOやα’-2CaO・SiO、β-2CaO・SiOとは全く異なるものである。これらはいずれも、2CaO・SiOで表されるが、結晶構造や密度は異なっている。
(Γ-2CaO · SiO 2 )
γ-2CaO · SiO 2 is a compound represented by 2CaO · SiO 2 , which is known as a low temperature phase, and is a high temperature phase α-2CaO · SiO 2 or α'-2CaO · SiO 2 , It is completely different from β-2CaO · SiO 2 . All of these are represented by 2CaO · SiO 2 , but their crystal structures and densities are different.
(3CaO・2SiO
 3CaO・2SiOとは、偽ケイ灰石にCaOを含有する鉱物でランキナイトと呼ばれる。水和活性は無く化学的に安定な鉱物であるが、炭酸(塩)化促進効果が大きい。
(3CaO ・ 2SiO 2 )
3CaO ・ 2SiO 2 is a mineral containing CaO in pseudo-calcium ash and is called lanquinite. Although it is a chemically stable mineral with no hydration activity, it has a large effect of promoting carbonation (saltation).
(α-CaO・SiO
 α-CaO・SiO(α型ワラストナイト)とは、CaO・SiOで表される化合物のうちで、高温相として知られるものであり、低温相であるβ-CaO・SiOとは全く異なるものである。これらはいずれも、CaO・SiOで表されるが、結晶構造や密度は異なっている。
(Α-CaO · SiO 2 )
α-CaO · SiO 2 (α-type wallastnite) is a compound represented by CaO · SiO 2 , which is known as a high temperature phase, and β-CaO · SiO 2 which is a low temperature phase. It's completely different. All of these are represented by CaO · SiO 2 , but their crystal structures and densities are different.
 天然に産出するワラストナイトは低温相のβ-CaO・SiOである。β-CaO・SiOは針状結晶を有し、ワラストナイト繊維等のような無機繊維質物質として利用されてはいるが、本実施形態に係るα-CaO・SiOのような炭酸(塩)化促進効果はない。 The naturally occurring wallastnite is β-CaO · SiO 2 in the low temperature phase. β-CaO · SiO 2 has needle-like crystals and is used as an inorganic fibrous substance such as wallastonite fiber, but carbonic acid (such as α-CaO · SiO 2 according to the present embodiment). There is no effect of promoting salting.
(カルシムマグネシウムシリケート)
 カルシムマグネシウムシリケートとは、CaO-MgO-SiO系化合物を総称するものであるが、本実施形態では、3CaO・MgO・2SiO(CMS)で表されるメルヴィナイト(Merwinite)であることが好ましく、メルヴィナイトによれば大きい炭酸(塩)化促進効果が達成される。
(Calcim Magnesium Cyclate)
Calsim magnesium silicate is a general term for CaO-MgO-SiO 2 compounds, but in the present embodiment, it is Merwinite represented by 3CaO · MgO · 2SiO 2 (C 3 MS 2 ). Preferably, according to Melvinite, a large carbonation (salt) promoting effect is achieved.
 上記のような非水硬性化合物は1種でも2種以上でもよいが、セメント組成物中5~40%含む。5%未満では、中性化抑制効果と表面美観の保持効果を付与できず、40%を超えると、初期強度発現性が低下してしまう。セメント組成物中の非水硬性化合物の含有量は、7~35%であることが好ましく、10~30%であることがより好ましい。
 なお、非水硬性化合物が2種以上である場合、上記含有量は、2種以上の非水硬性化合物の合計量をいう。
The non-hydraulic compound as described above may be one kind or two or more kinds, but contains 5 to 40% in the cement composition. If it is less than 5%, the neutralization suppressing effect and the surface aesthetic retention effect cannot be imparted, and if it exceeds 40%, the initial strength development is lowered. The content of the non-hydraulic compound in the cement composition is preferably 7 to 35%, more preferably 10 to 30%.
When there are two or more types of non-hydraulic compounds, the above-mentioned content means the total amount of two or more types of non-hydraulic compounds.
 上記の非水硬性化合物の中でも、特にγ-2CaO・SiOは、製造時にダスティングと呼ばれる粉化現象をともなうため他化合物に比べて粉砕に要するエネルギーが少ないこと、長期にわたって炭酸(塩)化促進効果が大きいこと、また、中性化抑制効果が大きい点で好ましい。γ-2CaO・SiOによる効果を得る観点から、非水硬性化合物中、γ-2CaO・SiOは、25%以上であることが好ましく、30%以上であることがより好ましい。 Among the above non-hydraulic compounds, γ-2CaO · SiO 2 in particular has a pulverization phenomenon called dusting at the time of production, so that it requires less energy for pulverization than other compounds, and is carbonated (salted) for a long period of time. It is preferable in that it has a large promoting effect and a large neutralization suppressing effect. From the viewpoint of obtaining the effect of γ-2CaO / SiO 2 , the content of γ-2CaO / SiO 2 in the non-hydraulic compound is preferably 25% or more, more preferably 30% or more.
 本実施形態に係る非水硬性化合物は、CaO原料、SiO原料、MgO原料等を適宜所定のモル比で配合して熱処理することによって得られる。CaO原料としては、例えば、石灰石等の炭酸カルシウム、消石灰等の水酸化カルシウム、アセチレン副生消石灰、廃コンクリート塊から発生する微粉末、等が挙げられる。SiO原料としては、例えば、ケイ石や粘土、さらには、シリカフュームやフライアッシュに代表されるような産業副産物として発生する様々なシリカ質ダスト等が挙げられる。MgO原料としては、例えば、水酸化マグネシウムや塩基性炭酸マグネシウム、ドロマイト等を挙げることができる。なお、熱処理時の非エネルギー由来CO排出量の削減からも、アセチレン副生消石灰、廃コンクリート塊から発生する微粉末等、CaOを含む産業副産物から選ばれる一種又は二種以上からの利用が好ましい。 The non-hydraulic compound according to the present embodiment is obtained by appropriately blending a CaO raw material, a SiO 2 raw material, an MgO raw material and the like in a predetermined molar ratio and heat-treating. Examples of the CaO raw material include calcium carbonate such as limestone, calcium hydroxide such as slaked lime, acetylene by-product slaked lime, and fine powder generated from waste concrete lumps. Examples of the SiO 2 raw material include silica stone and clay, and various silica dusts generated as industrial by-products such as silica fume and fly ash. Examples of the MgO raw material include magnesium hydroxide, basic magnesium carbonate, dolomite and the like. From the viewpoint of reducing non-energy-derived CO 2 emissions during heat treatment, it is preferable to use one or more selected from industrial by-products containing CaO, such as acetylene by-product slaked lime and fine powder generated from waste concrete lumps. ..
 熱処理方法は特に限定されるものではないが、例えば、ロータリーキルンや電気炉等によって行うことができる。その熱処理温度は、一義的に定められるものではないが、通常、1,000~1,800℃程度の範囲で行われ、1,200~1,600℃程度の範囲で行われることが多い。 The heat treatment method is not particularly limited, but can be performed by, for example, a rotary kiln or an electric furnace. The heat treatment temperature is not uniquely determined, but is usually carried out in the range of about 1,000 to 1,800 ° C., and is often carried out in the range of about 1,200 to 1,600 ° C.
 本実施形態は、既述の非水硬性化合物を含む産業副産物を用いることもできる。この際には不純物が共存する。このような産業副産物として、製鋼スラグ等が挙げられる。 In this embodiment, an industrial by-product containing the above-mentioned non-hydraulic compound can also be used. In this case, impurities coexist. Examples of such industrial by-products include steelmaking slag and the like.
 CaO原料、SiO原料、MgO原料には不純物を含む場合があるが、本発明の効果を阻害しない範囲内では特に問題とはならない。不純物の具体例としては、例えば、Al、Fe、TiO、MnO、NaO、KO、S、P、F、B、フッ素、塩素等が挙げられる。また、共存する化合物としては、遊離酸化カルシウム、水酸化カルシウム、カルシウムアルミネート、カルシウムアルミノシリケート、カルシウムフェライトやカルシウムアルミノフェライト、カルシウムフォスフェート、カルシウムボレート、マグネシウムシリケート、リューサイト(KO、NaO)・Al・SiO、スピネルMgO・Al、及びマグネタイトFe等が挙げられる。 The CaO raw material, the SiO 2 raw material, and the MgO raw material may contain impurities, but this does not cause any particular problem as long as the effects of the present invention are not impaired. Specific examples of impurities include, for example, Al 2 O 3 , Fe 2 O 3 , TiO 2 , MnO, Na 2 O, K 2 O, S, P 2 O 5 , F, B 2 O 3 , fluorine, chlorine and the like. Can be mentioned. The coexisting compounds include free calcium oxide, calcium hydroxide, calcium aluminate, calcium aluminosilicate, calcium ferrite, calcium aluminoferrite, calcium phosphate, calcium borate, magnesium silicate, and leucite ( K2O, Na 2 ) . O) ・ Al 2 O 3・ SiO 2 , spinel MgO ・ Al 2 O 3 and magnetite Fe 3 O 4 and the like can be mentioned.
 なお、セメント組成物中、既述の非水硬性化合物以外に、水硬性の2CaO・SiOが混在していることも可能であり、最大35%まで混在可能である。 In addition to the above-mentioned non-hydraulic compounds, hydraulic 2CaO / SiO 2 can be mixed in the cement composition, and can be mixed up to 35%.
 非水硬性化合物を定量する方法として、粉末X線回折法により結晶相を同定した後、化学分析値から各結晶相を算出する方法、及び、粉末X線回折法によるリートベルト法等が挙げられる。 Examples of the method for quantifying the non-hydrophilic compound include a method of identifying the crystal phase by the powder X-ray diffraction method and then calculating each crystal phase from the chemical analysis value, and a Rietveld method by the powder X-ray diffraction method. ..
 非水硬性化合物のブレーン比表面積は特に限定されるものではないが、1,500cm/g以上が好ましく、また上限は8,000cm/g以下が好ましい。なかでも、2,000~6,000cm/gがより好ましく、3,000~6,000cm/gが最も好ましい。ブレーン比表面積が2,000cm/g以上であることで、良好な材料分離抵抗性が得られ、炭酸(塩)化促進効果が充分になる。また、8,000cm/g以下であることで粉砕する際の粉砕動力が大きくならず経済的であり、また、風化が抑制され品質の経時的な劣化を抑えることができる。
 なお、非水硬性化合物がγ-2CaO・SiOの場合は、上記の範囲のなかでも特に、2,000~3,800cm/gであることが好ましく、3,000~3,800cm/gであることがより好ましい。
The specific surface area of the brain of the non-hydraulic compound is not particularly limited, but is preferably 1,500 cm 2 / g or more, and the upper limit is preferably 8,000 cm 2 / g or less. Among them, 2,000 to 6,000 cm 2 / g is more preferable, and 3,000 to 6,000 cm 2 / g is most preferable. When the brain specific surface area is 2,000 cm 2 / g or more, good material separation resistance is obtained, and the carbonation (salting) promoting effect is sufficient. Further, when it is 8,000 cm 2 / g or less, the crushing power at the time of crushing is not increased and it is economical, and weathering is suppressed and deterioration of quality with time can be suppressed.
When the non-hydraulic compound is γ-2CaO · SiO 2 , it is particularly preferably 2,000 to 3,800 cm 2 / g, and 3,000 to 3,800 cm 2 / g in the above range. It is more preferably g.
(サルフォアルミネートセメント)
 サルフォアルミネートセメントは、カルシア原料とアルミナ原料、三酸化硫黄原料等を混合し、キルンで焼成、あるいは、電気炉で溶融、冷却して得られる3CaO・3Al・CaSO(Yeelimite、イーリマイトに同じ)と2CaO・SiO(Blite)を主成分とするクリンカーに適量の石灰石と石膏を加えて粉砕した水硬性セメントであり、中華人民共和国国家規格GB20472-2006「サルフォアルミネートセメント」に規定されるセメントである。サルフォアルミネートセメントは、急硬型サルフォアルミネートセメント、低アルカリ型サルフォアルミネートセメント、自己応力型サルフォアルミネートセメントに分類され、通常市販されているものが使用できる。
(Sulfoluminate cement)
Sulfoaluminate cement is obtained by mixing calcia raw material , alumina raw material, sulfur trioxide raw material, etc., and firing it in a kiln, or melting and cooling it in an electric furnace. It is a hydraulic cement crushed by adding an appropriate amount of limestone and gypsum to a clinker containing 2CaO / SiO 2 (Blite) as the main components. It is a cement specified in. Sulfoaluminate cement is classified into hard-hardening type sulfoaluminate cement, low-alkali type sulfoaluminate cement, and self-stress type sulfoaluminate cement, and commercially available ones can be used.
 さらに、本実施形態では、サルフォアルミネートセメントのCaOやAlの一部が、アルカリ金属酸化物、アルカリ土類金属酸化物、酸化ケイ素、酸化チタン、酸化鉄、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属硫酸塩、及びアルカリ土類金属硫酸塩等と置換した化合物、あるいは、CaOとAlとを主成分とするものに、これらが少量固溶した化合物も使用できる。 Further, in the present embodiment , a part of CaO and Al2O3 of the sulfoaluminate cement is an alkali metal oxide, an alkaline earth metal oxide, silicon oxide, titanium oxide, iron oxide, an alkali metal halide, and the like. Compounds substituted with alkaline earth metal halides, alkali metal sulfates, alkaline earth metal sulfates, etc., or compounds containing CaO and Al2O3 as main components , in which a small amount of these are solid-dissolved are also available. Can be used.
 サルフォアルミネートセメントの粒度は、初期強度発現性の面で、ブレーン比表面積3,000cm/g以上が好ましく、3,500cm/g以上がより好ましい。3,000cm/g未満であると硬化時間が長くなり、初期強度発現性が低下する場合がある。 The particle size of the sulfoluminate cement is preferably a brain specific surface area of 3,000 cm 2 / g or more, and more preferably 3,500 cm 2 / g or more in terms of initial strength development. If it is less than 3,000 cm 2 / g, the curing time becomes long and the initial strength development may decrease.
 サルフォアルミネートセメントに含まれるイーリマイトと非水硬性化合物に対する非水硬性化合物の質量割合(非水硬性化合物/(非水硬性化合物+イーリマイト)×100)は、中性化抑制効果と表面美観の保持効果の観点から、10~90%であることが好ましく、20~80%であることがより好ましい。 The mass ratio of the non-hydraulic compound to the elimite and the non-hydraulic compound contained in the sulfoluminate cement (non-hydraulic compound / (non-hydraulic compound + elimite) x 100) has the effect of suppressing neutralization and the surface aesthetics. From the viewpoint of the retention effect, it is preferably 10 to 90%, more preferably 20 to 80%.
 本実施形態のセメント組成物中のサルフォアルミネートセメントの含有量は、初期強度発現性の観点から、50%以上であることが好ましく、60~95%であることがより好ましい。 The content of sulfate cement in the cement composition of the present embodiment is preferably 50% or more, more preferably 60 to 95%, from the viewpoint of initial strength development.
 本実施形態のセメント組成物に対する水の使用量は特に限定されるものではなく、通常の使用範囲が使用される。具体的には、セメント及び本混和材の合計100部に対して水の量は25~60部が好ましい。25部以上であることで充分な作業性が得られ、60部以下であることで強度発現性及び炭酸(塩)化促進効果を十分にすることができる。 The amount of water used for the cement composition of the present embodiment is not particularly limited, and a normal range of use is used. Specifically, the amount of water is preferably 25 to 60 parts with respect to a total of 100 parts of the cement and the present admixture. Sufficient workability can be obtained when the amount is 25 parts or more, and strength development and carbonation (salting) promoting effect can be sufficiently obtained when the amount is 60 parts or less.
 本実施形態のセメント組成物の粒度は、使用する目的・用途に依存するため特に限定されるものではないが、通常、ブレーン比表面積で2,500~8,000cm/gが好ましく、3,000~6,000cm/gがより好ましい。2,500cm/g以上であることで強度発現性が十分に得られ、8,000cm/g以下であることで作業性を良好にすることができる。 The particle size of the cement composition of the present embodiment is not particularly limited because it depends on the purpose and use of use, but usually, the brain specific surface area is preferably 2,500 to 8,000 cm 2 / g, and 3, More preferably, 000 to 6,000 cm 2 / g. When it is 2,500 cm 2 / g or more, sufficient strength development can be obtained, and when it is 8,000 cm 2 / g or less, workability can be improved.
 本実施形態のセメント組成物では、砂や砂利等の骨材、高炉水砕スラグ微粉末、高炉徐冷スラグ粉末、石灰石微粉末、フライアッシュ、及びシリカフューム、火山灰等天然ポゾラン等の混和材料、膨張材、急硬材、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、ポリマー、凝結調整剤、ベントナイト等の粘土鉱物、並びに、ハイドロタルサイト等のアニオン交換体等の添加剤等、通常のセメント材料に用いられる公知公用の添加剤や混和材を1種又は2種以上、本発明の目的を実質的に阻害しない範囲で使用することが可能である。
 なお、本実施形態のセメント組成物が上記骨材を含む場合、セメント組成物中の骨材(より具体的には、最大粒径5mm以下の砂や砂利)は、95%以下であることが好ましく、90%以下であることがより好ましい。95%以下であることで、優れた中性化抵抗性を維持しつつ、より良好な強度発現性を発揮することができる。
In the cement composition of the present embodiment, aggregates such as sand and gravel, blast furnace granulated slag fine powder, blast furnace slow cooling slag powder, limestone fine powder, fly ash, and admixture materials such as natural pozzolan such as silica fume and volcanic ash, expansion. Material, fly ash, water reducing agent, AE water reducing agent, high performance water reducing agent, high performance AE water reducing agent, defoaming agent, thickener, rust preventive, antifreeze, shrinkage reducing agent, polymer, coagulation adjuster, bentonite One or more publicly known additives and admixtures used for ordinary cement materials such as clay minerals such as slag, and additives such as anion exchangers such as hydrotalcite, the object of the present invention is substantially the same. It can be used within a range that does not inhibit the slag.
When the cement composition of the present embodiment contains the above aggregate, the aggregate (more specifically, sand or gravel having a maximum particle size of 5 mm or less) in the cement composition may be 95% or less. It is preferably 90% or less, and more preferably 90% or less. When it is 95% or less, it is possible to exhibit better strength development while maintaining excellent neutralization resistance.
 本実施形態のセメント組成物はそれぞれの材料を施工時に混合して作製してもよいし、あらかじめ一部あるいは全部を混合しておいても差し支えないが、少なくとも、非水硬性化合物とサルフォアルミネートセメントとは同時に粉砕して混合する粉砕混合工程を経ることが好ましい。当該工程を経ることで、炭酸(塩)化後に均一な表面美観を確保することができる。粉砕混合方法は、特に限定されない。例えば、ローラーミル、ジェットミル、チューブミル、ボールミル、振動ミル等の粉砕機を使用する方法が挙げられる。 The cement composition of the present embodiment may be prepared by mixing the respective materials at the time of construction, or may be partially or wholly mixed in advance, but at least a non-hydraulic compound and sulfoluminum may be mixed. It is preferable to go through a pulverizing and mixing step of pulverizing and mixing the nate cement at the same time. By going through this step, a uniform surface aesthetic can be ensured after carbonation (salting). The pulverizing and mixing method is not particularly limited. For example, a method using a crusher such as a roller mill, a jet mill, a tube mill, a ball mill, or a vibration mill can be mentioned.
 また、各材料及び水の混合方法も特に限定されるものではなく、それぞれの材料を施工時に混合しても良いし、あらかじめ一部を、あるいは全部を混合しておいても差し支えない。また、材料の一部を水と混合した後に残りの材料を混合しても良い。 Further, the mixing method of each material and water is not particularly limited, and each material may be mixed at the time of construction, or a part or all of them may be mixed in advance. Alternatively, a part of the material may be mixed with water and then the rest of the material may be mixed.
 混合装置としては、既存のいかなる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、及びナウタミキサ等の使用が可能である。 As the mixing device, any existing device can be used, for example, a tilting mixer, an omni mixer, a Henschel mixer, a V-type mixer, a nauta mixer, and the like can be used.
 本実施形態のセメント組成物の養生方法は特に限定されるものではなく、屋外養生、水中養生、気中乾燥養生、蒸気養生、オートクレーブ養生、及び強制炭酸(塩)化養生等を採用することが可能である。 The curing method of the cement composition of the present embodiment is not particularly limited, and outdoor curing, underwater curing, aerial dry curing, steam curing, autoclave curing, forced carbonation (salt) curing, etc. may be adopted. It is possible.
 以上のような本発明のセメント組成物は、鉄筋コンクリートを構成するセメント組成物として含有させて、鉄筋コンクリートの中性化抑制方法に適用することが好ましい。
 鉄筋コンクリートを構成するセメント組成物として含有させて、鉄筋コンクリートの表面美観保持方法に適用することが好ましい。
It is preferable that the cement composition of the present invention as described above is contained as a cement composition constituting reinforced concrete and applied to a method for suppressing neutralization of reinforced concrete.
It is preferable to contain it as a cement composition constituting reinforced concrete and apply it to a method for preserving the surface aesthetics of reinforced concrete.
 以下、実施例及び比較例を用いて本発明を更に具体的に説明するが、本発明はその要旨を逸脱しない限り、下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples as long as it does not deviate from the gist thereof.
[実験例1]
(1)非水硬性化合物、水硬性化合物の作製
 非水硬性化合物A:γ-2CaO・SiO。試薬1級の炭酸カルシウムと試薬1級の二酸化ケイ素とをモル比2:1で混合し、1,400℃で2時間熱処理し、室温まで放置して作製した。ブレーン比表面積は3,500cm/gであった。
[Experimental Example 1]
(1) Preparation of non-hydraulic compound and hydraulic compound Non-hydraulic compound A: γ-2CaO · SiO 2 . Calcium carbonate of the first grade of the reagent and silicon dioxide of the first grade of the reagent were mixed at a molar ratio of 2: 1 and heat-treated at 1,400 ° C. for 2 hours, and left to room temperature to prepare. The brain specific surface area was 3,500 cm 2 / g.
 非水硬性化合物B:3CaO・2SiO。試薬1級の炭酸カルシウムと試薬1級の二酸化ケイ素とをモル比3:2で混合し、1,400℃で2時間熱処理し、室温まで放置して作製した。ブレーン比表面積は3,500cm/gであった。 Non-hydraulic compound B: 3CaO · 2SiO 2 . Calcium carbonate of the first grade of the reagent and silicon dioxide of the first grade of the reagent were mixed at a molar ratio of 3: 2, heat-treated at 1,400 ° C. for 2 hours, and left to room temperature to prepare. The brain specific surface area was 3,500 cm 2 / g.
 非水硬性化合物C:α-CaO・SiO。試薬1級の炭酸カルシウムと試薬1級の二酸化ケイ素とを1:1のモル比で混合し、1,500℃で2時間熱処理し、室温まで放置して作製した。ブレーン比表面積は3,500cm/gであった。 Non-hydraulic compound C: α-CaO · SiO 2 . Calcium carbonate of the first grade of the reagent and silicon dioxide of the first grade of the reagent were mixed at a molar ratio of 1: 1 and heat-treated at 1,500 ° C. for 2 hours, and left to room temperature to prepare. The brain specific surface area was 3,500 cm 2 / g.
 非水硬性化合物D:3CaO・MgO・2SiO。試薬1級の炭酸カルシウムと試薬1級の酸化マグネシウムと試薬1級の二酸化ケイ素とを3:1:2のモル比で混合し、1,400℃で2時間熱処理し、室温まで放置して作製した。ブレーン比表面積が3,500cm/gであった。 Non-hydraulic compound D: 3CaO, MgO, 2SiO 2 . Reagent 1st grade calcium carbonate, Reagent 1st grade magnesium oxide and Reagent 1st grade silicon dioxide are mixed at a molar ratio of 3: 1: 2, heat treated at 1,400 ° C. for 2 hours, and left to room temperature. did. The brain specific surface area was 3,500 cm 2 / g.
 非水硬性化合物E:非水硬性化合物Aと非水硬性化合物Bとを混合して、それぞれ50%含む非水硬性化合物Eを作製した。ブレーン比表面積は3,500cm/gであった。 Non-hydraulic compound E: Non-hydraulic compound A and non-hydraulic compound B were mixed to prepare non-hydraulic compound E containing 50% of each. The brain specific surface area was 3,500 cm 2 / g.
 非水硬性化合物F:非水硬性化合物Aと非水硬性化合物Bと非水硬性化合物Cとを混合して、それぞれ33.4%、33.3%、33.3%含む非水硬性化合物Eを作製した。ブレーン比表面積は3,500cm/gであった。 Non-hydraulic compound F: Non-hydraulic compound E containing 33.4%, 33.3%, and 33.3% of a mixture of non-hydraulic compound A, non-hydraulic compound B, and non-hydraulic compound C, respectively. Was produced. The brain specific surface area was 3,500 cm 2 / g.
 水硬性化合物G:β-2CaO・SiO。試薬1級の炭酸カルシウムと試薬1級の二酸化ケイ素とをモル比2:1で混合し、1,400℃で2時間熱処理し、室温まで放置して、粉砕してXRDでγ-2CaO・SiOのピークが確認されなくなるまで同様の熱処理を繰り返した。β-2CaO・SiOのみのピークが確認された後、ブレーン比表面積が3,500cm/gの水硬性化合物Eを作製した。 Hydraulic compound G: β-2CaO · SiO 2 . Reagent 1st grade calcium carbonate and reagent 1st grade silicon dioxide are mixed at a molar ratio of 2: 1, heat treated at 1,400 ° C. for 2 hours, left at room temperature, crushed, and γ-2CaO · SiO in XRD. The same heat treatment was repeated until the peak of 2 was no longer confirmed. After the peak of only β-2CaO · SiO 2 was confirmed, a hydraulic compound E having a brain specific surface area of 3,500 cm 2 / g was prepared.
 表1に示す非水硬性化合物A~F又は水硬性化合物G10部とサルフォアルミネートセメント100部とを、ボールミルを用いて、ブレーン比表面積が4,000cm/gとなるよう同時に粉砕して混合することでセメント組成物を調製し、水/粉体比0.5のモルタルをJIS R 5201「セメントの物理試験方法」に準じて調製した。このモルタルを用いて、圧縮強さ、中性化抵抗性、及び表面美観を調べた。結果を表1に併記する。試験の環境温度は20℃で行った。
 なお、上記「粉体」とは、非水硬性化合物A~F又は水硬性化合物Gとサルフォアルミネートセメントとを合わせたものをいう
 各材料の概要は下記のとおりである。
・サルフォアルミネートセメント:鄭州王楼セメント工業有限公司製、製品名「低アルカリサルフォアルミネートセメント 急硬型 42.5級」、ブレーン比表面積4000cm/g、SO/Alモル比0.6、イーリマイト含有量40%
Using a ball mill, 10 parts of the non-hydraulic compounds A to F or the hydraulic compound G shown in Table 1 and 100 parts of the sulfate cement are simultaneously pulverized so that the specific surface area of the brain is 4,000 cm 2 / g. A cement composition was prepared by mixing, and a mortar having a water / powder ratio of 0.5 was prepared according to JIS R 5201 “Physical test method for cement”. Using this mortar, compressive strength, neutralization resistance, and surface aesthetics were investigated. The results are also shown in Table 1. The environmental temperature of the test was 20 ° C.
The above-mentioned "powder" refers to a combination of non-hydraulic compounds A to F or hydraulic compounds G and sulfate cement. The outline of each material is as follows.
-Sulfoluminate cement: manufactured by Chungzhou Wangro Cement Industry Co., Ltd., product name "Low alkaline sulfoaluminate cement hardened type 42.5 grade", brain specific surface area 4000 cm 2 / g, SO 3 / Al 2 O 3 Molar ratio 0.6, elimite content 40%
・28日圧縮強さ
 4×4×16cmの供試体を作製し、JIS R 5201「セメントの物理試験方法」に準じて材齢28日の圧縮強さを測定。
・中性化抵抗性:JIS R 5201「セメントの物理試験方法」に準じて4×4×16cmのモルタル供試体を作製し、材齢28日まで20℃水中養生を施した後、JIS A 1153「コンクリートの促進中性化試験方法」に準じて20℃・相対湿度60%・炭酸ガス濃度5%の環境で促進中性化を行い、8週間後に供試体を輪切りし、断面にフェノールフタレインアルコール溶液を噴霧して、供試体表面から内部にかけての非変色領域の最大長さを炭酸化深さとしてノギスを用いて測定した。炭酸化深さは小さいほど中性化抵抗性が高い。
・美観:中性化抵抗性を評価後、4cm×16cmの1つの面を、“亀の子たわし”で10往復こすり、剥がれ落ちた粉状のものを計量器で計り取った。0.1g以下を粉吹き「無」、0.1gを超えた場合は粉吹き「有」とした。
-28-day compressive strength A specimen of 4 x 4 x 16 cm was prepared, and the compressive strength of 28 days of age was measured according to JIS R 5201 "Physical test method for cement".
-Neutralization resistance: A 4 x 4 x 16 cm mortar specimen was prepared according to JIS R 5201 "Physical test method for cement", and after being cured in water at 20 ° C until the age of 28 days, JIS A 1153 According to the "Promoted Neutralization Test Method for Concrete", accelerated neutralization is performed in an environment of 20 ° C., relative humidity of 60%, and carbon dioxide gas concentration of 5%. The alcohol solution was sprayed and the maximum length of the non-discolored region from the surface to the inside of the specimen was measured using a caliper as the carbon dioxide depth. The smaller the carbonation depth, the higher the neutralization resistance.
-Aesthetic: After evaluating the neutralization resistance, one surface of 4 cm x 16 cm was rubbed 10 times with a "turtle scrubbing brush", and the powdery material that had peeled off was measured with a measuring instrument. When it was 0.1 g or less, it was rated as “no”, and when it exceeded 0.1 g, it was rated as “yes”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1~3中の質量比(X/(X+Y))は、サルフォアルミネートセメントに含まれるイーリマイトと非水硬性化合物A~F若しくは水硬性化合物Gに対する非水硬性化合物A~F若しくは水硬性化合物Fの質量割合であり、単位は%である。 The mass ratio (X / (X + Y)) in Tables 1 to 3 is the non-hydraulic compounds A to F or the non-hydraulic compounds A to F or the non-hydraulic compounds A to F or the non-hydraulic compounds A to F contained in the sulfoluminate cement. It is the mass ratio of the hydraulic compound F, and the unit is%.
[実験例2]
 サルフォアルミネートセメントと、非水硬性化合物Aを表2に示す配合となるように混合割合を変えたこと以外は実験例1と同様にして、セメント組成物、及びモルタルを調製した。このモルタルを用いて、実験例1と同様にして、圧縮強さ、中性化抵抗性、及び表面美観を調べた。結果を表2に示す。
[Experimental Example 2]
A cement composition and a mortar were prepared in the same manner as in Experimental Example 1 except that the mixing ratio of the sulfoluminate cement and the non-hydraulic compound A was changed so as to have the composition shown in Table 2. Using this mortar, the compressive strength, neutralization resistance, and surface aesthetics were examined in the same manner as in Experimental Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実験例3]
(サルフォアルミネートセメントの作製)
・サルフォアルミネートセメントA
 それぞれ試薬である炭酸カルシウム粉末、アルミナ粉末、硫酸カルシウム粉末を用いて、焼成後にサルフォアルミネートセメント中のイーリマイト含有量が45%となるような配合でこれらを混合し、ロータリーキルンで1330℃焼成した後、ブレーン比表面積が4,000cm/gとなるように粉砕して、サルフォアルミネートセメントAを作製した。
[Experimental Example 3]
(Making sulfoluminate cement)
・ Sulfoluminate cement A
Using calcium carbonate powder, alumina powder, and calcium sulfate powder, which are the respective reagents, they were mixed in a composition such that the elimate content in the sulfoluminate cement was 45% after firing, and the mixture was fired at 1330 ° C. in a rotary kiln. After that, it was pulverized so that the specific surface area of the brain was 4,000 cm 2 / g to prepare sulfoaluminate cement A.
・サルフォアルミネートセメントB
 イーリマイト含有量が15%となるような配合とした以外はサルフォアルミネートセメントAの作製と同様な方法でサルフォアルミネートセメントBを作製した。
・ Sulfoluminate cement B
The sulfoaluminate cement B was prepared in the same manner as in the preparation of the sulfoluminate cement A except that the composition was such that the elimite content was 15%.
・サルフォアルミネートセメントC
 イーリマイト含有量が7%となるような配合とした以外はサルフォアルミネートセメントAの作製と同様な方法でサルフォアルミネートセメントCを作製した。
・ Sulfoluminate cement C
Sulfoaluminate cement C was prepared in the same manner as in the preparation of sulphoaluminate cement A except that the composition was such that the elimite content was 7%.
 サルフォアルミネートセメントの種類と配合を表3に示すように変えたこと以外は実験例1と同様にして、セメント組成物、及びモルタルを調製した。このモルタルを用いて、実験例1と同様にして、圧縮強さ、中性化抵抗性、及び表面美観を調べた。結果を表3に示す。 The cement composition and mortar were prepared in the same manner as in Experimental Example 1 except that the type and composition of the sulfoluminate cement were changed as shown in Table 3. Using this mortar, the compressive strength, neutralization resistance, and surface aesthetics were examined in the same manner as in Experimental Example 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003

 表3中のサルフォアルミネートセメントの種類の「X」とは、実験例1で使用したサルフォアルミネートセメントを指す。
Figure JPOXMLDOC01-appb-T000003

The “X” of the type of sulphoaluminate cement in Table 3 refers to the sulphoaluminate cement used in Experimental Example 1.
 本発明は、特に土木分野、建築分野等で用いられるセメント組成物として好適に使用できる。
 
 

 
INDUSTRIAL APPLICABILITY The present invention can be suitably used as a cement composition particularly used in the fields of civil engineering, construction and the like.



Claims (6)

  1.  γ-2CaO・SiO、3CaO・2SiO、α-CaO・SiO、及びカルシウムマグネシウムシリケートからなる群から選ばれる1種又は2種以上の非水硬性化合物と、サルフォアルミネートセメントとを含み、前記非水硬性化合物の含有量が5~40質量%であるセメント組成物。 Includes one or more non-hydraulic compounds selected from the group consisting of γ-2CaO · SiO 2 , 3CaO · 2SiO 2 , α-CaO · SiO 2 , and calcium magnesium silicate, and sulfate cement. , A cement composition having a content of the non-hydraulic compound of 5 to 40% by mass.
  2.  前記サルフォアルミネートセメントに含まれるイーリマイトと前記非水硬性化合物に対する前記非水硬性化合物の質量割合(非水硬性化合物/(非水硬性化合物+イーリマイト)×100)が10~90質量%である請求項1に記載のセメント組成物。 The mass ratio of the non-hydraulic compound to the elimite contained in the sulfate cement and the non-hydraulic compound (non-hydraulic compound / (non-hydraulic compound + elimite) × 100) is 10 to 90% by mass. The cement composition according to claim 1.
  3.  前記非水硬性化合物がγ-2CaO・SiOである請求項1又は2に記載のセメント組成物。 The cement composition according to claim 1 or 2, wherein the non-hydraulic compound is γ-2CaO · SiO 2 .
  4.  請求項1~3のいずれか1項に記載に記載のセメント組成物の製造方法であって、
     前記非水硬性化合物と前記サルフォアルミネートセメントを同時に粉砕して混合する粉砕混合工程を含むセメント組成物の製造方法。
    The method for producing a cement composition according to any one of claims 1 to 3.
    A method for producing a cement composition, which comprises a pulverizing and mixing step of simultaneously pulverizing and mixing the non-hydraulic compound and the sulfoaluminate cement.
  5.  鉄筋コンクリートを構成するセメント組成物として、請求項1~3のいずれか1項に記載に記載のセメント組成物を含有させる鉄筋コンクリートの中性化抑制方法。 A method for suppressing neutralization of reinforced concrete, which comprises the cement composition according to any one of claims 1 to 3 as a cement composition constituting reinforced concrete.
  6.  鉄筋コンクリートを構成するセメント組成物として、請求項1~3のいずれか1項に記載に記載のセメント組成物を含有させる鉄筋コンクリートの表面美観保持方法。
     

     
    A method for preserving the surface aesthetics of reinforced concrete, which comprises the cement composition according to any one of claims 1 to 3 as a cement composition constituting reinforced concrete.


PCT/JP2021/030074 2020-08-24 2021-08-17 Cement composition, production method, method for inhibiting carbonation of steel-reinforced concrete by adding said cement composition, and method for keeping beautiful appearance of surface of steel-reinforced concrete by adding said cement composition WO2022044890A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020141003A JP6983963B1 (en) 2020-08-24 2020-08-24 Cement composition
JP2020-141003 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022044890A1 true WO2022044890A1 (en) 2022-03-03

Family

ID=79170122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030074 WO2022044890A1 (en) 2020-08-24 2021-08-17 Cement composition, production method, method for inhibiting carbonation of steel-reinforced concrete by adding said cement composition, and method for keeping beautiful appearance of surface of steel-reinforced concrete by adding said cement composition

Country Status (2)

Country Link
JP (1) JP6983963B1 (en)
WO (1) WO2022044890A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063236A1 (en) * 2021-10-13 2023-04-20 株式会社トクヤマ METHOD FOR PRODUCING CALCINED PRODUCT CONTAINING γ-2CAO∙SIO2
CN116553841A (en) * 2023-04-18 2023-08-08 河南理工大学 Carbon-cured low-calcium high-magnesium clinker and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016234A1 (en) * 2001-08-21 2003-02-27 Denki Kagaku Kogyo Kabushiki Kaisha Cement admixture, cement composition, and method for suppressing carbonation using the same
JP2009537433A (en) * 2006-05-18 2009-10-29 コミッサリア タ レネルジー アトミーク Cement-based composition for embedding boron-containing aqueous solution, embedding method, and cement grout composition
JP2016529200A (en) * 2013-09-03 2016-09-23 ハイデルベルクセメント・アクチエンゲゼルシャフト Calcium sulfoaluminate composite binder
WO2018154890A1 (en) * 2017-02-22 2018-08-30 デンカ株式会社 Hardening agent for ready-mix shipped rapid-hardening concrete, ready-mix shipped rapid-hardening concrete material, ready-mix shipped rapid-hardening concrete composition, and method for preparing same
JP2019058091A (en) * 2017-09-26 2019-04-18 デンカ株式会社 Weed control material and usage of the same
JP2020152610A (en) * 2019-03-20 2020-09-24 デンカ株式会社 Expansive admixture, cement composition, and, concrete

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016234A1 (en) * 2001-08-21 2003-02-27 Denki Kagaku Kogyo Kabushiki Kaisha Cement admixture, cement composition, and method for suppressing carbonation using the same
JP2009537433A (en) * 2006-05-18 2009-10-29 コミッサリア タ レネルジー アトミーク Cement-based composition for embedding boron-containing aqueous solution, embedding method, and cement grout composition
JP2016529200A (en) * 2013-09-03 2016-09-23 ハイデルベルクセメント・アクチエンゲゼルシャフト Calcium sulfoaluminate composite binder
WO2018154890A1 (en) * 2017-02-22 2018-08-30 デンカ株式会社 Hardening agent for ready-mix shipped rapid-hardening concrete, ready-mix shipped rapid-hardening concrete material, ready-mix shipped rapid-hardening concrete composition, and method for preparing same
JP2019058091A (en) * 2017-09-26 2019-04-18 デンカ株式会社 Weed control material and usage of the same
JP2020152610A (en) * 2019-03-20 2020-09-24 デンカ株式会社 Expansive admixture, cement composition, and, concrete

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063236A1 (en) * 2021-10-13 2023-04-20 株式会社トクヤマ METHOD FOR PRODUCING CALCINED PRODUCT CONTAINING γ-2CAO∙SIO2
CN116553841A (en) * 2023-04-18 2023-08-08 河南理工大学 Carbon-cured low-calcium high-magnesium clinker and preparation method and application thereof
CN116553841B (en) * 2023-04-18 2024-05-07 河南理工大学 Carbon-cured low-calcium high-magnesium clinker and preparation method and application thereof

Also Published As

Publication number Publication date
JP6983963B1 (en) 2021-12-17
JP2022036676A (en) 2022-03-08

Similar Documents

Publication Publication Date Title
JP2004051426A (en) Cement admixture, cement composition and mortar or concrete prepared using this
WO2022044890A1 (en) Cement composition, production method, method for inhibiting carbonation of steel-reinforced concrete by adding said cement composition, and method for keeping beautiful appearance of surface of steel-reinforced concrete by adding said cement composition
JP2004315303A (en) Cement composition, coating material and chlorine blocking method using the same
JPH0986978A (en) Mixed cement composition
KR101345203B1 (en) Low alkali non-cement concrete composition with tannin and block unit comprising the same
JP2001064054A (en) Cement admixture and cement composition
WO2021215509A1 (en) Cement admixture, expansion material, and cement composition
KR101111635B1 (en) Low alkali concrete composition with tannin and block unit comprising the same
JP3888931B2 (en) Hardened cement and method for producing the same
JP4497776B2 (en) Cement admixture, cement composition, and mortar or concrete using the same
JPH05330875A (en) Cement admixture and cement composition
JP7181355B1 (en) Cement admixture, method for producing cement admixture, and cement composition
JP4293324B2 (en) Cement admixture and cement composition
JP3390075B2 (en) Cement admixture and cement composition
JP7001784B1 (en) Hard-hardening repair mortar material, hard-hardening repair mortar composition and hardened body
JP3367576B2 (en) Hydration heat generation time adjusting material for cement and cement composition
JP3460161B2 (en) Cement admixture and cement composition
JP2002293591A (en) Cement admixture and cement composition
JP2004051423A (en) Cement admixture and cement composition
JP2005082440A (en) Quick hardening cement admixture, cement composition, and mortar composition
JPH07206492A (en) Cement admixture and cement composition
JP4315565B2 (en) Cement admixture and cement composition
WO2023234041A1 (en) Cement material, cement composition, and hardened article
JP2023028444A (en) Quick-hardening admixture and quick-hardening cement composition
WO2022070683A1 (en) Ultra rapid hardening grout material, ultra rapid hardening grout mortar, and hardened body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861318

Country of ref document: EP

Kind code of ref document: A1