WO2023234041A1 - Cement material, cement composition, and hardened article - Google Patents

Cement material, cement composition, and hardened article Download PDF

Info

Publication number
WO2023234041A1
WO2023234041A1 PCT/JP2023/018495 JP2023018495W WO2023234041A1 WO 2023234041 A1 WO2023234041 A1 WO 2023234041A1 JP 2023018495 W JP2023018495 W JP 2023018495W WO 2023234041 A1 WO2023234041 A1 WO 2023234041A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
mass
less
parts
alumina cement
Prior art date
Application number
PCT/JP2023/018495
Other languages
French (fr)
Japanese (ja)
Inventor
裕太 渡辺
崇 佐々木
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2023234041A1 publication Critical patent/WO2023234041A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/345Hydraulic cements not provided for in one of the groups C04B7/02 - C04B7/34

Definitions

  • the present invention relates to a cement material, a composition containing the material, and a cured product.
  • Patent Document 1 In order to impart rapid hardening to cement materials, it has long been considered to add calcium aluminate or even gypsum to Portland cement (Patent Document 1).
  • pot life is also important as a required performance of cement materials. Considering the construction time and cleaning time of the equipment used, it is desirable to ensure a pot life of at least 10 minutes, preferably 15 minutes or more. However, ensuring a long pot life delays the curing time, making it difficult to meet the required strength at one hour of material age.
  • ultra-fast hardening cement compositions made by adding metal sulfates, fly ash, etc. to calcium aluminates and gypsum to ensure fluidity are known.
  • Patent Documents 2 to 4 ultra-fast hardening cement in which lithium carbonate is blended with calcium aluminate and gypsum
  • Patent Document 6 ultra-fast hardening cement in which calcium aluminate, anhydrous gypsum, lithium carbonate, and slaked lime are blended in Portland cement have also been proposed (Patent Document 6). ).
  • the present invention aims to provide a cement material that can obtain a certain handling time even at low temperatures and has a high strength development property in a short time.
  • the present inventors have found that the problem can be solved by using a cement material containing cement, specific calcium aluminate, specific alumina cement, gypsum, and aggregate.
  • the inventors have discovered that the problem can be solved, leading to the present invention. That is, the present invention is as follows.
  • the alumina cement is an alumina cement containing SO 3 , ZrO 2 and P 2 O 5 , The total amount of SO 3 , ZrO 2 and P 2 O 5 in the alumina cement is 0.01% by mass or more and 2.1% by mass or less,
  • a cement material in which the content ratio of P 2 O 5 (P 2 O 5 /(SO 3 +ZrO 2 +P 2 O 5 )) in the alumina cement is 10% by mass or more and 45% by mass or less.
  • the CaO/Al 2 O 3 molar ratio of the alumina cement is 0.5 or more and 2.0 or less, and the content ratio of the alumina cement is 30 parts by mass or more and 100 parts by mass with respect to 100 parts by mass of the cement.
  • the cement material according to [1] above, wherein the cement material is [3] The CaO/Al 2 O 3 molar ratio of the calcium aluminate is 1.3 or more and 3.0 or less, and the content ratio of the calcium aluminate is 2 parts by mass or more with respect to 100 parts by mass of the cement.
  • Cement material according to [1] or [2] above which is 30 parts by mass or less
  • [5] A cured product using the cement composition according to [4] above.
  • the present invention it is possible to maintain fluidity even at low temperatures, so that a certain handling time can be obtained, and furthermore, to provide a cement material that has a high strength development property in a short time, that is, an initial strength development property. I can do it.
  • the cement material of the present invention is a cement material containing cement, calcium aluminate, alumina cement, gypsum, and aggregate, in which the vitrification rate of the calcium aluminate is 90% or more, and the alumina cement has a vitrification rate of 90% or more.
  • the vitrification rate is 1% or more and less than 90%
  • the alumina cement is an alumina cement containing SO 3 , ZrO 2 and P 2 O 5
  • the alumina cement contains SO 3 , ZrO 2 and P 2
  • the total amount of O 5 is 0.01% by mass or more and 2.1% by mass or less
  • the content ratio of P 2 O 5 (P 2 O 5 / (SO 3 + ZrO 2 + P 2 O 5 )) in the alumina cement is It is 10% by mass or more and 45% by mass or less.
  • cement The cement used in the present invention is not particularly limited, and includes various Portland cements such as normal, early strength, ultra early strength, low heat, and medium heat, and in addition to these Portland cements, blast furnace slag, fly ash, silica fume, etc. These include various types of mixed cement, environmentally friendly cement (ecocement) made from municipal waste incineration ash and sewage sludge incineration ash, commercially available fine particle cement, and white cement. It is also possible to use it in a format. Further, it is also possible to use a cement that has been adjusted by increasing or decreasing the amount of components (for example, gypsum, etc.) normally used in cement. Furthermore, combinations of two or more of these can also be used. In the present invention, it is preferable to select ordinary Portland cement or early-strength Portland cement from the viewpoint of high strength development and increasing adhesive strength. Note that in this specification, cement does not include alumina cement.
  • the cement used in the present invention has a Blaine specific surface area value (hereinafter also simply referred to as "Blaine value”) of 2,500 cm 2 /g or more and 7,000 cm 2 /g. It is preferably below, more preferably 2,750 cm 2 /g or more and 6,000 cm 2 /g or less, and even more preferably 3,000 cm 2 /g or more and 4,500 cm 2 /g or less.
  • the Blaine specific surface area value is determined in accordance with JIS R 5201:2015 (physical testing method for cement).
  • Calcium aluminate used in the present invention is a general term for compounds containing CaO and Al 2 O 3 as main components, and has a vitrification rate of 90% or more, preferably 95% or more. If the vitrification rate is less than 90%, a certain handling time cannot be obtained, and the ability of cement concrete to develop high strength in a short period of time, that is, the ability to develop initial strength, decreases.
  • the crystalline portion of calcium aluminate is not particularly limited, examples of minerals produced include calcium aluminates such as 3CaO.Al 2 O 3 and 12CaO.7Al 2 O 3 . be done.
  • impurity compounds examples include gehlenite, calcium aluminoferrite, calcium ferrite, etc. caused by subcomponents derived from raw materials and unavoidable impurities.
  • the vitrification rate of calcium aluminate can be adjusted by adjusting the heating melting temperature and cooling method in the method described below.
  • the vitrification rate can be determined by powder X-ray diffraction/Rietveld analysis. That is, a predetermined amount of an internal standard substance such as aluminum oxide or magnesium oxide is added to a sample, thoroughly mixed in an agate mortar, etc., and then powder X-ray diffraction measurement is performed. By analyzing the measurement results with quantitative software, the amount of mineral composition generated is determined, and the remaining amount is taken as the sample vitrification rate.
  • the quantitative software "SIROQUANT" manufactured by Sietronics, etc. can be used as the quantitative software.
  • a method for obtaining calcium aluminate includes heat-treating a CaO raw material, an Al 2 O 3 raw material, etc. using a rotary kiln, an electric furnace, or the like. Specifically, there is a method in which the raw materials are mixed at a predetermined ratio, heated and melted using an electric furnace, and then rapidly cooled by contacting with compressed air or water.
  • CaO raw materials for producing calcium aluminate include calcium carbonate such as limestone and shells, calcium hydroxide such as slaked lime, and calcium oxide such as quicklime.
  • examples of the Al 2 O 3 raw material include bauxite and an industrial byproduct called aluminum residual ash.
  • calcium aluminate When calcium aluminate is obtained industrially, it may contain impurities. Specific examples include SiO 2 , Fe 2 O 3 , MgO, TiO 2 , MnO, Na 2 O, K 2 O, Li 2 O, S, P 2 O 5 , and F.
  • impurities include SiO 2 , Fe 2 O 3 , MgO, TiO 2 , MnO, Na 2 O, K 2 O, Li 2 O, S, P 2 O 5 , and F.
  • impurities include SiO 2 , Fe 2 O 3 , MgO, TiO 2 , MnO, Na 2 O, K 2 O, Li 2 O, S, P 2 O 5 , and F.
  • the presence of these impurities does not pose any particular problem as long as it does not substantially impede the object of the present invention. Specifically, no particular problem arises as long as the total amount of these impurities is 10% or less.
  • the molar ratio of CaO to Al 2 O 3 (CaO/Al 2 O 3 molar ratio) in the calcium aluminate of the present invention is preferably in the range of 1.3 or more and 3.0 or less, and 1.5 or more and 2. More preferably, the range is .0 or less.
  • the CaO/Al 2 O 3 molar ratio is 1.3 or more, sufficient initial strength development is likely to be obtained.
  • the CaO/Al 2 O 3 molar ratio is 3.0 or less, a constant handling time can be easily ensured.
  • the calcium aluminate of the present invention preferably has a loss on ignition of 1% or more as defined in JIS R 5202:2015, and more preferably has a loss on ignition of 2% or more. .
  • the ignition loss of calcium aluminate is 1% or more, a certain amount of handling time can be obtained, and the occurrence of "splatter" can be easily suppressed.
  • the method of increasing the ignition loss to 1% or more is not particularly limited, but examples include a method of supplying moisture or moisture, a method of supplying carbon dioxide gas, and the like.
  • the particle size of the calcium aluminate of the present invention is not particularly limited, but usually the Blaine value is preferably 3,000 cm 2 /g or more and 9,000 cm 2 /g or less, 4,000 cm 2 /g or more 8, 000 cm 2 /g or less is more preferable.
  • the Blaine value of calcium aluminate is 3,000 cm 2 /g or more, it is easy to sufficiently develop initial strength. Further, since the Blaine value of calcium aluminate is 9,000 cm 2 /g or less, a certain handling time can be easily ensured.
  • the content ratio of calcium aluminate of the present invention is 2 parts by mass or more and 30 parts by mass or less, based on 100 parts by mass of cement in the cement material, from the viewpoint of ensuring a certain handling time and improving initial strength development.
  • the content is preferably 5 parts by mass or more and 20 parts by mass or less.
  • the alumina cement used in the present invention is produced by mixing CaO raw materials, Al 2 O 3 raw materials, SO 3 raw materials, ZrO 2 raw materials, P 2 O 5 raw materials, etc., and firing the mixture in a kiln or the like, or melting it in an electric furnace or the like. It is a general term for substances with hydration activity mainly composed of CaO and Al 2 O 3 obtained by cooling, and also has a vitrification rate of 1% or more and less than 90%, and has a fast curing time. It is a material with high initial strength development.
  • the vitrification rate of alumina cement can be adjusted by adjusting the heating and melting temperature and the cooling method, and is preferably 5% or more and less than 60%.
  • the CaO/Al 2 O 3 molar ratio of the alumina cement used in the present invention is preferably 0.5 or more and 2.0 or less, more preferably 0.7 or more and 1.8 or less.
  • the CaO/Al 2 O 3 molar ratio is within the above range, the curing time can be further shortened and the initial strength development property can be improved.
  • the alumina cement used in the present invention contains SO 3 , ZrO 2 and P 2 O 5 as chemical components.
  • the content range of each component in the alumina cement is preferably 0.01% by mass or more and 1.8% by mass or less, more preferably 0.05 to 1.0% by mass. preferable.
  • the total amount of SO 3 , ZrO 2 and P 2 O 5 in the alumina cement is 0.01% by mass or more and 2.1% by mass or less. From the viewpoint of securing a certain handling time and increasing initial strength development, the content is preferably 0.07% by mass or more and 1.7% by mass or less, and 0.1% by mass or more and 1.5% by mass or less. is more preferable.
  • the content ratio of P 2 O 5 is 10% by mass or more and 45% by mass or less. From the viewpoint of securing a certain handling time and increasing initial strength development, the content is preferably 12% by mass or more and 43% by mass or less, and more preferably 15% by mass or more and 40% by mass or less. Furthermore, in the present invention, the contents of SO 3 , ZrO 2 , and P 2 O 5 can be measured by X-ray fluorescence diffraction (XRF), and from the respective contents obtained by measurement, it is possible to determine the content of SO 3 , ZrO 2 , and P 2 O 5 . The content ratio can be determined.
  • XRF X-ray fluorescence diffraction
  • the content ratio of the alumina cement of the present invention should be 30 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of cement in the cement material, from the viewpoint of ensuring a certain handling time and improving initial strength development. is preferable, and more preferably 50 parts by mass or more and 90 parts by mass or less.
  • Alumina cement is commercially available from various companies, and representative examples include "Denka Alumina Cement No. 1" and “Denka High Alumina Cement” manufactured by Denka Corporation, "Asahi Alumina Cement No. 1" manufactured by AGC Ceramics, and "Asahi Examples include “Fonju” and crushed products thereof.
  • the alumina cement of this embodiment is made of calcium aluminoferrite such as 4CaO.Al 2 O 3 .Fe 2 O 3 , 6CaO.2Al 2 O 3.Fe 2 O 3 , 6CaO.Al 2 O 3 . ⁇ Calcium ferrite such as Fe 2 O 3 and CaO ⁇ Fe 2 O 3 , calcium aluminosilicate such as Gehlenite 2CaO ⁇ Al 2 O 3 ⁇ SiO 2 , anorthite CaO ⁇ Al 2 O 3 ⁇ 2SiO 2 , melvinite 3CaO ⁇ MgO ⁇ 2SiO 2 , akermanite 2CaO ⁇ MgO ⁇ 2SiO 2 , calcium magnesium silicate such as monticerite CaO ⁇ MgO ⁇ SiO 2 , tricalcium silicate 3CaO ⁇ SiO 2 , dicalcium silicate 2CaO ⁇ SiO 2 , rankinite 3CaO ⁇ 2Si
  • alumina cement When alumina cement is obtained industrially, it may contain impurities. Specific examples include SiO 2 , Fe 2 O 3 , MgO, TiO 2 , MnO, Na 2 O, K 2 O, SrO, Cr 2 O 3 , Nb 2 O 5 , Ga 2 O 3 , Y 2 Examples include O 3 , ThO 2 , NiO, SeO 2 , Li 2 O, Rb 2 O, As 2 O 3 , ZnO, S, Cl and F. The presence of these impurities does not pose any particular problem as long as it does not substantially impede the object of the present invention. Specifically, no particular problem arises as long as the total amount of these impurities is 10% or less.
  • the particle size of the alumina cement of the present invention is not particularly limited, but is usually in the Blaine value range of 3,000 cm 2 /g or more and 9,000 cm 2 /g or less, and 4,000 cm 2 /g or more 8 ,000 cm 2 /g or less is more preferable. When it is 3,000 cm 2 /g or more, initial strength development is good, and when it is 9,000 cm 2 /g or less, handling is easy.
  • the gypsum used in the present invention is a general term for anhydrous, hemihydrous, or dihydric gypsum, and is not particularly limited, but from the viewpoint of strength development, it is preferable to use anhydrous gypsum or hemihydrate gypsum. Preferably, the use of anhydrite is more preferable.
  • the particle size of gypsum is not particularly limited, it is usually preferably 3,000 or more and 9,000 cm 2 /g or less, more preferably 4,000 or more and 8,000 cm 2 /g or less in Blaine value. When it is 3,000 cm 2 /g or more, dimensional stability becomes good, and when it is 9,000 cm 2 /g or less, it is easy to ensure a certain handling time.
  • the content ratio of gypsum is preferably 20 parts by mass or more and 120 parts by mass or less, based on 100 parts by mass of calcium aluminate in the cement material, from the viewpoint of ensuring a certain handling time and improving initial strength development. , more preferably 30 parts by mass or more and 110 parts by mass or less.
  • aggregate As the aggregate used in the present invention, fine aggregates and coarse aggregates similar to those used for ordinary cement mortar and concrete can be used. Namely, river sand, river gravel, mountain sand, mountain gravel, crushed stone, crushed sand, limestone aggregate, lime sand, silica sand, colored sand, artificial aggregate, blast furnace slag aggregate, sea sand, sea gravel, artificial lightweight aggregate, and heavy aggregate can be used, and it is also possible to combine these.
  • the content ratio of aggregate is preferably 40 parts by mass or more and 250 parts by mass or less, more preferably 50 parts by mass or more and 230 parts by mass or less, and 60 parts by mass with respect to 100 parts by mass of cement in the cement material. It is more preferably 1 part or more and 200 parts by mass or less.
  • the content ratio of the alkali metal carbonate is preferably 1 part by mass or more and 6 parts by mass or less in solid content, more preferably 2 parts by mass or more and 5 parts by mass or less, based on 100 parts by mass of cement of the cement material. preferable.
  • the content ratio of the alkali metal carbonate is within the above range, a certain handling time can be easily ensured, and strength development can be improved.
  • the cement material of the present invention can contain fine siliceous powder from the viewpoint of ensuring a certain handling time and improving strength development.
  • the siliceous fine powder include latent hydraulic substances such as fine granulated blast furnace slag powder, fly ash, and pozzolanic substances such as silica fume, of which silica fume is preferred.
  • the type of silica fume is not limited, from the viewpoint of fluidity, it is more preferable to use silica fume containing 10% or less of ZrO 2 as an impurity or acidic silica fume.
  • Acidic silica fume refers to silica fume that exhibits acidity, such that when 1 g of silica fume is stirred in 100 cc of pure water, the pH of the supernatant liquid is 5.0 or less.
  • the degree of fineness of the siliceous fine powder is not particularly limited, but usually, the blast furnace slag fine powder and fly ash have a Blaine value of 3,000 cm 2 /g or more and 9,000 cm 2 /g or less.
  • the BET specific surface area of silica fume is in the range of 20,000 cm 2 /g or more and 300,000 cm 2 /g or less.
  • the content ratio of the siliceous fine powder is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 2 parts by mass or more and 15 parts by mass or less, and 3 parts by mass or more and 12 parts by mass or less, per 100 parts by mass of cement in the cement material. Part or less is more preferable.
  • the content of the siliceous fine powder is at least the above lower limit, a certain handling time can be easily ensured, and strength development can be improved. Furthermore, since the content of the siliceous fine powder is equal to or less than the above upper limit, it is easy to ensure a constant handling time.
  • Set retarders may also be used in the present invention.
  • the setting retarder from the viewpoint of ensuring a certain handling time, oxycarboxylic acid or a salt thereof is preferable, gluconic acid is more preferable as the oxycarboxylic acid, and sodium salt is more preferable as the salt.
  • the content of the setting retarder is preferably 0.9 parts by mass or more and 6 parts by mass or less, and preferably 1.5 parts by mass or more and 5 parts by mass or less, based on 100 parts by mass of cement in the cement material. More preferred. When the content of the setting retarder is within the above range, a constant handling time can be easily ensured.
  • an antifoaming agent within a range that does not adversely affect performance.
  • Antifoaming agents are used for the purpose of suppressing the amount of air involved during kneading and mixing.
  • the type of antifoaming agent is not particularly limited as long as it does not significantly adversely affect the strength characteristics of the hardened mortar, and both liquid and powder forms can be used. Examples include polyether antifoaming agents, polyhydric alcohol antifoaming agents such as esterified polyhydric alcohols and alkyl ethers, alkyl phosphate antifoaming agents, and silicone antifoaming agents.
  • the content ratio of the antifoaming agent is preferably 0.002 parts by mass or more and 0.5 parts by mass or less, and 0.005 parts by mass or more and 0.45 parts by mass or less, based on 100 parts by mass of cement in the cement material. More preferably, the amount is 0.01 part by mass or more and 0.4 part by mass or less.
  • the content of the antifoaming agent is at least the above lower limit, the antifoaming effect can be sufficiently exhibited. Further, since the content ratio of the antifoaming agent is at most the above upper limit value, it is easy to ensure a constant handling time.
  • gas foaming substances water reducing agents, setting modifiers, AE agents, rust preventive agents, water repellents, antibacterial agents, colorants, antifreeze agents, fine limestone powder, blast furnace Cold slag fine powder, sewage sludge incineration ash and its molten slag, municipal waste incineration ash and its molten slag, admixtures such as pulp sludge incineration ash, thickeners, shrinkage reducers, polymers, clays such as bentonite, sepiolite, etc. It is possible to use one or more of minerals and anion exchangers such as hydrotalcite within a range that does not substantially impede the object of the present invention.
  • each material is not particularly limited, and each material may be mixed at the time of construction, or some or all of the materials may be mixed in advance.
  • any existing device can be used, such as a tilting mixer, an omni mixer, a Henschel mixer, a V-type mixer, a Proshear mixer, a Nauta mixer, and the like.
  • the cement composition of the present invention contains the above-described cement material of the present invention and water, and is obtained by kneading the cement material and water.
  • the amount of mixing water in the present invention is not particularly limited as it changes depending on the purpose/application and the content ratio of each material, but it is 10 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the cement material. It is preferably 14 parts by mass or more and 65 parts by mass or less, and even more preferably 16 parts by mass or more and 60 parts by mass or less.
  • Construction methods using the cement material of the present invention include adding a predetermined amount of water and mixing it and pouring it into the construction site, filling the mixed mortar with a pump, and blowing compressed air into the mixed mortar. Methods include spraying and painting with a plastering trowel.
  • the kneading method includes, but is not particularly limited to, a method of putting the ingredients into a container such as a pail can and kneading with a hand mixer, a method of kneading using a mixer etc., a method of mixing by hand, etc.
  • the cement composition of the present invention becomes a hardened product by being mixed and filled into a construction site. That is, a cured product made using the cement composition of the present invention is obtained.
  • the mixture was blended and fired at 1,500°C to synthesize clinker, which was ground using a ball mill to a Blaine value of 3,000 cm 2 /g to produce alumina cement. Note that the contents of SO 3 , ZrO 2 , and P 2 O 5 were measured by fluorescent X-ray diffraction.
  • (Measurement item) - Handling time The temperature of a cement composition obtained by mixing cement material and water in a 5°C environment was measured, and the time taken for the temperature to rise by 1°C from immediately after the cement composition was prepared was measured. The results are shown in Table 1. Note that the handling time is preferably 3 minutes or more, more preferably 10 minutes or more. Although the upper limit is not particularly specified, it may be about 30 minutes or less.
  • ⁇ Compressive strength A cement composition obtained by mixing cement material and water in a 5°C environment is prepared, packed into a 4 x 4 x 16 cm mold, and the resulting hardened product is compressed after 30 minutes. The strength was measured. The results are shown in Table 1. Note that the compressive strength is preferably 10 N/mm 2 or more, more preferably 20 N/mm 2 or more.
  • Example 2 No. 1 in Experimental Example 1 except that the alumina cement was prepared so that the content ratio of P 2 O 5 in the alumina cement was as shown in Table 2. It was carried out in the same manner as 1-3. The results of the measured handling time and compressive strength are also listed in Table 2.
  • Example 4 No. 1 of Experimental Example 1 except that the contents of alumina cement and calcium aluminate were blended in the proportions shown in Table 4. It was carried out in the same manner as 1-3. The results of the measured handling time and compressive strength are also listed in Table 4.
  • Example 5 No. 1 in Experimental Example 1 except that the aggregate content was blended in the ratio shown in Table 5. It was carried out in the same manner as 1-3. The results of the measured handling time and compressive strength are also listed in Table 5.
  • the cement material of the present invention contains specific calcium aluminate and specific alumina cement, and by combining it with specific materials, a certain handling time can be obtained even at low temperatures, and the initial strength development property can be improved. It was confirmed that the
  • the cement material of the present invention contains specific calcium aluminate and specific alumina cement, and when combined with specific materials, a certain handling time can be obtained even at low temperatures, and a cement that can obtain initial strength development properties. It becomes possible to provide a composition and a cured product. Therefore, it can be widely applied in the civil engineering and construction fields, such as fixing reinforcing bars to concrete structures used in water and sewage, agriculture and water, railways, electric power, roads, architecture, etc.

Abstract

This cement material contains cement, calcium aluminate, alumina cement, gypsum, and aggregate, wherein: the vitrification percentage of the calcium aluminate is at least 90%; the vitrification percentage of the alumina cement is at least 1% and less than 90%; the alumina cement is an alumina cement that contains SO3, ZrO2, and P2O5; the total amount of the SO3, ZrO2, and P2O5 in the alumina cement is from 0.01 mass% to 2.1 mass%; and the P2O5 content ratio (P2O5/(SO3+ZrO2+P2O5)) in the alumina cement is from 10 mass% to 45 mass%.

Description

セメント材料、セメント組成物、及び硬化体Cement materials, cement compositions, and hardened products
 本発明は、セメント材料及び該材料を含む組成物、硬化体に関する。 The present invention relates to a cement material, a composition containing the material, and a cured product.
 土木、建築分野では、合理化施工の要求が高まっており、超速硬性を有し、自己充填性やセルフレベリング性を有するセメント材料が求められている。 In the civil engineering and construction fields, there is an increasing demand for streamlined construction, and there is a need for cement materials that harden extremely quickly and have self-filling and self-leveling properties.
 セメント材料に急硬性を与えるため、ポルトランドセメントにカルシウムアルミネートや、さらにセッコウ類を添加することが古くから検討されている(特許文献1)。 In order to impart rapid hardening to cement materials, it has long been considered to add calcium aluminate or even gypsum to Portland cement (Patent Document 1).
 また、セメント材料の要求性能としては、可使時間も重要である。施工時間や使用器具等の洗浄時間も考慮すると、最低でも10分以上、できれば15分以上の可使時間を確保することが望ましい。しかしながら、可使時間を長く確保することは、硬化時間を遅らせることになり、材齢1時間での要求強度を満たすことが困難であった。 Additionally, pot life is also important as a required performance of cement materials. Considering the construction time and cleaning time of the equipment used, it is desirable to ensure a pot life of at least 10 minutes, preferably 15 minutes or more. However, ensuring a long pot life delays the curing time, making it difficult to meet the required strength at one hour of material age.
 超速硬性と可使時間とに優れたセメント材料としては、例えば、カルシウムアルミネート類や石膏類に、流動性を確保するために金属硫酸塩やフライアッシュ等を添加した超速硬性セメント組成物が知られている(特許文献2~4)。
 また、カルシウムアルミネート、セッコウ類に炭酸リチウムを配合した超速硬セメント(特許文献5)、ポルトランドセメントにカルシウムアルミネート、無水セッコウ、炭酸リチウムおよび消石灰を配合したモルタルも提案されている(特許文献6)。
As cement materials with excellent ultra-fast hardening properties and pot life, for example, ultra-fast hardening cement compositions made by adding metal sulfates, fly ash, etc. to calcium aluminates and gypsum to ensure fluidity are known. (Patent Documents 2 to 4).
In addition, ultra-fast hardening cement in which lithium carbonate is blended with calcium aluminate and gypsum (Patent Document 5), and mortar in which calcium aluminate, anhydrous gypsum, lithium carbonate, and slaked lime are blended in Portland cement have also been proposed (Patent Document 6). ).
米国特許第903019号明細書US Patent No. 903019 特開平03-12350号公報Japanese Patent Application Publication No. 03-12350 特開平01-230455号公報Japanese Patent Application Publication No. 01-230455 特開平11-139859号公報Japanese Patent Application Publication No. 11-139859 特開平01-290543号公報Japanese Patent Application Publication No. 01-290543 特開2005-75712号公報Japanese Patent Application Publication No. 2005-75712
 しかしながら、上記の従来の超速硬セメント材料は温度依存性が大きく、低温環境下での強度発現性が課題となっていた。すなわち、20℃以上では所定の材齢で要求強度を満たすものの、冬季における低温環境下では、所定の材齢で要求強度を満たすことが困難である。また、セメント材料を水で練り混ぜてから温度が1℃上昇する時間までの時間が短くなり、流動性が低下し、セメント組成物のハンドリングが困難になる。したがって、一定のハンドリングタイムが得られ、さらに短時間での強度発現性に優れたセメント材料が求められている。 However, the above-mentioned conventional ultra-fast hardening cement materials have large temperature dependence, and strength development under low-temperature environments has been an issue. That is, although the required strength is met at a predetermined age at 20° C. or higher, it is difficult to meet the required strength at a predetermined age in a low-temperature environment in winter. Furthermore, the time from when the cement material is kneaded with water to when the temperature rises by 1° C. is shortened, resulting in decreased fluidity and difficulty in handling the cement composition. Therefore, there is a need for a cement material that can provide a certain amount of handling time and has excellent strength development properties in a short period of time.
 以上より、本発明は、低温下でも一定のハンドリングタイムが得られ、短時間での高い強度発現性を有するセメント材料を提供することを目的とするものである。 Based on the above, the present invention aims to provide a cement material that can obtain a certain handling time even at low temperatures and has a high strength development property in a short time.
 本発明者らは、上記のような課題を解決するために鋭意研究を行った結果、セメント、特定のアルミン酸カルシウム、特定のアルミナセメント、石膏、及び骨材を含有するセメント材料により、当該課題を解決できることを見出し、本発明に至った。すなわち、本発明は以下の通りである。 As a result of intensive research to solve the above-mentioned problems, the present inventors have found that the problem can be solved by using a cement material containing cement, specific calcium aluminate, specific alumina cement, gypsum, and aggregate. The inventors have discovered that the problem can be solved, leading to the present invention. That is, the present invention is as follows.
[1] セメント、アルミン酸カルシウム、アルミナセメント、石膏、及び骨材を含有するセメント材料であって、
 前記アルミン酸カルシウムのガラス化率が、90%以上であり、
 前記アルミナセメントのガラス化率が、1%以上90%未満であり、
 前記アルミナセメントは、SOとZrOとPを含有するアルミナセメントであり、
 前記アルミナセメント中のSOとZrOとPの合計量が0.01質量%以上2.1質量%以下であり、
 前記アルミナセメントにおけるPの含有比率(P/(SO+ZrO+P))が10質量%以上45質量%以下であるセメント材料。
[2] 前記アルミナセメントのCaO/Alモル比が0.5以上2.0以下であり、前記アルミナセメントの含有割合は、前記セメント100質量部に対して、30質量部以上100質量部以下である、上記[1]に記載のセメント材料。
[3] 前記アルミン酸カルシウムのCaO/Alモル比が1.3以上3.0以下であり、前記アルミン酸カルシウムの含有割合は、前記セメント100質量部に対して、2質量部以上30質量部以下である、上記[1]または[2]に記載のセメント材料
[4] 上記[1]~[3]のいずれか1つに記載のセメント材料と水とを含有するセメント組成物。
[5] 上記[4]に記載のセメント組成物を用いてなる硬化体。
[1] A cement material containing cement, calcium aluminate, alumina cement, gypsum, and aggregate,
The vitrification rate of the calcium aluminate is 90% or more,
The vitrification rate of the alumina cement is 1% or more and less than 90%,
The alumina cement is an alumina cement containing SO 3 , ZrO 2 and P 2 O 5 ,
The total amount of SO 3 , ZrO 2 and P 2 O 5 in the alumina cement is 0.01% by mass or more and 2.1% by mass or less,
A cement material in which the content ratio of P 2 O 5 (P 2 O 5 /(SO 3 +ZrO 2 +P 2 O 5 )) in the alumina cement is 10% by mass or more and 45% by mass or less.
[2] The CaO/Al 2 O 3 molar ratio of the alumina cement is 0.5 or more and 2.0 or less, and the content ratio of the alumina cement is 30 parts by mass or more and 100 parts by mass with respect to 100 parts by mass of the cement. The cement material according to [1] above, wherein the cement material is
[3] The CaO/Al 2 O 3 molar ratio of the calcium aluminate is 1.3 or more and 3.0 or less, and the content ratio of the calcium aluminate is 2 parts by mass or more with respect to 100 parts by mass of the cement. Cement material according to [1] or [2] above, which is 30 parts by mass or less [4] Cement composition containing water and the cement material according to any one of [1] to [3] above. .
[5] A cured product using the cement composition according to [4] above.
 本発明によれば、低温下でも流動性を保持することができるため、一定のハンドリングタイムが得られ、さらに短時間での高い強度発現性、すなわち初期強度発現性を有するセメント材料を提供することができる。 According to the present invention, it is possible to maintain fluidity even at low temperatures, so that a certain handling time can be obtained, and furthermore, to provide a cement material that has a high strength development property in a short time, that is, an initial strength development property. I can do it.
 以下、本発明の一実施形態(本実施形態)を詳細に説明するが、本発明は当該実施形態に限定されるものではない。なお、本明細書における「%」及び「部」は特に規定しない限り質量基準とする。 Hereinafter, one embodiment of the present invention (this embodiment) will be described in detail, but the present invention is not limited to this embodiment. Note that "%" and "part" in this specification are based on mass unless otherwise specified.
[セメント材料]
 本発明のセメント材料は、セメント、アルミン酸カルシウム、アルミナセメント、石膏、及び骨材を含有するセメント材料であって、上記アルミン酸カルシウムのガラス化率が、90%以上であり、上記アルミナセメントのガラス化率が、1%以上90%未満であり、上記アルミナセメントは、SOとZrOとPを含有するアルミナセメントであり、上記アルミナセメント中のSOとZrOとPの合計量が0.01質量%以上2.1質量%以下であり、上記アルミナセメントにおけるPの含有比率(P/(SO+ZrO+P))が10質量%以上45質量%以下である。
[Cement material]
The cement material of the present invention is a cement material containing cement, calcium aluminate, alumina cement, gypsum, and aggregate, in which the vitrification rate of the calcium aluminate is 90% or more, and the alumina cement has a vitrification rate of 90% or more. The vitrification rate is 1% or more and less than 90%, and the alumina cement is an alumina cement containing SO 3 , ZrO 2 and P 2 O 5 , and the alumina cement contains SO 3 , ZrO 2 and P 2 The total amount of O 5 is 0.01% by mass or more and 2.1% by mass or less, and the content ratio of P 2 O 5 (P 2 O 5 / (SO 3 + ZrO 2 + P 2 O 5 )) in the alumina cement is It is 10% by mass or more and 45% by mass or less.
(セメント)
 本発明で使用するセメントとは、特に限定されるものではなく、普通、早強、超早強、低熱および中庸熱等の各種ポルトランドセメント、これらのポルトランドセメントに、高炉スラグやフライアッシュやシリカフュームなどを混合した各種混合セメント、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)、市販されている微粒子セメント、白色セメントなどが挙げられ、各種セメントを微粉末化して使用することも可能である。また、通常セメントに使用されている成分(例えば石膏等)量を増減して調整されたものも使用可能である。さらに、これらを2種以上組み合わせたものも使用可能である。
 本発明では、強度発現性が高く、付着強度を高める観点から、普通ポルトランドセメントや早強ポルトランドセメントを選定することが好ましい。
 なお、本明細書において、セメントには、アルミナセメントは含まれないものとする。
(cement)
The cement used in the present invention is not particularly limited, and includes various Portland cements such as normal, early strength, ultra early strength, low heat, and medium heat, and in addition to these Portland cements, blast furnace slag, fly ash, silica fume, etc. These include various types of mixed cement, environmentally friendly cement (ecocement) made from municipal waste incineration ash and sewage sludge incineration ash, commercially available fine particle cement, and white cement. It is also possible to use it in a format. Further, it is also possible to use a cement that has been adjusted by increasing or decreasing the amount of components (for example, gypsum, etc.) normally used in cement. Furthermore, combinations of two or more of these can also be used.
In the present invention, it is preferable to select ordinary Portland cement or early-strength Portland cement from the viewpoint of high strength development and increasing adhesive strength.
Note that in this specification, cement does not include alumina cement.
 本発明で使用するセメントは、製造コストや強度発現性の観点から、セメントのブレーン比表面積値(以下、単に「ブレーン値」ともいう)が、2,500cm/g以上7,000cm/g以下であることが好ましく、2,750cm/g以上6,000cm/g以下であることがより好ましく、3,000cm/g以上4,500cm/g以下であることがさらに好ましい。
 なお、本発明においてブレーン比表面積値は、JIS R 5201:2015(セメントの物理試験方法)に準拠して求められる。
From the viewpoint of manufacturing cost and strength development, the cement used in the present invention has a Blaine specific surface area value (hereinafter also simply referred to as "Blaine value") of 2,500 cm 2 /g or more and 7,000 cm 2 /g. It is preferably below, more preferably 2,750 cm 2 /g or more and 6,000 cm 2 /g or less, and even more preferably 3,000 cm 2 /g or more and 4,500 cm 2 /g or less.
In the present invention, the Blaine specific surface area value is determined in accordance with JIS R 5201:2015 (physical testing method for cement).
(アルミン酸カルシウム)
 本発明で使用するアルミン酸カルシウムは、CaOとAlを主成分とする化合物を総称するものであって、ガラス化率が、90%以上であり、好ましくは95%以上である。ガラス化率が90%未満では、一定のハンドリングタイムが得られず、また、セメントコンクリートの短期間での高い強度発現性、すなわち初期強度発現性が低下する。なお、アルミン酸カルシウムの結晶質部分は、特に限定されるものではないが、生成する鉱物として、具体的には、3CaO・Alや12CaO・7Al等のカルシウムアルミネートが生成される。不純物化合物としては、原料由来の副成分や不可避不純物に起因するゲーレナイト、カルシウムアルミノフェライト、カルシウムフェライト等が挙げられる。アルミン酸カルシウムのガラス化率は、後述する方法において、加熱溶融温度や冷却方法を調整することによって、調整することができる。
(calcium aluminate)
Calcium aluminate used in the present invention is a general term for compounds containing CaO and Al 2 O 3 as main components, and has a vitrification rate of 90% or more, preferably 95% or more. If the vitrification rate is less than 90%, a certain handling time cannot be obtained, and the ability of cement concrete to develop high strength in a short period of time, that is, the ability to develop initial strength, decreases. Although the crystalline portion of calcium aluminate is not particularly limited, examples of minerals produced include calcium aluminates such as 3CaO.Al 2 O 3 and 12CaO.7Al 2 O 3 . be done. Examples of impurity compounds include gehlenite, calcium aluminoferrite, calcium ferrite, etc. caused by subcomponents derived from raw materials and unavoidable impurities. The vitrification rate of calcium aluminate can be adjusted by adjusting the heating melting temperature and cooling method in the method described below.
 本発明において、ガラス化率は、粉末X線回折/リートベルト解析によって求めることが可能である。すなわち、試料に酸化アルミニウムや酸化マグネシウム等の内部標準物質を所定量添加し、めのう乳鉢等で十分混合したのち、粉末X線回折測定を実施する。測定結果を定量ソフトで解析することで、鉱物組成の生成量を求め、残部を試料ガラス化率とする。定量ソフトには、Sietronics社製の「SIROQUANT」等を用いることが可能である。 In the present invention, the vitrification rate can be determined by powder X-ray diffraction/Rietveld analysis. That is, a predetermined amount of an internal standard substance such as aluminum oxide or magnesium oxide is added to a sample, thoroughly mixed in an agate mortar, etc., and then powder X-ray diffraction measurement is performed. By analyzing the measurement results with quantitative software, the amount of mineral composition generated is determined, and the remaining amount is taken as the sample vitrification rate. As the quantitative software, "SIROQUANT" manufactured by Sietronics, etc. can be used.
 アルミン酸カルシウムを得る方法としては、CaO原料とAl原料等をロータリーキルンや電気炉等によって熱処理することが挙げられる。具体的には、各原料を所定の比率で混合し、電気炉等を用いて、加熱溶融し、圧縮空気や水に接触させるなどで急冷する方法が挙げられる。
 アルミン酸カルシウムを製造する際のCaO原料としては、例えば、石灰石や貝殻等の炭酸カルシウム、消石灰等の水酸化カルシウム、あるいは、生石灰等の酸化カルシウムを挙げることができる。また、Al原料としては、例えば、ボーキサイトやアルミ残灰と呼ばれる産業副産物等が挙げられる。
A method for obtaining calcium aluminate includes heat-treating a CaO raw material, an Al 2 O 3 raw material, etc. using a rotary kiln, an electric furnace, or the like. Specifically, there is a method in which the raw materials are mixed at a predetermined ratio, heated and melted using an electric furnace, and then rapidly cooled by contacting with compressed air or water.
Examples of CaO raw materials for producing calcium aluminate include calcium carbonate such as limestone and shells, calcium hydroxide such as slaked lime, and calcium oxide such as quicklime. Furthermore, examples of the Al 2 O 3 raw material include bauxite and an industrial byproduct called aluminum residual ash.
 アルミン酸カルシウムを工業的に得る場合、不純物が含まれることがある。その具体例としては、例えば、SiO、Fe、MgO、TiO、MnO、NaO、KO、LiO、S、P、及びFなどが挙げられるが、これらの不純物の存在は、本発明の目的を実質的に阻害しない範囲では特に問題とはならない。具体的には、これらの不純物の合計が10%以下の範囲では特に問題とはならない。 When calcium aluminate is obtained industrially, it may contain impurities. Specific examples include SiO 2 , Fe 2 O 3 , MgO, TiO 2 , MnO, Na 2 O, K 2 O, Li 2 O, S, P 2 O 5 , and F. The presence of these impurities does not pose any particular problem as long as it does not substantially impede the object of the present invention. Specifically, no particular problem arises as long as the total amount of these impurities is 10% or less.
 本発明のアルミン酸カルシウムのCaOとAlの含有モル比(CaO/Alモル比)は、1.3以上3.0以下の範囲であることが好ましく、1.5以上2.0以下の範囲であることがより好ましい。CaO/Alモル比が1.3以上であることで、充分な初期強度発現性が得られやすい。CaO/Alモル比が3.0以下であることで、一定のハンドリングタイムが確保しやすい。 The molar ratio of CaO to Al 2 O 3 (CaO/Al 2 O 3 molar ratio) in the calcium aluminate of the present invention is preferably in the range of 1.3 or more and 3.0 or less, and 1.5 or more and 2. More preferably, the range is .0 or less. When the CaO/Al 2 O 3 molar ratio is 1.3 or more, sufficient initial strength development is likely to be obtained. When the CaO/Al 2 O 3 molar ratio is 3.0 or less, a constant handling time can be easily ensured.
 本発明のアルミン酸カルシウムは、JIS R 5202:2015に規定される強熱減量が、1%以上のものを使用することが好ましく、強熱減量が2%以上のものを使用することがより好ましい。アルミン酸カルシウムの強熱減量が1%以上であることで、一定のハンドリングタイムが得られ、“はんてん”の発生を抑制しやすい。
 強熱減量を1%以上とする方法は、特に限定されるものではないが、水分や湿分を供給する方法や炭酸ガスを供給する方法等が挙げられる。
The calcium aluminate of the present invention preferably has a loss on ignition of 1% or more as defined in JIS R 5202:2015, and more preferably has a loss on ignition of 2% or more. . When the ignition loss of calcium aluminate is 1% or more, a certain amount of handling time can be obtained, and the occurrence of "splatter" can be easily suppressed.
The method of increasing the ignition loss to 1% or more is not particularly limited, but examples include a method of supplying moisture or moisture, a method of supplying carbon dioxide gas, and the like.
 本発明のアルミン酸カルシウムの粒度は、特に限定されるものではないが、通常、ブレーン値は3,000cm/g以上9,000cm/g以下が好ましく、4,000cm/g以上8,000cm/g以下がより好ましい。アルミン酸カルシウムのブレーン値が3,000cm/g以上であることで、初期強度を充分に発現しやすい。また、アルミン酸カルシウムのブレーン値が9,000cm/g以下であることで、一定のハンドリングタイムが確保しやすい。 The particle size of the calcium aluminate of the present invention is not particularly limited, but usually the Blaine value is preferably 3,000 cm 2 /g or more and 9,000 cm 2 /g or less, 4,000 cm 2 /g or more 8, 000 cm 2 /g or less is more preferable. When the Blaine value of calcium aluminate is 3,000 cm 2 /g or more, it is easy to sufficiently develop initial strength. Further, since the Blaine value of calcium aluminate is 9,000 cm 2 /g or less, a certain handling time can be easily ensured.
 本発明のアルミン酸カルシウムの含有割合は、一定のハンドリングタイムの確保、及び初期強度発現性を高める観点から、セメント材料中のセメント100質量部に対して、2質量部以上30質量部以下であることが好ましく、5質量部以上20質量部以下であることがより好ましい。 The content ratio of calcium aluminate of the present invention is 2 parts by mass or more and 30 parts by mass or less, based on 100 parts by mass of cement in the cement material, from the viewpoint of ensuring a certain handling time and improving initial strength development. The content is preferably 5 parts by mass or more and 20 parts by mass or less.
(アルミナセメント)
 本発明で使用するアルミナセメントは、CaO原料とAl原料、SO原料、ZrO原料、P原料等を混合して、キルン等で焼成し、あるいは、電気炉等で溶融し、冷却して得られるCaOとAlとを主成分とする水和活性を有する物質の総称であり、また、ガラス化率が1%以上90%未満であり、硬化時間が早く、初期強度発現性が高い材料である。アルミナセメントのガラス化率は、加熱溶融温度や冷却方法を調整することによって調整することができ、好ましくは、5%以上60%未満である。
(Alumina cement)
The alumina cement used in the present invention is produced by mixing CaO raw materials, Al 2 O 3 raw materials, SO 3 raw materials, ZrO 2 raw materials, P 2 O 5 raw materials, etc., and firing the mixture in a kiln or the like, or melting it in an electric furnace or the like. It is a general term for substances with hydration activity mainly composed of CaO and Al 2 O 3 obtained by cooling, and also has a vitrification rate of 1% or more and less than 90%, and has a fast curing time. It is a material with high initial strength development. The vitrification rate of alumina cement can be adjusted by adjusting the heating and melting temperature and the cooling method, and is preferably 5% or more and less than 60%.
 本発明で使用するアルミナセメントのCaO/Alモル比は、0.5以上2.0以下であることが好ましく、0.7以上1.8以下であることがより好ましい。CaO/Alモル比が上記範囲内であることで、硬化時間をより短縮して初期強度発現性を高めることができる。 The CaO/Al 2 O 3 molar ratio of the alumina cement used in the present invention is preferably 0.5 or more and 2.0 or less, more preferably 0.7 or more and 1.8 or less. When the CaO/Al 2 O 3 molar ratio is within the above range, the curing time can be further shortened and the initial strength development property can be improved.
 本発明で使用するアルミナセメントは、化学成分としてSOとZrOとPを含有する。アルミナセメント中のそれぞれの成分の含有量の範囲は、各々独立に、0.01質量%以上1.8質量%以下であることが好ましく、0.05~1.0質量%であることがより好ましい。アルミナセメント中のSOとZrOとPの合計量は、0.01質量%以上2.1質量%以下である。一定のハンドリングタイムの確保、及び初期強度発現性を高める観点から、0.07質量%以上1.7質量%以下であることが好ましく、0.1質量%以上1.5質量%以下であることがより好ましい。 The alumina cement used in the present invention contains SO 3 , ZrO 2 and P 2 O 5 as chemical components. The content range of each component in the alumina cement is preferably 0.01% by mass or more and 1.8% by mass or less, more preferably 0.05 to 1.0% by mass. preferable. The total amount of SO 3 , ZrO 2 and P 2 O 5 in the alumina cement is 0.01% by mass or more and 2.1% by mass or less. From the viewpoint of securing a certain handling time and increasing initial strength development, the content is preferably 0.07% by mass or more and 1.7% by mass or less, and 0.1% by mass or more and 1.5% by mass or less. is more preferable.
 さらに、Pの含有比率(P/(SO+ZrO+P))は10質量%以上45質量%以下である。一定のハンドリングタイムの確保、及び初期強度発現性を高める観点から、12質量%以上43質量%以下であることが好ましく、15質量%以上40質量%以下であることがより好ましい。また、本発明においてSO、ZrO、Pの含有量は、蛍光X線回折法(XRF)で測定することができ、測定により得られたそれぞれの含有量から、Pの含有比率を求めることができる。 Further, the content ratio of P 2 O 5 (P 2 O 5 /(SO 3 +ZrO 2 +P 2 O 5 )) is 10% by mass or more and 45% by mass or less. From the viewpoint of securing a certain handling time and increasing initial strength development, the content is preferably 12% by mass or more and 43% by mass or less, and more preferably 15% by mass or more and 40% by mass or less. Furthermore, in the present invention, the contents of SO 3 , ZrO 2 , and P 2 O 5 can be measured by X-ray fluorescence diffraction (XRF), and from the respective contents obtained by measurement, it is possible to determine the content of SO 3 , ZrO 2 , and P 2 O 5 . The content ratio can be determined.
 本発明のアルミナセメントの含有割合は、一定のハンドリングタイムの確保、及び初期強度発現性を高める観点から、セメント材料中のセメント100質量部に対して、30質量部以上100質量部以下であることが好ましく、50質量部以上90質量部以下であることがさらに好ましい。アルミナセメントは各社より市販されており、その代表例としては、例えば、デンカ社製「デンカアルミナセメント1号」、「デンカハイアルミナセメント」、AGCセラミックス社製「アサヒアルミナセメント1号」、「アサヒフォンジュ」やこれらの粉砕品などが挙げられる。 The content ratio of the alumina cement of the present invention should be 30 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of cement in the cement material, from the viewpoint of ensuring a certain handling time and improving initial strength development. is preferable, and more preferably 50 parts by mass or more and 90 parts by mass or less. Alumina cement is commercially available from various companies, and representative examples include "Denka Alumina Cement No. 1" and "Denka High Alumina Cement" manufactured by Denka Corporation, "Asahi Alumina Cement No. 1" manufactured by AGC Ceramics, and "Asahi Examples include "Fonju" and crushed products thereof.
 本実施形態のアルミナセメントは、4CaO・Al・Fe、6CaO・2Al・Fe、6CaO・Al・2Fe等のカルシウムアルミノフェライト、2CaO・FeやCaO・Fe等のカルシウムフェライト、ゲーレナイト2CaO・Al・SiO、アノーサイトCaO・Al・2SiO等のカルシウムアルミノシリケート、メルビナイト3CaO・MgO・2SiO、アケルマナイト2CaO・MgO・2SiO、モンチセライトCaO・MgO・SiO等のカルシウムマグネシウムシリケート、トライカルシウムシリケート3CaO・SiO、ダイカルシウムシリケート2CaO・SiO、ランキナイト3CaO・2SiO、ワラストナイトCaO・SiO等のカルシウムシリケート、カルシウムチタネートCaO・TiO、カルシウムアルネート3CaO・Al、遊離石灰、リューサイト(KO、NaO)・Al・SiO等を含む場合がある。本発明ではこれらの結晶質または非晶質が混在していても良い。 The alumina cement of this embodiment is made of calcium aluminoferrite such as 4CaO.Al 2 O 3 .Fe 2 O 3 , 6CaO.2Al 2 O 3.Fe 2 O 3 , 6CaO.Al 2 O 3 .・Calcium ferrite such as Fe 2 O 3 and CaO・Fe 2 O 3 , calcium aluminosilicate such as Gehlenite 2CaO・Al 2 O 3・SiO 2 , anorthite CaO・Al 2 O 3・2SiO 2 , melvinite 3CaO・MgO・2SiO 2 , akermanite 2CaO・MgO・2SiO 2 , calcium magnesium silicate such as monticerite CaO・MgO・SiO 2 , tricalcium silicate 3CaO・SiO 2 , dicalcium silicate 2CaO・SiO 2 , rankinite 3CaO・2SiO 2 , wollast Calcium silicates such as night CaO・SiO 2 , calcium titanate CaO・TiO 2 , calcium aluminate 3CaO・Al 2 O 3 , free lime, leucite (K 2 O, Na 2 O)・Al 2 O 3・SiO 2 etc. may include. In the present invention, these crystalline or amorphous materials may be mixed.
 アルミナセメントを工業的に得る場合、不純物が含まれることがある。その具体例としては、例えば、SiO、Fe、MgO、TiO、MnO、NaO、KO、SrO、Cr、Nb、Ga、Y、ThO、NiO、SeO、LiO、RbO、As、ZnO、S、Cl及びF等が挙げられる。これらの不純物の存在は本発明の目的を実質的に阻害しない範囲では特に問題とはならない。具体的には、これらの不純物の合計が10%以下の範囲では特に問題とはならない。 When alumina cement is obtained industrially, it may contain impurities. Specific examples include SiO 2 , Fe 2 O 3 , MgO, TiO 2 , MnO, Na 2 O, K 2 O, SrO, Cr 2 O 3 , Nb 2 O 5 , Ga 2 O 3 , Y 2 Examples include O 3 , ThO 2 , NiO, SeO 2 , Li 2 O, Rb 2 O, As 2 O 3 , ZnO, S, Cl and F. The presence of these impurities does not pose any particular problem as long as it does not substantially impede the object of the present invention. Specifically, no particular problem arises as long as the total amount of these impurities is 10% or less.
 本発明のアルミナセメントの粒度は、特に限定されるものではないが、通常、ブレーン値で3,000cm/g以上9,000cm/g以下の範囲にあり、4,000cm/g以上8,000cm/g以下程度のものがより好ましい。3,000cm/g以上であると、初期強度発現性が良好となり、9,000cm/g以下であると取り扱いが容易である。 The particle size of the alumina cement of the present invention is not particularly limited, but is usually in the Blaine value range of 3,000 cm 2 /g or more and 9,000 cm 2 /g or less, and 4,000 cm 2 /g or more 8 ,000 cm 2 /g or less is more preferable. When it is 3,000 cm 2 /g or more, initial strength development is good, and when it is 9,000 cm 2 /g or less, handling is easy.
(石膏)
 本発明で使用する石膏は、無水、半水、又は二水の各セッコウを総称するものであり特に限定されるものではないが、強度発現性の観点から、無水石膏又は半水石膏の使用が好ましく、無水石膏の使用がより好ましい。
(plaster)
The gypsum used in the present invention is a general term for anhydrous, hemihydrous, or dihydric gypsum, and is not particularly limited, but from the viewpoint of strength development, it is preferable to use anhydrous gypsum or hemihydrate gypsum. Preferably, the use of anhydrite is more preferable.
 石膏の粒度は特に限定されるものではないが、通常、ブレーン値で3,000以上9,000cm/g以下が好ましく、4,000以上8,000cm/g以下がより好ましい。3,000cm/g以上であると寸法安定性が良好となり、9,000cm/g以下であると一定のハンドリングタイムが確保しやすい。 Although the particle size of gypsum is not particularly limited, it is usually preferably 3,000 or more and 9,000 cm 2 /g or less, more preferably 4,000 or more and 8,000 cm 2 /g or less in Blaine value. When it is 3,000 cm 2 /g or more, dimensional stability becomes good, and when it is 9,000 cm 2 /g or less, it is easy to ensure a certain handling time.
 石膏の含有割合は、一定のハンドリングタイムの確保、及び初期強度発現性を高める観点から、セメント材料中のアルミン酸カルシウム100質量部に対して、20質量部以上120質量部以下であることが好ましく、30質量部以上110質量部以下であることがさらに好ましい。 The content ratio of gypsum is preferably 20 parts by mass or more and 120 parts by mass or less, based on 100 parts by mass of calcium aluminate in the cement material, from the viewpoint of ensuring a certain handling time and improving initial strength development. , more preferably 30 parts by mass or more and 110 parts by mass or less.
(骨材)
 本発明で使用する骨材としては、通常のセメントモルタルやコンクリートに使用するものと同様の細骨材や粗骨材が使用可能である。即ち、川砂、川砂利、山砂、山砂利、砕石、砕砂、石灰石骨材、石灰砂、けい砂、色砂、人口骨材、高炉スラグ骨材、海砂、海砂利、人工軽量骨材、及び重量骨材等が使用可能であり、これらを組み合わせることも可能である。
(aggregate)
As the aggregate used in the present invention, fine aggregates and coarse aggregates similar to those used for ordinary cement mortar and concrete can be used. Namely, river sand, river gravel, mountain sand, mountain gravel, crushed stone, crushed sand, limestone aggregate, lime sand, silica sand, colored sand, artificial aggregate, blast furnace slag aggregate, sea sand, sea gravel, artificial lightweight aggregate, and heavy aggregate can be used, and it is also possible to combine these.
 骨材の含有割合は、セメント材料中のセメント100質量部に対して、40質量部以上250質量部以下であることが好ましく、50質量部以上230質量部以下であることがより好ましく、60質量部以上200質量部以下であることがさらに好ましい。骨材の含有割合が上記範囲内であることで、一定のハンドリングタイムが確保しやすく、また、初期強度発現性を向上させることができる。 The content ratio of aggregate is preferably 40 parts by mass or more and 250 parts by mass or less, more preferably 50 parts by mass or more and 230 parts by mass or less, and 60 parts by mass with respect to 100 parts by mass of cement in the cement material. It is more preferably 1 part or more and 200 parts by mass or less. When the content ratio of the aggregate is within the above range, a certain handling time can be easily ensured, and initial strength development can be improved.
(その他の成分)
 本発明では、アルカリ金属炭酸塩を使用することで、流動性保持効果を高め、強度発現性をさらに向上させることができる。
 アルカリ金属炭酸塩としては炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウムが挙げられ、これらを組み合わせることも可能である。特に、強度発現性の観点から、炭酸リチウムの使用が好ましい。
(Other ingredients)
In the present invention, by using an alkali metal carbonate, the fluidity retention effect can be enhanced and strength development can be further improved.
Examples of alkali metal carbonates include sodium carbonate, potassium carbonate, lithium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and lithium hydrogen carbonate, and it is also possible to combine these. In particular, from the viewpoint of strength development, it is preferable to use lithium carbonate.
 アルカリ金属炭酸塩の含有割合は、セメント材料のセメント100質量部に対して、固形分量で1質量部以上6質量部以下であることが好ましく、2質量部以上5質量部以下であることがより好ましい。アルカリ金属炭酸塩の含有割合が上記範囲内であることで、一定のハンドリングタイムが確保しやすく、また、強度発現性を向上させることができる。 The content ratio of the alkali metal carbonate is preferably 1 part by mass or more and 6 parts by mass or less in solid content, more preferably 2 parts by mass or more and 5 parts by mass or less, based on 100 parts by mass of cement of the cement material. preferable. When the content ratio of the alkali metal carbonate is within the above range, a certain handling time can be easily ensured, and strength development can be improved.
 本発明のセメント材料は、一定のハンドリングタイムの確保、及び強度発現性を高める観点から、シリカ質微粉末を含有させることが可能である。
 シリカ質微粉末としては、高炉水砕スラグ微粉末等の潜在水硬性物質、フライアッシュや、シリカフュームなどのポゾラン物質を挙げることができ、中でも、シリカフュームが好ましい。
 シリカフュームの種類は限定されるものではないが、流動性の観点から、不純物としてZrOを10%以下含有するシリカフュームや、酸性シリカフュームの使用がより好ましい。酸性シリカフュームとは、シリカフューム1gを純水100ccに入れて攪拌した時の上澄み液のpHが5.0以下の酸性を示すものをいう。
The cement material of the present invention can contain fine siliceous powder from the viewpoint of ensuring a certain handling time and improving strength development.
Examples of the siliceous fine powder include latent hydraulic substances such as fine granulated blast furnace slag powder, fly ash, and pozzolanic substances such as silica fume, of which silica fume is preferred.
Although the type of silica fume is not limited, from the viewpoint of fluidity, it is more preferable to use silica fume containing 10% or less of ZrO 2 as an impurity or acidic silica fume. Acidic silica fume refers to silica fume that exhibits acidity, such that when 1 g of silica fume is stirred in 100 cc of pure water, the pH of the supernatant liquid is 5.0 or less.
 シリカ質微粉末の粉末度は特に限定されるものではないが、通常、高炉水砕スラグ微粉末とフライアッシュは、ブレーン値で3,000cm/g以上9,000cm/g以下の範囲にあり、シリカフュームは、BET比表面積で20,000cm/g以上300,000cm/g以下の範囲にある。 The degree of fineness of the siliceous fine powder is not particularly limited, but usually, the blast furnace slag fine powder and fly ash have a Blaine value of 3,000 cm 2 /g or more and 9,000 cm 2 /g or less. The BET specific surface area of silica fume is in the range of 20,000 cm 2 /g or more and 300,000 cm 2 /g or less.
 シリカ質微粉末の含有割合は、セメント材料中のセメント100質量部に対して、1質量部以上20質量部以下が好ましく、2質量部以上15質量部以下がより好ましく、3質量部以上12質量部以下がさらに好ましい。シリカ質微粉末の含有割合が上記下限値以上であることで、一定のハンドリングタイムが確保しやすく、また、強度発現性を高めることができる。さらに、シリカ質微粉末の含有割合が上記上限値以下であることで、一定のハンドリングタイムが確保しやすい。 The content ratio of the siliceous fine powder is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 2 parts by mass or more and 15 parts by mass or less, and 3 parts by mass or more and 12 parts by mass or less, per 100 parts by mass of cement in the cement material. Part or less is more preferable. When the content of the siliceous fine powder is at least the above lower limit, a certain handling time can be easily ensured, and strength development can be improved. Furthermore, since the content of the siliceous fine powder is equal to or less than the above upper limit, it is easy to ensure a constant handling time.
 本発明では、凝結遅延剤を使用することもできる。
 凝結遅延剤としては、一定のハンドリングタイムの確保の観点から、オキシカルボン酸またはその塩が好ましく、オキシカルボン酸としてはグルコン酸がより好ましく、塩としてはナトリウム塩がより好ましい。
Set retarders may also be used in the present invention.
As the setting retarder, from the viewpoint of ensuring a certain handling time, oxycarboxylic acid or a salt thereof is preferable, gluconic acid is more preferable as the oxycarboxylic acid, and sodium salt is more preferable as the salt.
 凝結遅延剤の含有割合は、セメント材料中のセメント100質量部に対して、0.9質量部以上6質量部以下であることが好ましく、1.5質量部以上5質量部以下であることがより好ましい。凝結遅延剤の含有割合が、上記範囲内にあることで、一定のハンドリングタイムが確保しやすい。 The content of the setting retarder is preferably 0.9 parts by mass or more and 6 parts by mass or less, and preferably 1.5 parts by mass or more and 5 parts by mass or less, based on 100 parts by mass of cement in the cement material. More preferred. When the content of the setting retarder is within the above range, a constant handling time can be easily ensured.
 本発明では、性能に悪影響を与えない範囲で消泡剤を使用することも可能である。消泡剤は、練り混ぜで巻き込む空気量を抑制する目的で使用するものである。
 消泡剤の種類としては、硬化モルタルの強度特性に著しく悪影響を与えるものでない限り特に限定されるものではなく、液体状及び粉末状いずれも使用できる。例えば、ポリエーテル系消泡剤、多価アルコールのエステル化物やアルキルエーテル等の多価アルコール系消泡剤、アルキルホスフェート系消泡剤、シリコーン系消泡剤等が挙げられる。
In the present invention, it is also possible to use an antifoaming agent within a range that does not adversely affect performance. Antifoaming agents are used for the purpose of suppressing the amount of air involved during kneading and mixing.
The type of antifoaming agent is not particularly limited as long as it does not significantly adversely affect the strength characteristics of the hardened mortar, and both liquid and powder forms can be used. Examples include polyether antifoaming agents, polyhydric alcohol antifoaming agents such as esterified polyhydric alcohols and alkyl ethers, alkyl phosphate antifoaming agents, and silicone antifoaming agents.
 消泡剤の含有割合は、セメント材料中のセメント100質量部に対して、0.002質量部以上0.5質量部以下であることが好ましく、0.005質量部以上0.45質量部以下であることがより好ましく、0.01質量部以上0.4質量部以下であることがさらに好ましい。消泡剤の含有割合が上記下限値以上であることで、消泡効果を十分に発現することができる。また、消泡剤の含有割合が上記上限値以下であることで、一定のハンドリングタイムが確保しやすい。 The content ratio of the antifoaming agent is preferably 0.002 parts by mass or more and 0.5 parts by mass or less, and 0.005 parts by mass or more and 0.45 parts by mass or less, based on 100 parts by mass of cement in the cement material. More preferably, the amount is 0.01 part by mass or more and 0.4 part by mass or less. When the content of the antifoaming agent is at least the above lower limit, the antifoaming effect can be sufficiently exhibited. Further, since the content ratio of the antifoaming agent is at most the above upper limit value, it is easy to ensure a constant handling time.
 本発明では、性能に悪影響を与えない範囲で、ガス発泡物質、減水剤、凝結調整剤、AE剤、防錆剤、撥水剤、抗菌剤、着色剤、防凍剤、石灰石微粉末、高炉徐冷スラグ微粉末、下水汚泥焼却灰やその溶融スラグ、都市ゴミ焼却灰やその溶融スラグ、及びパルプスラッジ焼却灰等の混和材料、増粘剤、及び収縮低減剤、ポリマー、ベントナイト、セピオライトなどの粘土鉱物、並びに、ハイドロタルサイトなどのアニオン交換体等のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。 In the present invention, gas foaming substances, water reducing agents, setting modifiers, AE agents, rust preventive agents, water repellents, antibacterial agents, colorants, antifreeze agents, fine limestone powder, blast furnace Cold slag fine powder, sewage sludge incineration ash and its molten slag, municipal waste incineration ash and its molten slag, admixtures such as pulp sludge incineration ash, thickeners, shrinkage reducers, polymers, clays such as bentonite, sepiolite, etc. It is possible to use one or more of minerals and anion exchangers such as hydrotalcite within a range that does not substantially impede the object of the present invention.
 本発明のセメント材料において、各材料の混合方法は特に限定されるものではなく、それぞれの材料を施工時に混合しても良いし、あらかじめ一部を、あるいは全部を混合しておいても差し支えない。
 混合装置としては、既存のいかなる装置、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、プロシェアミキサ及びナウタミキサなどの使用が可能である。
In the cement material of the present invention, the method of mixing each material is not particularly limited, and each material may be mixed at the time of construction, or some or all of the materials may be mixed in advance. .
As the mixing device, any existing device can be used, such as a tilting mixer, an omni mixer, a Henschel mixer, a V-type mixer, a Proshear mixer, a Nauta mixer, and the like.
[セメント組成物]
 本発明のセメント組成物は、既述の本発明のセメント材料と水とを含有するものであり、セメント材料と水とを混錬してなる。
 本発明の練り混ぜ水量は、使用する目的・用途や各材料の含有割合によって変化するため特に限定されるものではないが、セメント材料100質量部に対して、10質量部以上70質量部以下であることが好ましく、14質量部以上65質量部以下であることがより好ましく、16質量部以上60質量部以下であることがさらに好ましい。練り混ぜ水量が上記範囲内であることで、一定のハンドリングタイムが確保しやすく、また、強度発現性を高めることができる。
[Cement composition]
The cement composition of the present invention contains the above-described cement material of the present invention and water, and is obtained by kneading the cement material and water.
The amount of mixing water in the present invention is not particularly limited as it changes depending on the purpose/application and the content ratio of each material, but it is 10 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the cement material. It is preferably 14 parts by mass or more and 65 parts by mass or less, and even more preferably 16 parts by mass or more and 60 parts by mass or less. When the mixing water amount is within the above range, a certain handling time can be easily ensured and strength development can be improved.
[硬化体]
 本発明のセメント材料を用いた施工方法は、所定の水を加え練り混ぜて施工部位に流し込む方法や、ポンプを用いて練り混ぜたモルタルを充填する方法や、練り混ぜたモルタルに圧縮空気を吹き込み吹き付ける方法や、左官コテで塗り付ける方法などが挙げられる。練り混ぜ方法は、ペール缶等の容器に材料を投入しハンドミキサで練り混ぜる方法や、ミキサ等を用いて練り混ぜる方法や、手混合する方法等が挙げられ、特に限定されるものではない。本発明のセメント組成物は、練り混ぜられ、施工部位に充填することで硬化体となる。すなわち、本発明のセメント組成物を用いてなる硬化体が得られる。
[Cured body]
Construction methods using the cement material of the present invention include adding a predetermined amount of water and mixing it and pouring it into the construction site, filling the mixed mortar with a pump, and blowing compressed air into the mixed mortar. Methods include spraying and painting with a plastering trowel. The kneading method includes, but is not particularly limited to, a method of putting the ingredients into a container such as a pail can and kneading with a hand mixer, a method of kneading using a mixer etc., a method of mixing by hand, etc. The cement composition of the present invention becomes a hardened product by being mixed and filled into a construction site. That is, a cured product made using the cement composition of the present invention is obtained.
 以下、本発明を実験例に基づいてさらに説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be further explained based on experimental examples, but the present invention is not limited thereto.
<実験例1>
(アルミナセメントの調製)
 CaO/Alモル比が1.0となるようにCaO原料、Al原料を配合し、表1に記載のSOとZrOとPの合計量(SO+ZrO+P)及びPの含有比率(P/(SO+ZrO+P))となるようにSO原料、ZrO原料、及びP原料を配合し、1,500℃で焼成してクリンカを合成し、ボールミルを用いてブレーン値で3,000cm/gに粉砕し、アルミナセメントを作製した。なお、SO、ZrO、及びPそれぞれの含有量は蛍光X線回折により測定した。
<Experiment example 1>
(Preparation of alumina cement)
The CaO raw material and the Al2O3 raw material were blended so that the CaO/ Al2O3 molar ratio was 1.0, and the total amount of SO3 , ZrO2, and P2O5 listed in Table 1 ( SO3 + ZrO SO 3 raw material, ZrO 2 raw material, and P 2 O 5 raw material were adjusted so that the content ratio of SO 3 +P 2 O 5 ) and P 2 O 5 was (P 2 O 5 / ( SO 3 + ZrO 2 +P 2 O 5 ) ). The mixture was blended and fired at 1,500°C to synthesize clinker, which was ground using a ball mill to a Blaine value of 3,000 cm 2 /g to produce alumina cement. Note that the contents of SO 3 , ZrO 2 , and P 2 O 5 were measured by fluorescent X-ray diffraction.
(アルミン酸カルシウムの調製)
 CaO/Alモル比が1.7となるようにCaO原料、Al原料を配合し、電気炉を用いて1,650℃で焼成した後、圧縮空気を吹き付けて急冷し、得られたクリンカを、ボールミルを用いてブレーン値で5,000cm/gに粉砕し、アルミン酸カルシウムを作製した。
(Preparation of calcium aluminate)
The CaO raw material and the Al2O3 raw material were blended so that the CaO/ Al2O3 molar ratio was 1.7, and after firing at 1,650°C using an electric furnace, the mixture was quenched by blowing compressed air. The obtained clinker was ground to a Blaine value of 5,000 cm 2 /g using a ball mill to produce calcium aluminate.
(セメント材料及び組成物の調製)
 セメント100質量部に対して、アルカリ金属炭酸塩を2質量部、グルコン酸を0.9質量部、シリカ質微粉末を10質量部、上記作製したアルミナセメントを70質量部、上記作製したアルミン酸カルシウムを15質量部、及び骨材を100質量部となるよう配合し、さらに石膏をアルミン酸カルシウム100質量部に対して60質量部となるよう配合し、セメント材料を得た。
 得られたセメント材料100質量部に対して、水25質量部で混練しセメント組成物を調製した。
 調製したセメント組成物のハンドリングタイム及び該組成物を型枠に充填した硬化体の圧縮強度を測定した。結果を表1に併記する。
(Preparation of cement materials and compositions)
For 100 parts by mass of cement, 2 parts by mass of alkali metal carbonate, 0.9 parts by mass of gluconic acid, 10 parts by mass of siliceous fine powder, 70 parts by mass of the alumina cement prepared above, and the aluminic acid prepared above. A cement material was obtained by blending 15 parts by mass of calcium and 100 parts by mass of aggregate, and further blending gypsum in an amount of 60 parts by mass based on 100 parts by mass of calcium aluminate.
100 parts by mass of the obtained cement material was mixed with 25 parts by mass of water to prepare a cement composition.
The handling time of the prepared cement composition and the compressive strength of a cured product filled with the composition in a mold were measured. The results are also listed in Table 1.
(使用材料)
・CaO原料:炭酸カルシウム、試薬
・Al原料:酸化アルミニウム、試薬
・SO原料:石膏、試薬
・ZrO原料:酸化ジルコニウム、試薬
・P原料:リン酸カルシウム、試薬
・セメント:普通ポルトランドセメントを想定した試製セメント(セメント工場の調合原料及び化学成分の調整に各種市販の純薬を用いた。)、ブレーン値3,450cm/g
・アルミン酸カルシウム:ガラス化率97%、CaO/Alモル比1.70、強熱減量1.0%、主成分CaO・Alと12CaO・7Al、ブレーン値5,000cm/g
・アルミナセメント:ガラス化率25%、主成分CaO・Al、ブレーン値3,000cm/g
・石膏:無水石膏、試薬
・骨材:細骨材、石灰砂0.6mm下を50%、0.6~1.2mmを50%混合したものを使用した。密度2.52g/cm
・アルカリ金属炭酸塩:炭酸リチウム、試薬
・シリカ質微粉末:シリカフューム、BET比表面積で10m/g、市販品
・水:水道水
(Materials used)
・CaO raw material: Calcium carbonate, reagent ・Al 2 O 3 raw material: Aluminum oxide, reagent ・SO 3 raw material: Gypsum, reagent ・ZrO 2 raw material: Zirconium oxide, reagent ・P 2 O 5 raw material: Calcium phosphate, reagent ・Cement: Normal Trial cement based on Portland cement (various commercially available pure chemicals were used to adjust raw materials and chemical components at a cement factory), Blaine value 3,450 cm 2 /g
・Calcium aluminate: vitrification rate 97%, CaO/Al 2 O 3 molar ratio 1.70, ignition loss 1.0%, main components CaO・Al 2 O 3 and 12CaO・7Al 2 O 3 , Blaine value 5 , 000cm2 /g
・Alumina cement: vitrification rate 25%, main component CaO・Al 2 O 3 , Blaine value 3,000 cm 2 /g
- Gypsum: anhydrite, reagent/aggregate: fine aggregate, a mixture of 50% lime sand 0.6 mm thick and 50% 0.6 to 1.2 mm thick was used. Density 2.52g/ cm3
・Alkali metal carbonate: lithium carbonate, reagent ・Siliceous fine powder: silica fume, BET specific surface area 10 m 2 /g, commercial product ・Water: tap water
(測定項目)
・ハンドリングタイム:5℃環境下でセメント材料と水とを混合して得られたセメント組成物の温度を測定して、セメント組成物作製直後から1℃上昇した時間を測定した。結果を表1に示す。なお、ハンドリングタイムは、3分以上が好ましく、10分以上がより好ましい。上限は特に規定されないが、30分程度以下でもよい。
・圧縮強度:5℃環境下でセメント材料と水とを混合して得られたセメント組成物を作製し、4×4×16cmの型枠に詰め、得られた硬化体の30分後の圧縮強度を測定した。結果を表1に示す。なお、圧縮強度は、10N/mm以上が好ましく、20N/mm以上がより好ましい。
(Measurement item)
- Handling time: The temperature of a cement composition obtained by mixing cement material and water in a 5°C environment was measured, and the time taken for the temperature to rise by 1°C from immediately after the cement composition was prepared was measured. The results are shown in Table 1. Note that the handling time is preferably 3 minutes or more, more preferably 10 minutes or more. Although the upper limit is not particularly specified, it may be about 30 minutes or less.
・Compressive strength: A cement composition obtained by mixing cement material and water in a 5°C environment is prepared, packed into a 4 x 4 x 16 cm mold, and the resulting hardened product is compressed after 30 minutes. The strength was measured. The results are shown in Table 1. Note that the compressive strength is preferably 10 N/mm 2 or more, more preferably 20 N/mm 2 or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果より、アルミナセメントがSO、ZrO、及びPを含有すると、ハンドリングタイムを延長することができ、また、SOとZrOとPの合計量(SO+ZrO+P)を調整することにより、ハンドリングタイム及び圧縮強度の改善が可能であることを確認した。 From the results shown in Table 1, when the alumina cement contains SO 3 , ZrO 2 , and P 2 O 5 , the handling time can be extended, and the total amount of SO 3 , ZrO 2 , and P 2 O 5 ( It was confirmed that handling time and compressive strength can be improved by adjusting SO 3 +ZrO 2 +P 2 O 5 ).
<実験例2>
 アルミナセメントにおけるPの含有比率を表2に示す割合となるようにアルミナセメントを作製した以外は、実験例1のNo.1-3と同様に行った。測定したハンドリングタイム及び圧縮強度の結果を表2に併記する。
<Experiment example 2>
No. 1 in Experimental Example 1 except that the alumina cement was prepared so that the content ratio of P 2 O 5 in the alumina cement was as shown in Table 2. It was carried out in the same manner as 1-3. The results of the measured handling time and compressive strength are also listed in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果より、アルミナセメントにおけるPの含有比率(P/(SO+ZrO+P))を所定の範囲に調整することにより、ハンドリングタイム及び圧縮強度を同時に改善できることを確認した。 From the results shown in Table 2, handling time and compressive strength can be reduced by adjusting the content ratio of P 2 O 5 (P 2 O 5 / (SO 3 + ZrO 2 + P 2 O 5 )) in alumina cement within a predetermined range. We confirmed that improvements can be made at the same time.
<実験例3>
 アルミナセメントのCaO/Alモル比を表3に示す割合となるようにアルミナセメントを作製した以外は、実験例1のNo.1-3と同様に行った。測定したハンドリングタイム及び圧縮強度の結果を表3に併記する。
<Experiment example 3>
No. 1 in Experimental Example 1 except that the alumina cement was prepared so that the CaO/Al 2 O 3 molar ratio of the alumina cement was as shown in Table 3. It was carried out in the same manner as 1-3. The results of the measured handling time and compressive strength are also listed in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果により、アルミナセメントのCaO/Alモル比を調整することにより、ハンドリングタイムを維持しつつ、圧縮強度を高められることを確認した。 From the results shown in Table 3, it was confirmed that by adjusting the CaO/Al 2 O 3 molar ratio of alumina cement, it was possible to increase the compressive strength while maintaining the handling time.
<実験例4>
 アルミナセメント及びアルミン酸カルシウムの含有量を表4に示す割合となるように配合した以外は、実験例1のNo.1-3と同様に行った。測定したハンドリングタイム及び圧縮強度の結果を表4に併記する。
<Experiment example 4>
No. 1 of Experimental Example 1 except that the contents of alumina cement and calcium aluminate were blended in the proportions shown in Table 4. It was carried out in the same manner as 1-3. The results of the measured handling time and compressive strength are also listed in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果より、セメント材料中のアルミナセメント及びアルミン酸カルシウムの含有量を調整することにより、ハンドリングタイム及び圧縮強度を調整できることを確認した。 From the results shown in Table 4, it was confirmed that the handling time and compressive strength can be adjusted by adjusting the contents of alumina cement and calcium aluminate in the cement material.
<実験例5>
 骨材の含有量を表5に示す割合となるように配合した以外は、実験例1のNo.1-3と同様に行った。測定したハンドリングタイム及び圧縮強度の結果を表5に併記する。
<Experiment example 5>
No. 1 in Experimental Example 1 except that the aggregate content was blended in the ratio shown in Table 5. It was carried out in the same manner as 1-3. The results of the measured handling time and compressive strength are also listed in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示す結果により、セメント材料中の骨材の含有量を調整することにより、ハンドリングタイム及び圧縮強度を同時に調整できることを確認した。 From the results shown in Table 5, it was confirmed that handling time and compressive strength can be adjusted simultaneously by adjusting the aggregate content in the cement material.
 以上の結果より、本発明のセメント材料は、特定のアルミン酸カルシウム、特定のアルミナセメントを含有し、特定の材料と組み合わせることで、低温下でも一定のハンドリングタイムが得られ、初期強度発現性を有することを確認した。 From the above results, the cement material of the present invention contains specific calcium aluminate and specific alumina cement, and by combining it with specific materials, a certain handling time can be obtained even at low temperatures, and the initial strength development property can be improved. It was confirmed that the
 本発明のセメント材料は、特定のアルミン酸カルシウム、特定のアルミナセメントを含有し、特定の材料と組み合わせることで、低温下でも一定のハンドリングタイムが得られ、初期強度発現性を得ることができるセメント組成物及び硬化体を提供することをすることが可能となる。そのため、上下水、農水、鉄道、電力、道路、建築などで使用されるコンクリート構造物への補強鉄筋との定着等、土木、建築分野に幅広く適用できる。 The cement material of the present invention contains specific calcium aluminate and specific alumina cement, and when combined with specific materials, a certain handling time can be obtained even at low temperatures, and a cement that can obtain initial strength development properties. It becomes possible to provide a composition and a cured product. Therefore, it can be widely applied in the civil engineering and construction fields, such as fixing reinforcing bars to concrete structures used in water and sewage, agriculture and water, railways, electric power, roads, architecture, etc.

Claims (5)

  1.  セメント、アルミン酸カルシウム、アルミナセメント、石膏、及び骨材を含有するセメント材料であって、
     前記アルミン酸カルシウムのガラス化率が、90%以上であり、
     前記アルミナセメントのガラス化率が、1%以上90%未満であり、
     前記アルミナセメントは、SOとZrOとPを含有するアルミナセメントであり、
     前記アルミナセメント中のSOとZrOとPの合計量が0.01質量%以上2.1質量%以下であり、
     前記アルミナセメントにおけるPの含有比率(P/(SO+ZrO+P))が10質量%以上45質量%以下であるセメント材料。
    A cement material containing cement, calcium aluminate, alumina cement, gypsum, and aggregate,
    The vitrification rate of the calcium aluminate is 90% or more,
    The vitrification rate of the alumina cement is 1% or more and less than 90%,
    The alumina cement is an alumina cement containing SO 3 , ZrO 2 and P 2 O 5 ,
    The total amount of SO 3 , ZrO 2 and P 2 O 5 in the alumina cement is 0.01% by mass or more and 2.1% by mass or less,
    A cement material in which the content ratio of P 2 O 5 (P 2 O 5 /(SO 3 +ZrO 2 +P 2 O 5 )) in the alumina cement is 10% by mass or more and 45% by mass or less.
  2.  前記アルミナセメントのCaO/Alモル比が0.5以上2.0以下であり、前記アルミナセメントの含有割合は、前記セメント100質量部に対して、30質量部以上100質量部以下である、請求項1記載のセメント材料。 The CaO/Al 2 O 3 molar ratio of the alumina cement is 0.5 or more and 2.0 or less, and the content ratio of the alumina cement is 30 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the cement. The cement material according to claim 1.
  3.  前記アルミン酸カルシウムのCaO/Alモル比が1.3以上3.0以下であり、前記アルミン酸カルシウムの含有割合は、前記セメント100質量部に対して、2質量部以上30質量部以下である、請求項1または2に記載のセメント材料。 The CaO/Al 2 O 3 molar ratio of the calcium aluminate is 1.3 or more and 3.0 or less, and the content ratio of the calcium aluminate is 2 parts by mass or more and 30 parts by mass with respect to 100 parts by mass of the cement. The cement material according to claim 1 or 2, which is:
  4.  請求項1または2に記載のセメント材料と水とを含有するセメント組成物。 A cement composition containing the cement material according to claim 1 or 2 and water.
  5.  請求項4に記載のセメント組成物を用いてなる硬化体。 A cured product using the cement composition according to claim 4.
PCT/JP2023/018495 2022-06-03 2023-05-17 Cement material, cement composition, and hardened article WO2023234041A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-090828 2022-06-03
JP2022090828 2022-06-03

Publications (1)

Publication Number Publication Date
WO2023234041A1 true WO2023234041A1 (en) 2023-12-07

Family

ID=89026472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018495 WO2023234041A1 (en) 2022-06-03 2023-05-17 Cement material, cement composition, and hardened article

Country Status (1)

Country Link
WO (1) WO2023234041A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874589A (en) * 1981-06-11 1983-05-06 インタ−ナシヨナル・コンストラクシヨン・プロダクト・リザ−チ・インコ−ポレ−テツド Cement surface treatment and composition
JPS60122773A (en) * 1983-12-08 1985-07-01 電気化学工業株式会社 Basic refractory cement composition
JP2005162568A (en) * 2003-12-05 2005-06-23 Denki Kagaku Kogyo Kk Alumina cement composition and monolithic refractory therefrom
JP2014224040A (en) * 2013-05-15 2014-12-04 カルツェム・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Alumina cement
JP2018083719A (en) * 2016-11-21 2018-05-31 デンカ株式会社 Quick hardening material and quick hardening cement composition using the same
WO2020100925A1 (en) * 2018-11-15 2020-05-22 デンカ株式会社 Cement admixture, expansion material, and cement composition
JP2023049719A (en) * 2021-09-29 2023-04-10 デンカ株式会社 Anchor fixing material, anchor fixing composition, and cured body
JP2023049713A (en) * 2021-09-29 2023-04-10 デンカ株式会社 Cement admixture, quick curing mortar concrete material, quick curing mortar concrete composition, and cured body
JP2023049714A (en) * 2021-09-29 2023-04-10 デンカ株式会社 Cement composition, repairing method using the same, and concrete structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874589A (en) * 1981-06-11 1983-05-06 インタ−ナシヨナル・コンストラクシヨン・プロダクト・リザ−チ・インコ−ポレ−テツド Cement surface treatment and composition
JPS60122773A (en) * 1983-12-08 1985-07-01 電気化学工業株式会社 Basic refractory cement composition
JP2005162568A (en) * 2003-12-05 2005-06-23 Denki Kagaku Kogyo Kk Alumina cement composition and monolithic refractory therefrom
JP2014224040A (en) * 2013-05-15 2014-12-04 カルツェム・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Alumina cement
JP2018083719A (en) * 2016-11-21 2018-05-31 デンカ株式会社 Quick hardening material and quick hardening cement composition using the same
WO2020100925A1 (en) * 2018-11-15 2020-05-22 デンカ株式会社 Cement admixture, expansion material, and cement composition
JP2023049719A (en) * 2021-09-29 2023-04-10 デンカ株式会社 Anchor fixing material, anchor fixing composition, and cured body
JP2023049713A (en) * 2021-09-29 2023-04-10 デンカ株式会社 Cement admixture, quick curing mortar concrete material, quick curing mortar concrete composition, and cured body
JP2023049714A (en) * 2021-09-29 2023-04-10 デンカ株式会社 Cement composition, repairing method using the same, and concrete structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RENICHI KONDO: "Alumina cement chemistry", CONCRETE JOURNAL, vol. 6, no. 12, 1 January 1968 (1968-01-01), pages 4 - 8, XP009551003, DOI: 10.14826/coj1963.6.12_4 *

Similar Documents

Publication Publication Date Title
KR20140043493A (en) Neutralization-preventive high-early-strength cement composition
JP4290628B2 (en) Ultrafast cement composition, superhard mortar composition, and ultrafast grout mortar
JP3549615B2 (en) Rapid-hardening cement admixture and rapid-hardening cement composition
JP4201265B2 (en) Ultra-fast hardening / high flow mortar composition and super fast hardening / high flow mortar composition
JP2000281410A (en) Cement admixture and cement composition
JP7026741B1 (en) Cement admixture and cement composition
JP6983963B1 (en) Cement composition
WO2021215509A1 (en) Cement admixture, expansion material, and cement composition
JP3549632B2 (en) Cement quick setting material and cement composition
WO2023234041A1 (en) Cement material, cement composition, and hardened article
KR101345203B1 (en) Low alkali non-cement concrete composition with tannin and block unit comprising the same
KR101111635B1 (en) Low alkali concrete composition with tannin and block unit comprising the same
JP7181355B1 (en) Cement admixture, method for producing cement admixture, and cement composition
JP4293324B2 (en) Cement admixture and cement composition
JP3810350B2 (en) Cement admixture and cement composition
JP4606631B2 (en) Cement admixture and cement composition
JP4459786B2 (en) Hydraulic cement composition and hardened cement concrete
JPH0891894A (en) Cement admixture and cement composition
JP3367576B2 (en) Hydration heat generation time adjusting material for cement and cement composition
JP3460161B2 (en) Cement admixture and cement composition
JP2003192410A (en) Cement admixture, cement composition and cement concrete obtained by using the same
JP2004051423A (en) Cement admixture and cement composition
JP3370186B2 (en) Cement admixture and cement composition
WO2024048364A1 (en) Hardening accelerator for hydraulic materials, cement composition and hardened body
JPH08310846A (en) Cement admixture, cement composition and injecting material composed thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815800

Country of ref document: EP

Kind code of ref document: A1