JP5068906B2 - Cement admixture, cement composition, and cement concrete using the same - Google Patents

Cement admixture, cement composition, and cement concrete using the same Download PDF

Info

Publication number
JP5068906B2
JP5068906B2 JP2001293536A JP2001293536A JP5068906B2 JP 5068906 B2 JP5068906 B2 JP 5068906B2 JP 2001293536 A JP2001293536 A JP 2001293536A JP 2001293536 A JP2001293536 A JP 2001293536A JP 5068906 B2 JP5068906 B2 JP 5068906B2
Authority
JP
Japan
Prior art keywords
cement
cfs
concrete
parts
admixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001293536A
Other languages
Japanese (ja)
Other versions
JP2003095717A (en
Inventor
実 盛岡
克一 宮口
隆行 樋口
健太郎 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001293536A priority Critical patent/JP5068906B2/en
Publication of JP2003095717A publication Critical patent/JP2003095717A/en
Application granted granted Critical
Publication of JP5068906B2 publication Critical patent/JP5068906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/22Carbonation resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に、土木・建築業界において使用されるセメント混和材、セメント組成物、及びそれを用いてなるセメントコンクリートに関する。
本発明でいうセメントコンクリートは、セメントペースト、モルタル、及びコンクリートを総称するものである。
なお、本発明における部や%は特に規定しない限り質量基準で示す。
【0002】
【従来の技術とその課題】
最近では、コンクリートの耐久性問題が大きくクローズアップされ、コンクリートが信頼されにくくなっている。
コンクリートの劣化要因には中性化や塩害等があるが、これらは相反する要求性能である。
即ち、塩害はコンクリート中の水酸化カルシウム量が多いほど影響を受けやすく、中性化は水酸化カルシウム量が少ないほど影響を受けやすいためである。
塩害の影響を受けにくいコンクリートを得るためには、高炉スラグ、フライアッシュ、及びシリカフュームなどの潜在水硬性物質を多量に混和して、セメントの水和から生成する水酸化カルシウムを消費させて、水酸化カルシウム量の少ないコンクリートとすることが有効である。
【0003】
一方、中性化は水酸化カルシウムが大気中の二酸化炭素と反応して炭酸化されることにより引き起こされる現象である。
したがって、水酸化カルシウム生成量の多いコンクリートほど影響を受けにくいとされている。
今日では塩害と中性化を同時に効果的に抑制する技術の開発が強く求められている。
【0004】
本発明者は種々検討を重ねた結果、水硬性を持たない高炉徐冷スラグの粉末が、中性化抑制効果を有することを見出し、特定のセメント混和材が、塩害抑制と中性化抑制の双方を付与することを知見して本発明を完成するに至った。
【0005】
【課題を解決するための手段】
即ち、本発明は、潜在水硬性物質とブレーン比表面積3,000cm/g以上でガラス化率30%以下の高炉徐冷スラグ粉末とを含有してなり、潜在水硬性物質と高炉徐冷スラグ粉末の合計100部中、潜在水硬性物質20〜80部、高炉徐冷スラグ粉末80〜20部であるセメント混和材であり、セメントと該セメント混和材とを含有してなるセメント組成物であり、該セメント組成物を用いてなるセメントコンクリートである。
【0006】
本発明で使用する潜在水硬性物質(以下、ポゾランという)とは、それ自体では水硬性をもたないが、適当な刺激剤を添加することにより、水硬性を示すようになる性質を持つものであれば特に限定されるものではなく、いかなるものでも使用可能である。その具体例としては、例えば、高炉水砕スラグ微粉末、フライアッシュ、シリカフューム、及び珪藻土等が挙げられ、本発明ではこれらのうちの一種又は二種以上が使用可能である。
【0007】
本発明で使用する高炉徐冷スラグ粉末(以下、CFSという)は徐冷されて結晶化した高炉スラグの粉末である。
CFSは、通常、ドライピット、あるいは、畑と呼ばれる冷却ヤードに溶融スラグを流し込み、自然放冷と適度の散水により冷却され、結晶質の塊状スラグとして得られる。
CFSの成分は高炉水砕スラグと同様の組成を有しており、具体的には、SiO2、CaO、Al2O3、及びMgOなどを主要な化学成分とし、その他微量成分として、Na2O、K2O、Fe2O3、MnO、TiO2、S、Cr2O3、及びP2O5などを含有する。
この化学成分の割合は特に限定されるものではないが、通常、主成分であるSiO2は25〜45%、CaOは30〜50%、Al2O3は10〜20%、及びMgOは3〜10%程度であり、
微量成分であるNa2O、K2O、Fe2O3、MnO、TiO2、及びSなどは各々2%以下である。
CFSのブレーン比表面積(以下、ブレーン値という)は3,000cm2/g以上が好ましく、4,000cm2/g以上がより好ましく、5,000cm2/g以上が最も好ましい。ブレーン値が3,000cm2/g以下では顕著な中性化抑制効果が得られない場合がある。また、ブレーン値は、大きすぎると混練水量が多くなり、強度発現性や耐久性が悪くなる場合があり、8,000cm2/g以下が好ましい。
また、CFSの平均粒径は、40μm以下が好ましく、30μm以下がより好ましく、5〜20μmが最も好ましい。CFSの平均粒径は、特別な粉砕機の使用や分球を施さないかぎり、前記ブレーン値とほぼ対応するものである。
CFSのガラス化率は30%以下が好ましく、10%以下がより好ましい。ガラス化率が30%を超えると水和熱が大きくなる場合がある。
ガラス化率(X)は、X(%)=(1−S/S0)×100として求められる。ここで、Sは粉末X線回折法により求められるCFS中の主要な結晶性化合物であるメリライト(ゲーレナイト2CaO・Al2O3・SiO2とアケルマナイト2CaO・MgO・2SiO2の固溶体)のメインピークの面積であり、S0はCFSを1,000℃で3時間加熱し、その後、5℃/分の冷却速度で冷却したもののメリライトのメインピークの面積を表す。
【0008】
本発明におけるセメント混和材中のポゾランとCFSの配合割合は特に限定されるものではないが、通常、ポゾラン20〜80部、CFS80〜20部が好ましく、ポゾラン30〜70部、CFS70〜30部がより好ましい。ポゾランが20部未満で、CFSが80部を超えると、塩害に対する抵抗性である耐塩化物浸透性が不充分となる場合があり、また、ポゾランが80部を超え、CFSが20部未満では、中性化抑制効果が不充分になる場合がある。
【0009】
本発明のセメント混和材の粒度は特に限定されるものではないが、通常、ブレーン値で3,000〜15,000cm2/gが好ましく、4,000〜9,000cm2/gがより好ましい。3000cm2/g未満では本発明の効果が充分に得られない場合があり、15,000cm2/gを超えてもさらなる効果の増進が期待できない。
セメント混和材の使用量は特に限定されるものではない。
セメント混和材は、ポゾランとCFSとを含有するものであるが、中性化抑制効果や耐塩化物浸透性は、セメントコンクリートの圧縮強度と深い関連があり、強度が高いほど、中性化されにくく、耐塩化物浸透性も良好となることから、ポゾランとCFSをセメントコンクリートに使用する場合、セメントとポゾランとを混合して結合材とすること、即ち、ポゾランは結合材としてセメントと置換して配合することが好ましく、また、CFSは骨材と置換して骨材として配合することが好ましく、特に、細骨材と置換して配合することがより好ましい。
ポゾランの使用量は、通常、結合材100部中、10〜80部が好ましく、30〜70部がより好ましい。10部未満では耐塩化物浸透性が充分でなく、80部を超えると中性化抵抗性が悪くなる場合がある。
また、CFSは、通常、骨材とCFSの合計100部中、10部以上使用され、骨材の全量をCFSで置換することも可能である。
本発明のセメント混和材のポゾランは結合材としてセメントと置換して配合することで、また、CFSを骨材と置換して配合することで、本発明のセメント混和材を混和しないセメントコンクリートと比べて圧縮強度をそれほど大きく変えることがなく、設計強度に対する中性化抑制効果や耐塩化物浸透性が明瞭に判別できることになる。
【0010】
本発明で使用するセメントとしては、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメント、これらポルトランドセメントに、高炉水砕スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、また、石灰石粉末等を混合したフィラーセメントなどが挙げられ、これらのうちの一種又は二種以上が使用可能である。
【0011】
本発明のセメント組成物はそれぞれの材料を施工時に混合してもよいし、あらかじめ一部あるいは全部を混合しておいても差し支えない。
本発明のセメント組成物の粒度は、使用する目的・用途に依存するため特に限定されるものではないが、通常、ブレーン値で3,000〜8,000cm2/gが好ましく、4,000〜6,000cm2/gがより好ましい。3,000cm2/g未満では強度発現性が充分に得られない場合があり、8,000cm2/gを超えると作業性が悪くなる場合がある。
【0012】
本発明では、セメント、セメント混和材、砂や砂利等の骨材の他に、従来コンクリートに用いられてきた石灰石微粉末等の混和材料、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、防錆剤、防凍剤、高分子エマルジョン、収縮低減剤、凝結調整剤、ベントナイトなどの粘土鉱物、ハイドロタルサイトなどのアニオン交換体、膨張材、並びに、急硬材等のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。
【0013】
本発明において、各材料の混合方法は特に限定されるものではなく、それぞれの材料を施工時に混合しても良いし、あらかじめ一部を、あるいは全部を混合しておいても差し支えない。
混合装置としては、既存のいかなる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、及びナウタミキサなどの使用が可能である。
【0014】
【実施例】
以下、本発明を実験例に基づいてさらに説明する。
【0015】
実験例1
表1に示すセメント、ポゾランA、CSFイ、及び細骨材αを使用し、セメントとポゾランからなる結合材と、CFSイと細骨材からなる骨材の比である結合材・骨材比が1対2、水結合材比が50%のモルタルを調製し、圧縮強度、塩分浸透深さ、及び中性化抵抗性を測定した。結果を表1に併記する。
【0016】
<使用材料>
セメント :普通ポルトランドセメント、ブレーン値3,200cm2/g、比重3.15
ポゾランA:高炉水砕スラグ微粉末、ブレーン値6,000cm2/g、ガラス化率95%、比重2.90
CFSイ :ブレーン値3,000cm2/g、ガラス化率5%、比重3.00
石灰石微粉末:新潟県青海鉱山産石灰石の粉砕品、ブレーン値6,000cm2/g、比重2.70
細骨材α :砂、JIS標準砂(ISO679準拠)
水 :水道水
【0017】
<測定方法>
圧縮強度 :4×4×16cmの供試体を作製し、JIS R 5201に準じて材齢28日強度を測定。
塩分浸透深さ:4×4×16cmの供試体を作製し、材齢28日まで20℃水中養生を施した後、5%食塩水に供試体を24時間浸漬し、40℃で24時間乾燥する工程を1サイクルとする促進試験を50サイクルにわたって行った。この供試体を輪切りにして断面に硝酸銀水溶液を塗布して塩分浸透深さを確認、耐塩化物浸透性の評価。
中性化深さ:4×4×16cmの供試体を作製し、材齢28日まで20℃水中養生を施した後、30℃・相対湿度60%・炭酸ガス濃度5%の環境で促進中性化を行い、8週間後に供試体を輪切りし、断面にフェノールフタレインアルコール溶液を塗布して中性化深さを確認。
【0018】
【表1】

Figure 0005068906
【0019】
実験例2
単位セメント量150kg/m3、単位ポゾラン量150kg/m3、単位CFS量150kg/m3、水結合材比55%、s/a=42%、及び空気量4.5±1.5%のコンクリートを調製し、圧縮強度、塩分浸透深さ、及び中性化深さを測定した。結果を表2に併記する。
なお、ポゾランは結合材として配合し、CFSは表2に示すものを用い、細骨材に置換して配合した。
また、中性化に対する抵抗性を検討するために、同一配合の場合にCFSと圧縮強度が同等となる石灰石微粉末を混和した場合についても同様の実験を行った。結果を表2に併記する。
【0020】
<使用材料>
CFSb :ブレーン値4,000cm2/g、ガラス化率5%、比重3.00
CFSc :ブレーン値4,500cm2/g、ガラス化率5%、比重3.00
CFSd :ブレーン値5,000cm2/g、ガラス化率5%、比重3.00
CFSe :ブレーン値6,000cm2/g、ガラス化率5%、比重3.00
CFSf :ブレーン値6,000cm2/g、ガラス化率30%、比重2.96
CFSg :5mm下に調整、ガラス化率5%、比重3.00
細骨材β :砂、新潟県姫川産、比重2.62
粗骨材 :砂利、新潟県姫川産、砕石、比重2.64
高性能AE減水剤:ポリカルボン酸系、市販品
【0021】
<測定方法>
圧縮強度 :10φ×20cmの供試体を作製し、JIS A 1108に準じて材齢28日強度を測定。ただし、脱型は材齢7日に行い、以後20℃の水中養生を行った。
塩分浸透深さ:10φ×20cmの供試体を作製し、材齢28日まで20℃水中養生を施した後、新潟県青海町の浜辺に供試体を暴露し、6ヶ月後に回収した。この際、供試体が潮の満ち引きによって海水に漬かったり乾燥したりするような場所を選定した。この供試体を輪切りにして断面に硝酸銀水溶液を塗布して塩分浸透深さを確認。
中性化深さ:10φ×20cm供試体を作製し、材齢28日まで20℃水中養生を施した後、30℃・相対湿度60%・炭酸ガス濃度5%の環境で促進中性化を行い、6ヶ月後に供試体を輪切りし、断面にフェノールフタレインアルコール溶液を塗布して中性化深さを確認。
【0022】
【表2】
Figure 0005068906
【0023】
実験例3
ポゾランの種類と単位量、ならびにCFSの単位量を表3に示すように変化したこと以外は実験例2と同様に行った。結果を表3に併記する。
【0024】
<使用材料>
ポゾランB:フライアッシュ、ブレーン値4,500cm2/g、比重2.40
ポゾランC:シリカフューム、ブレーン値135,000cm2/g、比重2.20
【0025】
【表3】
Figure 0005068906
【0026】
【発明の効果】
本発明のセメント混和材を使用することにより、耐塩化物浸透性と中性化抑制効果を付与できるセメント組成物とすることができるなどの効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a cement admixture, a cement composition, and cement concrete using the cement admixture used in the civil engineering and construction industries.
The cement concrete as used in the present invention is a general term for cement paste, mortar, and concrete.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.
[0002]
[Prior art and problems]
In recent years, the durability problem of concrete has been greatly increased, making it difficult to rely on concrete.
Factors of deterioration of concrete include neutralization and salt damage, but these are contradictory performance requirements.
That is, salt damage is more susceptible as the amount of calcium hydroxide in the concrete increases, and neutralization is more affected as the amount of calcium hydroxide decreases.
In order to obtain concrete that is not easily affected by salt damage, a large amount of latent hydraulic substances such as blast furnace slag, fly ash, and silica fume are mixed to consume calcium hydroxide generated from cement hydration, and water. It is effective to use concrete with a small amount of calcium oxide.
[0003]
On the other hand, neutralization is a phenomenon caused by the fact that calcium hydroxide reacts with carbon dioxide in the atmosphere and is carbonated.
Therefore, it is said that the concrete with more calcium hydroxide production is less affected.
Today, there is a strong demand for the development of technology that effectively suppresses salt damage and neutralization at the same time.
[0004]
As a result of various studies, the present inventor has found that the powder of blast furnace slow-cooled slag that does not have hydraulic properties has a neutralization-inhibiting effect, and a specific cement admixture is capable of inhibiting salt damage and neutralizing The present invention has been completed by knowing that both are imparted.
[0005]
[Means for Solving the Problems]
That is, the present invention comprises a latent hydraulic material and a blast furnace annealed slag powder having a specific surface area of 3,000 cm 2 / g and a vitrification rate of 30% or less. A cement admixture comprising 20 to 80 parts of latent hydraulic material and 80 to 20 parts of blast furnace slow-cooled slag powder in a total of 100 parts of powder, and a cement composition comprising cement and the cement admixture. a cement concrete made using the cement composition.
[0006]
The latent hydraulic substance used in the present invention (hereinafter referred to as pozzolana) is not itself hydraulic, but has the property of becoming hydraulic when added with an appropriate stimulant. If it is, it will not specifically limit, Anything can be used. Specific examples thereof include blast furnace granulated slag fine powder, fly ash, silica fume, diatomaceous earth, and the like, and one or more of these can be used in the present invention.
[0007]
The blast furnace slag powder (hereinafter referred to as CFS) used in the present invention is a blast furnace slag powder which is gradually cooled and crystallized.
CFS is usually obtained as a crystalline massive slag by pouring molten slag into a dry pit or a cooling yard called a field and cooling by natural cooling and moderate watering.
The component of CFS has the same composition as granulated blast furnace slag. Specifically, SiO 2 , CaO, Al 2 O 3 , MgO and the like are main chemical components, and other trace components are Na 2. O, K 2 O, Fe 2 O 3, MnO, TiO 2, S, Cr 2 O 3, and containing such P 2 O 5.
The proportion of this chemical component is not particularly limited, but usually the main component SiO 2 is 25 to 45%, CaO is 30 to 50%, Al 2 O 3 is 10 to 20%, and MgO is 3%. ~ 10%
Trace amounts of Na 2 O, K 2 O, Fe 2 O 3 , MnO, TiO 2 , and S are each 2% or less.
CFS Blaine specific surface area (hereinafter, referred to as Blaine value) is preferably at least 3,000 cm 2 / g, more preferably at least 4,000cm 2 / g, 5,000cm 2 / g or more is most preferred. If the brain value is 3,000 cm 2 / g or less, a significant neutralization suppressing effect may not be obtained. On the other hand, if the brane value is too large, the amount of kneading water increases and the strength development and durability may deteriorate, and it is preferably 8,000 cm 2 / g or less.
The average particle size of CFS is preferably 40 μm or less, more preferably 30 μm or less, and most preferably 5 to 20 μm. The average particle size of CFS substantially corresponds to the above-mentioned Blaine value unless a special grinder is used or spheroids are used.
The vitrification rate of CFS is preferably 30% or less, and more preferably 10% or less. If the vitrification rate exceeds 30%, the heat of hydration may increase.
The vitrification rate (X) is obtained as X (%) = (1−S / S 0 ) × 100. Here, S is the main peak of melilite (solid solution of gelenite 2CaO · Al 2 O 3 · SiO 2 and akermanite 2CaO · MgO · 2SiO 2 ), which is the main crystalline compound in CFS obtained by powder X-ray diffraction method. S 0 represents the area of the main peak of melilite after CFS was heated at 1,000 ° C. for 3 hours and then cooled at a cooling rate of 5 ° C./min.
[0008]
The blending ratio of pozzolanic and CFS in the cement admixture in the present invention is not particularly limited, but usually 20 to 80 parts of pozzolana and 80 to 20 parts of CFS are preferable, and 30 to 70 parts of pozzolana and 70 to 30 parts of CFS are preferred. More preferred. If the pozzolan is less than 20 parts and the CFS exceeds 80 parts, the chloride penetration resistance, which is resistant to salt damage, may be insufficient, and if the pozzolan exceeds 80 parts and the CFS is less than 20 parts, The neutralization inhibitory effect may be insufficient.
[0009]
The particle size of the cement admixture of the present invention is not particularly limited, but is usually preferably from 3,000 to 15,000 cm 2 / g, more preferably from 4,000 to 9,000 cm 2 / g in terms of brain value. If it is less than 3000 cm 2 / g, the effect of the present invention may not be sufficiently obtained, and if it exceeds 15,000 cm 2 / g, further enhancement of the effect cannot be expected.
The amount of cement admixture used is not particularly limited.
The cement admixture contains pozzolanic and CFS, but the neutralization-inhibiting effect and chloride penetration resistance are deeply related to the compressive strength of cement concrete. In addition, when using pozzolanic and CFS in cement concrete, chloride penetration resistance is also improved. Mixing cement and pozzolanic to form a binder, that is, pozzolanic is mixed with cement as a binder. It is preferable to replace CFS with aggregate and mix as aggregate. In particular, CFS is more preferably combined with fine aggregate.
Usually, the amount of pozzolana is preferably 10 to 80 parts, more preferably 30 to 70 parts, in 100 parts of the binder. If it is less than 10 parts, the chloride penetration resistance is not sufficient, and if it exceeds 80 parts, the neutralization resistance may deteriorate.
Further, CFS is usually used in 10 parts or more out of a total of 100 parts of aggregate and CFS, and the total amount of aggregate can be replaced with CFS.
The cement admixture pozzolan of the present invention is mixed with cement as a binder, and CFS is replaced with aggregate, so that the cement admixture of the present invention is not mixed with cement concrete. Therefore, the compressive strength is not changed so much, and the neutralization suppressing effect and the chloride penetration resistance to the design strength can be clearly discriminated.
[0010]
As the cement used in the present invention, various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, and various mixed cements obtained by mixing blast furnace granulated slag, fly ash, or silica with these portland cements. In addition, filler cement mixed with limestone powder and the like can be mentioned, and one or more of these can be used.
[0011]
In the cement composition of the present invention, the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance.
The particle size of the cement composition of the present invention is not particularly limited because it depends on the purpose and application to be used. Usually, the brain value is preferably 3,000 to 8,000 cm 2 / g, and 4,000 to 6,000 cm 2 / g. Is more preferable. If it is less than 3,000 cm 2 / g, sufficient strength development may not be obtained, and if it exceeds 8,000 cm 2 / g, workability may deteriorate.
[0012]
In the present invention, in addition to cement, cement admixture, aggregates such as sand and gravel, admixture materials such as limestone fine powder conventionally used in concrete, water reducing agent, AE water reducing agent, high performance water reducing agent, high performance AE water reducing agent, antifoaming agent, thickening agent, rust preventive agent, antifreeze agent, polymer emulsion, shrinkage reducing agent, setting modifier, clay minerals such as bentonite, anion exchanger such as hydrotalcite, expansion material, and One or two or more of the hardened materials can be used within a range that does not substantially impair the object of the present invention.
[0013]
In the present invention, the mixing method of each material is not particularly limited, and the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance.
Any existing apparatus can be used as the mixing apparatus, and for example, a tilting cylinder mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer can be used.
[0014]
【Example】
Hereinafter, the present invention will be further described based on experimental examples.
[0015]
Experimental example 1
Using the cement, pozzolanic A, CSF I, and fine aggregate α shown in Table 1, the ratio of binder / aggregate, which is the ratio of the cement and pozzolanic binder and the aggregate of CFS i and fine aggregate A mortar having a ratio of 1: 2 and a water binder ratio of 50% was prepared, and compressive strength, salt penetration depth, and neutralization resistance were measured. The results are also shown in Table 1.
[0016]
<Materials used>
Cement: Ordinary Portland cement, brain value 3,200cm 2 / g, specific gravity 3.15
Pozzolana A: Ground granulated blast furnace slag, Brain value 6,000cm 2 / g, Vitrification rate 95%, Specific gravity 2.90
CFS I: Brain value 3,000cm 2 / g, Vitrification rate 5%, Specific gravity 3.00
Limestone fine powder: ground limestone from the Aomi mine, Niigata Prefecture, brain value 6,000cm 2 / g, specific gravity 2.70
Fine aggregate α: Sand, JIS standard sand (ISO679 compliant)
Water: Tap water [0017]
<Measurement method>
Compressive strength: A specimen of 4 × 4 × 16 cm was prepared, and the strength at 28 days of age was measured according to JIS R 5201.
Salinity penetration depth: 4 x 4 x 16 cm specimens were prepared and subjected to 20 ° C water curing until the age of 28 days, after which the specimens were immersed in 5% saline for 24 hours and dried at 40 ° C for 24 hours. The acceleration test with one step as the cycle was performed over 50 cycles. Cut this specimen into pieces and apply an aqueous silver nitrate solution to the cross section to confirm the salt penetration depth and evaluate chloride penetration resistance.
Neutralization depth: 4 x 4 x 16 cm specimens were prepared and subjected to 20 ° C water curing until the age of 28 days, then being promoted in an environment of 30 ° C, relative humidity 60% and carbon dioxide concentration 5% After 8 weeks, the specimen was cut into pieces, and a phenolphthalein alcohol solution was applied to the cross section to confirm the neutralization depth.
[0018]
[Table 1]
Figure 0005068906
[0019]
Experimental example 2
Prepare concrete with unit cement amount 150kg / m 3 , unit pozzolanic amount 150kg / m 3 , unit CFS amount 150kg / m 3 , water binder ratio 55%, s / a = 42% and air amount 4.5 ± 1.5% Compressive strength, salt penetration depth, and neutralization depth were measured. The results are also shown in Table 2.
In addition, pozzolana was mix | blended as a binder, CFS used what is shown in Table 2, and it substituted and mixed with the fine aggregate.
In addition, in order to examine the resistance to neutralization, the same experiment was also performed in the case of mixing limestone fine powder having the same compressive strength as CFS in the case of the same composition. The results are also shown in Table 2.
[0020]
<Materials used>
CFSb: Brain value 4,000 cm 2 / g, Vitrification rate 5%, Specific gravity 3.00
CFSc: Brain value 4,500 cm 2 / g, Vitrification rate 5%, Specific gravity 3.00
CFSd: Brain value 5,000 cm 2 / g, Vitrification rate 5%, Specific gravity 3.00
CFSe: Brain value 6,000cm 2 / g, Vitrification rate 5%, Specific gravity 3.00
CFSf: Brain value 6,000 cm 2 / g, Vitrification rate 30%, Specific gravity 2.96
CFSg: Adjusted below 5 mm, vitrification rate 5%, specific gravity 3.00
Fine aggregate β: Sand, from Himekawa, Niigata Prefecture, specific gravity 2.62
Coarse aggregate: Gravel, from Himekawa, Niigata, crushed stone, specific gravity 2.64
High-performance AE water reducing agent: polycarboxylic acid, commercially available
<Measurement method>
Compressive strength: A specimen of 10φ × 20cm was prepared and the strength at 28 days of age was measured according to JIS A 1108. However, demolding was carried out on the 7th day of age, and then water curing at 20 ° C. was performed.
A specimen having a salt penetration depth of 10φ × 20 cm was prepared and subjected to 20 ° C. water curing until the age of 28 days. Then, the specimen was exposed to the beach in Aomi Town, Niigata Prefecture, and collected after 6 months. At this time, a place where the specimen was immersed in seawater or dried by the tide was selected. Cut this specimen into slices and apply a silver nitrate aqueous solution to the cross section to confirm the salt penetration depth.
Neutralization depth: 10φ x 20cm specimens were prepared and subjected to 20 ° C water curing until the age of 28 days, followed by accelerated neutralization in an environment of 30 ° C, relative humidity 60% and carbon dioxide concentration 5%. After 6 months, cut the specimen and apply a phenolphthalein alcohol solution to the cross section to confirm the neutralization depth.
[0022]
[Table 2]
Figure 0005068906
[0023]
Experimental example 3
The same procedure as in Experimental Example 2 was conducted except that the type and unit amount of pozzolana and the unit amount of CFS were changed as shown in Table 3. The results are also shown in Table 3.
[0024]
<Materials used>
Pozzolana B: fly ash, brain value 4,500cm 2 / g, specific gravity 2.40
Pozzolanic C: Silica fume, brain value 135,000cm 2 / g, specific gravity 2.20
[0025]
[Table 3]
Figure 0005068906
[0026]
【Effect of the invention】
By using the cement admixture of the present invention, it is possible to obtain a cement composition capable of imparting chloride penetration resistance and neutralization suppressing effect.

Claims (3)

潜在水硬性物質とブレーン比表面積3,000cm/g以上でガラス化率30%以下の高炉徐冷スラグ粉末とを含有してなり、潜在水硬性物質と高炉徐冷スラグ粉末の合計100部中、潜在水硬性物質20〜80部、高炉徐冷スラグ粉末80〜20部であるセメント混和材。Containing a latent hydraulic material and a blast furnace annealed slag powder having a specific surface area of 3,000 cm 2 / g and a vitrification rate of 30% or less, and a total of 100 parts of the latent hydraulic material and the blast furnace annealed slag powder Cement admixture which is 20 to 80 parts of latent hydraulic material and 80 to 20 parts of blast furnace slow-cooled slag powder. セメントと請求項1記載のセメント混和材とを含有してなるセメント組成物。  A cement composition comprising cement and the cement admixture according to claim 1. 請求項2記載のセメント組成物を用いてなるセメントコンクリート Cement concrete using the cement composition according to claim 2 .
JP2001293536A 2001-09-26 2001-09-26 Cement admixture, cement composition, and cement concrete using the same Expired - Fee Related JP5068906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001293536A JP5068906B2 (en) 2001-09-26 2001-09-26 Cement admixture, cement composition, and cement concrete using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293536A JP5068906B2 (en) 2001-09-26 2001-09-26 Cement admixture, cement composition, and cement concrete using the same

Publications (2)

Publication Number Publication Date
JP2003095717A JP2003095717A (en) 2003-04-03
JP5068906B2 true JP5068906B2 (en) 2012-11-07

Family

ID=19115302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293536A Expired - Fee Related JP5068906B2 (en) 2001-09-26 2001-09-26 Cement admixture, cement composition, and cement concrete using the same

Country Status (1)

Country Link
JP (1) JP5068906B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101701673B1 (en) * 2016-04-29 2017-02-13 군산대학교산학협력단 Binder compositions for concrete, concrete compositions comprising the same, and concrete structure manufactured by the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4248920B2 (en) * 2003-04-18 2009-04-02 太平洋セメント株式会社 Underground pipe
JP4039992B2 (en) * 2003-07-28 2008-01-30 株式会社奥村組 Prediction method of neutralization depth of concrete structures
JP4860106B2 (en) * 2003-09-25 2012-01-25 電気化学工業株式会社 Cement admixture, cement composition, and cement concrete
JP4691368B2 (en) * 2005-02-24 2011-06-01 電気化学工業株式会社 Cement composition
JP2010006662A (en) * 2008-06-27 2010-01-14 Mitsubishi Materials Corp Highly durable concrete composition and method for producing highly durable concrete
JP6137850B2 (en) * 2013-01-31 2017-05-31 大成建設株式会社 Hydraulic composition
JP6102429B2 (en) * 2013-03-29 2017-03-29 住友大阪セメント株式会社 Hydraulic composition
JP6414838B2 (en) * 2013-12-27 2018-10-31 国立大学法人 新潟大学 Cement molded body manufacturing method and cement molded body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100047A (en) * 1987-10-12 1989-04-18 Sumitomo Metal Ind Ltd Granulated slag-containing dry mortar
JPH0761852A (en) * 1993-08-25 1995-03-07 Nissan Chem Ind Ltd Cement composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101701673B1 (en) * 2016-04-29 2017-02-13 군산대학교산학협력단 Binder compositions for concrete, concrete compositions comprising the same, and concrete structure manufactured by the same

Also Published As

Publication number Publication date
JP2003095717A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
JP3816036B2 (en) Cement admixture, cement composition and mortar or concrete using the same
JP5189119B2 (en) Method for selecting blast furnace slow-cooled slag powder suitably used as cement admixture
JP3844457B2 (en) Cement admixture and cement composition
JP5068906B2 (en) Cement admixture, cement composition, and cement concrete using the same
JP2006182583A (en) Mortar or concrete having compacted surface layer and its manufacturing method
JP6568291B1 (en) Cement admixture, expansion material, and cement composition
WO2020100925A1 (en) Cement admixture, expansion material, and cement composition
Su-Cadirci et al. Use of brick dust to optimise the dewatering process of hydrated lime mortars for conservation applications
JP2001294459A (en) Cement admixture and cement composition
JP5116193B2 (en) Cement admixture, cement composition, and high fluid concrete using the same
JP4877892B2 (en) Cement admixture, cement composition, and high fluidity concrete using the same
JP4860106B2 (en) Cement admixture, cement composition, and cement concrete
WO2022190861A1 (en) Method for producing geopolymer cured body, geopolymer cured body, method for producing geopolymer composition, and geopolymer composition
JP2002179451A (en) Concrete or mortar using slag aggregate
JP2008285380A (en) Cement admixture and cement composition
JP2001122650A (en) Cement admixture and cement composition
JP3897689B2 (en) Cement admixture and cement composition
JP2021017379A (en) Cement admixture, expansion material, and cement composition
JP2003192410A (en) Cement admixture, cement composition and cement concrete obtained by using the same
JP2001114541A (en) Cement admixture and cement composition
JP3844440B2 (en) Method for producing hardened cement and hardened cement
JP6003900B2 (en) Cement admixture manufacturing method
JP3877585B2 (en) Cement composition for carbonized cured body
JP3818808B2 (en) Cement admixture and cement composition
JP4514319B2 (en) Cement admixture and cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5068906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees