JP4860106B2 - Cement admixture, cement composition, and cement concrete - Google Patents

Cement admixture, cement composition, and cement concrete Download PDF

Info

Publication number
JP4860106B2
JP4860106B2 JP2003361367A JP2003361367A JP4860106B2 JP 4860106 B2 JP4860106 B2 JP 4860106B2 JP 2003361367 A JP2003361367 A JP 2003361367A JP 2003361367 A JP2003361367 A JP 2003361367A JP 4860106 B2 JP4860106 B2 JP 4860106B2
Authority
JP
Japan
Prior art keywords
cement
blast furnace
slag
sulfur
admixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003361367A
Other languages
Japanese (ja)
Other versions
JP2005119935A (en
Inventor
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003361367A priority Critical patent/JP4860106B2/en
Publication of JP2005119935A publication Critical patent/JP2005119935A/en
Application granted granted Critical
Publication of JP4860106B2 publication Critical patent/JP4860106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、主に、土木・建築分野で使用されるセメント混和材、セメント組成物及びそれを用いたコンクリートに関する。本発明における部や%は特に規定しない限り質量基準で示す。本発明におけるセメントコンクリートとは、セメントペースト、モルタル、及びコンクリートの総称である。   The present invention mainly relates to a cement admixture, a cement composition and concrete using the cement admixture used in the civil engineering / architecture field. Unless otherwise specified, parts and% in the present invention are shown on a mass basis. The cement concrete in the present invention is a general term for cement paste, mortar, and concrete.

産業副産物の有効利用が益々求められている。副産物の代表として高炉スラグが知られている。高炉水砕スラグは潜在水硬性を有しており、セメントに多量に混和しても長期強度が低下しないという特徴を有していることからセメントコンクリート分野において広範に利用されている。   The effective use of industrial byproducts is increasingly required. Blast furnace slag is known as a representative by-product. Blast furnace granulated slag has latent hydraulic properties and is widely used in the cement concrete field because it has a feature that long-term strength does not decrease even when mixed in a large amount with cement.

高炉徐冷スラグは別名バラスとも呼ばれ、水硬性及び潜在水硬性を示さない。そのため、高炉徐冷スラグは主に路盤材として利用されてきたが、最近では再生骨材が路盤材へ優先的に利用されるようになり、高炉徐冷スラグは従来の用途を失いつつあり、新たな用途を開拓することが必要とされている。   Blast furnace slow-cooled slag is also called ballast and does not show hydraulic or latent hydraulic properties. Therefore, blast furnace slow-cooled slag has been mainly used as roadbed material, but recently, recycled aggregate has come to be used preferentially for roadbed material, and blast furnace slow-cooled slag is losing its conventional use, There is a need to pioneer new applications.

本発明者は高炉徐冷スラグの有効利用について、種々検討を重ねた結果、高炉徐冷スラグ微粉末が、セメントコンクリートのブリーディング抑制機能や中性化抑制機能を有することを見出した。高流動コンクリートへ適用すると、材料分離抵抗性と流動性の保持性能に優れ、自己収縮が小さく、水和熱の少ない高流動コンクリートとすることができ、低環境負荷型のコンクリートとなることなどを知見した(特許文献1〜4等参照)。   As a result of various studies on effective utilization of the blast furnace slow cooling slag, the present inventor has found that the blast furnace slow cooling slag fine powder has a bleeding suppression function and a neutralization suppression function of cement concrete. When applied to high-fluidity concrete, it has excellent material separation resistance and fluidity retention performance, has low self-shrinkage, can be made into high-fluidity concrete with little heat of hydration, and becomes a low environmental load type concrete. It discovered (refer patent documents 1-4).

特許文献1〜3等に記載されているセメント混和材は高炉徐冷スラグ微粉末を含有するものであり、流動性の保持性能や中性化抑制効果を発揮するものであった。   The cement admixtures described in Patent Literatures 1 to 3 and the like contain blast furnace slow-cooled slag fine powder, and exhibit fluidity retention performance and neutralization suppression effect.

特開2001-261415号公報JP 2001-261415 A 特開2001-294459号公報JP 2001-294459 特開2002-003249号公報JP 2002-003249 A 特開2003-095717号公報Japanese Patent Laid-Open No. 2003-095717

セメント混和材、セメント組成物、及びそれを用いたセメントコンクリートを提供する。   A cement admixture, a cement composition, and cement concrete using the same are provided.

本発明は、真円度が0.8以上の球形化したガラス化率30%以下で非硫酸態イオウとして存在するイオウを0.3%以上含みブレーン比表面積値3,000〜9,000cm2/gの高炉徐冷スラグ微粉末を湿式粉砕してスラリー状とすることを特徴とする、セメント混和材であり、該セメント混和材を含有するセメント組成物であり、該セメント組成物を含有するコンクリートである。また、ガラス化率30%以下で非硫酸態イオウとして存在するイオウを0.3%以上含む塊状の高炉徐冷スラグを高炉徐冷スラグや比重3〜5の物質を粉砕媒体として用いて粉砕して調製した、真円度が0.8以上でブレーン比表面積値3,000〜9,000cm2/gとした高炉徐冷スラグ微粉末を湿式粉砕してスラリー状とすることを特徴とする、コンシステンシー経時変化が小さいセメント混和材の製造方法である。 The present invention provides a blast furnace annealed slag having a brane specific surface area value of 3,000 to 9,000 cm 2 / g, containing 0.3% or more of sulfur present as non-sulfate sulfur with a roundness of 0.8 or more and a vitrified vitrification ratio of 30% or less. A cement admixture characterized in that a fine powder is wet-pulverized to form a slurry , a cement composition containing the cement admixture, and a concrete containing the cement composition. Also prepared by pulverizing massive blast furnace slow-cooled slag containing 0.3% or more of sulfur present as non-sulfuric sulfur with a vitrification rate of 30% or less using blast furnace slow-cooled slag or a material with a specific gravity of 3 to 5 as a grinding medium Cement with small change in consistency with time, characterized by wet pulverization of blast furnace slow-cooled slag fine powder with roundness of 0.8 or more and Blaine specific surface area value of 3,000-9,000 cm 2 / g to form a slurry It is a manufacturing method of an admixture.

材料分離抑制機能、中性化抑制機能、自己収縮、水和時の発熱が少ないという高炉徐冷スラグを主体とするセメント混和材料の特徴を有するとともに、練上がり直後の初期の流動性が高く、長時間にわたるコンシステンシー経時変化が小さいので、高性能減水剤の使用量を削減できるという特徴を有する。   Material segregation suppression function, neutralization suppression function, self-shrinkage, has characteristics of cement admixtures mainly composed of blast furnace slow cooling slag with less heat generation during hydration, and high initial fluidity immediately after kneading, Since the change with time of the consistency over a long period of time is small, the amount of use of the high-performance water reducing agent can be reduced.

本発明で使用する高炉徐冷スラグは徐冷されて結晶化した高炉スラグである。高炉徐冷スラグの成分は高炉水砕スラグと同様の組成を有しており、具体的には、SiO2、CaO、Al2O3、及びMgO等を主要な化学成分とし、その他、TiO2、MnO、Na2O、S、P2O5、及びFe2O3等が挙げられる。 The blast furnace slag used in the present invention is a blast furnace slag which has been cooled and crystallized. The components of the blast furnace slow-cooled slag have the same composition as the granulated blast furnace slag. Specifically, SiO 2 , CaO, Al 2 O 3 , MgO, etc. are the main chemical components, and in addition, TiO 2 , MnO, Na 2 O, S, P 2 O 5 , Fe 2 O 3 and the like.

化合物としては、ゲーレナイト2CaO・Al2O3・SiO2とアケルマナイト2CaO・MgO・2SiO2の混晶である、いわゆるメリライトを主成分とし、ダイカルシウムシリケート2CaO・SiO2やランキナイト3CaO・2SiO2やワラストナイトCaO・SiO2などのカルシウムシリケート、メルビナイト3CaO・MgO・2SiO2やモンチセライトCaO・MgO・SiO2などのカルシウムマグネシウムシリケート、アノーサイトCaO・Al2O3・2SiO2、リューサイト(K2O、Na2O)・Al2O3・SiO2、スピネルMgO・Al2O3、マグネタイトFe3O4、硫化カルシウムCaSや硫化鉄FeSなどの硫化物等を含む場合がある。 The compound is a mixed crystal of gehlenite 2CaO · Al 2 O 3 · SiO 2 and Akerumanaito 2CaO · MgO · 2SiO 2, a so-called melilite as the main component, dicalcium silicate 2CaO · SiO 2 and rankinite night 3CaO · 2SiO 2 Ya Calcium silicates such as wollastonite CaO · SiO 2 , calcium magnesium silicates such as melvinite 3CaO · MgO · 2SiO 2 and Monticerite CaO · MgO · SiO 2 , anorthite CaO · Al 2 O 3 · 2SiO 2 , leucite (K 2 O, Na 2 O) · Al 2 O 3 · SiO 2 , spinel MgO · Al 2 O 3 , magnetite Fe 3 O 4 , sulfides such as calcium sulfide CaS and iron sulfide FeS may be included.

本発明でいう球形化とは、粒子表面の角がとれ、粒子形状の球形の度合いが増大することを意味する。球形化の度合いは、真円度で表すことができる。真円度とは、(粒子の投影面積)/(粒子の投影周囲長と同一周囲長を持つ円の面積)で表されるものである。   In the present invention, spheroidization means that the corner of the particle surface is removed and the degree of sphericity of the particle shape is increased. The degree of spheroidization can be expressed by roundness. The roundness is expressed by (projected area of particles) / (area of a circle having the same peripheral length as the projected peripheral length of the particles).

真円度の測定方法は特に限定されるものではないが、例えば、顕微鏡写真から、粒子の投影面積(A)と粒子の投影周囲長(PM)を測定することによって求めることができる(特開平11-60298号等参照)。粒子の投影周囲長と同一周囲長を持つ真円の面積を(B)とすると、真円度は
真円度=A/B=4πA/(PM)2 (ただし真円度は0〜1の範囲内)
と定義される。
The method for measuring the roundness is not particularly limited, but can be obtained, for example, by measuring the projected area (A) of the particle and the projected peripheral length (PM) of the particle from a micrograph (Japanese Patent Laid-Open 11-60298 etc.) When the area of a perfect circle having the same circumference as the projected circumference of the particle is (B), the roundness is roundness = A / B = 4πA / (PM) 2 (however, the roundness is 0 to 1) (Within range)
Is defined.

測定する粒子は、粉末の粒度分布を代表するようにサンプリングを行う。サンプリングする測定粒子が多く、画像解析時の画素数が多いほど、真円度の測定値の信頼性は増すが、測定時間も考慮すると、通常、50個程度の粒子の平均値で表すことが好ましい。真円度の測定方法は特に限定されないが、走査型電子顕微鏡や実体顕微鏡等で撮影した画像を、日本アビオニクス社製画像解析装置などの画像解析装置や画像解析ソフトウエア等で解析することが好ましい。   The particles to be measured are sampled to represent the particle size distribution of the powder. The more measurement particles to be sampled and the greater the number of pixels at the time of image analysis, the more reliable the roundness measurement value will be, but considering the measurement time, it is usually expressed as an average value of about 50 particles. preferable. The method of measuring roundness is not particularly limited, but it is preferable to analyze an image taken with a scanning electron microscope or a stereomicroscope with an image analysis device such as an image analysis device manufactured by Nippon Avionics, image analysis software, or the like. .

本発明の高炉徐冷スラグ微粉末の真円度は、0.8以上が好ましい。真円度が0.8未満では、練上がりのコンシステンシーが充分でない場合がある。   The roundness of the blast furnace annealed slag fine powder of the present invention is preferably 0.8 or more. If the roundness is less than 0.8, the consistency of finishing may not be sufficient.

球形化した高炉徐冷スラグ微粉末の調製方法は特に限定されるものではないが、塊状の高炉徐冷スラグを、粉砕機を用いて粉砕して得ることが可能である。例えば、ボールミル法では、粉砕媒体として用いられるボール等は高炉徐冷スラグと密度の差が小さく、例えば高炉徐冷スラグと比重が近い高炉徐冷スラグやアルミナ等の比重3〜5の物質を粉砕媒体として用いることが好ましく、ボールミル内で、ボールを入れずに、高炉徐冷スラグ同士機械的に衝突させるなどして、高炉徐冷スラグそのものを粉砕媒体として微粉末を得る方法がより好ましい。   The method for preparing the spheroidized blast furnace slow-cooled slag fine powder is not particularly limited, but it is possible to obtain a massive blast furnace slow-cooled slag by pulverization using a pulverizer. For example, in the ball mill method, the ball used as a grinding medium has a small difference in density from the blast furnace slow-cooled slag, for example, blast furnace slow-cooled slag and specific gravity of 3-5 such as alumina are ground. It is preferably used as a medium, and a method of obtaining fine powder using the blast furnace slow-cooled slag itself as a grinding medium by mechanically colliding with the blast furnace slow-cooled slag without putting balls in a ball mill is more preferable.

高炉徐冷スラグ粉砕は乾式で行っても良いし、湿式で行っても差し支えない。高炉徐冷スラグは水硬性を持たないため、水などと共に粉砕する湿式粉砕が可能である。湿式粉砕を行えば、スラリー状の球形化したセメント混和材が得られる。スラリー状のセメント混和材にすることは粉塵防止の観点や、輸送の利便性や投入・混合などの利便性や、流動性の保持性能が良好となるなどの観点などから好ましい。スラリー化は湿式粉砕を行っても良く、乾式粉砕の後に、水と混合して調製しても良い。   The blast furnace slow cooling slag pulverization may be carried out by a dry method or a wet method. Since the blast furnace slow cooling slag does not have hydraulic properties, it can be wet pulverized with water or the like. If wet pulverization is performed, a slurry-like spheroidized cement admixture is obtained. It is preferable to use a slurry-like cement admixture from the viewpoints of dust prevention, convenience of transportation, convenience such as charging / mixing, and good fluidity retention performance. Slurry may be performed by wet pulverization, or may be prepared by mixing with water after dry pulverization.

球形化した高炉徐冷スラグの粒度は特に限定されるものではないが、通常、ブレーン比表面積値で、3,000〜9,000cm2/gが好ましく、4,000〜8,000cm2/gがより好ましい。高炉徐冷スラグの粒度が粗いと、流動性の保持性能や中性化抑制効果が充分でない場合があり、過剰に粉砕することはコスト高となり好ましくないばかりか、風化しやすくなり、品質の経時的な変化が大きくなることがある。 The particle size of the spheroidized blast furnace slow-cooled slag is not particularly limited, but is usually preferably 3,000 to 9,000 cm 2 / g, more preferably 4,000 to 8,000 cm 2 / g in terms of the specific surface area of Blaine. If the grain size of the blast furnace slow cooling slag is coarse, the fluidity retention performance and neutralization suppression effect may not be sufficient, and excessive pulverization is not preferable because it is costly and is likely to be weathered, resulting in quality over time. Changes can be significant.

本発明では、高炉徐冷スラグのうち、非硫酸態イオウとして存在するイオウ(以下、単に非硫酸態イオウという)を0.3%以上含むものを用いることが好ましく、非硫酸態イオウを0.5%以上含むものがより好ましく、0.7%以上含むものが更に好ましい。非硫酸態イオウの含有量が少ないと流動性保持性能が不足する場合がある。   In the present invention, it is preferable to use a blast furnace slow-cooled slag containing 0.3% or more of sulfur existing as non-sulfate sulfur (hereinafter simply referred to as non-sulfate sulfur), and containing 0.5% or more of non-sulfate sulfur. More preferred are those containing 0.7% or more. If the content of non-sulfuric sulfur is low, fluidity retention performance may be insufficient.

非硫酸態イオウ量は、全イオウ量、単体イオウ量、硫化物態イオウ量、チオ硫酸態イオウ量、硫酸態イオウ(三酸化イオウ)量を定量することによって求められる。これら状態の異なるイオウの定量方法は、山口と小野の方法によって求めることができる。これは、「高炉スラグ中硫黄の状態分析」と題する論文に詳細に記載されている(山口直治、小野昭紘:製鉄研究、第301号、pp.37-40、1980)。また、硫酸態イオウ量(三酸化イオウ)と硫化物イオウ量については、JIS R 5202に定められた方法によって求めることができる。   The amount of non-sulfuric sulfur is determined by quantifying the amount of total sulfur, the amount of elemental sulfur, the amount of sulfide sulfur, the amount of thiosulfuric sulfur, and the amount of sulfuric sulfur (sulfur trioxide). The method for quantifying sulfur in different states can be obtained by the method of Yamaguchi and Ono. This is described in detail in a paper entitled “Analysis of Sulfur State in Blast Furnace Slag” (Naoji Yamaguchi, Shogo Ono: Steel Research, No. 301, pp. 37-40, 1980). Further, the amount of sulfur sulfate (sulfur trioxide) and the amount of sulfide sulfur can be determined by the method defined in JIS R 5202.

高炉徐冷スラグのガラス化率は30%以下が好ましく、10%以下がより好ましい。ガラス化率が30%を超えると、これを用いたセメント・コンクリートの自己収縮や水和発熱量が大きくなったり、流動性保持効果や中性化抑制効果が得られない場合がある。   The vitrification rate of the blast furnace annealed slag is preferably 30% or less, and more preferably 10% or less. If the vitrification rate exceeds 30%, cement / concrete using the same may have an increased self-shrinkage or hydration heat generation, and may not have a fluidity retention effect or a neutralization suppression effect.

ガラス化率(X)は
X(%)=(1−S/S0)×100
として求められる。ここで、Sは粉末X線回折法により求められる高炉徐冷スラグ試料中の主要な結晶性化合物であるメリライト(ゲーレナイト2CaO・Al2O3・SiO2とアケルマナイト2CaO・MgO・2SiO2の混晶)のメインピークの面積であり、S0は高炉徐冷スラグを1,000℃で3時間加熱し、その後、5℃/分の冷却速度で冷却した試料のメリライトのメインピークの面積を表す。
The vitrification rate (X) is X (%) = (1-S / S 0 ) × 100
As required. Here, S is the main crystalline compound in the blast furnace annealed slag sample obtained by powder X-ray diffraction method (mixed crystal of gelenite 2CaO · Al 2 O 3 · SiO 2 and akermanite 2CaO · MgO · 2SiO 2 ) And S 0 represents the area of the main peak of melilite of the sample obtained by heating the blast furnace slag for 3 hours at 1,000 ° C. and then cooling at a cooling rate of 5 ° C./min.

本発明のセメント混和材の配合量は特に限定されるものではないが、通常、セメント100部に対して、1〜100部の範囲で使用することができ、3〜50部が好ましい。セメント混和材の使用量が少ないと本発明の効果が充分に得られない場合があり、過剰にに使用しても更なる効果の増進が期待できない。   Although the compounding quantity of the cement admixture of this invention is not specifically limited, Usually, it can be used in the range of 1-100 parts with respect to 100 parts of cement, and 3-50 parts is preferable. If the amount of the cement admixture used is small, the effects of the present invention may not be sufficiently obtained, and even if used excessively, further enhancement of the effects cannot be expected.

本発明で使用するセメントとしては、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメントや、これらポルトランドセメントに高炉スラグやフライアッシュやシリカを混合した各種混合セメント、都市ゴミ焼却灰や下水汚泥焼却灰等を原料として製造された廃棄物利用セメント(エコセメント)、石灰石微粉末や高炉徐冷スラグ微粉末等を混合した各種フィラーセメント等が挙げられ、これらのうちの1種又は2種以上が使用可能である。   As the cement used in the present invention, various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, various mixed cements in which blast furnace slag, fly ash and silica are mixed with these portland cements, municipal waste Waste-use cement (eco-cement) manufactured using incineration ash, sewage sludge incineration ash, etc., and various filler cements mixed with limestone fine powder or blast furnace slow-cooled slag fine powder, etc. 1 of these Species or two or more can be used.

本発明では、高炉水砕スラグ微粉末や石灰石微粉末やフライアッシュやシリカフューム等の混和材料、凝結調整剤、膨張材、急硬材、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、ポリマー、スチールファイバーやビニロンファイバーや炭素繊維などの繊維質物質、ベントナイト等の粘土鉱物、及びハイドロタルサイト等のアニオン交換体等の添加剤等、通常のセメント材料に用いられる公知の添加剤、細骨材、並びに粗骨材等からなる群の1種類又は2種類以上を、本発明の目的を実質的に阻害しない範囲で併用することができる。   In the present invention, blast furnace granulated slag fine powder, limestone fine powder, fly ash, silica fume, and other admixtures, setting modifier, expansion material, quick hard material, water reducing agent, AE water reducing agent, high performance water reducing agent, high performance AE Water reducing agents, antifoaming agents, thickeners, rust inhibitors, antifreeze agents, shrinkage reducing agents, polymers, fiber materials such as steel fibers, vinylon fibers and carbon fibers, clay minerals such as bentonite, and hydrotalcite One or more of the group consisting of known additives used in ordinary cement materials, fine aggregates, coarse aggregates, etc., such as additives such as anion exchangers, are substantially used for the purpose of the present invention. It can be used in combination as long as it does not inhibit.

表1に示す高炉徐冷スラグ微粉末をセメント混和材とし、セメント100部に対して高炉徐冷スラグ微粉末を50部使用してセメント組成物とした。このセメント組成物100部に対して、細骨材150部、水30部を配合し、高性能AE減水剤(superplasticizer、以下SPという)でフロー値が280±10mmとなるように調整して高流動モルタルとした。セメント組成物100部に対するSPの添加量と高流動モルタルのフローの経時変化を測定した結果を表1に示す。比較例として、球状でない高炉徐冷スラグを用いた場合や、石灰石微粉末や高炉水砕スラグ微粉末を用いた場合についても表1に併記する。   Blast furnace slow-cooled slag fine powder shown in Table 1 was used as a cement admixture, and 50 parts of blast furnace slow-cooled slag fine powder was used as a cement composition with respect to 100 parts of cement. 100 parts of this cement composition is mixed with 150 parts of fine aggregate and 30 parts of water, and adjusted to a high flow rate of 280 ± 10 mm with a high performance AE water reducing agent (superplasticizer, hereinafter referred to as SP). A fluid mortar was used. Table 1 shows the results of measuring the amount of SP added with respect to 100 parts of the cement composition and the change over time in the flow of the high-flowing mortar. As a comparative example, Table 1 also shows the case of using blast furnace slow-cooled slag that is not spherical or the case of using limestone fine powder or blast furnace granulated slag fine powder.

<使用材料>
セメント混和材A :高炉徐冷スラグのみでボールミル粉砕して球形化した高炉徐冷スラグ微粉末、真円度0.90(球状粒子を主体)、ガラス化率5%、真比重3.00、非硫酸態イオウ0.7%、ブレーン比表面積4,000cm2/g。
セメント混和材B :高炉徐冷スラグのみでボールミル粉砕して球形化した高炉徐冷スラグ微粉末、真円度0.90(球状粒子を主体)、高炉スラグAを水に浸漬してエイジングし、非硫酸態イオウを0.5%にしたもの。ブレーン比表面積6,000cm2/g、ガラス化率5%、真比重3.00、ブレーン比表面積4,000cm2/g。
セメント混和材C :高炉徐冷スラグのみでボールミル粉砕して球形化した高炉徐冷スラグ微粉末、真円度0.90(球状粒子を主体)、高炉スラグAを水に浸漬してエイジングし、非硫酸態イオウを0.3%にしたもの。ガラス化率5%、真比重3.00、ブレーン比表面積4,000cm2/g。
セメント混和材D :高炉徐冷スラグのみでボールミル粉砕して球形化した高炉徐冷スラグ微粉末、真円度0.90(球状粒子を主体)、ガラス化率10%、真比重2.97、非硫酸態イオウ0.7%、ブレーン比表面積4,000cm2/g。
セメント混和材E :高炉徐冷スラグのみでボールミル粉砕して球形化した高炉徐冷スラグ微粉末、真円度0.90(球状粒子を主体)、ガラス化率30%、真比重2.94、非硫酸態イオウ0.7%、ブレーン比表面積4,000cm2/g。
セメント混和材F :アルミナボール(比重3.7)でボールミル粉砕して球形化した高炉徐冷スラグ微粉末、真円度0.85(球状粒子を主体)、ガラス化率5%、真比重3.00、非硫酸態イオウ0.7%、ブレーン比表面積4,000cm2/g。
セメント混和材G アルミナボールでボールミル粉砕して球形化した高炉徐冷スラグ微粉末、真円度0.80(球状粒子を主体)、ガラス化率5%、真比重3.00、非硫酸態イオウ0.7%、ブレーン比表面積4,000cm2/g。
セメント混和材H :ジルコニアボール(比重6.0)でボールミル粉砕して高炉徐冷スラグ微粉末、真円度0.70(不定型粒子を主体)、ガラス化率5%、真比重3.00、非硫酸態イオウ0.7%、ブレーン比表面積4,000cm2/g。
セメント混和材I :鋼質ボール(比重7.9)でボールミル粉砕した高炉水砕スラグ微粉末、真円度0.65(不定型粒子を主体)、ガラス化率95%、真比重2.90、非硫酸態イオウ0.7%、ブレーン比表面積4,000cm2/g。
セメント混和材J :鋼質ボールでボールミル粉砕した石灰石微粉末、真円度0.70(不定型粒子を主体)、真比重2.71、ブレーン比表面積4,000cm2/g。
細骨材 :新潟県姫川産、比重2.62、粒径5mm以下品
高性能AE減水剤(SP):市販のポリカルボン酸系。
水 :水道水。
<Materials used>
Cement admixture A: Blast furnace slow-cooled slag fine powder spheroidized by ball milling only with blast furnace slow-cooled slag, roundness 0.90 (mainly spherical particles), vitrification rate 5%, true specific gravity 3.00, non-sulfate sulfur 0.7%, Blaine specific surface area 4,000 cm 2 / g.
Cement admixture B: Blast furnace slow-cooled slag fine powder, spheroidized by ball milling only with blast furnace slow-cooled slag, roundness 0.90 (mainly spherical particles), blast furnace slag A immersed in water and aged, non-sulfuric acid State sulfur is 0.5%. Blaine specific surface area 6,000 cm 2 / g, vitrification rate 5%, true specific gravity 3.00, Blaine specific surface area 4,000 cm 2 / g.
Cement admixture C: Blast furnace slow-cooled slag fine powder, spheroidized by ball milling with only blast furnace slow-cooled slag, roundness 0.90 (mainly spherical particles), blast furnace slag A immersed in water and aged, non-sulfuric acid State sulfur is 0.3%. Vitrification rate 5%, true specific gravity 3.00, brain specific surface area 4,000cm 2 / g.
Cement admixture D: Blast furnace annealed slag fine powder spheroidized by ball milling only with blast furnace annealed slag, roundness 0.90 (mainly spherical particles), vitrification rate 10%, true specific gravity 2.97, non-sulfate sulfur 0.7%, Blaine specific surface area 4,000 cm 2 / g.
Cement admixture E: Blast furnace slow-cooled slag fine powder, spheroidized by ball milling only with blast furnace slow-cooled slag, roundness 0.90 (mainly spherical particles), vitrification rate 30%, true specific gravity 2.94, non-sulfate sulfur 0.7%, Blaine specific surface area 4,000 cm 2 / g.
Cement admixture F: Blast furnace annealed slag fine powder spheroidized by ball milling with alumina balls (specific gravity 3.7), roundness 0.85 (mainly spherical particles), vitrification rate 5%, true specific gravity 3.00, non-sulfate Sulfur 0.7%, Blaine specific surface area 4,000cm 2 / g.
Cement admixture G Blast furnace annealed slag fine powder spheroidized by ball milling with alumina balls, roundness 0.80 (mainly spherical particles), vitrification rate 5%, true specific gravity 3.00, non-sulfate sulfur 0.7%, branes Specific surface area 4,000 cm 2 / g.
Cement admixture H: Ball mill pulverized with zirconia balls (specific gravity 6.0), blast furnace slow-cooled slag fine powder, roundness 0.70 (mainly amorphous particles), vitrification rate 5%, true specific gravity 3.00, non-sulfate sulfur 0.7 %, Blaine specific surface area 4,000 cm 2 / g.
Cement admixture I: Blast furnace granulated slag fine powder ball milled with steel balls (specific gravity 7.9), roundness 0.65 (mainly amorphous particles), vitrification rate 95%, true specific gravity 2.90, non-sulfate sulfur 0.7 %, Blaine specific surface area 4,000 cm 2 / g.
Cement admixture J: fine limestone powder ball milled with steel balls, roundness 0.70 (mainly amorphous particles), true specific gravity 2.71, Blaine specific surface area 4,000 cm 2 / g.
Fine aggregate: Himekawa, Niigata Prefecture, specific gravity 2.62, particle size 5mm or less High performance AE water reducing agent (SP): Commercially available polycarboxylic acid.
Water: Tap water.

<測定方法>
フロー値:JIS R 5201に準じて測定。ただし、テーブルのタップは行わず、静置フローを測定した。
真円度:走査型電子顕微鏡にて撮影した2次電子像を市販の画像解析装置で解析した。
<Measurement method>
Flow value: Measured according to JIS R 5201. However, the static flow was measured without tapping the table.
Roundness: Secondary electron images taken with a scanning electron microscope were analyzed with a commercially available image analyzer.

Figure 0004860106
Figure 0004860106

混和材Aを使用し、セメント100部に対する高炉徐冷スラグ微粉末の使用量を表2に示すように変えたこと以外は実施例1と同様に行った。結果を表2に併記する。   The same procedure as in Example 1 was carried out except that the admixture A was used and the amount of blast furnace slow-cooled slag fine powder used relative to 100 parts of cement was changed as shown in Table 2. The results are also shown in Table 2.

Figure 0004860106
Figure 0004860106

セメント混和材Aを使用し、混和材A100部に対して水40部を配合して混合し、湿式粉砕してスラリー状のセメント混和材を調製した。このセメント混和材を、セメント100部に対して固形分換算で50部使用したこと以外は実施例1と同様に行った。結果を表3に併記する。   Cement admixture A was used, 40 parts of water was mixed with 100 parts of admixture A, mixed, and wet pulverized to prepare a slurry cement admixture. This cement admixture was carried out in the same manner as in Example 1 except that 50 parts in terms of solid content were used with respect to 100 parts of cement. The results are also shown in Table 3.

Figure 0004860106
Figure 0004860106

表4に示すセメント混和材を使用し、セメント混和材Aの単位量が250kg/m3、単位セメント量300kg/m3、単位水量175kg/m3、単位骨材量1,330kg/m3、s/a(細骨材率)=48%、高性能AE減水剤を添加してスランプフローが650±50mmの高流動コンクリートを調製した。この高流動コンクリートの高性能AE減水剤添加率、スランプフローの経時変化、圧縮強度、促進中性化試験による中性化深さを測定した。結果を表4に併記する。 Using the cement admixture shown in Table 4, the unit amount of cement admixture A is 250 kg / m 3 , unit cement amount 300 kg / m 3 , unit water amount 175 kg / m 3 , unit aggregate amount 1,330 kg / m 3 , s / a (fine aggregate ratio) = 48%, a high-performance AE water reducing agent was added, and a high-fluidity concrete with a slump flow of 650 ± 50 mm was prepared. The high-performance AE water reducing agent addition rate, slump flow change over time, compressive strength, and neutralization depth by accelerated neutralization test were measured. The results are also shown in Table 4.

<使用材料>
粗骨材 :新潟県姫川産、比重2.64、粒径5〜25mm品。
<Materials used>
Coarse aggregate: Product from Himekawa, Niigata Prefecture, specific gravity 2.64, particle size 5-25mm.

<測定方法>
スランプフロー値:JIS A 1150に準じて測定。
圧縮強度:10cmφ×20cmの円柱状の成形体を作製して水中養生し、JIS A 1108に準じて材齢28日の圧縮強度を測定。
中性化深さ:10cmφ×高さ20cmの供試体を作製し、材齢28日まで20℃水中養生を行った後、室温30℃・相対湿度60%・炭酸ガス濃度5%・大気圧の恒温室環境で促進中性化させた。促進中性化を12週間行った後、供試体を切断し、断面にフェノールフタレイン1%アルコール溶液を噴霧して、赤変しなかった部分を中性化部分と見なしてノギスで8点測定して平均値を求めた。
<Measurement method>
Slump flow value: Measured according to JIS A 1150.
Compressive strength: 10cmφ × 20cm cylindrical molded body was prepared and cured in water, and the compressive strength at the age of 28 days was measured according to JIS A 1108.
Neutralization depth: 10cmφ x 20cm height specimen, and after curing at 20 ° C until 28 days of age, room temperature 30 ° C, relative humidity 60%, carbon dioxide concentration 5%, atmospheric pressure Promoted neutralization in a constant temperature environment. After 12 weeks of accelerated neutralization, the specimen was cut and sprayed with 1% phenolphthalein alcohol solution on the cross section, and the part that did not turn red was regarded as a neutralized part and measured with a caliper at 8 points The average value was obtained.

Figure 0004860106
Figure 0004860106

本発明のセメント混和材は、材料分離抑制機能、中性化抑制機能、自己収縮、水和時の発熱が少ないという高炉徐冷スラグを主体とするセメント混和材料の特徴を有するとともに、練上がり直後の初期の流動性が高く、長時間にわたるコンシステンシー経時変化が小さいので、高性能減水剤の使用量を削減できるという特徴を有するため、土木・建築分野で使用されるセメント混和材や、それを用いたセメントコンクリート組成物用途に適する。
The cement admixture of the present invention has the characteristics of a cement admixture mainly composed of blast furnace slow-cooled slag that has a material separation suppressing function, neutralization suppressing function, self-shrinkage, and low heat generation during hydration. Since the initial fluidity is high and the time-dependent consistency change over time is small, the amount of high-performance water reducing agent used can be reduced, so cement admixtures used in the civil engineering and construction fields, and Suitable for the cement concrete composition used.

Claims (4)

真円度が0.8以上の球形化したガラス化率30%以下で非硫酸態イオウとして存在するイオウを0.3%以上含みブレーン比表面積値3,000〜9,000cm2/gの高炉徐冷スラグ微粉末を湿式粉砕してスラリー状とすることを特徴とする、コンシステンシー経時変化が小さいセメント混和材。 Wet powder of blast furnace chilled slag with a brane specific surface area value of 3,000 to 9,000 cm 2 / g containing 0.3% or more of sulfur present as non-sulfuric sulfur with a roundness of 0.8 or more and spheroidized vitrification rate of 30% or less A cement admixture having a small change with time in consistency, which is pulverized into a slurry . セメントと、請求項1記載のセメント混和材を含有するセメント組成物。 And cement, a cement composition containing a cement admixture according to claim 1 Symbol placement. 請求項記載のセメント組成物を含有するセメントコンクリート。 Cement concrete containing the cement composition according to claim 2 . ガラス化率30%以下で非硫酸態イオウとして存在するイオウを0.3%以上含む塊状の高炉徐冷スラグを高炉徐冷スラグや比重3〜5の物質を粉砕媒体として用いて粉砕して調製した、真円度が0.8以上の球形化したブレーン比表面積値3,000〜9,000cm2/gの高炉徐冷スラグ微粉末を湿式粉砕してスラリー状とすることを特徴とする、コンシステンシー経時変化が小さいセメント混和材の製造方法。 A blast furnace chilled slag containing 0.3% or more of sulfur present as non-sulfuric sulfur with a vitrification rate of 30% or less was prepared by pulverizing using a blast furnace chilled slag or a material having a specific gravity of 3 to 5 as a pulverization medium, Cement with small change in consistency with time, characterized by wet pulverization of blast furnace slow-cooled slag powder having a roundness of 0.8 or more and a spheroidized specific surface area of 3,000 to 9,000 cm 2 / g A method for producing an admixture.
JP2003361367A 2003-09-25 2003-10-22 Cement admixture, cement composition, and cement concrete Expired - Fee Related JP4860106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003361367A JP4860106B2 (en) 2003-09-25 2003-10-22 Cement admixture, cement composition, and cement concrete

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003332967 2003-09-25
JP2003332967 2003-09-25
JP2003361367A JP4860106B2 (en) 2003-09-25 2003-10-22 Cement admixture, cement composition, and cement concrete

Publications (2)

Publication Number Publication Date
JP2005119935A JP2005119935A (en) 2005-05-12
JP4860106B2 true JP4860106B2 (en) 2012-01-25

Family

ID=34621994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003361367A Expired - Fee Related JP4860106B2 (en) 2003-09-25 2003-10-22 Cement admixture, cement composition, and cement concrete

Country Status (1)

Country Link
JP (1) JP4860106B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4860279B2 (en) * 2006-01-27 2012-01-25 電気化学工業株式会社 Ultra-fast-hardening / high-fluidity cement composition and mortar or concrete using the same
JP4860278B2 (en) * 2006-01-27 2012-01-25 電気化学工業株式会社 Ultra-fast-hardening / high-fluidity cement composition and mortar or concrete using the same
US7884055B2 (en) 2008-12-04 2011-02-08 Intevep, S.A. Ceramic microspheres for cementing applications
KR20110115583A (en) * 2009-01-16 2011-10-21 덴키 가가쿠 고교 가부시기가이샤 Rubber-modified thermoplastic resin composition, injection molded article comprising the same, and washing machine lid using the same
JP6185681B1 (en) * 2017-02-08 2017-08-23 株式会社デイ・シイ Blast furnace slag fine powder and cement composition
JP6185682B1 (en) * 2017-02-08 2017-08-23 株式会社デイ・シイ Blast furnace slag fine powder and cement composition
JP2023120508A (en) * 2022-02-18 2023-08-30 デンカ株式会社 Powder and powder manufacturing method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3207194B2 (en) * 1990-03-26 2001-09-10 住友大阪セメント株式会社 Materials for civil engineering work
JPH0558684A (en) * 1991-08-27 1993-03-09 Kobe Steel Ltd Spherodization of fine slag powder
JPH1099704A (en) * 1996-09-30 1998-04-21 Denki Kagaku Kogyo Kk Crushing medium and production of spherical fine particles using the same
JP4248121B2 (en) * 2000-03-21 2009-04-02 電気化学工業株式会社 Cement admixture, cement composition, and high fluidity concrete using the same
JP4574789B2 (en) * 2000-03-29 2010-11-04 株式会社間組 Cement composition
JP4514074B2 (en) * 2000-06-16 2010-07-28 電気化学工業株式会社 Cement admixture, cement composition, and high flow cement concrete
JP2002097043A (en) * 2000-09-19 2002-04-02 Futase Yogyo Kk Method of producing blast furnace slowly cooled slag sand
JP5116193B2 (en) * 2001-08-30 2013-01-09 電気化学工業株式会社 Cement admixture, cement composition, and high fluid concrete using the same
JP5068906B2 (en) * 2001-09-26 2012-11-07 電気化学工業株式会社 Cement admixture, cement composition, and cement concrete using the same
JP4877892B2 (en) * 2001-09-26 2012-02-15 電気化学工業株式会社 Cement admixture, cement composition, and high fluidity concrete using the same
JP3729340B2 (en) * 2001-10-03 2005-12-21 電気化学工業株式会社 Cement admixture and cement composition
JP5059285B2 (en) * 2001-10-23 2012-10-24 電気化学工業株式会社 Cement admixture, cement composition, and cement concrete using the same
JP4497776B2 (en) * 2001-11-29 2010-07-07 電気化学工業株式会社 Cement admixture, cement composition, and mortar or concrete using the same
JP4033681B2 (en) * 2002-01-29 2008-01-16 電気化学工業株式会社 Method for producing hardened cement and hardened cement
JP2003221265A (en) * 2002-01-31 2003-08-05 Denki Kagaku Kogyo Kk Cement admixture, cement composition, and cement concrete composition using the same

Also Published As

Publication number Publication date
JP2005119935A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP4267446B2 (en) Cement admixture, cement composition, and neutralization suppression method using the same
WO2002022518A1 (en) Cement composition
JP2004051426A (en) Cement admixture, cement composition and mortar or concrete prepared using this
JP2007261884A (en) Grout composition, mortar or concrete and grout material using it
JP2007197268A (en) Ultra-quick hardening/highly flowable cement composition, and mortar or concrete using same
JP2018100204A (en) Method of producing cement composition
JP4489707B2 (en) Grout composition, mortar or concrete using the composition, and grout material
JP4860106B2 (en) Cement admixture, cement composition, and cement concrete
WO2020100925A1 (en) Cement admixture, expansion material, and cement composition
JP4860278B2 (en) Ultra-fast-hardening / high-fluidity cement composition and mortar or concrete using the same
JP2001294459A (en) Cement admixture and cement composition
JP5068906B2 (en) Cement admixture, cement composition, and cement concrete using the same
JP6234739B2 (en) Method for producing hardened cement and hardened cement
JP2002003249A (en) Cement admixture, cement composition and cement concrete with high flowability
JP6568291B1 (en) Cement admixture, expansion material, and cement composition
JP2005047771A (en) Cement composition
WO2021215509A1 (en) Cement admixture, expansion material, and cement composition
JP4101574B2 (en) Cement admixture and cement composition
JP3810350B2 (en) Cement admixture and cement composition
JP6867801B2 (en) Cement composition
JP2021017379A (en) Cement admixture, expansion material, and cement composition
JP4173780B2 (en) Hydraulic cement composition
JP3786872B2 (en) Concrete composition and concrete using the same
JP2003192404A (en) Cement composition for self-compaction and mortar
JP2003192410A (en) Cement admixture, cement composition and cement concrete obtained by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

R150 Certificate of patent or registration of utility model

Ref document number: 4860106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees