JP5116193B2 - Cement admixture, cement composition, and high fluid concrete using the same - Google Patents

Cement admixture, cement composition, and high fluid concrete using the same Download PDF

Info

Publication number
JP5116193B2
JP5116193B2 JP2001260970A JP2001260970A JP5116193B2 JP 5116193 B2 JP5116193 B2 JP 5116193B2 JP 2001260970 A JP2001260970 A JP 2001260970A JP 2001260970 A JP2001260970 A JP 2001260970A JP 5116193 B2 JP5116193 B2 JP 5116193B2
Authority
JP
Japan
Prior art keywords
cement
slag
concrete
parts
admixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001260970A
Other languages
Japanese (ja)
Other versions
JP2003073155A (en
Inventor
実 盛岡
賢司 山本
康宏 中島
隆行 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001260970A priority Critical patent/JP5116193B2/en
Publication of JP2003073155A publication Critical patent/JP2003073155A/en
Application granted granted Critical
Publication of JP5116193B2 publication Critical patent/JP5116193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00439Physico-chemical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00448Low heat cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に、土木・建築業界において使用されるセメント混和材、セメント組成物及びそれを用いてなる高流動コンクリートに関する。
なお、本発明における部や%は、特に規定しない限り質量基準で示す。
【0002】
【従来の技術】
最近では、コンクリートの耐久性が大きくクローズアップされ、コンクリートのひび割れを低減して信頼性の高いコンクリートとするために、膨張材が利用されている。これは、ひび割れが発生するとコンクリートの劣化要因である中性化が進むためである。ひび割れが低減できれば、中性化の影響を小さくすることができ、耐久性の高いコンクリート構造物の構築が可能となる。
【0003】
【発明が解決しようとする課題】
しかしながら、これはあくまでも、巨視的な欠陥の少ない健全なコンクリート構造物を構築するという意味であり、コンクリートそのものの炭酸ガスの透過性とは趣旨を異にしている。すなわち、炭酸ガスの透過はもっと微視的な空隙を介しても進行する。したがって、巨視的な欠陥の少ない健全なコンクリート構造物とした上で、コンクリート躯体そのものも炭酸ガスが透過しにくいコンクリートにすることが望まれる。
今日では、コンクリートに膨張性と共に中性化抑制の双方を付与でき、水和発熱量も小さくできるセメント混和材の開発が待たれている。
そこで、本発明者は種々検討を重ねた結果、高炉徐冷スラグ粉末と膨張物質を含有してなるセメント混和材が、膨張性と中性化抑制の双方を付与でき、水和発熱量も小さくできることを知見して本発明を完成するに至った。
【0004】
【課題を解決するための手段】
即ち、本発明は、ブレーン比表面積が4000cm 2 /gを超える高炉徐冷スラグ粉末と遊離石灰量が40%を超える遊離石灰-水硬性化合物-無水セッコウ系である膨張物質を含有してなり、高炉徐冷スラグ粉末と膨張物質の合計100部中、高炉徐冷スラグ粉末50〜97部、膨張物質3〜50部であるセメント混和材であり、セメントと、該セメント混和材とを含有してなるセメント組成物であり、さらに、該セメント組成物を用いてなる高流動コンクリートである。
【0005】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0006】
本発明で使用する高炉徐冷スラグ(以下、徐冷スラグという)は、徐冷されて結晶化した高炉スラグである。
【0007】
徐冷スラグのブレーン比表面積は、4000cm2/gを超えることが好ましく、4500cm2/g以上がより好ましく、5000cm2/g以上がさらに好ましい。ブレーン比表面積が4000cm2/g以下では、材料分離抵抗性が得られない場合がある。
【0008】
また、本発明で使用する徐冷スラグのガラス化率は、30%以下が好ましく、10%以下がより好ましい。ガラス化率が30%を超えると水和熱が大きくなる場合がある。
本発明でいうガラス化率(X)は、X(%)=(1−S/S0)×100として求められる。
ここで、Sは粉末X線回折法により求められる徐冷スラグ中の主要な結晶性化合物であるメリライト(ゲーレナイト2CaO・Al23・SiO2とアケルマナイト2CaO・MgO・2SiO2の固溶体)のメインピークの面積であり、S0は徐冷スラグを1000℃で3時間加熱し、その後、5℃/分の冷却速度で冷却したもののメリライトのメインピークの面積を表す。
【0009】
徐冷スラグの成分は、高炉水砕スラグと同様の組成を有しており、具体的には、SiO2、CaO、Al23及びMgO等を主要な化学成分とし、その他、TiO2、MnO、Na2O、S、P25及びFe23等を含有する場合がある。
【0010】
本発明のセメント混和材(以下、本混和材という)の使用量は、特に限定されるものではないが、通常、セメント100部に対して、10〜250部程度の範囲で使用することが好ましく、20〜150部程度の範囲で使用することがより好ましい。10部未満では水和熱を抑制するという本発明の効果が十分に得られない場合があり、250部を超えて使用すると、強度発現性が悪くなる場合がある。
【0011】
本発明に係る膨張物質とは、特に限定されるものではなく、いかなるものでも使用可能である。大別すると、ガス発泡物質系、セメント鉱物系がある。
その具体例としては例えば、ガス発泡物質系では、アルミ粉、鉄粉、過酸化物質及び炭素物質等が挙げられる。また、セメント鉱物系では、エトリンガイト系や石灰系、及び石灰−エトリンガイト複合系等が挙げられる。本発明では、効果的な膨張性が付与できる観点から、セメント鉱物系を用いることが好ましい。
【0012】
セメント鉱物系の膨張物質としては、遊離石灰や遊離マグネシアを含むものが挙げられるが、長期安定性の観点から、遊離石灰を含むものが好ましい。遊離石灰を含むものとしては、例えば、遊離石灰-無水セッコウ系、遊離石灰-水硬性化合物系及び遊離石灰-水硬性化合物-無水セッコウ系等が挙げられる。本発明では、膨張性能が良好なことから、遊離石灰-水硬性化合物-無水セッコウ系を用いることが好ましく、特に遊離石灰含有量が40%を超えるものが好ましい。
ここで、水硬性化合物としては、例えば、アウイン、カルシウムフェライト、カルシウムアルミノフェライト、カルシウムシリケート、カルシウムアルミネート等の1種又は2種以上が挙げられる。
膨張物質としては、市販の膨張材や静的破砕材が利用できる。膨張材や静的破砕材は各社より市販されており、その代表例としては、例えば、電気化学工業社製「デンカCSA」、「デンカパワーCSA」、住友大阪セメント社製「サクス」、太平洋マテリアル社製「エクスパン」、「N-EX」、「ブライスター」、「ジプカル」等が挙げられる。
【0013】
本混和材中の徐冷スラグと膨張物質の配合割合は、特に限定されるものではないが、通常、徐冷スラグと膨張物質の合計100部中、徐冷スラグは50〜97部が好ましく、70〜95部がより好ましい。また、膨張物質は3〜50部が好ましく、5〜30部がより好ましい。膨張物質が50部を超えたり、徐冷スラグが50部未満であると、中性化抑制効果が不十分になる場合がある。また、膨張物質が3部未満であったり、徐冷スラグが97部を超えると、膨張性能が不十分となる場合がある。
【0014】
本発明で使用するセメントとしては、普通、早強、超早強、低熱及び中庸熱等の各種ポルトランドセメントや、これらポルトランドセメントに、高炉水砕スラグ、フライアッシュ又はシリカを混合した各種混合セメント、石灰石粉末等を混合したフィラーセメント等が挙げられ、これらのうちの一種又は二種以上が使用可能である。
【0015】
本発明のセメント組成物は、それぞれの材料を施工時に混合してもよいし、あらかじめ一部あるいは全部を混合しておいても差し支えない。
【0016】
本発明のセメント組成物の粒度は、使用する目的や用途に依存するため特に限定されるものではないが、通常、ブレーン比表面積で3000〜8000cm2/gが好ましく、4000〜6000cm2/gがより好ましい。3000cm2/g未満では強度発現性が十分に得られない場合があり、8000cm2/gを超えると作業性が悪くなる場合がある。
【0017】
本発明で使用する高流動コンクリートとは、従来の振動締め固めを必要としない自己充填性を有し、材料分離を生じないコンクリートを総称するものであり、流動性の指標となるスランプフロー値が650±50mmであることが好ましい。
【0018】
高流動コンクリートを調製する際には、通常使用される減水剤、AE減水剤、高性能減水剤及び高性能AE減水剤等を用いて高流動化することが好ましい。減水剤は液状や粉末状のものが市販されており、いずれも使用可能である。また、減水剤はナフタレン系、メラミン系、アミノスルホン酸系及びポリカルボン酸系に大別される。
本発明では、特に高性能AE減水剤の使用が好ましく、その具体例としては、ナフタレン系では、エヌエムビー社製商品名「レオビルドSP-9シリーズ」、花王社製商品名「マイティ2000シリーズ」、及び日本製紙社製商品名「サンフローHS-100」等が挙げられる。メラミン系では、日本シーカ社製商品名「シーカメント1000シリーズ」や日本製紙社製商品名「サンフローHS-40」等が挙げられる。アミノスルホン酸系では、藤沢薬品工業社製商品名「パリックFP-200シリーズ」等が挙げられる。ポリカルボン酸系では、エヌエムビー社製商品名「レオビルドSP-8シリーズ」、グレースケミカルズ社製商品名「ダーレックススーパー100PHX」、及び竹本油脂社製商品名「チューポールHP-8シリーズ」や「チューポールHP-11シリーズ」等が挙げられる。
【0019】
本発明では、これら減水剤のうちの一種又は二種以上が使用可能である。減水剤の使用量は、特に限定されるものではないが、通常、各メーカーの指定する範囲内で使用すればよく、具体的には、セメントや本混和材からなる粉体100部に対して、0.5〜3.0部程度である。
【0020】
水の使用量は、特に限定されるものではないが、通常、コンクリート1m3当たり、125〜225kgが好ましく、140〜185kgがより好ましい。
【0021】
本発明では、セメント、本混和材、砂や砂利等の骨材及び減水剤の他に、従来からコンクリートに用いられてきた高炉水砕スラグ微粉末、石灰石微粉末、フライアッシュ及びシリカフューム等の混和材料、収縮低減剤、消泡剤、増粘剤、防錆剤、防凍剤、高分子エマルジョン、凝結調整剤、ベントナイト等の粘土鉱物、並びにハイドロタルサイト等のアニオン交換体等のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。
【0022】
本発明において、各材料の混合方法は、特に限定されるものではなく、それぞれの材料を施工時に混合しても良いし、あらかじめ一部を、あるいは全部を混合しておいても差し支えない。
混合装置としては、既存のいかなる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ及びナウタミキサ等の使用が可能である。
【0023】
【実施例】
以下、本発明の実施例に基づいてさらに説明する。
【0024】
実施例1
表1に示すような割合でセメント、膨張物質及び徐冷スラグ粉末を使用し、結合材と砂の比率が1対3、水セメント比が50%のモルタルを調製し、圧縮強度、長さ変化率及び中性化抵抗性を測定した。ただし、膨張物質は結合材の一部として配合し、徐冷スラグは砂の一部として配合した。結果を表1に併記した。
【0025】
<使用材料>
セメント:市販の普通ポルトランドセメント、ブレーン比表面積3200cm2/g、比重3.15
スラグa:徐冷スラグ、ブレーン比表面積3000cm2/g、ガラス化率5%、比重3.00
石灰石微粉末:新潟県青海鉱山産石灰石の粉砕品、ブレーン比表面積6000cm2/g、比重2.70
膨張物質A:電気化学工業社製「デンカパワーCSA」、遊離石灰−水硬性化合物−無水セッコウ系、ブレーン比表面積2900cm2/g。遊離石灰量50%砂:JIS標準砂(ISO679準拠)
水:水道水
【0026】
<測定方法>
圧縮強度:4×4×16cm供試体を作製し、JIS R 5201に準じて材齢28日強度を測定。
長さ変化率:JIS A 6202に準じて、材齢28日の長さ変化率を測定。
ただし、材齢1日で脱型し、材齢7日までは水中養生を行い、以後材齢28日までは20℃・相対湿度60%の環境で気乾養生を行った。
中性化深さ:4×4×16cm供試体を作製し、材齢28日まで20℃水中養生を施した後、30℃・相対湿度60%・炭酸ガス濃度5%の環境で促進中性化を行い、8週間後に供試体を輪切りにし、断面にフェノールフタレインアルコール溶液を塗布して中性化深さを確認。
【0027】
【表1】

Figure 0005116193
【0028】
表1より、本混和材を含有したセメント組成物を使用することにより、モルタルに膨張性と中性化抑制効果を付与できることが判る。
【0029】
実施例2
単位セメント量280kg/m3、単位膨張物質A量20kg/m3、単位スラグ量250kg/m3、水/粉体比=30%、s/a=48%、及び空気量4.5±1.5%のコンクリートを調製し、スラグの種類を表2に示すように変えて実験を行った。これらのコンクリートのスランプフロー値、断熱温度上昇量、圧縮強度、自己寸法変化、及び中性化深さについて測定した。また、中性化に対する抵抗性を検討するために、同一配合の場合に徐冷スラグ微粉末と圧縮強度が同等となる、石灰石微粉末を混和した場合についても同様の実験を行った。結果を表2に併記する。
【0030】
<使用材料>
スラグb:徐冷スラグ、ブレーン比表面積4000cm2/g、ガラス化率5%、比重3.00
スラグc:徐冷スラグ、ブレーン比表面積4500cm2/g、ガラス化率5%、比重3.00
スラグd:徐冷スラグ、ブレーン比表面積5000cm2/g、ガラス化率5%、比重3.00
スラグe:徐冷スラグ、ブレーン比表面積6000cm2/g、ガラス化率5%、比重3.00
スラグf:徐冷スラグ、ブレーン比表面積6000cm2/g、ガラス化率30%、比重2.96
スラグg:徐冷スラグ、ブレーン比表面積6000cm2/g、ガラス化率50%、比重2.94
スラグh:急冷スラグ、ブレーン比表面積6000cm2/g、ガラス化率95%、比重2.90
砂:新潟県姫川産、比重2.62
砂利:新潟県姫川産、砕石、比重2.64
高性能AE減水剤:ポリカルボン酸系、市販品
【0031】
<測定方法>
材料分離:目視により観察。材料分離が生じた場合は×、やや分離気味の場合は△、材料分離が全く生じない場合は○で表示。
スランプフロー:財団法人、沿岸開発技術センター及び漁港漁村建設技術研究所発行、水中不分離性コンクリート・マニュアル、付録1「水中不分離性コンクリートの試験、スランプフロー試験」に基づいてコンクリートの広がりを直角方向に2点測定した平均値
自己寸法変化:JCI自己収縮研究委員会報告書に準じて測定。材齢56日におけるひずみとして表示。
断熱温度上昇量:東京理工社製の断熱温度上昇量測定装置を用いて打設温度20℃の条件で測定。
圧縮強度:10φ×20cm供試体を作製し、JIA A 1108に準じて材齢28日強度を測定。ただし、脱型は材齢7日に行い、以後20℃の水中養生を行った。
中性化深さ:10φ×20cm供試体を作製し、材齢28日まで20℃水中養生を施した後、30℃・相対湿度60%・炭酸ガス濃度5%の環境で促進中性化を行い、6ヶ月後に供試体を輪切りにし、断面にフェノールフタレインアルコール溶液を塗布して中性化深さを確認。
【0032】
【表2】
Figure 0005116193
【0033】
表2より、本混和材を含有したセメント組成物を使用することにより、高流動コンクリートの材料分離抵抗性が大きく、水和発熱量が小さく、中性化され難いことが判る。また、低水比のコンクリートでも自己収縮を小さく抑えることができる。特に、ブレーン比表面積が4000cm2/gを超える徐冷スラグを使用することが好ましい。
【0034】
実施例3
単位セメント量と単位スラグ量を表3に示すようにしたこと以外は、実施例2と同様に行った。結果を表3に併記する。
【0035】
【表3】
Figure 0005116193
【0036】
表3より、本混和材を含有したセメント組成物を使用することにより、高流動コンクリートの材料分離抵抗性が大きく、水和発熱量が小さく、中性化され難いことが判る。また、低水比のコンクリートでも自己収縮を小さく抑えることができる。
【0037】
実施例4
セメントと膨張物質からなる単位結合材量300kg/m3、単位スラグ量250kg/m3、単位水量165kg/m3、s/aが48%の高流動コンクリートにおいて、結合材中の膨張物質の種類と量を表4に示すように変えたこと以外は、実施例2と同様に行った。結果を表4に併記する。
【0038】
<使用材料>
膨張物質B:電気化学工業社製「デンカCSA#20」、遊離石灰−水硬性化合物−無水セッコウ系、ブレーン比表面積2800cm2/g、遊離石灰量20%。
膨張物質C:太平洋マテリアル社製「エクスパン構造用」、遊離石灰−水硬性化合物−無水セッコウ系、ブレーン比表面積3500cm2/g、遊離石灰量33%。
【0039】
【表4】
Figure 0005116193
【0040】
表4より、本混和材中の膨張物質の配合割合を増やしていくと、自己収縮の無いコンクリートを作製できることが判る。特に、遊離石灰量が40%を超える膨張物質Aを使用することが好ましい。
【0041】
【発明の効果】
本混和材を含有したセメント組成物を使用することにより、膨張性と中性化抑制効果を付与でき、水和発熱量が小さく、材料分離抵抗性が大きく、中性化され難いコンクリートとすることができる。また、高流動コンクリートのような低水比のコンクリートに適用しても自己収縮を小さく抑えることができる等の効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a cement admixture used in the civil engineering and construction industry, a cement composition, and a high-fluidity concrete using the same.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.
[0002]
[Prior art]
Recently, the durability of concrete has been greatly improved, and in order to reduce the cracks in the concrete and to make the concrete highly reliable, an expanding material is used. This is because when a crack occurs, neutralization, which is a deterioration factor of concrete, proceeds. If cracks can be reduced, the effect of neutralization can be reduced, and a highly durable concrete structure can be constructed.
[0003]
[Problems to be solved by the invention]
However, this only means that a sound concrete structure with few macroscopic defects is constructed, which is different from the carbon dioxide permeability of the concrete itself. That is, the permeation of carbon dioxide proceeds even through a more microscopic gap. Therefore, it is desired that the concrete frame itself is made of a concrete that is difficult for carbon dioxide gas to permeate, after having a sound concrete structure with few macroscopic defects.
Today, it is awaited to develop a cement admixture that can impart both expandability and neutralization suppression to concrete, and can also reduce the amount of heat of hydration.
Accordingly, as a result of various studies, the present inventor has found that a cement admixture containing a blast furnace slow-cooled slag powder and an expansion material can provide both expansion and neutralization suppression, and the hydration heat generation amount is small. The present invention has been completed by finding out that it can be done.
[0004]
[Means for Solving the Problems]
That is, the present invention comprises a blast furnace slow-cooled slag powder having a Blaine specific surface area of more than 4000 cm 2 / g and an expanding material that is a free lime-hydraulic compound-anhydrous gypsum system having a free lime content of more than 40%. during a total of 100 parts of blast furnace slowly cooled slag powder and expanded material, 50-97 parts of slowly cooled blast furnace slag powder, a cement admixture is expandable substance 3 to 50 parts, containing the cement, and the cement admixture And a high fluidity concrete using the cement composition.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0006]
The blast furnace slag (hereinafter referred to as gradual slag) used in the present invention is a blast furnace slag that has been cooled and crystallized.
[0007]
Blaine specific surface area of the slowly cooled slag is preferably greater than 4000 cm 2 / g, more preferably at least 4500cm 2 / g, still more preferably at least 5000 cm 2 / g. When the specific surface area of the brain is 4000 cm 2 / g or less, the material separation resistance may not be obtained.
[0008]
Further, the vitrification ratio of the slowly cooled slag used in the present invention is preferably 30% or less, and more preferably 10% or less. If the vitrification rate exceeds 30%, the heat of hydration may increase.
The vitrification rate (X) referred to in the present invention is determined as X (%) = (1−S / S 0 ) × 100.
Here, S is the main of melilite (solid solution of gelenite 2CaO · Al 2 O 3 · SiO 2 and akermanite 2CaO · MgO · 2SiO 2 ), which is the main crystalline compound in the slowly cooled slag obtained by powder X-ray diffraction method. S 0 represents the area of the main peak of melilite after slowly cooling slag was heated at 1000 ° C. for 3 hours and then cooled at a cooling rate of 5 ° C./min.
[0009]
The component of the slowly cooled slag has the same composition as the granulated blast furnace slag, specifically, SiO 2 , CaO, Al 2 O 3, MgO and the like as main chemical components, in addition, TiO 2 , MnO, which may contain Na 2 O, S, P 2 O 5 and Fe 2 O 3 or the like.
[0010]
The amount of the cement admixture of the present invention (hereinafter referred to as the present admixture) is not particularly limited, but usually it is preferably used in the range of about 10 to 250 parts per 100 parts of cement. It is more preferable to use in the range of about 20 to 150 parts. If it is less than 10 parts, the effect of the present invention of suppressing heat of hydration may not be sufficiently obtained, and if it is used in excess of 250 parts, strength development may be deteriorated.
[0011]
The expansion material according to the present invention is not particularly limited, and any material can be used. Broadly divided, there are gas foam materials and cement minerals.
Specific examples thereof include aluminum powder, iron powder, a peroxide material, and a carbon material in a gas foam material system. Moreover, in a cement mineral type | system | group, an ettringite type | system | group, a lime type | system | group, a lime-ettringite composite type | system | group, etc. are mentioned. In the present invention, it is preferable to use a cement mineral system from the viewpoint of imparting effective expansibility.
[0012]
Examples of the cement mineral-based expansion material include those containing free lime and free magnesia, but those containing free lime are preferred from the viewpoint of long-term stability. As what contains free lime, a free lime-anhydrous gypsum system, a free lime-hydraulic compound system, a free lime-hydraulic compound-anhydrogypsum system etc. are mentioned, for example. In the present invention, it is preferable to use a free lime-hydraulic compound-anhydrous gypsum system because of its good expansion performance, and those having a free lime content exceeding 40% are particularly preferable.
Here, examples of the hydraulic compound include one or more of Auin, calcium ferrite, calcium aluminoferrite, calcium silicate, calcium aluminate, and the like.
A commercially available expansion | swelling material and a static crushing material can be utilized as an expansion | swelling substance. Expandable materials and static pulverized materials are commercially available from various companies. Typical examples include “Denka CSA” and “Denka Power CSA” manufactured by Denki Kagaku Kogyo Co., Ltd. “Sachs” manufactured by Sumitomo Osaka Cement Co., Ltd. “Expan”, “N-EX”, “Bleister”, “Gypcal”, etc. manufactured by the company are listed.
[0013]
The blending ratio of the slow-cooled slag and the expansion material in the present admixture is not particularly limited, but usually, the slow-cooling slag is preferably 50 to 97 parts in a total of 100 parts of the slow-cooling slag and the expansion material, More preferred is 70 to 95 parts. Further, the expansion material is preferably 3 to 50 parts, more preferably 5 to 30 parts. If the expansion material exceeds 50 parts or the slow cooling slag is less than 50 parts, the neutralization suppressing effect may be insufficient. Further, if the expansion material is less than 3 parts or the slow cooling slag exceeds 97 parts, the expansion performance may be insufficient.
[0014]
As the cement used in the present invention, various portland cements such as normal, early strength, super early strength, low heat and moderate heat, and various mixed cements obtained by mixing blast furnace granulated slag, fly ash or silica with these portland cements, The filler cement etc. which mixed limestone powder etc. are mentioned, Among these, the 1 type (s) or 2 or more types can be used.
[0015]
In the cement composition of the present invention, the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance.
[0016]
The particle size of the cement composition of the present invention is not particularly limited because it depends on the purpose and application to be used, usually, preferably 3000~8000cm 2 / g in Blaine specific surface area, 4000~6000cm 2 / g is More preferred. If it is less than 3000 cm 2 / g, sufficient strength development may not be obtained, and if it exceeds 8000 cm 2 / g, workability may deteriorate.
[0017]
The high-fluidity concrete used in the present invention is a generic term for concrete that has a self-filling property that does not require conventional vibration compaction and does not cause material separation, and has a slump flow value that is an index of fluidity. It is preferably 650 ± 50 mm.
[0018]
When preparing a high fluidity concrete, it is preferable to make it high fluidity using the water reducing agent, AE water reducing agent, high performance water reducing agent, high performance AE water reducing agent, etc. which are usually used. A water reducing agent is commercially available in liquid or powder form, and any of them can be used. Further, water reducing agents are roughly classified into naphthalene series, melamine series, aminosulfonic acid series and polycarboxylic acid series.
In the present invention, it is particularly preferable to use a high-performance AE water reducing agent, and specific examples thereof include naphthalene-based products having a product name “Neo-Bure SP-9 Series” manufactured by NMB, a product name “Mighty 2000 Series” manufactured by Kao Corporation, and A product name “Sunflow HS-100” manufactured by Nippon Paper Industries Co., Ltd. can be mentioned. In the case of melamine-based products, the product name “SEICAMENT 1000 Series” manufactured by Nippon Seika Co., Ltd. and the product name “Sunflow HS-40” manufactured by Nippon Paper Industries Co., Ltd. can be used. In the case of the aminosulfonic acid type, the product name “Palic FP-200 series” manufactured by Fujisawa Pharmaceutical Co., Ltd. may be mentioned. For polycarboxylic acid-based products, the product name “Leo Build SP-8 Series” manufactured by NMB, the product name “Darex Super 100PHX” manufactured by Grace Chemicals, and the product names “Tupole HP-8 Series” manufactured by Takemoto Yushi Co., Ltd. Paul HP-11 series ”.
[0019]
In the present invention, one or more of these water reducing agents can be used. The amount of water reducing agent used is not particularly limited, but it is usually sufficient to use it within the range specified by each manufacturer. Specifically, it is based on 100 parts of powder made of cement or the present admixture. 0.5 to 3.0 parts.
[0020]
Although the usage-amount of water is not specifically limited, 125-225 kg is preferable per 1 m < 3 > of concrete, and 140-185 kg is more preferable normally.
[0021]
In the present invention, in addition to cement, the present admixture, aggregates such as sand and gravel, and water reducing agents, blast furnace granulated slag fine powder, limestone fine powder, fly ash, silica fume and the like conventionally used in concrete are mixed. One of materials, shrinkage reducing agents, antifoaming agents, thickeners, rust inhibitors, antifreeze agents, polymer emulsions, setting modifiers, clay minerals such as bentonite, and anion exchangers such as hydrotalcite, etc. Two or more kinds can be used as long as the object of the present invention is not substantially inhibited.
[0022]
In the present invention, the mixing method of each material is not particularly limited, and the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance.
Any existing device can be used as the mixing device, and for example, a tilting barrel mixer, an omni mixer, a Henschel mixer, a V-type mixer, a Nauta mixer, and the like can be used.
[0023]
【Example】
Hereinafter, further description will be made based on examples of the present invention.
[0024]
Example 1
Cement, expansive material and slow-cooled slag powder are used in the proportions shown in Table 1, and a mortar with a binder to sand ratio of 1: 3 and a water cement ratio of 50% is prepared. The rate and neutralization resistance were measured. However, the expansion material was blended as part of the binder, and the slowly cooled slag was blended as part of the sand. The results are also shown in Table 1.
[0025]
<Materials used>
Cement: Commercially available ordinary Portland cement, Blaine specific surface area of 3200 cm 2 / g, specific gravity of 3.15
Slag a: Slow cooling slag, Blaine specific surface area 3000 cm 2 / g, Vitrification rate 5%, Specific gravity 3.00
Limestone fine powder: ground limestone from Aomi mine, Niigata prefecture, Blaine specific surface area 6000 cm 2 / g, specific gravity 2.70
Expansion material A: “Denka Power CSA” manufactured by Denki Kagaku Kogyo Co., Ltd., free lime-hydraulic compound-anhydrous gypsum system, Blaine specific surface area 2900 cm 2 / g. 50% free lime sand: JIS standard sand (ISO679 compliant)
Water: Tap water [0026]
<Measurement method>
Compressive strength: A 4 × 4 × 16 cm specimen was prepared, and the strength at 28 days of age was measured according to JIS R 5201.
Length change rate: According to JIS A 6202, the length change rate of material age 28 days is measured.
However, it was demolded at a material age of 1 day, and underwater curing was carried out until the material age was 7 days. Thereafter, air-drying curing was carried out at an environment of 20 ° C. and a relative humidity of 60% until the material age was 28 days.
Neutralization depth: 4 x 4 x 16 cm specimens were prepared and subjected to 20 ° C water curing until the age of 28 days, and then promoted in an environment of 30 ° C, relative humidity 60%, carbon dioxide concentration 5% After 8 weeks, the specimen was cut into pieces and the phenolphthalein alcohol solution was applied to the cross section to confirm the neutralization depth.
[0027]
[Table 1]
Figure 0005116193
[0028]
From Table 1, it can be seen that by using a cement composition containing the present admixture, the mortar can be imparted with an expansibility and neutralization suppressing effect.
[0029]
Example 2
Unit cement amount 280 kg / m 3 , unit expansion material A amount 20 kg / m 3 , unit slag amount 250 kg / m 3 , water / powder ratio = 30%, s / a = 48%, and air amount 4.5 ± 1 .5% concrete was prepared, and the experiment was conducted by changing the type of slag as shown in Table 2. These concretes were measured for slump flow value, adiabatic temperature rise, compressive strength, self-dimensional change, and neutralization depth. In addition, in order to examine the resistance to neutralization, the same experiment was also performed in the case of mixing limestone fine powder, which had the same compression strength as the slow-cooled slag fine powder in the case of the same composition. The results are also shown in Table 2.
[0030]
<Materials used>
Slag b: Slowly cooled slag, Blaine specific surface area 4000 cm 2 / g, Vitrification rate 5%, Specific gravity 3.00
Slag c: annealed slag, Blaine specific surface area 4500 cm 2 / g, vitrification rate 5%, specific gravity 3.00
Slag d: Slow cooling slag, Blaine specific surface area 5000 cm 2 / g, Vitrification rate 5%, Specific gravity 3.00
Slag e: Slowly cooled slag, Blaine specific surface area 6000 cm 2 / g, Vitrification rate 5%, Specific gravity 3.00
Slag f: Slowly cooled slag, Blaine specific surface area 6000 cm 2 / g, vitrification rate 30%, specific gravity 2.96
Slag g: Slowly cooled slag, Blaine specific surface area 6000 cm 2 / g, vitrification rate 50%, specific gravity 2.94
Slag h: quenching slag, Blaine specific surface area 6000 cm 2 / g, vitrification rate 95%, specific gravity 2.90
Sand: Niigata, Himekawa, 2.62 specific gravity
Gravel: from Himekawa, Niigata Prefecture, crushed stone, specific gravity 2.64
High-performance AE water reducing agent: polycarboxylic acid, commercially available product [0031]
<Measurement method>
Material separation: Observed visually. “X” indicates that material separation has occurred, “△” indicates that the material is slightly separated, and “◯” indicates that no material separation has occurred.
Slump flow: Issued by Foundation, Coastal Development Technology Center and Fishing Port and Fishing Village Construction Technology Research Institute, Underwater inseparable concrete manual, Appendix 1 "Underwater inseparable concrete test, slump flow test" Average self-dimensional change measured at two points in the direction: measured according to JCI Self-Shrinking Research Committee report. Displayed as strain at age 56 days.
Adiabatic temperature rise: Measured using an adiabatic temperature rise measuring device manufactured by Tokyo Riko Co., Ltd. at a casting temperature of 20 ° C.
Compressive strength: A 10φ × 20 cm specimen was prepared, and the strength at 28 days of age was measured according to JIA A 1108. However, demolding was performed on the 7th day of material age, and thereafter, water curing at 20 ° C. was performed.
Neutralization depth: 10φ x 20cm specimens were prepared and subjected to 20 ° C water curing until the age of 28 days, followed by accelerated neutralization in an environment of 30 ° C, relative humidity 60% and carbon dioxide concentration 5%. After 6 months, the specimen was cut into pieces, and a phenolphthalein alcohol solution was applied to the cross section to confirm the neutralization depth.
[0032]
[Table 2]
Figure 0005116193
[0033]
From Table 2, it can be seen that by using the cement composition containing the present admixture, the material separation resistance of the high-fluidity concrete is large, the hydration heat generation amount is small, and it is difficult to neutralize. Moreover, self-shrinkage can be suppressed to a low level even with a low water ratio concrete. In particular, it is preferable to use slowly cooled slag having a brain specific surface area of more than 4000 cm 2 / g.
[0034]
Example 3
The same procedure as in Example 2 was performed except that the unit cement amount and the unit slag amount were as shown in Table 3. The results are also shown in Table 3.
[0035]
[Table 3]
Figure 0005116193
[0036]
From Table 3, it can be seen that by using the cement composition containing the present admixture, the material separation resistance of the high-fluidity concrete is large, the hydration calorific value is small, and is not easily neutralized. Moreover, self-shrinkage can be suppressed to a low level even with a low water ratio concrete.
[0037]
Example 4
The type of expansive material in the binder in high-fluidity concrete with 300 kg / m 3 unit binder, 250 kg / m 3 unit slag, 165 kg / m 3 unit water, and 48% s / a. And the amount was changed as shown in Table 4, and the same procedure as in Example 2 was performed. The results are also shown in Table 4.
[0038]
<Materials used>
Expansion material B: Denka CSA # 20 manufactured by Denki Kagaku Kogyo Co., Ltd., free lime-hydraulic compound-anhydrous gypsum system, Blaine specific surface area 2800 cm 2 / g, free lime content 20%.
Expansion material C: “Expan structure” manufactured by Taiheiyo Materials Co., Ltd., free lime-hydraulic compound-anhydrous gypsum system, Blaine specific surface area 3500 cm 2 / g, free lime content 33%.
[0039]
[Table 4]
Figure 0005116193
[0040]
From Table 4, it can be seen that concrete with no self-shrinkage can be produced by increasing the blending ratio of the expansion material in the present admixture. In particular, it is preferable to use an expanded substance A having a free lime content exceeding 40%.
[0041]
【Effect of the invention】
By using a cement composition containing this admixture, it is possible to provide expansibility and neutralization suppression effect, low hydration calorific value, high material separation resistance, and to make concrete difficult to neutralize. Can do. Further, even when applied to concrete having a low water ratio such as high fluidity concrete, there is an effect that self-shrinkage can be kept small.

Claims (3)

ブレーン比表面積が4000cm 2 /gを超える高炉徐冷スラグ粉末と遊離石灰量が40%を超える遊離石灰-水硬性化合物-無水セッコウ系である膨張物質を含有してなり、高炉徐冷スラグ粉末と膨張物質の合計100部中、高炉徐冷スラグ粉末50〜97部、膨張物質3〜50部であるセメント混和材。 A blast furnace annealed slag powder having a specific surface area of Blaine exceeding 4000 cm 2 / g and an expanded material of a free lime-hydraulic compound-anhydrous gypsum system having an amount of free lime exceeding 40%, Cement admixture comprising 50 to 97 parts of blast furnace slow-cooled slag powder and 3 to 50 parts of expanded material in a total of 100 parts of expanded material. セメントと、請求項1に記載のセメント混和材とを含有してなるセメント組成物。A cement composition comprising cement and the cement admixture according to claim 1 . 請求項記載のセメント組成物を用いてなる高流動コンクリート。A high fluidity concrete using the cement composition according to claim 2 .
JP2001260970A 2001-08-30 2001-08-30 Cement admixture, cement composition, and high fluid concrete using the same Expired - Fee Related JP5116193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001260970A JP5116193B2 (en) 2001-08-30 2001-08-30 Cement admixture, cement composition, and high fluid concrete using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260970A JP5116193B2 (en) 2001-08-30 2001-08-30 Cement admixture, cement composition, and high fluid concrete using the same

Publications (2)

Publication Number Publication Date
JP2003073155A JP2003073155A (en) 2003-03-12
JP5116193B2 true JP5116193B2 (en) 2013-01-09

Family

ID=19088081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260970A Expired - Fee Related JP5116193B2 (en) 2001-08-30 2001-08-30 Cement admixture, cement composition, and high fluid concrete using the same

Country Status (1)

Country Link
JP (1) JP5116193B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4860106B2 (en) * 2003-09-25 2012-01-25 電気化学工業株式会社 Cement admixture, cement composition, and cement concrete
JP4157485B2 (en) * 2004-03-23 2008-10-01 電気化学工業株式会社 Cement composition and quick-hardening grout material
JP5173117B2 (en) * 2005-02-25 2013-03-27 住友大阪セメント株式会社 Manufacturing method of concrete structure using concrete material for placing in cold weather
JP2008194883A (en) * 2007-02-09 2008-08-28 Sumitomo Osaka Cement Co Ltd Concrete product and its manufacturing method
CN102251782A (en) * 2010-05-19 2011-11-23 闫冬生 Novel underground anchor spraying concrete
JP5602580B2 (en) * 2010-10-20 2014-10-08 住友大阪セメント株式会社 Concrete material for placing in cold weather, concrete structure using the material
JP5936949B2 (en) * 2012-08-15 2016-06-22 デンカ株式会社 Underwater inseparable concrete
WO2021246288A1 (en) * 2020-06-02 2021-12-09 デンカ株式会社 Cement admixture and cement composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3960718B2 (en) * 1999-08-25 2007-08-15 電気化学工業株式会社 Cement admixture and cement composition
JP3960717B2 (en) * 1999-08-25 2007-08-15 電気化学工業株式会社 Cement admixture and cement composition

Also Published As

Publication number Publication date
JP2003073155A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
Binici et al. The effect of fineness on the properties of the blended cements incorporating ground granulated blast furnace slag and ground basaltic pumice
Barbhuiya et al. Properties of fly ash concrete modified with hydrated lime and silica fume
Mbessa et al. Durability of high-strength concrete in ammonium sulfate solution
CA2985958C (en) Concrete composition with very low shrinkage
JP2019085304A (en) Non-shrinkage grout composition, and non-shrinkage grout material
Benabed et al. Experimental study on the reuse of cathode ray tubes funnel glass as fine aggregate for developing an ecological self-compacting mortar incorporating metakaolin
TW201904910A (en) Concrete composition and method of manufacturing same
JP5116193B2 (en) Cement admixture, cement composition, and high fluid concrete using the same
JP4248121B2 (en) Cement admixture, cement composition, and high fluidity concrete using the same
JP4514074B2 (en) Cement admixture, cement composition, and high flow cement concrete
JP2007320832A (en) Grout composition and grout mortar using the same
CN114368946A (en) Mineral admixture hydraulic concrete
JP2007238745A (en) Grout composition and grout mortar using the same
JP4462854B2 (en) Method for reducing self-shrinkage of ultra high strength concrete
JP2001294459A (en) Cement admixture and cement composition
JP5068906B2 (en) Cement admixture, cement composition, and cement concrete using the same
JP6338819B2 (en) Concrete composition and method for producing the same
JP7263587B1 (en) Concrete and its manufacturing method
JP4131795B2 (en) Cement admixture and cement composition
JP4877892B2 (en) Cement admixture, cement composition, and high fluidity concrete using the same
JP2008105909A (en) Cement admixture and cement composition
JP3897689B2 (en) Cement admixture and cement composition
JP2003192410A (en) Cement admixture, cement composition and cement concrete obtained by using the same
JP3844458B2 (en) Cement admixture and cement composition
JP6157148B2 (en) Concrete composition and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111125

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R151 Written notification of patent or utility model registration

Ref document number: 5116193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees